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Minimal work principle: Proof and counterexamples
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The minimal work principle states that work done on a thermally isolated equilibrium system is minimal for
adiabatically slow(reversible realization of a given process. This principle, one of the formulations of the
second law, is studied here for finiggossibly large quantum systems interacting with macroscopic sources of
work. It is shown to be valid as long as the adiabatic energy levels do not cross. If level crossing does occur,
counterexamples are discussed, showing that the minimal work principle can be violated and that optimal
processes are neither adiabatically slow nor reversible. The results are corroborated by an exactly solvable
model.
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[. INTRODUCTION only for a macroscopic, but also for a finite system coupled
to sources of work. This fact is not occasional: would Thom-
eson's formulation be violated for a finitée.g., few-level
system, it would immediately imply violations for large col-
lections of such systems, i.e., for some macroscopic systems.
There are also several pertinent derivations of the minimal

its fate in various border situations is far from being clear o< : . :
[5,7-9.. In the macroscopic realm the second law is a set ofVCrk Principle. They cover some important but still particu-
r cases, such as the linear response liméak coupling to

equivalent statements concerning quantities such as entro @ ;
heat, work, etc. In more general situations these statemen e work sourcg [16,17, quasi-slow processe[sl8]! and
constant temperature processes for macroscopic systems

need not be equwalent_ a’Fd some, €.g., those involving er1'12,15,19,1$ So far all these derivations were confirming
tropy, may have only a limited applicabilif¥,9]. In contrast the validity of the minimal work principle.

to entropy, _the concept (.Jf work has a well-d.efine(_:l OPEra- oyr present purpose is to study the minimal work prin-
tional meaning for an arbitrary system interacting _V\_/lth MaC-;jple for a finite(possibly large quantum system coupled to
roscopic work source$1-3]. Moreover, the definition of g5yrces of work. We derive the principle for finite systems
work is not confined tdnearly equilibrium situations: itis  ang then discuss its limits. It is found that—in contrast to
defined equally well for processes that start and end in arbifhomson’s formulation—the domain of the validity of the
trary nonequilibrium statefl-3]. minimal work principle is large but definitely limited. These

In this perspective the second law can be regarded as a Sghits are connected with crossing of adiabatic energy levels,
of several statements concerning the work. They were firsand they are illustrated via counterexamples which include
derived from observations and have direct counterparts iman exactly solvable model. A more detailed discussion on
everyday experience. Two formulations of the second law argvhat, to our opinion, qualifies as a limit of the second law, is
at the focus of our present inter¢4t+4,10-1%: given in the Appendix.

(1) Thomson’s formulation: no work can be extracted The phenomenon of level-crossifcpnical intersections
from an equilibrium system by means of a cyclic processwhich was once little more than a theoretical curiosity, re-
generated by an external work source. cently attracted much attention in chemical physics, quantum

(2) The minimal work principle: when varying the speed chemistry, and biophysics; see Rdf20,21] for a review. Its
of a given process done on @&nitially) equilibrium system, importance was recognized for such essential processes as
the work is minimal for the slowest realization of the processcharge transfer reactions, light harvesting, and ultrafast de-
(more details of the principle are given below cay of excited states. We thus show here that the same phe-

These two statements are well defined—both operationnomenon of level crossing is crucial for the proper under-
ally and conceptually—for a finite system coupled to macro-standing of the second law. It is important to note that for the
scopic sources of work. It is therefore interesting to considetypical spectra level crossings are much more frequent than
whether they are valid in this domain. This is an inquiry the avoided crossings, if the number of parameters varied
towards one of the most pertinent questions in the foundaunder interaction with the work sources is larger than two
tions of statistical physics: whether the second law is valid22].
for finite systems, or, put differently, whether the thermody- The paper is organized as follows. In Sec. Il we recall the
namical limit is really necessary for the validity of the sec- basic setup of the problem. Section Il discusses the minimal
ond law. Some historical developments of this question arevork principle and its various implications. Then the prin-
recalled in the Appendix. ciple is derived for finite systems. Section V studies the lim-

Thomson's formulation was derived with great rigor from its of the principle, while Sec. VI discusses relations of the
the principles of quantum mechanicdd-13. It is valid not  principle to Thomson's formulation of the second law and to

The second law of thermodynami¢4—4], formulated
nearly one and a half century ago, continues to be und
scrutiny[5-9]. While its status within equilibrium thermody-
namics and statistical physics is by now well setfée4],
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cyclic processes. The last section presents our conclusionsture T [1-3,9, and then decoupling S from the bath in order
to achieve a thermally isolated procgds-4]. The fact of
Il. THE SETUP preparing S via a thermal bath has the following implica-
tions:
(1) Reproducibility: The preparation process leading to
Consider a quantum system S which is thermally isolategy(t;) can, in principle, be repeated the needed amount of
[1,2,4]: it moves according to its own dynamics and interactstimes, and thus various effects displayed by S and described
with an external macroscopic work source. This interactionyy density matrixp can be amplified to the needed extent.
is realized via time dependence of some parameRéts  Moreover, this reproduction is in principle not connected
={Ry(1),Ry(1), ...} of the system’s HamiltonianH(t)  with energy costs: due to the weak coupling to the bath no
=H{R(1)}. They move along a certain trajectd®yt) which at  (or little) energy should be spent for switching the coupling
some initial timet; starts fromR=R(t;), and ends af on and off.
=R(t;). The initial and final values of the Hamiltonian are (2) According to quantum mechanicg(t;) allows us to
predict probabilities for various results obtained via measure-

A. Thermally isolated processes

Hi=H{R} and Hi=H{R{}, @) ments done on S. In this senpé;) can be thought to de-
respectively. scribe an ensemble of identically prepared systems S, rather
The HamiltonianH(t) generates a unitary evolution: than one preparation of a single system. Since it was pre-

pared via a thermal bath only—i.e., without additional mea-
) surements employed to separate the ensemble into
subensembles—no physical interpretation should be based
on a choice of subensembles fdf;). In particular, it will be
incorrect to interprep(t;) as “S is with some probability in a

it state with a definite but unknown ener@igenvalue oH;).”
U(t) =exp - %f dsH(s) |.
{;

d
i PO =[H(D,p(0], p(0) = U(OpH)UTD),

with time-ordered

(3 This interpretation is allowed for a classical Gibbs distribu-
tion, but in the quantum situation it may lead to inconsisten-

