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Generalized mean-field theory for Ising spins in small world networks
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A generalization of mean-field theory for random systems is described. The results of that analytic model
could be reconciled with the results of numerical calculations of the Curie temperature for a system of Ising
spins in small world SW) networks by introducing the effective interaction energy associated with long-range
links which exceeds the real energy of spin interaction. Such a model describes qualitatively well the increas-
ing Curie temperaturéc with the growth of the long-range links fractigmin the two-dimensional SW system
with fixed coordination number. On the basis of simple physical considerations, concentration dependences
Tc(p) are found for SW systems of different dimensions.
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[. INTRODUCTION following considerations. In that theory the transition tem-
_ ) _ . perature is defined by the formulg=(z)J, where(z) is the
The aim of the present paper is to generalize mean'f'e@oordination number averaged over lattice sites. Imagine that
theory for a system of Ising spins in nonregular Networkshe generation of SW networks from the regular lattice with
presenting the small worldéSW) network—the graph with e coordination numberis handled by means of randomly
peculiar propertieq1,2]. Ordinary networks(regular and  rgpiacing short links with long ongsee below; but in such
nonregular refer to the lattices the sites of which are con- 4 \yay that the average link number for a site remains fixed
nected with their neighbors only. By contrast, in SW net-((5 =) As this takes place, the transition temperature has to
worlfs there are random c_onnectl.ons bo.th between near a% constant, as well. That conclusion contradicts the results
far (in geomgtncal sensesites. It is premse_ly these far, or of numerical calculation§3—8] and is connected to the fact
ang-range, linkgshortcuts that are responsible for the spe- that in traditional mean-field theory the local fields are as-
cial featu_res of SW ngtworks. . . . sumed to be the same in all sites, while, in fact, those fields
The Ising problem in SW networks arises in a similar Wayvary from one site to another inrandomfashion. The gen-
as for ordinary lattices—in network sites Ising spins areg qlized theory has to take that into account.

placed Whi.Ch interactthe interactio_n energy) with thgir In the present paper, we shall describe such a theory and
ngarest heighbors only—thgt IS, W.'th those ones which AlGse it to study the magnetic state of an Ising spin system in
directly connected with a given spin. However, in SW Net-S\n networks. Data obtained with the help of that theory

works fom_e r?sometg'cta”y ;emﬁved spfms turgl OL:t to be tht%ould be reconciled with the numerical results of investigat-
nearest neighbors that, naturally, areé favorabe to magne Il?‘lg similar systems by introducing the effective interaction

orderi.ng. The existence or apsence of the orde.red magnet ergy through the long-range links which exceeds the real
state is governed by the fraptmn of Iong-range links and th nergy of spin interaction. Such a model explains the rising
erendencg of the interaction enexdyy qscnbed to Fhose of the Curie temperatur&:(p) with p increasing in the SW
links on their geometrical length. Numerical calculations forsystem with fixed coordination number

— 1t H H H .
:he pogvetr depeq?gn)c}gf\{v—.]trﬁj t(ril' 'Shthe ?eom(te.trlcalt ?.'S.'t In Sec. Il, the generalized mean-field theory is described
ance between sita3) show that a phase transition al init€ 1,504 o the distribution function of local magnetic fields. In
temperature IS possible even in the one-d|men.3|onal ?ySteEHe cases when the exact solution is known, the Curie tem-
[3-7], though it oceurs a_tz—_O only, when the |n_teract|on erature calculated with this theory turns out to be signifi-
energy along those links is independent of the distance an antly closer to the exact value than that calculated with

ce(r)talﬂly, ?\t a S“ff'c"?'.“'y .h'gg frchtlon of those links. At traditional mean-field theory. In Sec. I, the approach formu-
= M(t)s? c?or?cjﬁstiroar?slgggdftﬁeseﬁrc} ” f the Isi q Eted is used for describing the properties of the Ising spin
: properties ot the 1sing mode ystem in SW networks. Distribution functions of local mag-

in SW networ_ks have _been ob_talned by numerical Mont etic fields are calculated for two-dimensional SW networks
Carlo calculations. Partl_cularly, it hz_is been establ_u_shed th ith varying and fixed coordination number, and the depen-
the type of the procer—_:dlng mggnetlc phase transition COM&ences of the Curie temperature on the fraction of sites with
sponds to the mean-field mod¢b]. It allows one to hope long links (in the former caseor the fraction of those links

that a properly generalized mean-field theory could provide "i'in the latter caseare found. A comparison is made with the
correct description of that transition. The necessity of gener:

- L . L results of numerical calculations, and a conception of the
alizing the traditional mean-field theory is dictated by theef“fective interaction energy through long links is introduced.

