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A generalization of mean-field theory for random systems is described. The results of that analytic model
could be reconciled with the results of numerical calculations of the Curie temperature for a system of Ising
spins in small worldsSWd networks by introducing the effective interaction energy associated with long-range
links which exceeds the real energy of spin interaction. Such a model describes qualitatively well the increas-
ing Curie temperatureTC with the growth of the long-range links fractionp in the two-dimensional SW system
with fixed coordination number. On the basis of simple physical considerations, concentration dependences
TCspd are found for SW systems of different dimensions.
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I. INTRODUCTION

The aim of the present paper is to generalize mean-field
theory for a system of Ising spins in nonregular networks
presenting the small worldsSWd network—the graph with
peculiar propertiesf1,2g. Ordinary networkssregular and
nonregulard refer to the lattices the sites of which are con-
nected with their neighbors only. By contrast, in SW net-
works there are random connections both between near and
far sin geometrical sensed sites. It is precisely these far, or
long-range, linkssshortcutsd that are responsible for the spe-
cial features of SW networks.

The Ising problem in SW networks arises in a similar way
as for ordinary lattices—in network sites Ising spins are
placed which interactsthe interaction energyJd with their
nearest neighbors only—that is, with those ones which are
directly connected with a given spin. However, in SW net-
works some geometrically removed spins turn out to be the
nearest neighbors that, naturally, are favorable to magnetic
ordering. The existence or absence of the ordered magnetic
state is governed by the fraction of long-range links and the
dependence of the interaction energyJSW ascribed to those
links on their geometrical length. Numerical calculations for
the power dependenceJSW=J+r ij

a sr ij is the geometrical dis-
tance between sitesi,jd show that a phase transition at finite
temperature is possible even in the one-dimensional system
f3–7g, though it occurs ata=0 only, when the interaction
energy along those links is independent of the distance and,
certainly, at a sufficiently high fraction of those links. Ata
.0, the phase transition is absentf8g.

Most conclusions about the properties of the Ising model
in SW networks have been obtained by numerical Monte
Carlo calculations. Particularly, it has been establushed that
the type of the proceeding magnetic phase transition corre-
sponds to the mean-field model1 f6g. It allows one to hope
that a properly generalized mean-field theory could provide a
correct description of that transition. The necessity of gener-
alizing the traditional mean-field theory is dictated by the

following considerations. In that theory the transition tem-
perature is defined by the formulaTC=kzlJ, wherekzl is the
coordination number averaged over lattice sites. Imagine that
the generation of SW networks from the regular lattice with
the coordination numberz is handled by means of randomly
replacing short links with long onesssee belowd, but in such
a way that the average link number for a site remains fixed
skzl=zd. As this takes place, the transition temperature has to
be constant, as well. That conclusion contradicts the results
of numerical calculationsf3–8g and is connected to the fact
that in traditional mean-field theory the local fields are as-
sumed to be the same in all sites, while, in fact, those fields
vary from one site to another in arandomfashion. The gen-
eralized theory has to take that into account.

In the present paper, we shall describe such a theory and
use it to study the magnetic state of an Ising spin system in
SW networks. Data obtained with the help of that theory
could be reconciled with the numerical results of investigat-
ing similar systems by introducing the effective interaction
energy through the long-range links which exceeds the real
energy of spin interaction. Such a model explains the rising
of the Curie temperatureTCspd with p increasing in the SW
system with fixed coordination number.

In Sec. II, the generalized mean-field theory is described
based on the distribution function of local magnetic fields. In
the cases when the exact solution is known, the Curie tem-
perature calculated with this theory turns out to be signifi-
cantly closer to the exact value than that calculated with
traditional mean-field theory. In Sec. III, the approach formu-
lated is used for describing the properties of the Ising spin
system in SW networks. Distribution functions of local mag-
netic fields are calculated for two-dimensional SW networks
with varying and fixed coordination number, and the depen-
dences of the Curie temperature on the fraction of sites with
long links sin the former cased or the fraction of those links
sin the latter cased are found. A comparison is made with the
results of numerical calculations, and a conception of the
effective interaction energy through long links is introduced.
The simple considerations presented in Sec. IV lead to estab-
lishing the concentration dependencesTCspd of the Curie
temperature in SW systems of different dimensions. At last,
Sec. V is devoted to concluding remarks.