The interaction of S with the source is related with flowsCies With experiment; see, e.g., in RE23]. One of the rea-
of work which qualifies as a high-gradédrdered or me- SONs prohibiting such an interpretation is that separation of a

chanical type of energy. The workV done on S readsl—4] ~ Mixed-state ensemble into pure-state componésitben-
sembleg depends on the concrete measurement done for this

t ) .
. urpose and therefore is not unique.
W= f dttrlp(®H(®)] = tlHp(t)] - t[Hp(t)], (@) PP q
{;

o ) ) ) Ill. THE MINIMAL WORK PRINCIPLE
where we performed partial integration and insef@®dThis

is the average energy increase of S, which, due to energy A. Formulation of the principle

conservation, coincides with the average energy decrease of | et S start in the stat¢5), and let the parametei®(t)

the sourcd1,2]. Thus there are two ways to measure work. move betweerR and R; along a trajectoryR(t). The work
One can let the work source interact with an ensemble ofione on S during this process . Consider the adiabati-
systems S and then to measure the energy change of thgy siow realization of this procesR proceeds between the
work—source.. Due to th_e macroscopic size of the latter, it§gme value® andR; and along the same trajectory, but now
energy practically coincides with its averadg?]. Or, alter- it a homogeneously vanishing speed, thereby taking a

natively, one can measure directly the initial and finalver lona timet—t. at the cost of an amount of wolk. The
averagéenergies of S, e.g., via measuring the Hamiltonians ylong f '

H; andH;, respectively, on the ensemble of systems S. minimal work principle then asseri$.2.4

B. Initial state wW=Ww. (6)

Initially the system S is assumed to be in equilibrium at This iS a statement on optimality: if work has to be extracted
temperaturd@=1/8=0, that is, S is described by a Gibbsian from S,Wis negative, and to make it as negative as possible
density operator: one proceeds with a very slow speed. If during some opera-
tion work has to be adde@V>0) to S, one wishes to mini-
mize its amount, and again operates slowly.

The following remarks are intended to clarify the physical
i . ) meaning of the principle and to prevent its improper use.

_ This equilibrium state can be prepared by a weak interac- (a) For thermally isolated systems, adiabatically slow pro-
tion between S and a macroscopic thermal bath at temperggsses are reversible. This is standard if S is macroscopic
[1,2,4], and below in Sec. VI it is shown to hold for a finite
Normally this averaging is done either by letting many identi- S as Well, where the definition of reversibility extends unam-
cally prepared systems interact with the work source, or operatingiguously(i.e., without invoking entropy[4].

with a single system but repreparing its state after each interaction (b) The formulation of the minimal work principle does
period. not by itself give any detailed information on the precise

p(t) = zl exp(— BH;), Z =trePt, (5)
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meaning of being “slow.” Only its derivation from first prin- Peq(Hf) =exp— BH)IZ;, Z;=trePHi, (8)
ciples can be informative in this respect, and this is one of ) o

the reasons why such derivations are really needed. It suivhich corresponds to the final Hamiltonia#y and to the
fices to say at the present moment that “slow” means “slowepame temperaturé=1/p as in the initial state(t;).

than the characteristic times of the system relevant for cal- The relative entropy p||o] is known to be non-negative
culating work,” and certainly does not mean “slower thanfor any density matricep and . Among other useful fea-
characteristic times of the system S without any interactiortures, it can serve as(aonsymmetri¢ “distance” betweem
with external sources of work.” Indeed, we shall see belowand o, sincegp||o]=0 implies p=0. Applications of rela-
that, in general, the relevant characteristic times become erve entropy in statistical physics and guantum information
termined only once the very proceR&)—uwith its initial and  theory are reviewed in Ref§2,27).

final pointsR; andR—is given. The operational definition of  As follows from the unitarity of the evolution operator
slow processes in the context of the minimal work principle(z),

is straightforward: one increases the characteristic time scale

7 of the process until the work as a function okaturates, S =-trp(t)In p(t;)] =t p(t)In p(t)] =S. (9

i.e., it no longer depends on It is conceivable that for some
systems there will be several types of slow processes, that i . .
the work as a function of will display several plateaus. If tropy du“”_g_ff‘ thermally_ isolated process. . .

so, then each type of slow process can be studied for its own_ 1€ definition of relative entropf7), combined with Egs.
sake[24—26. (9), (8), and(5) and with the definition of work4) brings

(c) Note that as far as the work—i.e., average energy lost t HT =t o(t)In o(t) = o(t)IN pa(H
by the work source—is concerned, any processes can be con- Sl f)Hpeq( )] = eI p(t) = p(tIn peHy)l

sidered as a part of a thermally isolated one, provided S is =BW+InZ -InZ. (10
defined to be the whole system which interacts with the
source of work and which together with the latter forms a

g’his is the well-known conservation of Von Neumann en-

Using the non-negativity of the relative entrofg) one

closed systef[see additionally in this context EGL8) and ~ 9€1S
the remark after it Thus, the statement of the minimal work W= F(Hy) = F(H) + TS p(ty)| | peqH)] (12)
pr|nC|pI(_e is more general than it may seem.

(d) Finally, it may be useful to comment on the used no- =F(H,) - F(H)), (12)

menclature. Following Refl] we call a slow thermally iso-

lated process adiabatic. Now and then for sharpening thehere F(H) is the free energies corresponding to Hamil-
needed context we use equivalently the term “adiabaticallyonianH and temperatur@:

slow.” Note that this by no means presupposes validity of the

quantum mechanical adiabatic theorem. F(H) =-Tintre?". (13

B. The minimal work principle for macroscopic systems This inequality is well knowri1,2] (though it is derived and
. . - . formulated less explicitly and sometimes is viewed as a

In macroscopic thermodynamics the minimal work prin- roof of the minimal work principlé.However, we still have
ciple is derived 1,4] from certain axioms which ensure that, P ~ princip R )
within the domain of their applicability, this principle is to show that the workV in the slow limit coincides with the
equivalent to other formulations of the second law. Deriva-difference of free energies given by the right-hand side
tions in the context of statistical thermodynamics are pre{RHS) of Eq. (12). Recall that the latter quantity was so far
sented in Refd9,15-19. defined only formally.

