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The minimal work principle states that work done on a thermally isolated equilibrium system is minimal for
adiabatically slowsreversibled realization of a given process. This principle, one of the formulations of the
second law, is studied here for finitespossibly larged quantum systems interacting with macroscopic sources of
work. It is shown to be valid as long as the adiabatic energy levels do not cross. If level crossing does occur,
counterexamples are discussed, showing that the minimal work principle can be violated and that optimal
processes are neither adiabatically slow nor reversible. The results are corroborated by an exactly solvable
model.
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I. INTRODUCTION

The second law of thermodynamicsf1–4g, formulated
nearly one and a half century ago, continues to be under
scrutinyf5–9g. While its status within equilibrium thermody-
namics and statistical physics is by now well settledf1–4g,
its fate in various border situations is far from being clear
f5,7–9g. In the macroscopic realm the second law is a set of
equivalent statements concerning quantities such as entropy,
heat, work, etc. In more general situations these statements
need not be equivalent and some, e.g., those involving en-
tropy, may have only a limited applicabilityf7,9g. In contrast
to entropy, the concept of work has a well-defined opera-
tional meaning for an arbitrary system interacting with mac-
roscopic work sourcesf1–3g. Moreover, the definition of
work is not confined tosnearlyd equilibrium situations: it is
defined equally well for processes that start and end in arbi-
trary nonequilibrium statesf1–3g.

In this perspective the second law can be regarded as a set
of several statements concerning the work. They were first
derived from observations and have direct counterparts in
everyday experience. Two formulations of the second law are
at the focus of our present interestf1–4,10–19g:

s1d Thomson’s formulation: no work can be extracted
from an equilibrium system by means of a cyclic process
generated by an external work source.

s2d The minimal work principle: when varying the speed
of a given process done on ansinitially d equilibrium system,
the work is minimal for the slowest realization of the process
smore details of the principle are given belowd.

These two statements are well defined—both operation-
ally and conceptually—for a finite system coupled to macro-
scopic sources of work. It is therefore interesting to consider
whether they are valid in this domain. This is an inquiry
towards one of the most pertinent questions in the founda-
tions of statistical physics: whether the second law is valid
for finite systems, or, put differently, whether the thermody-
namical limit is really necessary for the validity of the sec-
ond law. Some historical developments of this question are
recalled in the Appendix.

Thomson’s formulation was derived with great rigor from
the principles of quantum mechanicsf10–13g. It is valid not

only for a macroscopic, but also for a finite system coupled
to sources of work. This fact is not occasional: would Thom-
son’s formulation be violated for a finitese.g., few-leveld
system, it would immediately imply violations for large col-
lections of such systems, i.e., for some macroscopic systems.

There are also several pertinent derivations of the minimal
work principle. They cover some important but still particu-
lar cases, such as the linear response limitsweak coupling to
the work sourced f16,17g, quasi-slow processesf18g, and
constant temperature processes for macroscopic systems
f12,15,19,18g. So far all these derivations were confirming
the validity of the minimal work principle.

Our present purpose is to study the minimal work prin-
ciple for a finitespossibly larged quantum system coupled to
sources of work. We derive the principle for finite systems
and then discuss its limits. It is found that—in contrast to
Thomson’s formulation—the domain of the validity of the
minimal work principle is large but definitely limited. These
limits are connected with crossing of adiabatic energy levels,
and they are illustrated via counterexamples which include
an exactly solvable model. A more detailed discussion on
what, to our opinion, qualifies as a limit of the second law, is
given in the Appendix.

The phenomenon of level-crossingsconical intersectionsd,
which was once little more than a theoretical curiosity, re-
cently attracted much attention in chemical physics, quantum
chemistry, and biophysics; see Refs.f20,21g for a review. Its
importance was recognized for such essential processes as
charge transfer reactions, light harvesting, and ultrafast de-
cay of excited states. We thus show here that the same phe-
nomenon of level crossing is crucial for the proper under-
standing of the second law. It is important to note that for the
typical spectra level crossings are much more frequent than
the avoided crossings, if the number of parameters varied
under interaction with the work sources is larger than two
f22g.

The paper is organized as follows. In Sec. II we recall the
basic setup of the problem. Section III discusses the minimal
work principle and its various implications. Then the prin-
ciple is derived for finite systems. Section V studies the lim-
its of the principle, while Sec. VI discusses relations of the
principle to Thomson’s formulation of the second law and to
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cyclic processes. The last section presents our conclusions.

II. THE SETUP

A. Thermally isolated processes

Consider a quantum system S which is thermally isolated
f1,2,4g: it moves according to its own dynamics and interacts
with an external macroscopic work source. This interaction
is realized via time dependence of some parametersRstd
=hR1std ,R2std , . . .j of the system’s Hamiltonian Hstd
=HhRstdj. They move along a certain trajectoryRstd which at
some initial time ti starts fromRi =Rstid, and ends atRf

=Rstfd. The initial and final values of the Hamiltonian are

Hi = HhRij and Hf = HhRfj, s1d

respectively.
The HamiltonianHstd generates a unitary evolution:

i"
d

dt
rstd = fHstd,rstdg, rstd = UstdrstidU†std, s2d

with time-ordered

Ustd = expQS−
i

"
E

ti

t

dsHssdD . s3d

The interaction of S with the source is related with flows
of work which qualifies as a high-gradedsordered or me-
chanicald type of energy. The workW done on S readsf1–4g

W=E
ti

tf

dt trfrstdḢstdg = trfHfrstfdg − trfHirstidg, s4d

where we performed partial integration and inserteds2d. This
is the average energy increase of S, which, due to energy
conservation, coincides with the average energy decrease of
the sourcef1,2g. Thus there are two ways to measure work.
One can let the work source interact with an ensemble of
systems S and then to measure the energy change of the
work-source. Due to the macroscopic size of the latter, its
energy practically coincides with its averagef1,2g. Or, alter-
natively, one can measure directly the initial and final
average1 energies of S, e.g., via measuring the Hamiltonians
Hi andHf, respectively, on the ensemble of systems S.