1Namely, the magnetizationj close to the Curie temperatureTC

depends on the temperatureT according to the lawj ~ sTC−Tdb,
whereb=1/2.
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II. GENERALIZED MEAN-FIELD THEORY FOR ISING
SPINS IN A REGULAR SQUARE LATTICE

In accordance with the exact solution of the Ising model
f9,10g, the Curie temperature for a two-dimensional square
lattice of spins with ferromagnetic interaction equalsTC
=2.27J, where J is the interaction energy of the nearest
neighbors. The mean-field resultTC=4J sz=4d differs sig-
nificantly from the exact one. Besides the known defect of
the mean-field theory, which does not take into account the
spin correlation, another disadvantage of that model is sug-
gesting anequivalenceof all lattice sites. It results in assum-
ing that the “mean field” is the same in all sites though that
field is randomlyvaried from one site to another. Therefore,
it is natural to incorporate this randomness in the scheme and
to see how much higher would be the accuracy of the solu-
tion obtained with that generalized mean-field theory. For the
first time, such an approach has been used in Ref.f11g for
considering the system of randomly positioned magnetic di-
poles. Later, it was analyzed in detail in a series of papers
f12g, where the starting point is the definedad hocdistribu-
tion function of pair interaction energies. The essence of that
model is in replacing the standard mean-field equation

j = tanhSl j

T
D , s1d

where j is the reduced system magnetizationl and is the
mean-field constant, by its generalized analog

j =E
−`

`

tanhSh

T
DFs j ;hddh, s2d

in which Fs j ;hd is the distribution function of local magnetic
fields h generated by all lattice spinssin the Ising model, by
nearest neighbors onlyd in a given site of the lattice. Notice
that the mean-field equations1d is equivalent to the equation

j = tanhF h̄s jd
T
G , s3d

where

h̄s jd =E
−`

`

hFs j ;hddh.

In the framework of such a generalization, the problem is
reduced to determining the distribution functionFs j ;hd,
which allows one to investigate the magnetic properties of
the relevant system with the help of Eq.s3d.2

To estimate how much better is the result of the mean-
field theory in its generalized forms3d, let us consider the
square lattice in which site spins with orientations↑,↓ are
placed. The probabilities of the corresponding orientations
are equal tos1+ jd /2 and s1− jd /2. The effective fieldh of
the interaction of the central spin with its nearest neighbor-
hood is the sum of terms of the same absolute valueJ sJ is
the interaction energy for spins of the same directiond whose

sign is defined by the relative orientation of the central and
neighbor spins. Thus, the fieldh depends on the configura-
tion of Ising spins in the first coordination sphere. For the
square lattice, there are 24=16 such configurations, in all.
Their distribution over the effective fieldh, along with prob-
abilities of those configurations, is displayed in Table I.

The relevant distribution function reads

F0s j ;hd =
1

16
fs1 + jd4dsh − 4Jd + 4s1 + jd3s1 − jddsh − 2Jd

+ 6s1 + jd2s1 − jd2dshd + 4s1 + jds1 − jd3dsh + 2Jd

+ s1 − jd4dsh + 4Jdg. s4d

Substituting it into Eq.s2d one finds

j2 =
2 tanhs2Kd + tanhs4Kd − 2

2 tanhs2Kd − tanhs4Kd
, K =

J

T
. s5d

This relationship determines the temperature dependence of
the system magnetization and Curie temperatureTC. The lat-
ter is defined by the conditionj =0 which is reduced to the
equation 2 tanhs2Kd+tanhs4Kd=2 whose solution givesK
=KC

s0d<0.323. From here on, it followsTC<3.10J, which is
much closer to the exact result than the traditional mean-field
estimate. Also notice that the mean field defined by the dis-

tribution function s4d equalsh̄=4jJ, which, in accordance
with Eq. s3d, leads to the ordinary mean-field Curie tempera-
ture value.

The temperature dependencesjsTd of the magnetization
corresponding to the traditional mean-field theoryfEq. s1dg,
its generalized forms2d, and the exact solution

j = f1 − sh−4s2Kdg1/8 s6d

of the Ising problem for the square latticef10g are presented
in Fig. 1. It is seen that the result of the generalization con-
sidered in the present paper is significantly closer to the ex-
act result.