In the following discussion we will reproduce a proof of  Equation(12) gets the needed physical meaning when one
the minimal work principle for a class of thermally isolated assumesthat for a macroscopic system S, the final state
processes realized on a macroscopic system. Our purposeg&;)—reached fronp(t;) =exp(—-BH;)/Z; by the adiabatically
to understand why precisely the principle holds in this situ-sjow process—can be approximated by(Hy) defined in
ation, and thereby to motivate its investigation for finite sys-gq. (g):
tems.

The derivation proceeds in two steps. First one considers Sp(ty)||peqH)] = 0, (14)

the relative entropy, where~ means that the equality is supposed to recover in

Sp(to)llpedH) 1= trlp(t)In p(te) = p(t)In peHp)1, (7)  the macroscopidthermodynamig limit for S. This then

leads from Eq(11) to the needed relation
between the final state(t;) given by(2) and an equilibrium a1y

state W= F(H;) - F(H,). (15)

. ) _ The statemen(6) of the minimal work principle then follows
This is akin to the known statement that any dynamical evolutiong., Egs.(9) and (15).

in quantum mechanics can be viewed as a part of a unitary evolu-

tion, provided all the environment of the system was included inta

the description. Such statements are sometimes regarded as too geﬁRecentIy inequality(12) was generalized within so-called work-
eral and therefore useless. However, they can be very useful dkictuations theoremfgl3,28. These theorems account for fluctua-
instanced by the formalism of completely positive operations fortions which appear when measuring the work via the system’s en-
open quantum systen8]. ergy.
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In the second step of the derivation one should prove Eq. Note that the state of P at tinteneed not at all coincide
(15). There are several classes of macroscopic systems fevith the local Gibbsiare"PV/Z(t), since no weak cou-
which one can show that the free energy differeR¢el;)  pling assumption on the system-bath interaction was made.
—-F(H;) in (12 indeed coincides with the adiabatic work  Equationg4), (16), and(17) suffice to derive relatiofl5)

[9,15,19. We recall below one of them. _ between the workV done for the adiabatically slow process
Assume that S consists c_)f two parts: macroscopic thermadnd the differenceF(H;)—F(H,) of free energies. Indeed,
bath B and a subsystefparticle P coupled to it: note from Eq(16) thatdH(t)=aHp(t) and(4) can be written

H(t) = He{R(D)} + Hg + gH, 1 =

i
whereHp(t) andHg stand for the Hamiltonians of P and B, W:f dt tre[ pp(t) a;Hp(t)]. (18
respectively, and wherél, is the interaction Hamiltonian §

with g being the corresponding coupling constant. Therpis relation shows that the work defined globally via the
source of work interacts with the particle only, thus only energy difference of the overall system of the particle and the
Hp{R(1)} is time dependent. _ bath can also be calculated via integration of the expression
~ The following conditions are usually considered to be suf-gn the RHS of Eq(18), which contains only quantities re-
ficient for the validity of Eq.(15); see[1,2]. Along the lines  ferring to the particle P.

of Ref. [9], we present them in a slightly more formalized  Now proceed with application of Eq17):

and particular way, and we recall that they were checked in v g v g

models[9,19]. : t aH B t .

(i) The thermal bath B is composed of a macroscopicW_Jr %trptrB[e g (t)&‘HF’(t)]_L %tr[e PHOGH(®]
number of harmonic oscillators with a prop@.g., ohmig ' - '
spectrum of their interaction with P. _ f _

(i) The evolution generated by(t) in (16) starts from an - Tft_ dta In Z(t) = F(Hy) — F(H). (19
equilibrium state(5) for the total systens=B+P. '

(iii ) The characteristic time of the external procB$s is Thus the minimal work principlé6) is proved for this
assumed to be much larger than the relevant times of thelass of processes realized on macroscopic systems. One
particle P. These times include those generated by the Hamimay note once again that although the quantikiéd;) and
tonianHp{R(1)}, as well as the relaxation times of P induced F(H;) are very large in the macroscopic limit for the bath,
by the bath. The latter times are controlled by the interactioriheir difference is finite and is of the order of the particle’s
HamiltonianH, and they become very long fay— 0. Note ~ energy. This is also seen froifi8) which contains only
that since the thermal bath B is assumed to be macroscopftantities referring to the particle.

(dense spectrum there are characteristic times of Bo-

called Hei;enberg timg¢svhich are proportional to inverse IV. FINITE SYSTEMS

level-spacing and are thus very large. They, however, do not

enter into the definition of adiabatically slow processes. All Let us now turn to a finiteN-level quantum system 5.
the relevant characteristic times are finite in the thermodyThe first thing to do is to apply here the reasoning developed
namical limit for the bath, at least for the type of modelsabove for macroscopic systems. In fact, Thomson’s formula-

considered if9]. tion of the second lawyV=0, is valid for finite systems for
The above three conditions are sufficient for the densityprecisely the same reasons as it is valid for macroscopic
operator of P to be given 49] ones. Indeed, since this formulation refers to cyclic pro-

cesses, one putd;=H; in Egs. (7) and (12—this can be
done without altering the validity of12), since pgq is in
general an auxiliary density matrix—and g&ts=0 for cy-

clic processes, which is the statement of Thomson’s formu-
where tgp) means trace over the batparticle degrees of lation.