B. Initial state

Initially the system S is assumed to be in equilibrium at
temperatureT=1/bù0, that is, S is described by a Gibbsian
density operator:

rstid =
1

Zi
exps− bHid, Zi = tr e−bHi . s5d

This equilibrium state can be prepared by a weak interac-
tion between S and a macroscopic thermal bath at tempera-

tureT f1–3,9g, and then decoupling S from the bath in order
to achieve a thermally isolated processf1–4g. The fact of
preparing S via a thermal bath has the following implica-
tions:

s1d Reproducibility: The preparation process leading to
rstid can, in principle, be repeated the needed amount of
times, and thus various effects displayed by S and described
by density matrixr can be amplified to the needed extent.
Moreover, this reproduction is in principle not connected
with energy costs: due to the weak coupling to the bath no
sor littled energy should be spent for switching the coupling
on and off.

s2d According to quantum mechanics,rstid allows us to
predict probabilities for various results obtained via measure-
ments done on S. In this senserstid can be thought to de-
scribe an ensemble of identically prepared systems S, rather
than one preparation of a single system. Since it was pre-
pared via a thermal bath only—i.e., without additional mea-
surements employed to separate the ensemble into
subensembles—no physical interpretation should be based
on a choice of subensembles forrstid. In particular, it will be
incorrect to interpretrstid as “S is with some probability in a
state with a definite but unknown energyseigenvalue ofHid.”
This interpretation is allowed for a classical Gibbs distribu-
tion, but in the quantum situation it may lead to inconsisten-
cies with experiment; see, e.g., in Ref.f23g. One of the rea-
sons prohibiting such an interpretation is that separation of a
mixed-state ensemble into pure-state componentsssuben-
semblesd depends on the concrete measurement done for this
purpose and therefore is not unique.

III. THE MINIMAL WORK PRINCIPLE

A. Formulation of the principle

Let S start in the states5d, and let the parametersRstd
move betweenRi and Rf along a trajectoryRstd. The work
done on S during this process isW. Consider the adiabati-
cally slow realization of this process:R proceeds between the
same valuesRi andRf and along the same trajectory, but now
with a homogeneously vanishing speed, thereby taking a

very long timetf − ti, at the cost of an amount of workW̃. The
minimal work principle then assertsf1,2,4g

Wù W̃. s6d

This is a statement on optimality: if work has to be extracted
from S,W is negative, and to make it as negative as possible
one proceeds with a very slow speed. If during some opera-
tion work has to be addedsW.0d to S, one wishes to mini-
mize its amount, and again operates slowly.

The following remarks are intended to clarify the physical
meaning of the principle and to prevent its improper use.

sad For thermally isolated systems, adiabatically slow pro-
cesses are reversible. This is standard if S is macroscopic
f1,2,4g, and below in Sec. VI it is shown to hold for a finite
S as well, where the definition of reversibility extends unam-
biguouslysi.e., without invoking entropyd f4g.

sbd The formulation of the minimal work principle does
not by itself give any detailed information on the precise

1Normally this averaging is done either by letting many identi-
cally prepared systems interact with the work source, or operating
with a single system but repreparing its state after each interaction
period.
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meaning of being “slow.” Only its derivation from first prin-
ciples can be informative in this respect, and this is one of
the reasons why such derivations are really needed. It suf-
fices to say at the present moment that “slow” means “slower
than the characteristic times of the system relevant for cal-
culating work,” and certainly does not mean “slower than
characteristic times of the system S without any interaction
with external sources of work.” Indeed, we shall see below
that, in general, the relevant characteristic times become de-
termined only once the very processRstd—with its initial and
final pointsRi andRf—is given. The operational definition of
slow processes in the context of the minimal work principle
is straightforward: one increases the characteristic time scale
t of the process until the work as a function oft saturates,
i.e., it no longer depends ont. It is conceivable that for some
systems there will be several types of slow processes, that is,
the work as a function oft will display several plateaus. If
so, then each type of slow process can be studied for its own
sakef24–26g.

scd Note that as far as the work—i.e., average energy lost
by the work source—is concerned, any processes can be con-
sidered as a part of a thermally isolated one, provided S is
defined to be the whole system which interacts with the
source of work and which together with the latter forms a
closed system2 fsee additionally in this context Eq.s18d and
the remark after itg. Thus, the statement of the minimal work
principle is more general than it may seem.

sdd Finally, it may be useful to comment on the used no-
menclature. Following Ref.f1g we call a slow thermally iso-
lated process adiabatic. Now and then for sharpening the
needed context we use equivalently the term “adiabatically
slow.” Note that this by no means presupposes validity of the
quantum mechanical adiabatic theorem.

B. The minimal work principle for macroscopic systems

In macroscopic thermodynamics the minimal work prin-
ciple is derivedf1,4g from certain axioms which ensure that,
within the domain of their applicability, this principle is
equivalent to other formulations of the second law. Deriva-
tions in the context of statistical thermodynamics are pre-
sented in Refs.f9,15–19g.

In the following discussion we will reproduce a proof of
the minimal work principle for a class of thermally isolated
processes realized on a macroscopic system. Our purpose is
to understand why precisely the principle holds in this situ-
ation, and thereby to motivate its investigation for finite sys-
tems.

The derivation proceeds in two steps. First one considers
the relative entropy,

SfrstfdireqsHfdg = trfrstfdln rstfd − rstfdln reqsHfdg, s7d

between the final staterstfd given bys2d and an equilibrium
state

reqsHfd = exps− bHfd/Zf, Zf = tr e−bHf , s8d

which corresponds to the final HamiltonianHf and to the
same temperatureT=1/b as in the initial staterstid.

The relative entropySfr u usg is known to be non-negative
for any density matricesr and s. Among other useful fea-
tures, it can serve as asnonsymmetricd “distance” betweenr
and s, sinceSfr u usg=0 implies r=s. Applications of rela-
tive entropy in statistical physics and quantum information
theory are reviewed in Refs.f2,27g.

As follows from the unitarity of the evolution operator
s2d,

Sf = − trfrstfdln rstfdg = − trfrstidln rstidg = Si . s9d

This is the well-known conservation of Von Neumann en-
tropy during a thermally isolated process.

The definition of relative entropys7d, combined with Eqs.
s9d, s8d, ands5d and with the definition of works4d brings

SfrstfduureqsHfdg = trfrstidln rstid − rstfdln reqsHfdg

= bW+ ln Zf − ln Zi . s10d

Using the non-negativity of the relative entropys7d one
gets

W= FsHfd − FsHid + TSfrstfduureqsHfdg s11d

ùFsHfd − FsHid, s12d

where FsHd is the free energies corresponding to Hamil-
tonianH and temperatureT:

FsHd ; − T ln tr e−bH. s13d

This inequality is well knownf1,2g sthough it is derived and
formulated less explicitlyd and sometimes is viewed as a
proof of the minimal work principle.3 However, we still have

to show that the workW̃ in the slow limit coincides with the
difference of free energies given by the right-hand side
sRHSd of Eq. s12d. Recall that the latter quantity was so far
defined only formally.