2Different approaches to the problem considered and a compre-
hensive bibliography can be found in the reviews inf13–15g.

TABLE I. Configurations of spins of nearest neighbors in the
square lattice and their probabilities.

Configuration
of moments

Effective
magnetic field

sh/Jd
Number of

configurations

Configuration
probability for

magnetizations jd

↑↑↑↑ +4 C4
0=1 s1+ j

2 d4

↑↑↑↓ +2 C4
1=4

4s1+ j

2 d3
s1− j /2d

↑↑↓↓ 0 C4
2=6

6s1+ j

2 d2
s1− j /2d2

↑↓↓↓ −2 C4
3=4

4s1+ j

2 ds1− j /2d3

↓↓↓↓ −4 C4
4=1 s1− j

2 d4
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Analogously, different two-dimensional latticesshexago-
nal and triangled for which exact solution are knownf9g
could be considered. The relevant results are collected in
Table II.

It is seen that the results of the generalized mean-field
theory are very close to the results of the Bethe approach. In
any case, that generalization improves significantly the tradi-
tional mean-field result and, hence, is more preferable for
describing the properties of complexsin particular, nonregu-
lard Ising systems.

III. ISING MODEL FOR SW NETWORKS

A. SW networks with nonfixed coordination number

One could generate SW networks from a regular network
by different procedures. For instance, inf16g additional con-
nections between randomly chosen sites of the original
square lattice which are not nearest neighbors have been
addedswith the condition that each site may have no more
than one such extra linkd. The fractionp of the sites with

those random links has been changed from 0 to 1, so the
average coordination numberz does not remain constant but
increases from 4 to 5sDz=1d.

For SW networks with magnetizationj and fractionp of
sites possessing long links, the probabilities of different spin
configurations “near by” a given site are listed in Table III,
which are necessary for calculating the distribution function
of local fields.

The relevant distribution function reads

Fs j ,hd = s1 − pdF0s j ,hd +
1

32
pfs1 + jd5dsh − 5Jd

+ 5s1 + jd4s1 − jddsh − 3Jd

+ 10s1 + jd3s1 − jd2dsh − Jd + 10s1 + jd2s1 − jd3dsh

+ Jd + 5s1 + jds1 − jd4dsh + 3Jd + s1 − jd5dsh + 5Jdg.

s7d

Substituting it into Eq.s2d one gets the equation

s1 − pdf8s1 + j2dtanhs4Kd + 16s1 − j2dtanhs2Kdg

+ pfs5 + 10j2 + j4dtanhs5Kd + 5s3 + j2ds1 − j2dtanhs3Kd

+ 10s1 − j2d2tanhsKdg = 16, s8d

which determines the system magnetizationjsTd and Curie
temperature. The latter could be defined settingj =0 in Eq.
s8d. Then the equation determiningTC reads

2 tanhs2Kd + tanhs4Kd = 2 −
1

8
pf5 tanhs5Kd + 15 tanhs3Kd

+ 10 tanhsKd − 8 tanhs4Kd

− 16stanhds2Kdg. s9d

At p=0 it transforms into the previous equations5d, and at
p.0 it has the solutionKC,KC

s0d=0.323 which corresponds
to the enhanced Curie temperature when compared to the
regular lattice withp=0.

The results of numerical Monte Carlo calculationsf16g
for the considered system with different fractionsp of sites
with long links are shown in Fig. 1. In the rangep*0.1, the
Curie temperatureTCspd increases linearly withp. Also in
Fig. 1, the dependence ofTCspd calculated with the help of
Eq. s9d and the dependence ofTCspd=Js4+pd corresponding
to the traditional mean-field theory are presented. Though the
results of our analytical calculation agree well with the nu-
merical calculationsf16g, they do not reflect the principal
thing. In fact, the exact valueTCsp=0d=2.27 signals the fast
growth of TC in the range 0,p&0.1 sshown by the dashed
curve3d not reflected in the results off16g. Therefore, it is not
excluded that in the case all phenomena associated with spe-
cial features of SW networks take place for the most part in
the narrow range 0øp&0.1. That makes the above-
mentioned procedure of generating SW networks to be non-

3There are no Monte Carlo calculations for the case considered
that could more definitely determine the form of this curve. The
more stepwise is the curve, the better is our approximation of the
correct behavior.