1
pp(t)zﬂtfse‘ﬁ““h Z(t) =tre A0, (17)

freedom. The physical meaning ¢17) is obvious: in the However, when trying to apply the above reasoning for
slow limit P is in the local equilibriun(or local stationary finite systems, one immediately sees that there are no reasons
state? why the work in the slow limit should be equal to the differ-

ence in free energies. Nor are there reasons to expect the

T —— o validity of Eq. (14), that is, to expect that in general the final
For the actual calculation in E¢17), one may need to keep the

bath large but finite, to carry out the tracg,tand only then to go to

the macroscopic limit for the bath. Then the density magit) is °Note that an attempt was made recently to study the minimal
finite and well-behaved although the quantities likg)=tr e 2H® work principle for finite system§l4]. The author of Ref[14] ob-

may not be well-defined in the macroscopic limit for the bath. Thistained that the principle has the same range of validity as Thom-
is a standard procedure in statistical physics and it is legitimate foson’s formulation of the second law. To our opinion this is incorrect.
the present situation, since the thermodynamical limit for the batht is, however, to be mentioned that the author of Ré&#] has
commutes with the limit of show processes, as we already recalledtressed the preliminary character of his results, and that his results
above. The validity of such commutation was also seen in[R&f. concerning cyclic processes are correct.
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statep(t;) reached fronmp(t;) =exp(-BH;)/Z; during the adia- i [t

batically slow process should be equalgg(Hy) defined by () = an(ts ) = (n,tIU(t)|k,ti>exp<gf dt'sn(t')>

(8). The reason for this can be seen by noting that due to the l

unitarity of the evolution operatdd in (3), the spectrum of (25)

‘p(t;) coincides with that of the initial density matrix(t;), are the expansion coefficients, and whéag,(t,)|? is the

and in general does not have the Gibbsian shape of the Speﬁr’obability to measure energy(t) at the final timet;, pro-
trum of pe(Hy). - vided the initial state wak, t)(k, t.

The facts thafp(t;) # pedHr) and W+ F(H;)-F(H;) for Now we use Eqs(21) and(24) to obtain for the work4):
finite and certain macroscopic systems are known and were
studied especially in the linear response regifae—-37.
Here are sgme rgsults obtained withi?w that acgv[?y: L W= X [at)PPeen(t) = 2 et (26)

(1) A class of finite systems was determined for which the k=1 k=1
adiabatic work coincides with the difference in free energiesA similar formula can be derived to express the adiabatic

[29,30. N _ _ work W in terms of coefficient&y(t;):
(2) Conditions were determined for macroscopic systems,

N N

under which the adiabatic work converges to the free energy ~ N _ ) N
difference in the thermodynamical 1infi80,31,35. Concrete W= > (Gt Ppren(t) = 2 preelt). (27)
estimates for the rate of convergence were given. kn=1 k=1

(3) It was found that for certain nontrivial macroscopic  From the definition(25),
systems the above convergence can be absent even in the

thermodynamical limif30,32. It was argued that quantum |an(te)|* = [(n, te| Uk, t))]%, (28)
systems are more vulnerable in this respect than ClaSSiCﬂlfollows thaf
ones[30].
(4) The fact thafp(t;) # peq(Hs) was recently applied for N N
studying certain processes which are reversible in the mac- > |layn(t)]? = > lan(t)]? = 1. (29
k= n=1

roscopic limit, but become irreversible for finite systg®6].

Derivation of the minimal work principle Employing the identitfsummation by pans

. . N N-1
Thus we cannot rely on macroscopic analogies and we

N m
need an independent derivation of the minimal work prin- 2_: En¥n = SNE_: X0~ 2_: [ems1— Em]E_: Xn» (30
ciple (6) for finite systems. Some ideas of the following deri- n=t Lo n=1
vation were adopted from ReffL1]. ] with X, ==, [an(t) 2Pk and x, ==, [@n(t)| %P We obtain
Let the spectral resolution ¢f(t) andp(t;) be from Egs.(26) and (27) and, using Eqs(29), we obtain a
general formula for the difference between the non-adiabatic

N
HO =3 a0k, kind=s, (20 andadabatcwork
k=1

N-1
" W=W= X [emalt) = en(t) 1O, (31)
e Pt m=1
p(t) =X pdk tiXkt], = S ) (21
k=1 >, e Penlt m N
O = 2 _ 2
At t=t; we order the spectrum as On= n%glpk['ak“(tf)' [Ba(to)|]. (32)
eq(t) < -+ < en(t) (22) Let us now assume that the orderit@p) is kept at the
final time t=t;:
Upy= - =pn. (23

. . gt < -+ < en(tp). (33
For anyt in the intervaltj<t<t; we expand over the
complete sefn, t): If different energy levels did not cross each other—i.e., dif-
ferent ones do not become equal and equal ones do not be-

N .ot . . . - .

i come different—EQq(33) is implied by the initial orderin

Ukt = akn(t)exr<—£f dt’sn(t’))|n,t>, I 4(33) is implied by g
n=1 ti

where . - .
As possible physical interpretation of featu&9), note that for

the uniform distribution of the initial statesp(k,t;)=1/N,
®The eigenstates qf(t;) are used below as a calculational tool. It the prediction probabilityp(n; t; |k, t;) =|a(t)|? is equal to the ret-
is by no means implied that “what really happens” is that the systemmodiction probability p(k, | n;t)=[p(k,t)pn;t| Kk, 1)1/
S is—with some probability and before doing any measurement—ifi=r_,p(k, t;)p(n; t; |k, t)1=[(1/N)p(n; t; |k, t) 1/ [Zre, 1/Np(n; t |k,
one of those states. See also the second remark in Sec. Il B. t)]=p(n;t|Kk,t).
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The behavior of energy levels with respect to level-once®,, are non-negative, the statematit=\W of the mini-
crossing is governed by the noncrossing rule, which was frema| work principle follows from Eqs(26), (31), and(33).
quently discussed in the literature and derived in a rather Recall once again the basic ingredients of the proof:
general situation38—41]. We shall need it in the following (1) The condition(29) which came from the unitarity of

particular formulation: . . . the evolution during a thermally isolated process,
If H{R} is real and only one of its parameters is varied (2) The no-crossing assumption which led to E8) and

with t'm_e’ (33 is sat|$f|ed for any d_|screte-level_quantum simultaneously—via the standard adiabatic theorem—to Eq.
system: level crossing, even if it happens in model- 34)

dependent calculations or due to approximate symmetry, . . . L
does not survive arbitrary small perturbation where it is (3) We did not assume that th? adiabatic vyork Is either
substituted by avoided crossitftpr a more generaH{R} related or equal to the dlfferenc'ell_n free energies. .
the conditions prohibiting level-crossing are more restric- (4 Only two features of the initial stata(t)) were used:
tive; seg[40]). To get a stable point of level crossing, one [Hi;p(t)]=0 determined the specific forit26) and (27) of
needs at least two independently varying parameters for #e work, while the order relatiof23) for the eigenvalues of
real H{R}. the initial density matrix was used in provirfg,,=0 in Eq.
The rule is known since the early days of quantum me{35). This means that the Gibbsian prope{8y is not neces-
chanics[38] and is presented in textbooks; see, e.g., Refsary for the validity of the derivation.
[39]. It is an important tool in atomic and molecular spec- As an immediate application of the obtained results note
troscopy, and development of these fields led people to rehat if only one parameter is varied, we are ensured of the
consider its derivation. In particular, R¢#12] correctly criti-  absence of level crossings and the minimal work principle is
cizes the standard proof of the no-crossing rule for beingralid. Among many examples of this situation there is the
imprecise and not general enough. In response to this anshse of a gas—which may consist of any number of
several related criticismsat leas} two complete and general particles—in a rectangular container interacting with one of
derivations appeared which settled the ispt@41. its walls moving in time. This is the standard setup for a