Equations12d gets the needed physical meaning when one
assumesthat for a macroscopic system S, the final state
r̃stfd—reached fromrstid=exps−bHid /Zi by the adiabatically
slow process—can be approximated byreqsHfd defined in
Eq. s8d:

Sfr̃stfduureqsHfdg < 0, s14d

where' means that the equality is supposed to recover in
the macroscopicsthermodynamicd limit for S. This then
leads from Eq.s11d to the needed relation

W̃< FsHfd − FsHid. s15d

The statements6d of the minimal work principle then follows
from Eqs.s9d and s15d.

2This is akin to the known statement that any dynamical evolution
in quantum mechanics can be viewed as a part of a unitary evolu-
tion, provided all the environment of the system was included into
the description. Such statements are sometimes regarded as too gen-
eral and therefore useless. However, they can be very useful as
instanced by the formalism of completely positive operations for
open quantum systemsf3g.

3Recently inequalitys12d was generalized within so-called work-
fluctuations theoremsf13,28g. These theorems account for fluctua-
tions which appear when measuring the work via the system’s en-
ergy.
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In the second step of the derivation one should prove Eq.
s15d. There are several classes of macroscopic systems for
which one can show that the free energy differenceFsHfd
−FsHid in s12d indeed coincides with the adiabatic work
f9,15,19g. We recall below one of them.

Assume that S consists of two parts: macroscopic thermal
bath B and a subsystemsparticled P coupled to it:

Hstd = HPhRstdj + HB + gHI , s16d

whereHPstd andHB stand for the Hamiltonians of P and B,
respectively, and whereHI is the interaction Hamiltonian
with g being the corresponding coupling constant. The
source of work interacts with the particle only, thus only
HPhRstdj is time dependent.

The following conditions are usually considered to be suf-
ficient for the validity of Eq.s15d; seef1,2g. Along the lines
of Ref. f9g, we present them in a slightly more formalized
and particular way, and we recall that they were checked in
modelsf9,19g.

sid The thermal bath B is composed of a macroscopic
number of harmonic oscillators with a properse.g., ohmicd
spectrum of their interaction with P.

sii d The evolution generated byHstd in s16d starts from an
equilibrium states5d for the total systemS=B+P.

siii d The characteristic time of the external processRstd is
assumed to be much larger than the relevant times of the
particle P. These times include those generated by the Hamil-
tonianHPhRstdj, as well as the relaxation times of P induced
by the bath. The latter times are controlled by the interaction
HamiltonianHI and they become very long forg→0. Note
that since the thermal bath B is assumed to be macroscopic
sdense spectrumd, there are characteristic times of Bsso-
called Heisenberg timesd which are proportional to inverse
level-spacing and are thus very large. They, however, do not
enter into the definition of adiabatically slow processes. All
the relevant characteristic times are finite in the thermody-
namical limit for the bath, at least for the type of models
considered inf9g.

The above three conditions are sufficient for the density
operator of P to be given asf9g

rPstd =
1

Zstd
trBe−bHstd, Zstd = tr e−bHstd, s17d

where trBsPd means trace over the bathsparticled degrees of
freedom. The physical meaning ofs17d is obvious: in the
slow limit P is in the local equilibriumsor local stationaryd
state.4

Note that the state of P at timet need not at all coincide
with the local Gibbsiane−bHPstd /ZPstd, since no weak cou-
pling assumption on the system-bath interaction was made.

Equationss4d, s16d, ands17d suffice to derive relations15d
between the workW̃ done for the adiabatically slow process
and the differenceFsHfd−FsHid of free energies. Indeed,
note from Eq.s16d that]tHstd=]tHPstd ands4d can be written
as

W=E
ti

tf

dt trPfrPstd]tHPstdg. s18d

This relation shows that the work defined globally via the
energy difference of the overall system of the particle and the
bath can also be calculated via integration of the expression
on the RHS of Eq.s18d, which contains only quantities re-
ferring to the particle P.

Now proceed with application of Eq.s17d:

W=E
ti

tf dt

Zstd
trPtrBfe−bHstd]tHPstdg =E

ti

tf dt

Zstd
trfe−bHstd]tHstdg

= − TE
ti

tf

dt
d

dt
ln Zstd = FsHfd − FsHid. s19d

Thus the minimal work principles6d is proved for this
class of processes realized on macroscopic systems. One
may note once again that although the quantitiesFsHfd and
FsHid are very large in the macroscopic limit for the bath,
their difference is finite and is of the order of the particle’s
energy. This is also seen froms18d which contains only
quantities referring to the particle.

IV. FINITE SYSTEMS

Let us now turn to a finiteN-level quantum system S.5

The first thing to do is to apply here the reasoning developed
above for macroscopic systems. In fact, Thomson’s formula-
tion of the second law,Wù0, is valid for finite systems for
precisely the same reasons as it is valid for macroscopic
ones. Indeed, since this formulation refers to cyclic pro-
cesses, one putsHf =Hi in Eqs. s7d and s12d—this can be
done without altering the validity ofs12d, since req is in
general an auxiliary density matrix—and getsWù0 for cy-
clic processes, which is the statement of Thomson’s formu-
lation.

However, when trying to apply the above reasoning for
finite systems, one immediately sees that there are no reasons
why the work in the slow limit should be equal to the differ-
ence in free energies. Nor are there reasons to expect the
validity of Eq. s14d, that is, to expect that in general the final4For the actual calculation in Eq.s17d, one may need to keep the

bath large but finite, to carry out the trace trB, and only then to go to
the macroscopic limit for the bath. Then the density matrixrPstd is
finite and well-behaved although the quantities likeZstd=tr e−bHstd

may not be well-defined in the macroscopic limit for the bath. This
is a standard procedure in statistical physics and it is legitimate for
the present situation, since the thermodynamical limit for the bath
commutes with the limit of show processes, as we already recalled
above. The validity of such commutation was also seen in Ref.f18g.

