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We show that work can be extracted from a two-level systemsspind coupled to a bosonic thermal bath. This
is possible due to different initial temperatures of the spin and the bath, both positivesno spin population
inversiond, and is realized by means of a suitable sequence of sharp pulses applied to the spin. The extracted
work can be of the order of the response energy of the bath, therefore much larger than the energy of the spin.
Moreover, the efficiency of extraction can be very close to its maximum, given by the Carnot bound, at the
same time the overall amount of the extracted work is maximal. Therefore, we get a finite power at efficiency
close to the Carnot bound. The effect comes from the backreaction of the spin on the bath, and it survives for
a strongly disorderedsinhomogeneously broadenedd ensemble of spins. It is connected with generation of
coherences during the work-extraction process, and we deduced it in an exactly solvable model. All the
necessary general thermodynamical relations are deduced from the first principles of quantum mechanics and
connections are made with processes of lasing without inversion and with quantum heat engines.
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I. INTRODUCTION

A known feature of technological progress is the increase
of human ability to control and design the microscopic
world. Recent efforts in manipulating simple quantum sys-
tems, e.g., in the context of quantum computing or quantum
chemistry, is one aspect of this general trend. Another aspect
is the field of quantum thermodynamics, whose main objec-
tive is in designing and studying new thermodynamic pro-
cesses in the domain where quantum features of matter are
relevant. In particular, this activity aims to improve our un-
derstanding of standard thermodynamicsf1–3g by addressing
its concepts from the first principles of quantum mechanics
f4–6g. The current activity in quantum thermodynamics in-
cludes quantum enginesf7–12g, general aspects of work ex-
traction from quantum systemsf13g, thermodynamic aspects
of quantum-information theoryf14,15,64g, and limits of ther-
modynamic concepts such as the second lawf4,16,5g and the
temperaturef17g. There were also much earlier applications
concerning, in particular, thermodynamic aspects of lasers
and masersf18g.

Our present purpose is to study work extraction from a
two-temperature system on the basis of the known spin-
boson modelf19–22g: a two-level system coupled to a
bosonic thermal bath. The motivation to use a two-level sys-
tem is obvious: it is almost everywhere, and it is the minimal
model having nontrivial quantum features. The necessity of
the bath has to be stressed separately since, in the usual
practice of quantum systems manipulation, the bath is a se-
rious hindrance. As follows, the process of work extraction
really needs external thermal baths: The second law in Th-
omson’s formulation—which is derived as a theorem in
quantum mechanicsf23–28g—forbids work extraction from
an equilibrium system by means of cyclic processes gener-
ated by external fields. The easiest way to employ an equi-
librium system in work extraction is to attach it to a thermal
bath having a different temperature, thus forming a local-
equilibrium state. The overall system is then out of equilib-

rium, and work extraction from cycles is not forbidden, at
least in principle. This was shown explicitly inf4,16,5g.

This general restriction determined how standard quantum
work-extraction salso known as amplification or lasing/
masingd processes are designedf18g. The most traditional
lasers and masers operate by extracting work from an en-
semble of two-level systems having a negative temperature,
in other words, population inversion, which is a strongly
nonequilibrium state. More recent schemes of lasing without
inversion employ nonequilibrium states of three-sfour-,
multid level systems without population inversion of energy
levels, but with initially sizable nondiagonal terms of the
corresponding density matrix in the energy representation,
usually called coherencesf29,30g. These schemes attracted
attention due to both their conceptual novelty and the fact
that nonzero nondiagonal elements represent a weaker form
of nonequilibrium than population inversion, and thus their
preparation can be an easier taskf29,30g.

The mechanism of work extraction proposed in the
present paper differs from the standard ones in several as-
pects.

sid Work extractionsamplification, lasingd can be achieved
in two-level systems without population difference and with-
out using an initially coherent state. A setup consisting of a
positive temperature spin interacting with a thermal bath at
some higher or lower temperature suffices to extract work
and thereby amplify pulsed fields acting on the spin. More-
over, the extracted work can be of the order of the bath’s
response energy, which is larger than the energy of the spin.
Thus, when viewed as lasing without inversion, the pre-
sented mechanism offers definite advantages over the exist-
ing schemes.