FIG. 1. DependencesTCspd of the Curie temperature for two-
dimensional SW systems with nonfixed average coordination num-
ber on the fractionp of sites with long links. Points: numerical
calculationsf16g for the square lattice 20320 sTC has been deter-
mined at the levelj =0.1d. The solid line: analytical calculation with
the help of Eq.s9d of generalized mean-field theory. Dashed line:
the result of the traditional mean-field theory. Inset: the temperature
dependence of magnetization calculated by means of Eq.s8d.

TABLE II. Curie temperatures for two-dimensional Ising
lattices.

Lattice typeszd

TC/J

MFTa
Generalized

MFTb Bethec Exact resultf9g

Hexagonals3d 3 2.11 1.82 1.52

Squares4d 4 3.10 2.89 2.27

Triangle s6d 6 5.08 4.93 3.64

aMFT, mean-field theory.
bPresent paper.
cBethe approachf10g.
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appropriate to analyze the properties of the considered sys-
tems in the whole range 0øpø1. We believe that it is more
proper to analyze the feasibility of the generalized mean-
field theory for the Ising problem in SW networks by con-
sidering systems the average coordination number of which
remains fixed for everyp value.

B. SW networks with fixed coordination number

To fix the coordination number one needs to use another
proceduressee, for example,f6gd which converts the regular
square latticeN3N with the total links number of 2N2 sat
N@1d into an SW network through three stages.

TABLE III. Configurations of nearest neighborssspinsd in SW networks with the probabilityp of long-
range linksssymbols⇑, ⇓ correspond to spin states at the long-link endd.

Configuration
of spins

Effective
magnetic field,h/J

Number of
configurations

Configuration probability
at magnetizationj

↑↑↑↑ +4 C4
0=1 s1+ j

2 d4

s1−pd

↑↑ ↑ ↑ +⇑ +5 C4
0=1 s1+ j

2 d4

ps1+ j

2 d
↑↑ ↑ ↑ +⇓ +3 C4

0=1 s1+ j

2 d4

ps1− j

2 d
↑↑↑↓ +2 C4

1=4
4s1+ j

2 d3s1− j

2 ds1−pd

↑↑ ↑ ↓ +⇑ +3 C4
1=4

4s1+ j

2 d3s1− j

2 dps1+ j

2 d
↑↑ ↑ ↓ +⇓ +1 C4

1=4
4s1+ j

2 d3s1− j

2 dps1− j

2 d
↑↑↓↓ 0 C4

2=6
6s1+ j

2 d2s1− j

2 d2

s1−pd

↑↑ ↓ ↓ +⇑ +1 C4
2=6

6s1+ j

2 d2s1− j

2 d2

ps1+ j

2 d
↑↑ ↓ ↓ +⇓ −1 C4

2=6
6s1+ j

2 d2s1− j

2 d2

ps1− j

2 d
↑↓↓↓ −2 C4

3=4
4s1+ j

2 ds1− j

2 d3

s1−pd

↑↓ ↓ ↓ +⇑ −1 C4
3=4

4s1+ j

2 ds1− j

2 d3

ps1+ j

2 d
↑↓ ↓ ↓ +⇓ −3 C4

3=4
4s1+ j

2 ds1− j

2 d3

ps1− j

2 d
↓↓↓↓ −4 C4

4=1 s1− j

2 d4

s1−pd

↓↓ ↓ ↓ +⇑ −3 C4
4=1 s1− j

2 d4

ps1+ j

2 d
↓↓ ↓ ↓ +⇓ −5 C4

4=1 s1− j

2 d4

ps1− j

2 d
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sid Choose randomly some fractionp of the original lattice
links sthe number of such links equalsM =2pN2d and discon-
nect their ends from their own sites.

sii d Reconnect one of two ends of every link to a ran-
domly chosen lattice site, leaving free the second end.

siii d Connect those free ends of every link to randomly
chosen lattice sites excluding the formation of loopsscon-
nections with both ends switching on a single sited and con-
nection doubling.