5Note that an attempt was made recently to study the minimal
work principle for finite systemsf14g. The author of Ref.f14g ob-
tained that the principle has the same range of validity as Thom-
son’s formulation of the second law. To our opinion this is incorrect.
It is, however, to be mentioned that the author of Ref.f14g has
stressed the preliminary character of his results, and that his results
concerning cyclic processes are correct.
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stater̃stfd reached fromrstid=exps−bHid /Zi during the adia-
batically slow process should be equal toreqsHfd defined by
s8d. The reason for this can be seen by noting that due to the
unitarity of the evolution operatorU in s3d, the spectrum of
r̃stfd coincides with that of the initial density matrixrstid,
and in general does not have the Gibbsian shape of the spec-
trum of reqsHfd.

The facts thatr̃stfdÞreqsHfd and W̃ÞFsHfd−FsHid for
finite and certain macroscopic systems are known and were
studied especially in the linear response regimef29–37g.
Here are some results obtained within that activity:

s1d A class of finite systems was determined for which the
adiabatic work coincides with the difference in free energies
f29,30g.

s2d Conditions were determined for macroscopic systems,
under which the adiabatic work converges to the free energy
difference in the thermodynamical limitf30,31,35g. Concrete
estimates for the rate of convergence were given.

s3d It was found that for certain nontrivial macroscopic
systems the above convergence can be absent even in the
thermodynamical limitf30,32g. It was argued that quantum
systems are more vulnerable in this respect than classical
onesf30g.

s4d The fact thatr̃stfdÞreqsHfd was recently applied for
studying certain processes which are reversible in the mac-
roscopic limit, but become irreversible for finite systemf36g.

Derivation of the minimal work principle

Thus we cannot rely on macroscopic analogies and we
need an independent derivation of the minimal work prin-
ciple s6d for finite systems. Some ideas of the following deri-
vation were adopted from Ref.f11g.

Let the spectral resolution ofHstd andrstid be6

Hstd = o
k=1

N

«kstduk,tlkk,tu, kk,tun,tl = dkn, s20d

rstid = o
k=1

N

pkuk,tilkk,tiu, pk =
e−b«kstid

on
e−b«nstid

. s21d

At t= ti we order the spectrum as

«1stid ø ¯ ø «Nstid s22d

⇒p1 ù ¯ ù pN. s23d

For any t in the interval ti ø tø tf we expand over the
complete setun,tl:

Ustduk,til = o
n=1

N

aknstdexpS−
i

"
E

ti

t

dt8«nst8dDun,tl, s24d

where

aknstd ; aknst;tid = kn,tuUstduk,tilexpS i

"
E

ti

t

dt8«nst8dD
s25d

are the expansion coefficients, and whereuaknstfdu2 is the
probability to measure energy«nstfd at the final timetf, pro-
vided the initial state wasuk,tilkk,tiu.

Now we use Eqs.s21d ands24d to obtain for the works4d:

W= o
k,n=1

N

uaknstfdu2pk«nstfd − o
k=1

N

pk«kstid. s26d

A similar formula can be derived to express the adiabatic

work W̃ in terms of coefficientsãknstfd:

W̃= o
k,n=1

N

uãknstfdu2pk«nstfd − o
k=1

N

pk«kstid. s27d

From the definitions25d,

uaknstfdu2 = ukn,tfuUuk,tilu2, s28d

it follows that7

o
k=1

N

uaknstfdu2 = o
n=1

N

uaknstfdu2 = 1. s29d

Employing the identityssummation by partsd

o
n=1

N

«nxn = «No
n=1

N

xn − o
m=1

N−1

f«m+1 − «mgo
n=1

m

xn, s30d

with xn=ok=1
N uaknstfdu2pk and xn=ok=1

N uãknstfdu2pk, we obtain
from Eqs. s26d and s27d and, using Eqs.s29d, we obtain a
general formula for the difference between the non-adiabatic
and adiabatic work:

W− W̃= o
m=1

N−1

f«m+1stfd − «mstfdgQm, s31d

Qm ; o
n=1

m

o
k=1

N

pkfuãknstfdu2 − uaknstfdu2g. s32d

Let us now assume that the orderings22d is kept at the
final time t= tf:

«1stfd ø ¯ ø «Nstfd. s33d

If different energy levels did not cross each other—i.e., dif-
ferent ones do not become equal and equal ones do not be-
come different—Eq.s33d is implied by the initial ordering
s22d.

6The eigenstates ofrstid are used below as a calculational tool. It
is by no means implied that “what really happens” is that the system
S is—with some probability and before doing any measurement—in
one of those states. See also the second remark in Sec. II B.

7As possible physical interpretation of features29d, note that for
the uniform distribution of the initial states,psk,tid=1/N,
the prediction probabilitypsn; tf uk,tid= uaknstfdu2 is equal to the ret-
rodiction probability psk,ti un; tfd=fpsk,tidpsn; tf uk,tidg /
fok=1

N psk,tidpsn; tf uk,tidg=fs1/Ndpsn; tf uk,tidg / fok=1
N 1/Npsn; tf uk,

tidg=psn; tf uk,tid.
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The behavior of energy levels with respect to level-
crossing is governed by the noncrossing rule, which was fre-
quently discussed in the literature and derived in a rather
general situationf38–41g. We shall need it in the following
particular formulation:

If HhRj is real and only one of its parameters is varied
with time, s33d is satisfied for any discrete-level quantum
system: level crossing, even if it happens in model-
dependent calculations or due to approximate symmetry,
does not survive arbitrary small perturbation where it is
substituted by avoided crossingsfor a more generalHhRj
the conditions prohibiting level-crossing are more restric-
tive; seef40gd. To get a stable point of level crossing, one
needs at least two independently varying parameters for a
real HhRj.
The rule is known since the early days of quantum me-

chanicsf38g and is presented in textbooks; see, e.g., Ref.
f39g. It is an important tool in atomic and molecular spec-
troscopy, and development of these fields led people to re-
consider its derivation. In particular, Ref.f42g correctly criti-
cizes the standard proof of the no-crossing rule for being
imprecise and not general enough. In response to this and
several related criticisms,sat leastd two complete and general
derivations appeared which settled the issuef40,41g.