sii d The effect survives for a disordered ensemble of spins,
where the spins have a random energy with a large disper-
sion. The reason for the survival is the possibility of combin-
ing the work-extraction process with the spin-echo phenom-
enaf31,32g. As a consequence, we have a phenomenon even
more amazing than the original spin-echo: a high-
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temperature, completely disordered ensemble of spins can
serve as a medium of work extraction.

siii d The efficiency of work extraction can approach its
maximally possible value given by Carnot bound. Moreover,
the efficiency is maximized simultaneously with the overall
amount of the extracted work. In addition, the power of work
si.e., the work divided over the total duration of the work-
extraction processd is finite. Thus, in marked contrast to the
original Carnot cyclef1,3g and some of its realizations in
quantum enginesf12g, the three basic objectives of a good
work-extraction process are met together: a large amount of
extracted work, high efficiency, and finite power.

The origin of the presented mechanism is that, besides
well-known effects of dissipation and decoherence induced
by a thermal bath on a spin interacting with it, there is an-
other effect, the presence of which is frequently not acknowl-
edged. This is the backreaction of the spin to the bath, which
in combination with external fields influences the spin’s dy-
namics. The effect exists even for relatively small—but
generic—bath-spin coupling constants, but is typically ne-
glected from standard weak-coupling theoriesf33g. Our
present treatment of the bath-spin interaction is exact and
allows us to study the full influence of backreaction and
memory effects.

This paper is organized as follows. In Sec. II, we recall a
version of the spin-boson model we work with. It has be-
come one of the most popular models in the theory of open
quantum systemsf19–21,34g. First in this section, we recall
how to solve this model, following similar steps to Ref.f21g,
giving details on the factorized initial conditions and the
Ohmic spectrum of the bath. Further, we describe a charac-
teristic of this model, which to our knowledge was never
commented on, namely the fact that correlated initial condi-
tions are equivalentsat least for one time quantitiesd to fac-
torized initial conditions for sufficiently long times. In Sec.
III, we introduce the action of external fields on our system.
The definition of work is recalled also in this section. The
next section presents experimental realizations of our setup
in various situations of two-level systemssd interacting with a
thermal bath. In Sec. V, we obtain general limits on work
extraction from a two-temperature system. The next two sec-
tions describe our basic results on the work extraction, effi-
ciency, and the power of work. The last section offers our
main conclusions and compares our results with the ones
existing in the literature. Several technical questions are con-
sidered in the Appendixes. We have tried to make this paper
reasonably self-contained. This especially concerns the con-
cepts and relations of standard thermodynamics, which are
not accepted uncritically, but, in many situations, are derived
from the first principles of quantum mechanics.

II. THE MODEL

As is common when dealing with open systems, the

HamiltonianĤ is composed by three parts,

Ĥ = ĤS + ĤB + ĤI . s1d

ĤS stands for the Hamiltonian of a two-level systemsspin 1
2d,

ĤS =
«

2
ŝz, « ; "V, s2d

where ŝx, ŝy, and ŝz are Pauli’s matrices, and where the
energy levels are ±« /2.

The spin interacts with a thermal bath which is a set of
harmonic oscillators. In some cases, this may be taken in the
literal sense, when harmonic oscillators represent phonons or
photons. It is also known that rather general classes of ther-
mal baths can be effectively represented via harmonic oscil-
latorsf35,36g. Thus for the Hamiltonian of the bath we take

ĤB = o
k

"vkâk
†âk, fâl,âk

†g = dkl, s3d

whereâk
† andâk are creation and annihilation operators of the

bath oscillator with the indexk. The thermodynamic limit for
the bath will be taken later on.

The next important point is to specify the interaction be-
tween the spin and the bath. Recall that any reasonable
model of a thermal bath is expected to drive a nonstationary
state of the spin toward a stationary state. In this respect, for
two-level systems, one distinguishes two types of relaxation
processes and the corresponding times scalesf3,18,37–39g.

sid T2-time scale related to the relaxation of the average
transversal componentskŝxl and kŝyl of the spinsdecoher-
enced. Note that the very notion of the transversal compo-
nents is defined by the forms2d of the spin Hamiltonian.

sii d T1-time scale related to the relaxation ofkŝzl. It is
customary to have situations where

T2 ! T1, s4d

the main physical reason being that the transversal compo-
nents are not directly related to the energy of the spin.