The simple considerations presented in Sec. IV lead to estab-
INamely, the magnetizatiop close to the Curie temperatufie. ~ lishing the concentration dependencgs(p) of the Curie
depends on the temperatufeaccording to the lawj o« (T¢—T)~, temperature in SW systems of different dimensions. At last,
where8=1/2. Sec. V is devoted to concluding remarks.
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Il. GENERALIZED MEAN-FIELD THEORY FOR ISING TABLE |. Configurations of spins of nearest neighbors in the
SPINS IN A REGULAR SQUARE LATTICE square lattice and their probabilities.

In accordance with the exact solution of the Ising model Effective Configuration

[9,10], the Curie temperature for & two-dimensional SquareConﬁguration magnetic field Number of probability for

lattice of spins With fer_romagr?etic interaction equdlg of moments (h/J) configurations magnetizatior(j)
=2.27, where J is the interaction energy of the nearest

neighbors. The mean-field resalt=4J (z=4) differs sig- 11 +4 cl=1 1+j
nificantly from the exact one. Besides the known defect of 2
the mean-field theory, which does not take into account the

4

spin correlation, another disadvantage of that model is sug- [ +2 Cy=4 4(ﬂ)3(1_j/2)
gesting arequivalenceof all lattice sites. It results in assum- 2

ing that the “mean fleld is the same in all sites though that 111 0 c2=6 1+ 2( o)
field is randomlyvaried from one site to another. Therefore, 6 5 1-j/2
it is natural to incorporate this randomness in the scheme and

to see how much higher would be the accuracy of the solu- 1]]|] -2 Ci=4 1+j (121 /2)3
tion obtained with that generalized mean-field theory. For the 4= |1-i/2

first time, such an approach has been used in Rdi. for . 4
considering the system of randomly positioned magnetic di- /! —4 C,=1 (ﬂ)
poles. Later, it was analyzed in detail in a series of papers 2

[12], where the starting point is the definad hocdistribu-
tion function of pair interaction energies. The essence of that

model is in replacing the standard mean-field equation sign is defined by the relative orientation of the central and
neighbor spins. Thus, the field depends on the configura-

j:tam-<)\—j> (1) tion of Ising spins in the first coordination sphere. For the

' square lattice, there are*216 such configurations, in all.

Their distribution over the effective field, along with prob-

abilities of those configurations, is displayed in Table 1.
The relevant distribution function reads

where | is the reduced system magnetizativrand is the
mean-field constant, by its generalized analog

* h
j= t = |F(j;h)dh, 2 . 1 . . .
‘ f a”F(T) U0 @ b = s+ ath- 49 + 41+ )Y -j)ath- 29)
in which F(j ; h) is the distribution function of local magnetic +6(1+))2(1 —)28(h) + 41 +))(1 - ])35(h +2J)
fields h generated by all lattice spini# the Ising model, by 4
nearest neighbors onlyn a given site of the lattice. Notice +(1-))"ah+4J)]. (4)
that the mean-field equatidd) is equivalent to the equation  gypstituting it into Eq(2) one finds
_ h(j) -
] :tanr{—] 3) 2 2 tanl2K) + tanh(4K) 2, K= g. 5)
T 2 tanh2K) - tanh(4K) T
where This relationship determines the temperature dependence of
— * _ the system magnetization and Curie temperalig€erlhe lat-
h(j) :J hF(j;h)dh. ter is defined by the conditiop=0 which is reduced to the

equation 2 tan{2K)+tanh(4K)=2 whose solution giveX

In the framework of such a generalization, the problem is=K{ ~0.323. From here on, it follow®c ~ 3.10), which is

reduced to determining the distribution functidf(j;h), much closer to the exact result than the traditional mean-field

which allows one to investigate the magnetic properties ofstimate. Also notice that the mean field defined by the dis-

the relevant system with the help of E(ﬁ;.).2 tribution function (4) equalsh=4jJ, which, in accordance
To estimate how much better is the result of the meanwith Eq. (3), leads to the ordinary mean-field Curie tempera-

field theory in its generalized forrf8), let us consider the ture value.