No level crossings and natural conditions of smoothnesgne-parameter thermally isolated process. Recently it was
of H(t) aresufficientfor the standard quantum adiabatic theo- i,died for some simple quantum syste884].

rem[43] to ensure

Ben(tr) = Scne 34
Bialt) = S 34 V. LEVEL CROSSING
This is the known statement on the absence of transitions for . N ) ]
slow variations The above noncrossing condition raises the question: Is
Combined with Eqs(23) and (34), the definition(32)  the minimal work principle also valid if the adiabatic energy
brings levels cross? Before addressing this question in detall, let us
m m m N mention some popular misconceptions which surround the
0. = 1- 2] - t2 level crossing problem: . _ . _
m gl pk( Zl Bkt ) glk:%ﬂ Pt The no-crossing rule is said to exclude all crossings. This
nom noN is incorrect as the exclusion concerns situations where, in
_ 2 2 particular, only one independent parameter of a real Hamil-
= pm(%%b—kn(tf” + n%I(:Em+l|<':1kn('ff)| ) * P tonian H{R} is varied[40]. Two parameters can produce ro-

bust level crossing for such Hamiltonians.
=Ppp(m-m) =0. (39) One accepts that level crossing can happen, but believes it
to be very rare and thus irrelevant for any sensible physical
8This standard statement of the adiabatic theorem was elaborat&ifuation. This opinion is invalidated by whole chapters of
in literature several times so as to provide information on the interchemical physic$20,21: level crossing is not only observed
nal characteristic timeg [44]. To be slow then will mear>7.  in many-(at least two atom molecules, where internuclear
Dealing with a discrete spectrum and assuming, as we did abovélistances play the role of classical time-dependent param-
that there are no level-crossings and that adiabatic energy levels agders, but is necessary for the proper description of some
smooth functions of time7 can roughly be estimated via the in- known chemical reactions, as well as for predicting new
verse of the minimal spacing between the involved energy level®nes. Over the years several methods were developed for
[44]. In this context, the levels which provide a small spacing areidentifying and locating the points of level crossihtn par-
said to define avoided crossing. One should, however, keep in minticular, the method based on the geometrical pH&Berry
that this estimation cannot be extrapolated to situations with levephase) allows one to deduce the existence of level crossing
crossing, where the minimal level spacing is zero. In those cases thgom the behavior of the system at points remote from the
whole situation changes and the characteristic internal tinean  crossing; see Ref§20] for more information.
well be finite; see below and in Ref15,46 (compare also with Note as well that level crossing is a more frequent phe-

qur d|§cu55|0n !n Sec. lll A The same is the (;ase for §qme situa- nomenon than avoided crossif2g], if the number of inde-
tions in a continuous spectrum, where again the minimal level-

spacing is zero, but the relevant characteristic times can be finite;___

see, €.9.[147,48. In short, the inverse of the minimal level-spacing ®This is an important issue, since some numerical or approximate
defines the relevant characteristic time only for some particulaanalytical methods may easily miss points of level crossing or may
cases, not in general. produce spurious ones.
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pendently varying parameters is larger than two. hs(s)

It is believed that once levels can crods;— 0, the very cosé(s) = = sgns) H—=—-. (41)
point of defining slow processes disappears as the internal vhy(s) + hi(s)
tifies the proper internal time as seen belsee also the ynction and
discussion in Sec. Il A and footnotg.8 he absence of level
crossings is indeed a sufficient condition for the validity of hy(s)
Eq. (34) (no transitions for slow changest is, however, by f(s) = - arcta h(s)
no means necessa5,46,49. 3

It is sometimes believed that crossing is automatically fol-is a parameter in the intervalrf2 < (s) < /2. Note that
lowed by a population inversion. We shall find no support forthe presence of sg$) in the above expressions is necessary

(42)

that. for having a smooth parametrization. Otherwise, e.g.,
3(9)/\/h3(s)+hi(s) is discontinuous at the crossing pomt
A. A two-level example within adiabatic perturbation theory -0 3

As a first example we consider a spin-1/2 particle with "I'he eigenvalues and eigenvectorsHik),
Hamiltonian | |
H(s)k,s) =g (9)]k,s), k=1,2, (43
H(S) = hl(S)O'l - h3(S)0'3, (36)
are now read off by inspecting EG10):

—hs(s) hy(s) S —
:( SO s=Ur, (3D) £1(s) = sgris)\h3(s) +hi(s), ex(s)=-es(s), (44)
hi(s)  hs(s)
whereo, o3, ando,=ioy03 are Pauli matrices, and whese 1 1
is the reduced time with being the characteristic time scale. cos_ 6(s) —sin-6(s)
The magnetic fieldé, andh; smoothly vary in time. 1,9 = . 2,9 = . . (45)
Let us now make the following assumptions) for s . -
—5<0 and fors—s>0, hy(s) and hy(s) go to constant S|n20(s) COSZQ(S)