Our basic assumption on the relaxation times iss4d f40g.
Moreover, to facilitate the solution of the model, we will
disregardT1 time as being very large, thereby restricting the
times of our interest to those much shorter thanT1. The in-
teraction Hamiltonian is thus chosen such that it induces only
transversal relaxation,

ĤI =
"

2
X̂ŝz, X̂ ; o

k

gksâk
† + âkd, s5d

wheregk are the coupling constants to be specified later, and

whereX̂ is the collective coordinate operator of the bath.
The last ingredient of our model is external fields which

are acting on the spin. However, before discussing them in
the next section, we shall recall how the model with Hamil-
tonian Eq.s1d is solved without external fieldsf21g.

A. Heisenberg equations and their exact solution

Heisenberg equations for operatorsŝzstd and âkstd read
from Eqs.s2d, s3d, s5d, ands1d

ṡ̂z = 0, ŝzstd = ŝzs0d, s6d
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ȧ̂k =
i

"
fH,âkg = − ivkâk −

i

2
gkŝz. s7d

Equationss6d and s7d are solved as

âkstd = e−ivktâks0d +
gkŝz

2vk
se−ivkt − 1d, s8d

and then

X̂std = ĥstd − ŝzGstd, s9d

where

Gstd ; o
k

gk
2

vk
s1 − cosvktd s10d

quantifies the reaction of the spin on the collective operator
of the bath, and where we denoted

ĥstd = o
k

gkfâk
†s0deivkt + âks0de−ivktg s11d

for the quantum noise operatorf41g. Recalling the standard
relations

ŝ± = ŝx ± iŝy, fŝz,ŝ±g = ± 2ŝ±, ŝzŝ± = ± ŝ±, s12d

and using Eq.s9d and fX̂std ,ŝ±stdg=0—since they belong to
different Hilbert spaces—one derives

ṡ̂± =
i

"
fH,ŝ±g = ± isV + X̂dŝ± = if±V ± ĥstd − Gstdgŝ±.

s13d

These equations are solved as

ŝ±std = expf± iVt − i f stdgP̂±s0,tdŝ±s0d, s14d

P̂±st0,t1d ; T expF± iE
t0

t1

dsĥssdG , s15d

Fstd ; E
0

t

dsGssd = o
k

gk
2

vk
St −

sinvkt

vk
D , s16d

where T stands for the time-ordering operator. It is seen
again from Eq.s14d that there are two effects generated by
the bath-spin interaction: besides random influences entering
with the quantum noiseĥstd, there is a deterministic influ-
ence generated by the backreaction termFstd, somewhat
similar to dampingsfrictiond in the problem of quantum
Brownian motion.

B. Factorized initial conditions

Let us assume that initially, at the momentt=0, the bath
and the spin are in the following factorized state:

rs0d = rSs0d ^ rBs0d = rSs0d ^
e−bĤB

tr e−bĤB

, s17d

where rSs0d is the initial density matrix of the spin, and
where the bath is initially at equilibrium with temperature
T=1/b.

Factorized initial conditions are adequate when the spin is
prepared independently from the equilibrium bath and then is
brought in contact to it at the initial timef42g, for example,
injection of an electronic spin into a quantum dot, or creation
of an exciton by external radiation. Yet another situation
where factorized initial conditions can be adopted is a
sstrongd selective measurement ofŝz by an external appara-
tus. In this case,rSs0d is an eigenstate ofŝz upon which the
selection was done. Nonfactorized initial states are com-
mented upon below, in Sec. II D.

The equilibrium relations

kâk
†s0dl = kâks0dl = 0, s18d

kâk
†s0dâks0d + âks0dâk

†s0dl = cothSb"vk

2
D s19d

derived from Eq.s17d imply that the quantum noise is a
stationary Gaussian operator with

kĥstdl = 0, s20d

and having the time-ordered correlation function,

KTst − t8d = kTfĥstdĥst8dglĥ

= o
k

gk
2FcothSb"vk

2
Dcosvkst − t8d

− i sgnst − t8dsinvkst − t8dG , s21d

where the averagek¯l is taken over the initial states17d. It
can be written as

KTstd = Kstd − iĠstd, s22d

where

Kst − t8d = RefKTst − t8dg =
1

2
kĥstdĥst8d + ĥst8dĥstdl

= o
k

gk
2 cothSb"vk

2
Dcosvkst − t8d s23d

is the symmetrized correlation function.
Since ĥstd is a Gaussian random operator, one can use