square lattice in which site spins with orientationg are The temperature dependengé€¥) of the magnetization

placed. The probabilities of the corresponding orientationgorresponding to the traditional mean-field thepg. (1)],

are equal ta1+j)/2 and(1-j)/2. The effective fielch of  its generalized forn{2), and the exact solution

the interaction of the central spin with its nearest neighbor- ]

hood is the sum of terms of the same absolute val(&is j=[1-sh%2K)]"® (6)

the interaction energy for spins of the same diregtivhose of the Ising problem for the square lattift0] are presented

in Fig. 1. It is seen that the result of the generalization con-
%Different approaches to the problem considered and a compresidered in the present paper is significantly closer to the ex-
hensive bibliography can be found in the reviewg 18—15. act result.
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5 those random links has been changed from 0 to 1, so the
average coordination numbeidoes not remain constant but
increases from 4 to pAz=1).
For SW networks with magnetizatighand fractionp of
sites possessing long links, the probabilities of different spin

= b : configurations “near by” a given site are listed in Table I,
O[T =227 06 ‘ which are necessary for calculating the distribution function
21 p=0" 05 .
04 s of local fields.
02 i The relevant distribution function reads
1t |
[ 1 2 3 4 . . 1 .
TI F(.h = (1 -p)Fo(i,h) + pl(1 +])°8(h - 53)
O L ) 1 1
0 02 04 06 08 10
P +5(1+))* (1 -j)sh-3J)

D301 — 1)V2.5(h — 8201 — )3

FIG. 1. Dependence$c(p) of the Curie temperature for two- +10(1+))*(1-j)"6(h = J) + 101 +))(1 —j)s(h
dimensional SW systems with nonfixed average coordination num- +J)+5(1+))(1-j)*s(h+3J) +(1-j)°8(h+5J)].
ber on the fractionp of sites with long links. Points: numerical

calculationg16] for the square lattice 2020 (T has been deter- ()

mined at the levej=0.1). The solid line: analytical calculation with Substituting it into Eq(2) one gets the equation

the help of Eq.(9) of generalized mean-field theory. Dashed line: ) B

the result of the traditional mean-field theory. Inset: the temperaturel 1 = P)[8(1 +j9)tanh(4K) + 16(1 - j)tanh(2K) ]

dependence of magnetization calculated by means ofdxqg. +pl(5 + 102+ j*)tanh(5K) + 5(3 +j2)(1 - j)tanh(3K)
+10(1 - j??tanHK)] = 16, (8)

Analogously, different two-dimensional latticélsexago-
nal and trianglg for which exact solution are knowf@]  which determines the system magnetizatj6én) and Curie
could be considered. The relevant results are collected ifemperature. The latter could be defined setiin@ in Eq.
Table II. (8). Then the equation determinifk, reads

It is seen that the results of the generalized mean-field

theory are very close to the results of the Bethe approach. Inp tanK2K) + tanh4K) = 2 - —p[5 tani(5K) + 15 tank3K)
any case, that generalization improves significantly the tradi-

tional mean-field result and, hence, is more preferable for + 10 tantfK) — 8 tan{4K)
describing the properties of compléix particular, nonregu-
lar) Ising systems. - 16(tanh(2K)]. (9

At p=0 it transforms into the previous equati¢s), and at
p>0 it has the solutiolKc< Kg))=0.323 which corresponds

to the enhanced Curie temperature when compared to the
A. SW networks with nonfixed coordination number regular lattice withp=0.