values sufficiently fast(ii) At s=t=0 both h;(s) and hs(s) i ] )
turn to zero. This condition indicates a level crossing, sincdt IS Seen that the eigenvalues(s) ande(s) of H(s) (adia-
crossed eigenvalues of the traceless2matrix H(s) mean ~ Patic energy levelscross as=6(s)=0. Note from the above
that this matrix is equal to zero at the point of the crossingconditions onhy(s) and hy(s) and from Egs(42) and (44)
Besides these two basic conditions, we shall assume feffiat both the eigenvalues and the eigenvectorsi@ are
auxiliary ones, whose purpose is to make the discussion b&mooth functions 0. This fact is important for subsequent
low more transparentiii ) h(s) andhy(s) are nonzero for all ca!culations, but firs_t of all it is necessary for the very defi-
s, s<s=sg, excepts=0. (iv) Due to the latter condition nition of level crossing. _ o _
hs(s)/hy(s) is finite for the involveds, except possiblys Now Eq. (22) for the ordering of initial energy levels is
—0. If it is infinite in this limit, then obviously its inverse Vvalid, but Eq.(33) for the same ordering of final energy
hy(s)/hs(s) is finite; now for alls, s <s<s, and goes to zero levels is n_ot valid due to the level crossingsatO. Equations
for s—0. Since one of these ratios has to be finite, we shalf26—32) imply
assume that this finite ratio is;(s)/hs(s). (v) hy(s)>0 for ~ e
s< 0 andhs(s) <0 for s>0. W-W=-2Vhi(s) +h3(s)01, 75=t, (46)
Here is a concrete example realizing the last two asSUMRyhere®, is defined by(32).

tions. Fors—0, Our strategy is now to confirm relatiai34) in the slow

hi(s) = a;5%,  hg(s) = — ass, (39) limit 7— o0 and thus to confirm thad, >0, implying that the
N minimal work principle is indeed violated.
wherea; and a3 are positive constants. To this end we apply the standard quantum mechanical

With the above conditions ohy(s) and hs(s), one can  adiabatic perturbation theof¢3]. Substituting Eq(24) into
propose a useful parametrization of the Hamilton{&). Eq. (2) one has
Recalling thaths(s) changes its sign &=0, Eq.(37) is writ-

ten as , N i [
He)  sind® =" 2 Aa(tlex ﬂ dt'[eq(t’) = em(t)] |{n,sldm,s).
~ o[ C0sH(s)  sind(s m=1 .
H(S) = sgris)vhs(s) + hl(s)( sinf(s) —cosH(s) ) ’ (47)
(39 As |1,s) and|2,s) in Eq. (45) are real, the normalization

(n,s|n,s)=1 implies (n,s|g|n,s)=0. Since {n,s|d|m,s)
=(1/7)(n,s|ddm,s) the RHS 0of(47) contains a small param-
hy(s) (a0 ©ter 1/ It is therefore more convenient to introduce new
Vhi(s) +hf(s)' variables:a,(t) = S+ by(t), bea(t)=0. To leading order in

where

sin 6(s) = sgr(s)

046107-7



A. E. ALLAHVERDYAN AND TH. M. NIEUWENHUIZEN

1/7, by, can be neglected on the RHS @f7), and, after
changing variables asr=t, s'7=t’, one gets fora,.,(t)

:bksﬁn(tf)
S ir(° 2
|aysn(t)[*= J dsexp<% J dU[ek(U)—sn(U)]><nlﬁs|k> ,
s s
(48)
while, due to normalization,
At 2= 1~ 2 |ant) 2. (49

n#k

For our model described by Eqg86)—(45), the quantity

f duleq(u) — ex(u)] (50)

S

:2fs dug;(u) (51

S
has only one extremal point, at0. We also have fron¥5)
0'(s) _ 1hy(s)hs(s) — hs(9)hi()

2 2 hi9+his

(2,8041,9) = (52)
where ' (s)=dé/ds.

For larger the integral in Eq(48) can be calculated with
use of the saddle-point method:

wh| (2.8041,92hE(s) + h%(s)]

hy(s)hy(s) + hy(s)hy(s)

ERIES

=0
(53

Substituting Eq(38) into Eq. (53), one gets

mha?

3
Arag

lags(ty)|? = (54

Equations48), (53), and(54) extend the statement of the
adiabatic theoreni34) for the level crossing situation. More
general versions of similar adiabatic theorems can be found

in Refs.[45,4€]. Inserting

01=(p1~ p2)lagstp)[* >0 (55

in Eq. (46) confirms the violation of the minimal work prin-
ciple. Equation(54) also shows that for the considered pro-
cess the role of the proper internal characteristic time i

played by a?/ o3 rather than byi/(e;—s5).

PHYSICAL REVIEW E 71, 046107(2009

for all reals, there are no crossings of eigenvalues €6)ds
valid. In the example of level crossing given above, one has
Vh3(s)+hi(s) < |g| for small s. Note that if level crossing is
absent, the transition probabilits,»(t;)|? is small asO(e™),
since the integral in Eq48) is determined by the extremal
point of (50) which is now complex; sep44] for more de-
tails.

B. Fast processes

One can calculatéa,(t;)|?> in yet another limiting case,
where the characteristic time is very short, while the
change irh,(t) andhs(t) is finite and there is the level cross-
ing att=0.

It is well known[43] that in this limit energy changes can
be calculated with the help of the frozen initial state of S. For
the present situation this leads from E45) to

|aga(t)[? = [ap4(t) [ = (1,4 2,t;)|> = sirP %[a(tf) - 6(t)],
(56)

and thus to

0,=(p, - psir? 3[6(t) — 6(t)], (57

which is again positive. This demonstrates that even very fast
processes§.e., 7— 0) can be more optimal than slow ones. It
is conceivable that violations of the minimal work principle
are maximal for some finite. This expectation is confirmed
below.

C. Exactly solvable model with level crossing

The above results obtained by perturbation theory will
now be corroborated on an exactly solvable displaying level
crossing.

Consider a two-level system with Hamiltonian

1
scogs 58 sin 2
H(s) =hw ,
1 . .
5ssin 2 ssirfs

s= E, (58)

T

wherer is the characteristic time scateis the reduced time,
and wherew is a coupling constant. The model belongs to
the pool of exactly solvable driven two-level systems. We
learned about it from Ref45], where some asymptotic fea-

gures of its solution were studied.