Wick’s theorem for decomposing higher-order productsf43g.
Due to the factorized structures17d of the initial state, the
common averages ofĥ and various spin operators can be
taken independently. For example, averaging Eq.s14d and
using Wick’s theorem together with the arithmetic relation
k!2ks2k−1d!!= s2kd!, one gets
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kŝ±stdl = e±iVt−i f stdkP̂±s0,tdlkŝ±s0dl = e±iVt−jstdkŝ±s0dl,

s24d

where fort2ù t1

kP̂±st1,t2dl = o
k=0

`
s− 1dk

s2kd! Et1

t2

¯ E
t1

t2

ds1 ¯ ds2k

3kTfĥss1d ¯ ĥss2kdgl

= expF−
1

2
E

t1

t2E
t1

t2

ds1ds2KTss1 − s2dG
= expf− jst2 − t1d + iFst2 − t1dg, s25d

and where

jstd =
1

2
E

0

t E
0

t

ds1ds2Kss1 − s2d =E
0

t

ds1E
0

s1

ds2Kss2d.

s26d

As seen from Eq.s24d, jstd characterizes the decay of
kŝ±l due to the interaction with the bath.

C. Ohmic spectrum of the bath

The coupling with the bath can be parametrized via the
spectral density functionJsvd,

Jsvd = o
k

gk
2dsv − vkd. s27d

In the thermodynamic limit, the number of bath oscilla-
tors goes to infinity, andJsvd becomes a smooth function,
whose form is determined by the underlying physics of the
system-bath interaction.

We shall be mainly working with the Ohmic spectrum,

Jsvd = gve−v/G, s28d

whereg is the dimensionless coupling constant, and whereG
is the maximal characteristic frequency of the bath’s re-
sponse. This spectrum and its relevance for describing quan-
tum open systems were widely discussed in the literature;
see, e.g.,f20g.

1. Quantum noise correlation function and decay times

The correlation function of the quantum noise in the
Ohmic case, using Eqs.s23d, s27d, ands28d, is given by

Kstd =E
0

`

dvJsvdcothF"v

2T
Gcosvt s29d

=gE
0

`

dvv cothF"v

2T
Ge−v/G cosvt. s30d

Recall that the decay factorjstd is related toKstd via Eq.

s26d: j̈std=Kstd. Properties of these functions are worked out
in Appendix A. In particular, forjstd one gets from Eqs.
sA13d and sA14d the following exact expression:

jstd = g ln3 G2S1 +
T

"G
DÎ1 + G2t2

GS1 +
T

"G
− i

Tt

"
DGS1 +

T

"G
+ i

Tt

"
D4 , s31d

whereG is Euler’s gamma function. It is seen that the tem-
perature is controlled by the dimensionless parameter
T/ s"Gd.

Let us now determine the behavior of this quantity for low
and high temperatures. Using Eq.sA7d, one obtains for
"G /T@1 slow temperaturesd

jstd = g lnF"b

pt
sinhS pt

"b
DG +

g

2
lnf1 + G2t2g. s32d

This implies two regimes of decay: power-law and exponen-
tial,

t ! "b: e−jstd = s1 + G2t2d−g/2, s33d

t * "b: e−jstd = e−t/T2, T2 =
"

gTp
. s34d

For "G /T!1 shigh temperaturesd, one uses Eq.sA12d to
get

jstd =
2gT

"G
FGt arctansGtd −

1

2
lns1 + G2t2dG . s35d

This time the possible regimes of decay can be approximated
as Gaussian and exponential,

t & 1/G: e−jstd . e−t2/T2
2
, T2 =Î "2

gTG
, s36d

t @ 1/G: e−jstd = e−t/T2, T2 =
"

2gT
. s37d

In this latter case, as seen from Eq.sA12d, Kstd behaves as an
approximated function: Kstd.2gTG / f"s1+t2G2dg with the
strength 2gT/" determined by parametersg andT. Note that
in all the above cases, the characteristic times of decay be-
come shorter upon increasing the temperatureT or coupling
constantg, as is expected. The Gaussian regime of decay
was also numerously observed in NMR experimentsssee
f44g and references thereind. This regime is the basis of the
quantum Zeno effectf19g and was recently predicted to gov-
ern the reduction process in quantum measurementsf45g.