The results of numerical Monte Carlo calculatigis]

the considered system with different fraction®f sites
ﬁith long links are shown in Fig. 1. In the range= 0.1, the

Ill. ISING MODEL FOR SW NETWORKS

One could generate SW networks from a regular networl§Or
by different procedures. For instance [ 6] additional con-
nections between randomly chosen sites of the origin
square lattice which are not nearest neighbors have be
added(with the condition that each site may have no more
than one such extra linkThe fractionp of the sites with

urie temperaturd(p) increases linearly wittp. Also in

Ig. 1, the dependence d%(p) calculated with the help of
Eq. (9) and the dependence ©§(p)=J(4+p) corresponding
to the traditional mean-field theory are presented. Though the
results of our analytical calculation agree well with the nu-
merical calculationg16], they do not reflect the principal
thing. In fact, the exact valu€:(p=0)=2.27 signals the fast
growth of T¢ in the range &< p=<0.1 (shown by the dashed
curve) not reflected in the results §16]. Therefore, it is not

Generalized excluded that in the case all phenomena associated with spe-

Lattice type(z) MFT? MFT® Bethé Exact resulf9] cial features of SW networks take place for the most part in
the narrow range €&p=<0.1. That makes the above-

TABLE II. Curie temperatures for two-dimensional Ising
lattices.

Teld

Hexagonal(3) 3 211 1.82 1.52 mentioned procedure of generating SW networks to be non-
Square(4) 4 3.10 2.89 2.27

Triangle (6) 6 508 4.93 3.64 *There are no Monte Carlo calculations for the case considered
MFT, mean-field theory. that could more definitely determine the form of this curve. The
Ppresent paper. more stepwise is the curve, the better is our approximation of the
“Bethe approachl]. correct behavior.
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TABLE Ill. Configurations of nearest neighbofsping in SW networks with the probabilitp of long-
range links(symbolsf, || correspond to spin states at the long-link end

Configuration Effective Number of Configuration probability
of spins magnetic fieldh/J configurations at magnetization
+4 ci=1 1+j\*
1111+0 +5 ci=1 (1_+i)“p(1_+i)
2 2
1117+0 +3 ci=1 (1_+i)“p(1_—i)
2 2
1_ 1+ij 3 1-
11l +2 Ci=4 4(_1) (_J)(l_p)
2 2
1111+0 +3 Ci=4 ] ] (1_+J'
2 2 2
1111+0 +1 Ci=4 4 1_+i)3(1_-i) (ﬂ)
2 2 P 2
2_ 1+j 2 1-i 2
2 2
1111+0 +1 ci=6 5(1—”21—'])2 14
2\ 2 P2
1111+0 -1 ci=6 61_+izu)2 1
2 2 P 2
_ 3_ i\/1=i\3
THL 2 Ci=4 4(ﬂ)(u) 1-p)
2 2
1111+D -1 Ci=4 4(1_+i)(1_-i)3 (ﬂ)
2 2 P 2
1111+0 -3 Ci=4 PESdl ﬂ)g (u)
2 {2 )P\ 2
-4 Ci=1 1-j)*
1 4 (71 (1-p)
LL1L+0 -3 ci=1 (1_—1)4p(1_+i)
2 2
Ll1l+0 -5 ci=1 (1_-1)“p(1_-i)
2 2
appropriate to analyze the properties of the considered sys- B. SW networks with fixed coordination number

tems in the whole rangeOp=<1. We believe that it is more

proper to analyze the feasibility of the generalized mean- To fix the coordination number one needs to use another
field theory for the Ising problem in SW networks by con- procedure(see, for examplg6]) which converts the regular
sidering systems the average coordination number of whickquare latticeN x N with the total links number of I9? (at
remains fixed for every value. N> 1) into an SW network through three stages.
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(i) Choose randomly some fractigrof the original lattice (4p)ke~P
links (the number of such links equalé=2pN?) and discon- Wy 3(K) = R (12
nect their ends from their own sites. '

(i) Reconnect one of two ends of every link to a ran-with mean valugk)=4p (at p=1, as one would expect for
domly chosen lattice site, leaving free the second end. the square latticelky=4).

(iii) Connect those free ends of every link to randomly  According to the Ising model, all neighbofse., sites
chosen lattice sites excluding the formation of lodpen-  directly connected with a given sjtgenerate at a given site
nections with both ends switching on a single séed con-  the effective field whose sign is defined by the mutual orien-
nection doubling. tation of spins in those two sites.