No level crossings and natural conditions of smoothness
of Hstd aresufficientfor the standard quantum adiabatic theo-
rem f43g to ensure

ãknstfd = dkn. s34d

This is the known statement on the absence of transitions for
slow variations.8

Combined with Eqs.s23d and s34d, the definition s32d
brings

Um = o
k=1

m

pkS1 − o
n=1

m

uaknstfdu2D − o
n=1

m

o
k=m+1

N

pkuaknstfdu2

ù − pmSo
k=1

m

o
n=1

m

uaknstfdu2 + o
n=1

m

o
k=m+1

N

uaknstfdu2D + pmm

= pmsm− md = 0. s35d

OnceQm are non-negative, the statementWùW̃ of the mini-
mal work principle follows from Eqs.s26d, s31d, ands33d.

Recall once again the basic ingredients of the proof:
s1d The conditions29d which came from the unitarity of

the evolution during a thermally isolated process,
s2d The no-crossing assumption which led to Eq.s33d and

simultaneously—via the standard adiabatic theorem—to Eq.
s34d.

s3d We did not assume that the adiabatic work is either
related or equal to the difference in free energies.

s4d Only two features of the initial staterstid were used:
fHi ,rstidg=0 determined the specific forms26d and s27d of
the work, while the order relations23d for the eigenvalues of
the initial density matrix was used in provingUmù0 in Eq.
s35d. This means that the Gibbsian propertys5d is not neces-
sary for the validity of the derivation.

As an immediate application of the obtained results note
that if only one parameter is varied, we are ensured of the
absence of level crossings and the minimal work principle is
valid. Among many examples of this situation there is the
case of a gas—which may consist of any number of
particles—in a rectangular container interacting with one of
its walls moving in time. This is the standard setup for a
one-parameter thermally isolated process. Recently it was
studied for some simple quantum systemsf6,34g.

V. LEVEL CROSSING

The above noncrossing condition raises the question: Is
the minimal work principle also valid if the adiabatic energy
levels cross? Before addressing this question in detail, let us
mention some popular misconceptions which surround the
level crossing problem:

The no-crossing rule is said to exclude all crossings. This
is incorrect as the exclusion concerns situations where, in
particular, only one independent parameter of a real Hamil-
tonianHhRj is variedf40g. Two parameters can produce ro-
bust level crossing for such Hamiltonians.

One accepts that level crossing can happen, but believes it
to be very rare and thus irrelevant for any sensible physical
situation. This opinion is invalidated by whole chapters of
chemical physicsf20,21g: level crossing is not only observed
in many- sat least twod atom molecules, where internuclear
distances play the role of classical time-dependent param-
eters, but is necessary for the proper description of some
known chemical reactions, as well as for predicting new
ones. Over the years several methods were developed for
identifying and locating the points of level crossing.9 In par-
ticular, the method based on the geometrical phases“Berry
phase”d allows one to deduce the existence of level crossing
from the behavior of the system at points remote from the
crossing; see Refs.f20g for more information.

Note as well that level crossing is a more frequent phe-
nomenon than avoided crossingf22g, if the number of inde-

8This standard statement of the adiabatic theorem was elaborated
in literature several times so as to provide information on the inter-
nal characteristic timesT f44g. To be slow then will meant@T.
Dealing with a discrete spectrum and assuming, as we did above,
that there are no level-crossings and that adiabatic energy levels are
smooth functions of time,T can roughly be estimated via the in-
verse of the minimal spacing between the involved energy levels
f44g. In this context, the levels which provide a small spacing are
said to define avoided crossing. One should, however, keep in mind
that this estimation cannot be extrapolated to situations with level
crossing, where the minimal level spacing is zero. In those cases the
whole situation changes and the characteristic internal timesT can
well be finite; see below and in Refs.f45,46g scompare also with
our discussion in Sec. III Ad. The same is the case for some situa-
tions in a continuous spectrum, where again the minimal level-
spacing is zero, but the relevant characteristic times can be finite;
see, e.g.,f47,48g. In short, the inverse of the minimal level-spacing
defines the relevant characteristic time only for some particular
cases, not in general.

9This is an important issue, since some numerical or approximate
analytical methods may easily miss points of level crossing or may
produce spurious ones.
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pendently varying parameters is larger than two.
It is believed that once levels can cross,D«→0, the very

point of defining slow processes disappears as the internal
characteristic time" /D« of S is infinite. This view misiden-
tifies the proper internal time as seen belowssee also the
discussion in Sec. III A and footnote 8d. The absence of level
crossings is indeed a sufficient condition for the validity of
Eq. s34d sno transitions for slow changesd. It is, however, by
no means necessaryf45,46,49g.

It is sometimes believed that crossing is automatically fol-
lowed by a population inversion. We shall find no support for
that.

A. A two-level example within adiabatic perturbation theory

As a first example we consider a spin-1/2 particle with
Hamiltonian

Hssd = h1ssds1 − h3ssds3, s36d

=S− h3ssd h1ssd
h1ssd h3ssd

D, s= t/t, s37d

wheres1, s3, ands2= is1s3 are Pauli matrices, and wheres
is the reduced time witht being the characteristic time scale.
The magnetic fieldsh1 andh3 smoothly vary in time.

Let us now make the following assumptions:sid for s
→si ,0 and for s→sf .0, h1ssd and h3ssd go to constant
values sufficiently fast:sii d At s= t=0 both h1ssd and h3ssd
turn to zero. This condition indicates a level crossing, since
crossed eigenvalues of the traceless 232 matrix Hssd mean
that this matrix is equal to zero at the point of the crossing.
Besides these two basic conditions, we shall assume few
auxiliary ones, whose purpose is to make the discussion be-
low more transparent.siii d h1ssd andh3ssd are nonzero for all
s, si øsøsf, excepts=0. sivd Due to the latter condition
h3ssd /h1ssd is finite for the involveds, except possiblys
→0. If it is infinite in this limit, then obviously its inverse
h1ssd /h3ssd is finite; now for alls, si øsøsf, and goes to zero
for s→0. Since one of these ratios has to be finite, we shall
assume that this finite ratio ish1ssd /h3ssd. svd h3ssd.0 for
s,0 andh3ssd,0 for s.0.