The described procedure does not change the total number
of links and, hence, the average coordination numberkzl
=oi,jzij /N

2 szij is the coordination number of the sitei j d re-
mains fixed: kzl=z. After performing that procedure, the
regular lattice converts into an SW network and every site is
characterized by two random numberss and k, the former
determining the number of short linkssremaining after the
first procedure staged and the latter defining the number of
long links sformed during the second and third procedure
stagesd. Before performing the above-described procedure of
link randomization,s=4, k=0 for every site, while 0øs
ø4, kù0 after its completion.

After the first stagesi.e., after removing some fraction of
linksd, the probabilityw1ssd that a given site conservess
links ss=0,1,2,3,4d equals

w1ssd = C4
ss1 − pdsp4−s. s10d

After the second stage, some sites acquire new connec-
tions. The probabilityw2sk2d that a given site getsk2 addi-
tional links is equal tow2sk2d=CM

k2s1/N2dk2s1−1/N2dM−k2

whereM =2pN2 is the total number of switchings made in
the course of the stage.

From the “point of view” of any site, the third stage of the
procedure is no different from the second stage, except for
the restrictions connected with generating loops and dou-
bling. However, for the network with a great number of sites
those restrictions are not essential because the portion of
connections falling into this category is on the order of 1/N.
Thus, we shall not take that exclusion rule into account and
assume that after completing the third stage the probability
w3sk3d that a given site acquiresk3 additional links is ex-
pressed by the same formulas asw2sk2d—that is, w3sk3d
=CM

k3s1/N2dk3s1−1/N2dM−k3.
Hence, the probabilityw2,3skd that after the two last stages

a given lattice site obtainsk links equals

w2,3skd = o
k2+k3=k

w2sk2dwsk3d

= S 1

N2DkS1 −
1

N2D2M−k

o
n=0

k

CM
n CM

k−n

= C2M
k S 1

N2DkS1 −
1

N2D2M−k

. s11d

This probability is independent of the total number of lattice
sites if the latter is large enough. In fact, atM→` but k
!M, Eq. s11d transforms into a Poisson distribution

w2,3skd =
s4pdke−4p

k!
s12d

with mean valuekkl=4p sat p=1, as one would expect for
the square lattice,kkl=4d.

According to the Ising model, all neighborssi.e., sites
directly connected with a given sited generate at a given site
the effective field whose sign is defined by the mutual orien-
tation of spins in those two sites.

Long links appearing in the course of generating SW net-
work and directly connecting the sites that before have been
connected by a number of links distinguish such a network
from the regular onef2g. In the framework of the mean-field
theory, the special role of such links could be taken into
account by ascribing the effective interaction energyJ+ sdif-
fering from the interaction energyJ of the nearest neighborsd
to the pair of sites connected by such a link. The distribution
of numbers of short links is defined by the functions10d and
the distribution of long links by the relations12d. The prob-
ability w+ss,kd that a site hass short andk long links is4

w+ss,kd = w1ssdw2,3skd =
C4

s

k!
e−4ps4pdkp4−ss1 − pds. s13d

For a ferromagnetic spin interactionsJ,J+.0d, the total ef-
fective fieldh on the site which hass short links andk long
links equals hss8kk8=ss−2s8dJ+sk−2k8dJ+=sb+−b−dssJ
+kJ+d wheres8øs, k8øk are the numbers of corresponding
links connecting a given site with spins which are antiparal-
lel to the spin in the central site, andb+, b− are portions of
parallel and antiparallel spins averaged over the system.
Their probable values depend on the reduced system magne-
tization j : b±=s1± jd /2.

The probabilities thats8 among s short links andk8
among k long links produce negative contributions to the
field are, respectively, equal to

wss8s jd = 2−sCs
s8s1 + jds−s8s1 − jds8,

wkk8s jd = 2−kCk
k8s1 + jdk−k8s1 − jdk8. s14d

Thus, the distribution functionFs j ,hd of fields in sites of
SW networks reads

Fs j ,hd = o
s=0

4

o
s8øs

o
k=0

`

o
k8øk

w+ss,kdwss8s jdwkk8s jddsh − hss8kk8d.

s15d

In the absence of macroscopic system magnetizations j
=0d the distribution functions15d, as one would expect, is
symmetrical:Fs0,hd=Fs0,−hd. Notice also that the state of a
site specified by the parameterss,k stotal numbers of links of
every kindd and s8,k8 sthe number of antiferromagnetic
neighborsd could be degenerated in the sense that the same
effective fieldhss8kk8 could be associated with various sets of

4In Eq. s13d we neglect improbable generating new short links at
the third stage of our procedure.
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those parameters. The form of the distribution functions15d
and its evolution with a variation of the magnetization are
shown in Fig. 2.