The described procedure does not change the total number Long links appearing in the course of generating SW net-
of links and, hence, the average coordination numizgr work and directly connecting the sites that before have been
=3}, z;/N? (z; is the coordination number of the sitg re-  connected by a number of links distinguish such a network
mains fixed:(z)=z After performing that procedure, the from the regular on¢2]. In the framework of the mean-field
regular lattice converts into an SW network and every site isheory, the special role of such links could be taken into
characterized by two random numbersandk, the former account by ascribing the effective interaction ene¥gydif-
determining the number of short linksemaining after the fering from the interaction energyof the nearest neighbors
first procedure stageand the latter defining the number of to the pair of sites connected by such a link. The distribution
long links (formed during the second and third procedureof numbers of short links is defined by the functidm®) and
stages Before performing the above-described procedure ofhe distribution of long links by the relatiofi2). The prob-
link randomization,s=4, k=0 for every site, while &s  ability w'(s,k) that a site has short andk long links it
<4, k=0 after its completion. s

After the first stagdi.e., after removing some fraction of + _ — Z4 —4p g \KnA-S(1 _ S
links), the probabilityw;(s) that a given site conserves WSK) = wa(sw; k) = K! (4pypT1 —p) (13

links (s=0,1,2,3,4 equals For a ferromagnetic spin interacti¢d, J*>0), the total ef-

fective fieldh on the site which has short links andk long

wy(s) = C3(1 - p)%p*™. (100 links equals heye=(s—25")J+(k-2k")J"=(B,~B_)(sJ
After the second stage, some sites acquire new connecf_‘—k‘r) wheres_’ =S, kl_gk are th? numbers O_f correspor_1d|ng
tions. The probabilityw,(k,) that a given site getk, addi- links connecting a given site with spins which are antiparal-

tional links is equal towz(kz)zck%(llNZ)kz(l_1/N2)M—k2 lel to the spin in the central site, angl, B- are portions of

where M=2pN? is the total number of switchings made in para}llel and antiparallel spins averaged over the system.
the course of the stage Their probable values depend on the reduced system magne-

From the “point of view” of any site, the third stage of the tization J: Bi:(%.i.mz' , . ,
procedure is no different from the second stage, except for The probablllltles thats among s short I'|nks' andk
the restrictions connected with generating loops and dou@_\mongk long I|n!<s produce negative contributions to the
bling. However, for the network with a great number of sites/€/d are. respectively, equal to
those restrictions are not essential because the portion of
connections falling into this category is on the order o1/
Thus, we shall not take that exclusion rule into account and

Wee(j) = 25CE (1 +))°5 (1 - )7,

assume that after completing the third stage the probability Wige () = 27%CK (1 +))* X (1= ))¥ . (14)
ws(ks) that a given site acquirels; additional links is ex- o o ) o
pressed by the same formulas as(k,)—that is, wa(ks) Thus, the distribution functiof(j,h) of fields in sites of
=Cl9(1/N2)ks(1 -1 /N2)Ms, SW networks reads
Hence, the probabilityv, 5(k) that after the two last stages 4 o
a given lattice site obtainls links equals FG,H=> > > > w(s,kWee (Wi (j) 8(h = hegie) -
570 ¢' <5 k=0 ' <k
W, 3(K) = > Wa(ko)w(ks) (15
el In the absence of macroscopic system magnetizagion
[ 1K 1 \2Mk K 0 den =0) the distribution function(15), as one would expect, is
“\N? 1- N2 go CmCwm symmetrical:F(0,h)=F(0,-h). Notice also that the state of a

site specified by the parametexk (total numbers of links of

_ ok (i)k<1_i>m_k 1y evew kind and s’k (the number of antiferromagnetic

T TaMy N2 N2 ' neighbor$ could be degenerated in the sense that the same
effective fieldhgy, could be associated with various sets of