The eigenvectors

Let us recall once again that the violation of the minimal COSS —sins
work principle is due to common influence of the following 1= ( . ) 2,5) :( ) (59
factors: sins coss
(i) There is a level crossing: a more populated state goesf H(s) correspond to the eigenvalues
to higher energies, while a less populated one goes to lower
energies. e1(s) =fiws, &5(s)=0, (60)

(ii) For slow processes there are no transitions bet""eeféspectively. It is seen that the energy levels cross when

various energy levelS(ty) = s =t/ 7 passes through zero. Equatidd3) read for the present
(iii) For not very slow processes there do occur transitgse

tions: ay(t;) # &, They cost less work.
Note as well that when the external fieldgs) andhs(s) dayy(s) _ o2

61
in Eq. (36) are such that/h3(s)+hi(s) is a smooth function ds (62)

a1z,
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day5(s) -iwrei2
= —gloizg, 62
ds € a1 (62) 0

These equations can be solved exactly in terms of hypergeo-

X ) 0.6
metric functions
i i1, 04
a11(s) = ¢y Hel - E_,SX +CoFy _ZwT'E’SZX , (63 02
Cl i 1y 2.2 i 2.2 10 20 30 40 50
a;y(s) = ?em/zl <X He(“ 1- E_ySX) —CS€e X Fi time scale

i 3 FIG. 1. Amplitude |a;5(s)|? versus the time scale for s =
><<1+—,—,52X2), (64) -15, =15, andw=1. Full oscillating curve: the exact value
201 2 which can reach unity. Dotted curve: result from a first-order adia-
whereH, andF, = ,F, are, respectively, Hermite and hyper- batic perturbation theory. The smooth curve presents a saddle-point

geometrical function§50], and where approximation(67).
x= exp<i1> = (65) For 7—0, |a;5()|? goes to its value sfits;—s,) predicted
4 2 by the sudden perturbation theory. This amounts to

|a;(s1)|?=0.019 91 for the situations in Figs. 1 and 2.
Thus, all the basic conclusions drawn from the adiabatic
perturbation theory are confirmed by this exactly solvable

The integration constants andc, are determined from the
initial conditionsa;4(s)=1 anda;4(s)=0.
In the slow limit wr> 1, the transition probability can be

calculated via the first-order adiabatic perturbation theory rel” odel.
sult (48):
5 D. Many-level systems
() = —f dse'2, (66) Let S have a finite number of levels, and assume that two
S of them cross. For quasi-adiabatic procesges large but
With help of the saddle-point method one gets (©86) finite) and analytically varying Hamiltoniahi(t), the transi-
tion probability between noncrossing levels is exponentially
lay ()2 = 2_77, (67) small[44],_while, as we saw, it has power-law smallness for
oT two crossing levels. Then one neglects(26) the factors

|an(tf)]? coming from any noncrossed levetsand n, and
the problem is reduced to the two-level situation. Thus al-
ready one crossing suffices to detect limits of the minimal
work principle (provided, of course, that the crossed levels
are sufficiently populated initially
W-W= fhos|a(s)2 tanr(%ﬁhws) (69) The reduction to the two-level situation takes place also in
a macroscopic system which has few discrete levels located
To have level crossing we tale<0, s;>0. Equation(68) below a continuous spectrum and separated from the latter
then indeed predicts by a finite gap. It is known, see, e.g., in Rpd6], that the
— transitions between these discrete levels and the continuous
W-W<0. (69) part of the spectrum vanish exponentially for quasi-adiabatic

in agreement witl§54).1° The characteristic time for the slow
process is seen to be @&/

Recalling Eq.(29), one deduces from Eqé31) and(32)
for the present model:

It is seen that violations of the minimal work principle

exist fors;>0, and they are maximal fda,,(s)|>— 1. This 1
is seen to be the case in Figs. 1 and 2 for samearr=1.
Note from Fig. 1 that both the first-order perturbation theory 0.8
result(66) and the saddle-point approximation to it given by 06
Eq. (67) are adequately reproducing,(s;)|? for 7=10.
Moreover, the first-order perturbation theory is seen to pro- 0.4
vide an upper bound for the exact expression and predicts the
appearance of large oscillations around 1. 0.2
%To make a detailed comparison between E@S) and (54), 2 ti4me chle 8
substract fromH(s) [defined by(58)] an irrelevant facto%trH(s),
and note from Eqs(36) and (38) that the following relations are FIG. 2. The magnified version of Fig. 1: The exact value of
valid for the present modebz3:%ﬁw, ay=hw. Substituting them  |a;(s)|? versus the characteristic time scaléor §=-1.5,5=1.5,
into Eq. (54) one gets Eq(67). andw=1.
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processes. These discrete levels thus decouple from the rdstite systems, and, if it is not valid, what are the possible
of the spectrum and the problem returns to an effectivelyscenarios of its violation. The proper way to answer this

two-level situation. guestion is to take a formulation of the second law which has

a clear meaning for finite systems, and to study it from the

VI. CYCLIC PROCESSES AND REVERSIBILITY first principles of quantum mechanics, without invoking any
postulate.

The above results on the limits of the minimal work prin-
ciple do not imply any violation of the second law in Thom-

son’s formulation10-12: no work is extracted from S dur- . L .
ing a cyclic processW.=0. We illustrate its general proof The principle states that the work done on(artially) equi-

obtained in Refs[10-13 in the context of the level crossing librium system during a thermally isolated process is mini-
model given by Eqs(36)—(45). mal for the smallest speed of the process. As compared to

Assume that the trajectoriR(t)=(hy(t),hy(t)) described of[her formglations of the sgcond_law, this principle ha; a
there is supplemented by another trajectd®y(t) which direct practical meaning as it provides a recipe for reducing
brings the parameters back to their initial values€Nerdy costs of various processes. We gave its general proof
(hy(t), hs(t;)) SO that the overall proces®+R’ is cyclic. If for finite syst_ems which 'starts from first prmuplgs of quan-
R’ crosses the adiabatic energy levels backwards, then at tfgm mechanics and avoids the usual lore associated with the

Along these lines we have studied the minimal work prin-
ciple for finite systems coupled to external sources of work.