2. The G factor

Finally, we will indicate the form of the backreaction
functionsGstd andFstd in the Ohmic casefsee Eq.s10dg. As
will be seen below, these functions are rather important for
our purposes,

Gstd = gGS1 −
1

1 + G2t2
D , s38d

Fstd = gfGt − arctansGtdg. s39d
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SinceGstd becomes equal to a constant on the character-
istic time 1/G, it is justified to call the latter the response
time of the bath.

D. Correlated initial conditions

Most papers on the system bath models assume factorized
initial conditions. However, in many situations the use of
such a condition is difficult to justifya priori, since it im-
plies a possibility of switching the system-bath interaction.
Nonfactorized initial conditions can be Gibbsians that are
modified at the initial time, as considered inf6g for the
Caldeira-Leggett model and inf5g for the spin-boson model.

For our present purposes it is sensible to use the following
correlated initial conditions for the spin and the bath:

rs0d =
1

Z
expf− bSĤS − bsĤI + ĤBdg,

Z = tr e−bSĤS−bsĤI+ĤBd, s40d

whereb is the inverse temperature of the bath andbS is that
of the spin.

The initial conditions40d with bSÞb can be generated
from the equilibrium equal-temperature state of the overall
system via cooling or heating the bath by means of some
superbath. During this processŝz is conserved, and the bath

relaxes to its new temperature under an “external field” ±1
2X̂

generated by the interaction HamiltonianĤI with ŝz= ±1.
More details of this procedure are given in Appendix B.

In the thermodynamic limit for the bath, the correlated
initial condition s40d is equivalent to the factorized condition
s17d with

rSs0d =
1

tr e−bSĤS

e−bSĤS, s41d

that is, when starting from the factorized initial condition
s17d ands41d, the dynamics of the overall system builds up a
correlated state which at timest much longer than the re-
sponse time of the bath,t@1/G sergodic limitd f46g, is
equivalent to Eq.s40d. By saying “equivalent,” we mean that
the initial conditionss17d, s41d, and s40d produce the same
values for spin’s observables and for collective observables
of the bathsi.e., the ones involving summation over all bath
oscillatorsd. This equivalence is further discussed in Appen-
dix C.

As for the initial state of the spin, it can be deduced from
Eq. s40d or from Eq.s41d,

kŝzl = − tanhFbS«

2
G, kŝxl = kŝyl = 0. s42d

In the following, we will use the factorized initial condi-
tion s17d since it is technically simpler. The time limit
t→` will be taken before any perturbation acts on the sys-
tem to ensure the equivalence with the correlated initial con-
dition s40d.

III. PULSED DYNAMICS

The external fields acting on the spin are described by a
time-dependent Hamiltonian

ĤFstd =
1

2 o
k=x,y,z

hkstdŝk, s43d

with magnitudeshkstd, which is to be added toĤ defined in
Eq. s1d such that the overall Hamiltonian is time-dependent,

Ĥstd = Ĥ + ĤFstd. s44d

Equations43d represents the most general external field
acting on the spin. We shall concentrate on thepulsedregime
of external fields which is well known in NMR and ESR
physics f18,31,32,37–39,47g. For example, it was used to
describe spin-echo phenomenaf31,32g or processes that
switch off undesired interactions, such as those causing de-
coherencef22,34,37,38g.

A pulse of durationd is defined by a sudden switching on
of the external fields at some timet.0, and then suddenly
switching them off at timet+d. It is well known that during
a sudden switching, the density matrix does not changef1g,
while the Hamiltonian gets a finite change. Let us for the
moment keep arbitrary the concrete form of external fields in
the intervalst ,t+dd. The Schrödinger evolution operator of
the spin+bath from time zero until some timet+t, t.d
reads

T expF−
i

"
E

0

t+t

dsĤssdG
= e−ist+t−t−ddĤ/"T expF−

i

"
E

t

t+d

dsĤssdGe−itĤ/" s45d

=e−itĤ/"ÛPstde−itĤ/". s46d

The left-hand sidesLHSd of Eq. s45d contains the full time-

dependent Schrödinger-representation HamiltonianĤssd,
while on the right-hand sidesRHSd of this equation we took
into account that the actual time dependence is present only

betweent and t+d. The termse−itĤ/" ande−ist+t−t−ddĤ/" stand
for the freesunpulsedd evolution in time intervalss0,td and
st+d ,t+td, respectively. In Eq.s46d, we denoted