This probability is independent of the total number of lattice

sites if the latter is large enough. In fact, Mt—co but k “In Eq. (13) we neglect improbable generating new short links at
<M, Eg. (12 transforms into a Poisson distribution the third stage of our procedure.
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1.0+
j=1, JlJ=1 p=0
0.8+
0.6+ .
% 25 r‘ T'p=1
041 &2 5ol T [J=2.27
o2+ e ‘ 1
= H H p=1 5
% AT 10
“ 0a 6 -4 2 0 2 4 6 8 05l
. e, 0 L L L L
S R0 0 02 04 _ 06 08 10
03+ I I4
FIG. 3. Dependence$c(p) of the Curie temperature for two-
02r dimensional SW systems with fixed average coordination number
on the fractiorp of long links. Points: numerical calculatiof®] for
o1k the square lattice 200200. Solid curves: analytical calculations
with the help of Eq.(16) of generalized mean-field theory for dif-
0 ferent values of thg*/J ratio.

6 4 2 0
T .
- canceled. Therefore, in the second range one could expect

FIG. 2. The distribution functior(j,h) of effective fields for agreement between numerical Monte Carlo calculations and

two-dimensional SW systems with the fixed average coordinatioPU" analytical mean-field calculations. However, that agree-

number atJ*=J (interactions through short and long links are the Ment is accomplished by assigning some higher effective in-

same for various magnetizationg and fractionsp of long links.  teraction energyl*~ 1.25] to the long links only.

Dashed envelops: Gauss distributigr=0) with zero mean value Introducing the effective energy differing from the real

and Poisson distributiofj=1) with the mean valuéh)=4J. If J*  interaction energyl is, in fact, the way to rectify the mean-

> J, the distributions remain the same for 0 and are shifted in the field theory not considering spin correlation. Actually, every

direction of higherh for p=1. site transmits information about its own staéte., about the
spin orientation to its neighbors by means of its links. The

those parameters. The form of the distribution functids) short link transmits that information to the nearest neighbor
and its evolution with a variation of the magnetization are@nd through it to three next sites el$e the square lattioe—
shown in Fig. 2. that is, in four sites, totallone might not take more re-
To determine the Curie temperature for a nonregular netloved sites into accountThe long link transmits informa-
work one substitutes the distribution functietb) in Eq.(2)  tion to t.he remoted site and, further: to four sites else—i.e.,
of the mean-field theory. Tha@. value is defined by the N five sites, totally. Hence, the long link turns out to be more

boundary of the nonzero solution for the resulting the equagffective by5/4=1.25 times. Though these considerations
tion are not rigorous, they explain the enhanced effectiveness of

long links qualitatively and provide a reasonable estimation
of that enhancement.

4 %
=2 2 2 > wis ks (tanihsge), (16)

50 ¢/ <s k=0 k' <k
IV. CONCENTRATION DEPENDENCE OF THE CURIE
where TEMPERATURE

fogre () = 27HCE CE (1 +)(SHO="K) (1 — j)(s+KD) To gain some insight into the physical reason for the con-
17) centra_ltion dependenc@c_(p) (i.e., e_nhan_cingTC with in-
creasing the concentratignof long links in SW networks
The dependencéc(p) found by this way is shown in Fig. let us consider arguments explaining the absence of the or-
3 and atJ=J* demonstrates nonsignificatiess than 10% dered ferromagnetic state in the one-dimensional system
only) lowering of T¢(p) with increasingp. That conclusion is  without long links and the possibility of that state appearing
contradictory to the results of numerical calculatidi§, in a SW network. In the first case, splitting the spin chain
which show a nearly 50% variation of the Curie temperaturénto two domains with opposite magnetization results in in-
with increasingp from 0 to 1: the fast growth in the range of creasing the system energy by. However, the boundary
0<p=0.1 and rather slow growth at=0.1. Within the first between those domains could be placed at ani{ ahain
range, the Ising system quickly converts into the mean-fielgsites that corresponds to raising the entropykiiy N. Thus,
system and the discrepancy between our mean-field resuhe variation of the free energy equal Aé-=2J-kTIn N is
Tc(0)=3.09 and the exact result:(0)=2.27 is substantially always negative at high enough numié&ri.e., domain for-
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mation is efficient. In the case of SW networks, the possibilthen the number of ways to create the domain with the sur-
ity to choose the position of the domain boundénjthout  face areaS is aboutG=g®. Thus, the variation of the free
additional increasing energy due to long links signifi-  energy equalsAF =~2SJ-kTIn G=S2J-kTIng). The or-
cantly limited: the number of sites suitable for that boundarydered state is stable &< T wheré kTSP =23/In g. The
lowers by aboutpN>1 times comparing with the original presence of long links diminishes the number of ways to
site numbem and equals~N/pN=1/p. Now, the variation extend the surface: it could not pass through the sites with
of the free energy idF ~J-kTIn (1/p). It is positive(i.e.,  those links as the system energy would be higher. The num-