To determine the Curie temperature for a nonregular net-
work one substitutes the distribution functions15d in Eq. s2d
of the mean-field theory. TheTC value is defined by the
boundary of the nonzero solution for the resulting the equa-
tion

j = o
s=0

4

o
s8øs

o
k=0

`

o
k8øk

w+ss,kdfss8kk8s jdtanhshss8kk8d, s16d

where

fss8kk8s jd = 2−ss+kdCs
s8Ck

k8s1 + jdss+kd−ss8+k8ds1 − jdss8+k8d.

s17d

The dependenceTCspd found by this way is shown in Fig.
3 and atJ=J+ demonstrates nonsignificantsless than 10%
onlyd lowering ofTCspd with increasingp. That conclusion is
contradictory to the results of numerical calculationsf6g,
which show a nearly 50% variation of the Curie temperature
with increasingp from 0 to 1: the fast growth in the range of
0,p&0.1 and rather slow growth atp*0.1. Within the first
range, the Ising system quickly converts into the mean-field
system and the discrepancy between our mean-field result
TCs0d=3.09 and the exact resultTCs0d=2.27 is substantially

canceled. Therefore, in the second range one could expect
agreement between numerical Monte Carlo calculations and
our analytical mean-field calculations. However, that agree-
ment is accomplished by assigning some higher effective in-
teraction energyJ+<1.25J to the long links only.

Introducing the effective energyJ+ differing from the real
interaction energyJ is, in fact, the way to rectify the mean-
field theory not considering spin correlation. Actually, every
site transmits information about its own statesi.e., about the
spin orientationd to its neighbors by means of its links. The
short link transmits that information to the nearest neighbor
and through it to three next sites elsesin the square latticed—
that is, in four sites, totallysone might not take more re-
moved sites into accountd. The long link transmits informa-
tion to the remoted site and, further, to four sites else—i.e.,
in five sites, totally. Hence, the long link turns out to be more
effective by 5/4=1.25 times. Though these considerations
are not rigorous, they explain the enhanced effectiveness of
long links qualitatively and provide a reasonable estimation
of that enhancement.

IV. CONCENTRATION DEPENDENCE OF THE CURIE
TEMPERATURE

To gain some insight into the physical reason for the con-
centration dependenceTCspd si.e., enhancingTC with in-
creasing the concentrationp of long links in SW networksd
let us consider arguments explaining the absence of the or-
dered ferromagnetic state in the one-dimensional system
without long links and the possibility of that state appearing
in a SW network. In the first case, splitting the spin chain
into two domains with opposite magnetization results in in-
creasing the system energy by 2J. However, the boundary
between those domains could be placed at any ofN chain
sites that corresponds to raising the entropy byk ln N. Thus,
the variation of the free energy equal toDF=2J−kT ln N is
always negative at high enough numberN; i.e., domain for-

FIG. 2. The distribution functionFs j ,hd of effective fields for
two-dimensional SW systems with the fixed average coordination
number atJ+=J sinteractions through short and long links are the
samed for various magnetizationsj and fractionsp of long links.
Dashed envelops: Gauss distributions j =0d with zero mean value
and Poisson distributions j =1d with the mean valuekhl=4J. If J+

.J, the distributions remain the same forp=0 and are shifted in the
direction of higherh for p=1.