Here is a concrete example realizing the last two assump-
tions. Fors→0,

h1ssd . a1s
2, h3ssd . − a3s, s38d

wherea1 anda3 are positive constants.
With the above conditions onh1ssd and h3ssd, one can

propose a useful parametrization of the Hamiltonians37d.
Recalling thath3ssd changes its sign ats=0, Eq.s37d is writ-
ten as

Hssd = sgnssdÎh3
2ssd + h1

2ssdScosussd sinussd
sinussd − cosussd

D ,

s39d

where

sinussd ; sgnssd
h1ssd

Îh3
2ssd + h1

2ssd
, s40d

cosussd ; − sgnssd
h3ssd

Îh3
2ssd + h1

2ssd
. s41d

HereÎ
¯ is defined to be always positive, sgnssd is the sign

function and

ussd = − arctanSh1ssd
h3ssd

D s42d

is a parameter in the interval −p /2,ussd,p /2. Note that
the presence of sgnssd in the above expressions is necessary
for having a smooth parametrization. Otherwise, e.g.,
h3ssd /Îh3

2ssd+h1
2ssd is discontinuous at the crossing points

=0.
The eigenvalues and eigenvectors ofHssd,

Hssduk,sl = «kssduk,sl, k = 1,2, s43d

are now read off by inspecting Eq.s40d:

«1ssd = sgnssdÎh3
2ssd + h1

2ssd, «2ssd = − «1ssd, s44d

u1,sl =1cos
1

2
ussd

sin
1

2
ussd 2, u2,sl =1− sin

1

2
ussd

cos
1

2
ussd 2 . s45d

It is seen that the eigenvalues«1ssd and«2ssd of Hssd sadia-
batic energy levelsd cross ats=ussd=0. Note from the above
conditions onh1ssd and h2ssd and from Eqs.s42d and s44d
that both the eigenvalues and the eigenvectors ofHssd are
smooth functions ofs. This fact is important for subsequent
calculations, but first of all it is necessary for the very defi-
nition of level crossing.

Now Eq. s22d for the ordering of initial energy levels is
valid, but Eq. s33d for the same ordering of final energy
levels is not valid due to the level crossing ats=0. Equations
s26d–s32d imply

W− W̃= − 2Îh1
2ssfd + h3

2ssfdU1, tsf = tf , s46d

whereQ1 is defined bys32d.
Our strategy is now to confirm relations34d in the slow

limit t→` and thus to confirm thatQ1.0, implying that the
minimal work principle is indeed violated.

To this end we apply the standard quantum mechanical
adiabatic perturbation theoryf43g. Substituting Eq.s24d into
Eq. s2d one has

ȧkn = − o
m=1

N

akmstdexpS i

"
E

ti

t

dt8f«nst8d − «mst8dgDkn,su]tum,sl.

s47d

As u1,sl and u2,sl in Eq. s45d are real, the normalization
kn,sun,sl=1 implies kn,su]tun,sl=0. Since kn,su]tum,sl
=s1/tdkn,su]sum,sl the RHS ofs47d contains a small param-
eter 1/t. It is therefore more convenient to introduce new
variables:aknstd=dkn+bknstd, bknstid=0. To leading order in
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1/t, bkn can be neglected on the RHS ofs47d, and, after
changing variables asst= t, s8t= t8, one gets forakÞnstfd
=bkÞnstfd

uakÞnstfdu2 = UE
si

sf

dsexpS it

"
E

si

s

duf«ksud − «nsudgDknu]suklU2

,

s48d

while, due to normalization,

uakkstfdu2 = 1 − o
nÞk

uaknstfdu2. s49d

For our model described by Eqs.s36d–s45d, the quantity

E
si

s

duf«1sud − «2sudg s50d

=2E
si

s

du«1sud s51d

has only one extremal point, ats=0. We also have froms45d

k2,su]su1,sl =
u8ssd

2
=

1

2

h1ssdh38ssd − h3ssdh18ssd
h3

2ssd + h1
2ssd

, s52d

whereu8ssd;du /ds.
For larget the integral in Eq.s48d can be calculated with

use of the saddle-point method:

ua12stfdu2 = Up"

t
F k2,su]su1,sl2Îh1

2ssd + h3
2ssd

h1ssdh18ssd + h3ssdh38ssd
GU

s=0

.

s53d

Substituting Eq.s38d into Eq. s53d, one gets

ua12stfdu2 =
p"a1

2

4ta3
3 . s54d

Equationss48d, s53d, ands54d extend the statement of the
adiabatic theorems34d for the level crossing situation. More
general versions of similar adiabatic theorems can be found
in Refs.f45,46g. Inserting

Q1 = sp1 − p2dua12stfdu2 . 0 s55d

in Eq. s46d confirms the violation of the minimal work prin-
ciple. Equations54d also shows that for the considered pro-
cess the role of the proper internal characteristic time is
played by"a1

2/a3
3 rather than by" / s«1−«2d.

Let us recall once again that the violation of the minimal
work principle is due to common influence of the following
factors:

sid There is a level crossing: a more populated state goes
to higher energies, while a less populated one goes to lower
energies.

sii d For slow processes there are no transitions between
various energy levels:ãknstfd=dkn.

siii d For not very slow processes there do occur transi-
tions: aknstfdÞdkn. They cost less work.

Note as well that when the external fieldsh1ssd andh3ssd
in Eq. s36d are such thatÎh3

2ssd+h1
2ssd is a smooth function

for all reals, there are no crossings of eigenvalues ands6d is
valid. In the example of level crossing given above, one has
Îh3

2ssd+h1
2ssd~ usu for small s. Note that if level crossing is

absent, the transition probabilityua12stfdu2 is small asOse−td,
since the integral in Eq.s48d is determined by the extremal
point of s50d which is now complex; seef44g for more de-
tails.

B. Fast processes

One can calculateuaknstfdu2 in yet another limiting case,
where the characteristic timet is very short, while the
change inh1std andh3std is finite and there is the level cross-
ing at t=0.

It is well known f43g that in this limit energy changes can
be calculated with the help of the frozen initial state of S. For
the present situation this leads from Eq.s45d to

ua12stfdu2 = ua21stfdu2 = uk1,tfu2,tilu2 = sin2 1
2fustfd − ustidg,

s56d

and thus to

Q1 = sp1 − p2dsin2 1
2fustfd − ustidg, s57d

which is again positive. This demonstrates that even very fast
processessi.e.,t→0d can be more optimal than slow ones. It
is conceivable that violations of the minimal work principle
are maximal for some finitet. This expectation is confirmed
below.

C. Exactly solvable model with level crossing

The above results obtained by perturbation theory will
now be corroborated on an exactly solvable displaying level
crossing.