domain formation is profitab)ef T<T(ClD) where ber of forbidden sites is-p?S, and near those the number
of surface extension ways equals, gobut (g—Ag). Hence,
kﬁclm ~Jl|Inp|. (18) the number of possible domains with surfaBelowers

down toG,~g"P "S(g-1)7""s, and the variation of free en-

Another matter is the two-dimensional lattice where theergy equal toAF = 2S3-kTIn G,=S{2J-KT In g+p*2In(1

creation of the domain with perimeter length lof(in units : . 3D 3D
equal to the lattice constankeads to appearings pairs of ~Ag/g)]} is positive atT<T(C )+AT§3 ' where

spins of opposite directions at the domain’s boundary that In(g-1

result in increasing the system energy HyJ2To calculate ATED = p2/3T(cSD)<1 _(Igrll—g)) o« p?, (20

the entropy associated with that boundary, one needs to esti-

mate the number of ways to draw a closed boundary of The dependenced8) and(19) are supported by numeri-
lengthL. As in every site the boundary could choose one ofcal calculationg4,6] to estimate the applicability of E419)
three directions; the number of those ways is ali®aB" (as As for the three-dimensional SW network, the depen-
the boundary is closed, that number is somewhat overestiienceAT(CSD) is, according tq[6], close to the linear one;
mated but for largel the error is insignificanf17]). Thus,  however, the author of that result is doubtful of its accuracy.
the variation of the free energy equald-=~2LJ-kTIn G

=L(2J-kTIn 3). The ordered state is stable when the varia- V. CONCLUSIONS

tion is positive—i.e., atT<TZ> wheré kTE'=2J/In 3 We have shown that the results of analytical mean-field
=1.82]. The presence of long links lowers the number oftheory could be qualitatively reconciled with the results of
ways to draw the boundary: it could not travel through thenumerical calculations of the Curie temperature for the sys-
sites possessing those links because the system energy wotddn of Ising spins in SW networks by introducing the effec-
be higher. The number of those forbidden sites is on thdive energy of interaction through long links that is some-
order of (pL?)Y2=p'2L, and near those sites the boundarywhat higher than the real interaction energy. That allows us
could choose not three but only two directions. Hence, théo explain the growth of the Curie temperaturg(p) with
number of possible boundaries of the lendgtireduces to increasingp for a system with fixed coordination number.
G,~3-7"12¢"™ and the variation of the free energy equal  The physical reason for the growli with p is a lower-

to AF=2LJ-kTInG,=L{2J-KkT[In 3-p2In(3/2)]} s ing system entropy associated with the long links.

positive atT<TE:2D)+AT(CZD) where In- conclusion, of course, the generalized mean-field
theory does not lead to a quantitatively accurate description
In2 of the magnetic state of the Ising SW system, but allows one
2D) __ /2(2D / . . . . .
AT(c = pt ZTE: )<1 - m) p'? (19 to obtain results which are qualitatively correct. Their advan-

tage (as compared with more accurate but numerical meth-
Analogous arguments also allow one to estimate the desd9 is that the results are obtained by a simple analytic
pendenceT(p) for the three-dimensional case where cre-method.
ation of a three-dimensional domain with surface afa
leads to the formation o8 pairs with opposite spin direc- ACKNOWLEDGMENTS
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*The Onsager exact solutionk'l'(CZD)=2J/ IN(1+y2)=2.27 Agreement with the almost exact solutinD)z4.5] [10] is
changes this result unessentially. obtained ag=1.5.
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