FIG. 3. DependencesTCspd of the Curie temperature for two-
dimensional SW systems with fixed average coordination number
on the fractionp of long links. Points: numerical calculationsf6g for
the square lattice 2003200. Solid curves: analytical calculations
with the help of Eq.s16d of generalized mean-field theory for dif-
ferent values of theJ+/J ratio.
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mation is efficient. In the case of SW networks, the possibil-
ity to choose the position of the domain boundaryswithout
additional increasing energy due to long linksd is signifi-
cantly limited: the number of sites suitable for that boundary
lowers by aboutpN@1 times comparing with the original
site numberN and equals,N/pN=1/p. Now, the variation
of the free energy isDF,J−kT ln s1/pd. It is positivesi.e.,
domain formation is profitabled if T,TC

s1Dd where

kTC
s1Dd , J/uln pu. s18d

Another matter is the two-dimensional lattice where the
creation of the domain with perimeter length ofL sin units
equal to the lattice constantd leads to appearingL pairs of
spins of opposite directions at the domain’s boundary that
result in increasing the system energy by 2LJ. To calculate
the entropy associated with that boundary, one needs to esti-
mate the number of ways to draw a closed boundary of
lengthL. As in every site the boundary could choose one of
three directions; the number of those ways is aboutG=3L sas
the boundary is closed, that number is somewhat overesti-
mated but for largeL the error is insignificantf17gd. Thus,
the variation of the free energy equalsDF<2LJ−kT ln G
=Ls2J−kT ln 3d. The ordered state is stable when the varia-
tion is positive—i.e., atT,TC

s2Dd where5 kTC
s2Dd=2J/ ln 3

=1.82J. The presence of long links lowers the number of
ways to draw the boundary: it could not travel through the
sites possessing those links because the system energy would
be higher. The number of those forbidden sites is on the
order of spL2d1/2=p1/2L, and near those sites the boundary
could choose not three but only two directions. Hence, the
number of possible boundaries of the lengthL reduces to
Gp,3L−p1/2L2p1/2L, and the variation of the free energy equal
to DF<2LJ−kT ln Gp=Lh2J−kTfln 3−p1/2 lns3/2dgj is
positive atT,TC

s2Dd+DTC
s2Dd where

DTC
s2Dd < p1/2TC

s2DdS1 −
ln 2

ln 3
D ~ p1/2. s19d

Analogous arguments also allow one to estimate the de-
pendenceTCspd for the three-dimensional case where cre-
ation of a three-dimensional domain with surface areaS
leads to the formation ofS pairs with opposite spin direc-
tions, resulting in increasing the energy by 2SJ. If the num-
ber of variants to extend the surface in every site isg,1,

then the number of ways to create the domain with the sur-
face areaS is aboutG=gS. Thus, the variation of the free
energy equalsDF<2SJ−kT ln G=Ss2J−kT ln gd. The or-
dered state is stable atT,TC

s3Dd where6 kTC
s3Dd=2J/ ln g. The

presence of long links diminishes the number of ways to
extend the surface: it could not pass through the sites with
those links as the system energy would be higher. The num-
ber of forbidden sites is,p2/3S, and near those the number
of surface extension ways equals, notg, but sg−Dgd. Hence,
the number of possible domains with surfaceS lowers
down toGp,gS−p2/3Ssg−1dp2/3S, and the variation of free en-
ergy equal toDF<2SJ−kT ln Gp=Sh2J−kTf ln g+p3/2 lns1
−Dg/gdgj is positive atT,TC

s3Dd+DTC
s3Dd where

DTC
s3Dd < p2/3TC

s3DdS1 −
lnsg − 1d

ln g
D ~ p2/3. s20d

The dependencess18d and s19d are supported by numeri-
cal calculationsf4,6g to estimate the applicability of Eq.s19d

As for the three-dimensional SW network, the depen-
denceDTC

s3Dd is, according tof6g, close to the linear one;
however, the author of that result is doubtful of its accuracy.

V. CONCLUSIONS

We have shown that the results of analytical mean-field
theory could be qualitatively reconciled with the results of
numerical calculations of the Curie temperature for the sys-
tem of Ising spins in SW networks by introducing the effec-
tive energy of interaction through long links that is some-
what higher than the real interaction energy. That allows us
to explain the growth of the Curie temperatureTCspd with
increasingp for a system with fixed coordination number.

The physical reason for the growthTC with p is a lower-
ing system entropy associated with the long links.

In conclusion, of course, the generalized mean-field
theory does not lead to a quantitatively accurate description
of the magnetic state of the Ising SW system, but allows one
to obtain results which are qualitatively correct. Their advan-
tage sas compared with more accurate but numerical meth-
odsd is that the results are obtained by a simple analytic
method.
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