Consider a two-level system with Hamiltonian

Hssd = "v1 scos2 s
1

2
ssin 2s

1

2
ssin 2s ssin2 s 2, s=

t

t
, s58d

wheret is the characteristic time scale,s is the reduced time,
and wherev is a coupling constant. The model belongs to
the pool of exactly solvable driven two-level systems. We
learned about it from Ref.f45g, where some asymptotic fea-
tures of its solution were studied.

The eigenvectors

u1,sl = Scoss

sins
D, u2,sl = S− sins

coss
D s59d

of Hssd correspond to the eigenvalues

«1ssd = "vs, «2ssd = 0, s60d

respectively. It is seen that the energy levels cross whens
= t /t passes through zero. Equationss47d read for the present
case

da11ssd
ds

= eivts2/2a12, s61d
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da12ssd
ds

= − e−ivts2/2a11. s62d

These equations can be solved exactly in terms of hypergeo-
metric functions

a11ssd = c1HeS−
i

vt
,sxD + c2F1S i

2vt
,
1

2
,s2x2D , s63d

a12ssd =
c1

x2eip/4−s2x2
HeS− 1 −

i

vt
,sxD − c2se−s2x2

F1

3S1 +
i

2vt
,
3

2
,s2x2D , s64d

whereHe andF1;1F1 are, respectively, Hermite and hyper-
geometrical functionsf50g, and where

x ; expS ip

4
DÎvt

2
. s65d

The integration constantsc1 andc2 are determined from the
initial conditionsa11ssid=1 anda12ssid=0.

In the slow limit vt@1, the transition probability can be
calculated via the first-order adiabatic perturbation theory re-
sult s48d:

a12ssfd = −E
si

sf

dse−ivts2/2. s66d

With help of the saddle-point method one gets fors66d

ua12ssfdu2 =
2p

vt
, s67d

in agreement withs54d.10 The characteristic time for the slow
process is seen to be 1/v.

Recalling Eq.s29d, one deduces from Eqs.s31d and s32d
for the present model:

W− W̃= "vsfua12ssfdu2 tanhs 1
2b"vsid s68d

To have level crossing we takesi ,0, sf .0. Equations68d
then indeed predicts

W− W̃, 0. s69d

It is seen that violations of the minimal work principle
exist for sf .0, and they are maximal forua12ssfdu2→1. This
is seen to be the case in Figs. 1 and 2 for somet neart=1.
Note from Fig. 1 that both the first-order perturbation theory
results66d and the saddle-point approximation to it given by
Eq. s67d are adequately reproducingua12ssfdu2 for t*10.
Moreover, the first-order perturbation theory is seen to pro-
vide an upper bound for the exact expression and predicts the
appearance of large oscillations aroundt,1.

For t→0, ua12ssfdu2 goes to its value sin2ssf −sid predicted
by the sudden perturbation theory. This amounts to
ua12ssfdu2=0.019 91 for the situations in Figs. 1 and 2.

Thus, all the basic conclusions drawn from the adiabatic
perturbation theory are confirmed by this exactly solvable
model.

D. Many-level systems

Let S have a finite number of levels, and assume that two
of them cross. For quasi-adiabatic processesst is large but
finited and analytically varying HamiltonianHstd, the transi-
tion probability between noncrossing levels is exponentially
small f44g, while, as we saw, it has power-law smallness for
two crossing levels. Then one neglects ins26d the factors
uakÞnstfdu2 coming from any noncrossed levelsk and n, and
the problem is reduced to the two-level situation. Thus al-
ready one crossing suffices to detect limits of the minimal
work principle sprovided, of course, that the crossed levels
are sufficiently populated initiallyd.

The reduction to the two-level situation takes place also in
a macroscopic system which has few discrete levels located
below a continuous spectrum and separated from the latter
by a finite gap. It is known, see, e.g., in Ref.f46g, that the
transitions between these discrete levels and the continuous
part of the spectrum vanish exponentially for quasi-adiabatic

10To make a detailed comparison between Eqs.s67d and s54d,
substract fromHssd fdefined bys58dg an irrelevant factor12trHssd,
and note from Eqs.s36d and s38d that the following relations are
valid for the present model:a3= 1

2"v, a1="v. Substituting them
into Eq. s54d one gets Eq.s67d.

FIG. 1. Amplitude ua12ssfdu2 versus the time scalet for si =
−1.5, sf =1.5, andv=1. Full oscillating curve: the exact value
which can reach unity. Dotted curve: result from a first-order adia-
batic perturbation theory. The smooth curve presents a saddle-point
approximations67d.

FIG. 2. The magnified version of Fig. 1: The exact value of
ua12ssfdu2 versus the characteristic time scalet for si =−1.5,sf =1.5,
andv=1.
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processes. These discrete levels thus decouple from the rest
of the spectrum and the problem returns to an effectively
two-level situation.

VI. CYCLIC PROCESSES AND REVERSIBILITY

The above results on the limits of the minimal work prin-
ciple do not imply any violation of the second law in Thom-
son’s formulationf10–12g: no work is extracted from S dur-
ing a cyclic process,Wcù0. We illustrate its general proof
obtained in Refs.f10–13g in the context of the level crossing
model given by Eqs.s36d–s45d.

Assume that the trajectoryRstd=(h1std ,h2std) described
there is supplemented by another trajectoryR8std which
brings the parameters back to their initial values
(h1stid ,h3stid) so that the overall processR+R8 is cyclic. If
R8 crosses the adiabatic energy levels backwards, then at the
final time tf8 of the full cyclic processR+R8 one has

«1stf8d = «1stid, «2stf8d = «2stid. s70d

Together with

ua12stf8du
2 = ua21stf8du

2 = 1 − ua11stf8du
2 = 1 − ua12stf8du

2,

and Eqs.s26d and s34d as applied to the full cyclic process
si.e., changing in themtf → tf8d, Eq. s70d implies

Wc = ua12stf8du
2sp1 − p2df«2stid − «1stidg ù W̃c = 0. s71d

Equations71d confirms the intuitive expectation that non-
adiabatic processes are less optimal. In particular, this is
valid if R8=Rmr is exactly the same processR moved back-

wards with the same speedsmirror reflectiond. Then W̃c=0
means that the original processR is reversible: According to
the standard thermodynamical definitionf1,2,4g, a processR
is reversible, if, after supplementing it with its mirror reflec-
tion processRmr, the work done for the total cyclic process
R+Rmr is zero.