/ , various definitions of entropy We have also shown that it
e1(tf) =e1(t), ealty) = ea(t). (700 may become limited if there are crossings of adiabatic en-

ergy levels: optimal processes need to be neither slow nor
reversible. Already one crossing can suffice to note viola-
lag(t)|? = |ax(tf)]? = 1 = |ay(tf)[2 = 1 - |ag(t}) ]2, tions of the principle. If this is the case, the optimal process
occurs at some finite, system-dependent speed.
Level crossing was observed, e.g., in molecular and
chemical physic$20,21. It is not a rare effecf22]: if the
W, = [ag(t))[2(py = p)lea(ty) — £4(t)] ZVVC:O. (70 number of e_:xternally varied param_eters is larger than two,
then for typical spectra level crossings are much more fre-
Equation(71) confirms the intuitive expectation that non- quent than avoided crossinf22)].
adiabatic processes are less optimal. In particular, this is Together with the universal validity of Thomson’s formu-
valid if R'=Ry, is exactly the same proce&smoved back-  |ation of the second la10-13, the limits of the principle
wards with the same speéthirror reflection. ThenW.=0  imply that the very equivalence between various formula-
means that the original proceBss reversible: According to  tions of the second law may be broken for a finite system
the standard thermodynamical definitidh2,4], a proces®  coupled to macroscopic sources of work: different formula-
is reversible, if, after supplementing it with its mirror reflec- tions are based on different physical mechanisms and have
tion procesR,,, the work done for the total cyclic process different ranges of validity. Similar results on nonequiva-
R+R,, is zero. lence of various formulations of the second law were found
If R" does not induce another level crossing, i.ehsifs)  in Refs.[7,9], where for a quantum particle coupled to a
andhy(s) in Eq. (36) do return to their initial values without macroscopic thermal bath, it was shown that some formula-
simultaneously crossing zero, then the levels are intertions, e.g., the Clausius inequality and positivity of the en-

Together with

and Egs.(26) and (34) as applied to the full cyclic process
(i.e., changing in thenty—t{), Eq. (70) implies

changed, ergy dispersion rate, are satisfied at sufficiently high tem-
, , peratures of the bath, but can be invalid at low temperatures,
elty) = ex(th),  ealty) = 1(t), (72 that s, in the quantum regime. The physical mechanism re-
and this time Eqgs(26) and (34) imply sponsible for this is the formation of a cloud of bath modes
around the particle, well known in the cases of Kondo-cloud
'WC: (p1 - po)lea(t) — (1)1, (73) and polaron-cloud, but more general.

There are still many issues to consider before the minimal
W= W “[1-|a (t’)|2T\7V -0 (74) work principle an_d its limits can be said to be pro_perly un-
c= Te™ 1245 c ' derstood. In particular, we need a better description for the
It is seen that in contrast to the situation described by Egtransition from finite to macroscopic systems. It might also
(71), non-adiabatic processes are more optim&+fR’ con- be of interest to find an explicit example of a macroscopic
tains one level-crossin@r an odd number of themWe thus ~ System displaying limits of the principle. A separate problem
have found here a violation of the minimal work principle is to study the minimal work principle in thesemiclassical

for a cyclic process. limit of finite quantum systems. This problem is special due
to the fact that the limit of slow processes need not commute
VII. CONCLUSIONS with the classical limif51].

We, however, had first to understand that limits of the
This paper was devoted to one of the persistent questionsinimal work principle do exist in principle and sometimes
in statistical physics: whether the second law is valid forin practice, and this is the main message of the present paper.
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APPENDIX: LIMITS TO THE SECOND LAW It is true that when the second law was first deduced in the

19th century, it was formulated for a single closed system, in

As was stressed in the Introduction, one of basic purposes way resembling the laws of ordinary mechanics. However,
of this paper was to understand the limits of the minimalalready in the beginning of 20th century it was clearly un-
work principle, which is a particular formulation of the sec- derstood52-55 that this law has only a statistical character
ond law. We therefore consider it necessary to clarify what irand refers to averages over an ensemble of identically pre-
general we mean by “limits to the second law.” pared systems, rather than to a single system. This viewpoint

It is first of all important that one is dealing with a con- became widely accepted when the first robust observations
crete formulation of the second law, which, within the stud-of fluctuations were madg53]. Together with theoretical
ied situation, has a clear conceptual and operational meanvorks of Boltzmann in kinetic theory of gases and of Smolu-
ing. For example, Thomson’s formulation of the second lawchowski, Fokker, Planck, and Einstein in the physics of
as applied to finite systems is certainly of that type, and so i8rownian motion, they formed a consistent picture of the
the minimal work principle. Both these formulations of the second law as emerging from micro-physics through averag-
second law operate with the concept of work, which—ining over fluctuations. A detailed summary of this activity is
contrast to entropy—is defined unambiguously for finite syspresented in the 1937 book by Epstgh3], while Tolman in
tems at all times. 1938[54] and Kemble in 193955] discuss theoretical as-

If within the studied situation we find the statement notpects of the situation. Since then, this understanding of the
satisfied—e.g., the minimal work principle need not be satsecond law entered into several modern books of statistical
isfied in the presence of level crossings—then we encourphysics and thermodynami€s,2].
tered a limit of that particular formulation. Note that for fi- It is also true that when the statistical character of the
nite systems it will not be legitimate to speak about limits of second law was not yet widely accepted, several known sci-
any entropic statement of the second law, since entropy for antists made statements on violations of the second law by
finite system does not have a clear and well-accepted physiluctuations[56]. One of these citations is by Maxwell, “the
cal meaning. One can define here various entrofspe- second law is drawn from our experience of bodies consist-
cially in the quantum situationand it is not clear with re- ing of immense number of moleculesit is continually be-
spect to which one the corresponding statements of secoridg violated in any sufficiently small group of molecules. As
law are to be formulated. Here one encounters limits of thehe number..is increased.the probability of a measurable
concept of entropy rather than limits of the second law. It isvariation may be regarded as practically an impossibility.” If
only in the macroscopic situation that the coarse-grained ersne cites this quotation, one should keep in mind that Thom-
tropy becomes a meaningful quantity on sufficiently longson’s formulation of the second law is perfectly valid for any
time scales. “small group of molecules.” As we saw in the present paper,

In the context of limits of the second law there is anthe same—modulo level-crossing—concerns the minimal
opinion that fluctuations of various quantities—e.g., fluctua-work principle.
tions of work, provided they can be sensibly defined— In summary, fluctuations do not provide violations of the
provide violations of the second law. This opinion is sup-second law, since this law is formulated with respect to av-
ported by an observation that for a typical system in theerages. For a recent discussion on this point,[S&g
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