If R8 does not induce another level crossing, i.e., ifh1ssd
andh2ssd in Eq. s36d do return to their initial values without
simultaneously crossing zero, then the levels are inter-
changed,

«1stf8d = «2stid, «2stf8d = «1stid, s72d

and this time Eqs.s26d and s34d imply

W̃c = sp1 − p2df«2stid − «1stidg, s73d

W̃c ù Wc = f1 − ua12stf8du
2gW̃c . 0. s74d

It is seen that in contrast to the situation described by Eq.
s71d, non-adiabatic processes are more optimal ifR+R8 con-
tains one level-crossingsor an odd number of themd. We thus
have found here a violation of the minimal work principle
for a cyclic process.

VII. CONCLUSIONS

This paper was devoted to one of the persistent questions
in statistical physics: whether the second law is valid for

finite systems, and, if it is not valid, what are the possible
scenarios of its violation. The proper way to answer this
question is to take a formulation of the second law which has
a clear meaning for finite systems, and to study it from the
first principles of quantum mechanics, without invoking any
postulate.

Along these lines we have studied the minimal work prin-
ciple for finite systems coupled to external sources of work.
The principle states that the work done on ansinitially d equi-
librium system during a thermally isolated process is mini-
mal for the smallest speed of the process. As compared to
other formulations of the second law, this principle has a
direct practical meaning as it provides a recipe for reducing
energy costs of various processes. We gave its general proof
for finite systems which starts from first principles of quan-
tum mechanics and avoids the usual lore associated with the
second lawschaos, thermodynamic limit, coarse graining,
various definitions of entropyd. We have also shown that it
may become limited if there are crossings of adiabatic en-
ergy levels: optimal processes need to be neither slow nor
reversible. Already one crossing can suffice to note viola-
tions of the principle. If this is the case, the optimal process
occurs at some finite, system-dependent speed.

Level crossing was observed, e.g., in molecular and
chemical physicsf20,21g. It is not a rare effectf22g: if the
number of externally varied parameters is larger than two,
then for typical spectra level crossings are much more fre-
quent than avoided crossingsf22g.

Together with the universal validity of Thomson’s formu-
lation of the second lawf10–13g, the limits of the principle
imply that the very equivalence between various formula-
tions of the second law may be broken for a finite system
coupled to macroscopic sources of work: different formula-
tions are based on different physical mechanisms and have
different ranges of validity. Similar results on nonequiva-
lence of various formulations of the second law were found
in Refs. f7,9g, where for a quantum particle coupled to a
macroscopic thermal bath, it was shown that some formula-
tions, e.g., the Clausius inequality and positivity of the en-
ergy dispersion rate, are satisfied at sufficiently high tem-
peratures of the bath, but can be invalid at low temperatures,
that is, in the quantum regime. The physical mechanism re-
sponsible for this is the formation of a cloud of bath modes
around the particle, well known in the cases of Kondo-cloud
and polaron-cloud, but more general.

There are still many issues to consider before the minimal
work principle and its limits can be said to be properly un-
derstood. In particular, we need a better description for the
transition from finite to macroscopic systems. It might also
be of interest to find an explicit example of a macroscopic
system displaying limits of the principle. A separate problem
is to study the minimal work principle in thessemidclassical
limit of finite quantum systems. This problem is special due
to the fact that the limit of slow processes need not commute
with the classical limitf51g.

We, however, had first to understand that limits of the
minimal work principle do exist in principle and sometimes
in practice, and this is the main message of the present paper.
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APPENDIX: LIMITS TO THE SECOND LAW

As was stressed in the Introduction, one of basic purposes
of this paper was to understand the limits of the minimal
work principle, which is a particular formulation of the sec-
ond law. We therefore consider it necessary to clarify what in
general we mean by “limits to the second law.”

It is first of all important that one is dealing with a con-
crete formulation of the second law, which, within the stud-
ied situation, has a clear conceptual and operational mean-
ing. For example, Thomson’s formulation of the second law
as applied to finite systems is certainly of that type, and so is
the minimal work principle. Both these formulations of the
second law operate with the concept of work, which—in
contrast to entropy—is defined unambiguously for finite sys-
tems at all times.

If within the studied situation we find the statement not
satisfied—e.g., the minimal work principle need not be sat-
isfied in the presence of level crossings—then we encoun-
tered a limit of that particular formulation. Note that for fi-
nite systems it will not be legitimate to speak about limits of
any entropic statement of the second law, since entropy for a
finite system does not have a clear and well-accepted physi-
cal meaning. One can define here various entropiessespe-
cially in the quantum situationd and it is not clear with re-
spect to which one the corresponding statements of second
law are to be formulated. Here one encounters limits of the
concept of entropy rather than limits of the second law. It is
only in the macroscopic situation that the coarse-grained en-
tropy becomes a meaningful quantity on sufficiently long
time scales.

In the context of limits of the second law there is an
opinion that fluctuations of various quantities—e.g., fluctua-
tions of work, provided they can be sensibly defined—
provide violations of the second law. This opinion is sup-
ported by an observation that for a typical system in the

thermodynamical limit the fluctuations vanish and, for ex-
ample, Thomson’s formulation in this limit is a statement on
energy difference of a macroscopic systemfi.e., in the defi-
nition s4d of work one need not take averages over different
systems or different realizationsg. According to this opinion,
the second law is formulated as a statement on the random
quantity work, and once the latter can fluctuate for finite
systems assuming sometimes negative values, this gives vio-
lations of the second law.

It is true that when the second law was first deduced in the
19th century, it was formulated for a single closed system, in
a way resembling the laws of ordinary mechanics. However,
already in the beginning of 20th century it was clearly un-
derstoodf52–55g that this law has only a statistical character
and refers to averages over an ensemble of identically pre-
pared systems, rather than to a single system. This viewpoint
became widely accepted when the first robust observations
of fluctuations were madef53g. Together with theoretical
works of Boltzmann in kinetic theory of gases and of Smolu-
chowski, Fokker, Planck, and Einstein in the physics of
Brownian motion, they formed a consistent picture of the
second law as emerging from micro-physics through averag-
ing over fluctuations. A detailed summary of this activity is
presented in the 1937 book by Epsteinf53g, while Tolman in
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