ÛPstd ; eidĤ/"T expF−
i

"
E

t

t+d

dsĤssdG s47d

=T expF−
i

"
E

t

t+d

dseiss−tdĤ/"ĤFssdeist−sdĤ/"G
= T expF−

i

"
E

0

d

dseisĤ/"ĤFss+ tde−isĤ/"G s48d

for the pulse evolution operator. The transition from Eq.s47d
to Eq.s48d can be made by recalling thatĤstd=Ĥ+ĤFstd and
then by noting that the expressions in these equations satisfy
the same first-order differential equation ind with the same
boundary condition atd=0 f48g.
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We focus on pulses so short that the influence of the spin

Hamiltonian"Vŝz/2 and the interaction HamiltonianĤI can
be neglected during the intervald. This means that one can
take the first term in the Taylor expansions0,s,dd,

eisĤ/"ĤFss+ tde−isĤ/" = ĤFss+ td +
is

"
fĤ,ĤFss+ tdg + ¯

= ĤFss+ td +
is

"
F"V

2
ŝz + ĤI,ĤFss+ tdG

+ ¯ < ĤFss+ td. s49d

Thus, for the pulse evolution operator one gets

ÛPstd = T expF−
i

"
E

0

d

dsĤFss+ tdG . s50d

The generalization of the evolution operators46d to an arbi-
trary number of short pulses is straightforward.

Note that in obtaining Eq.s50d, we do not require that the

bath HamiltonianĤB during the pulse is neglected. Since the
external fields are acting on the spin only, the influence of the

bath Hamiltonian disappears by itself fromeisĤ/"ĤFss
+ tde−isĤ/", and is perfectly kept in the general evolution op-

erators45d ands46d, once the interaction HamiltonianĤI has
been neglected.

Recalling the orders of magnitude"V and "gG of the
spin energy and the interaction energy, respectively—in par-
ticular, recall Eq.s9d, "G="e0

`dvJsvd /v, and Eq.s28d—one
gets the following qualitative criterion for the validity of the
short pulsing regime:

d ! minsV−1,fgGg−1d. s51d

As it should be, for very smallg and a fixedG, the second
restriction ond is weaker than the first one. More quantita-
tive conditions for the validity of the pulsed regime were
studied recently in the context of decoherence suppression
by external pulsesf34g.

To deal with the pulsed dynamics in the Heisenberg rep-
resentation, one introduces the following superoperators:

Et Â ; eiĤt/"Âe−iĤt/", s52d

Pt Â ; ÛP
†stdÂÛPstd. s53d

Then the Heisenberg evolution of an operatorÂ correspond-
ing to Eqs.s46d and s50d reads

Âst + td = EtPtEt Â = eiĤt/"ÛP
†stdeiĤt/"Ae−iĤt/"ÛPstde−iĤt/".

s54d

A. Definition of work

The action of external fields on the system is connected
with flow of work. The work done in the time intervals0,td
is standardly defined as the increase of the average overall
energy of the spin and bath defined by the time-dependent

HamiltonianĤstd f1–3g,

Ws0,td = trfrstdĤstdg − trfrs0dĤs0dg. s55d

Due to the conservation of energy of the entire system
sspin+bath+work sourced, work is equal to the energy given
by the corresponding work sourcessource of external fieldsd.

Since the external fields are acting only on the spin, there
is a differential formula for the work which uses only quan-
tities referring to the local state of the spin and which thus
illustrates that the work sources exchange energy only
through the spin,

dW

dt
= trSrSstd

]ĤFstd
]t

D , s56d

whereĤFstd as defined by Eq.s43d is the contribution of the
external fields into the spin’s Hamiltonian, and whererSstd is
the density matrix of the spin. Equationss55d ands56d relate
with each other by the von Neumann equations of motion

ṙ =
i

"
fĤstd,rstdg =

i

"
fĤ + ĤFstd,rstdg s57d

for the common density matrixrstd of the spin and the bath,

whereĤ is the Hamiltonian without external fieldsf49g.
More specifically, we are interested in the work due to a

pulse. For the above example of a single pulse at timet, this
quantity reads from Eqs.s46d, s54d, ands55d

Ws0,t + dd = Wst,t + dd

= trhfrst + dd − rstdgĤj

= trhrstdfPt Ĥ − Ĥgj. s58d

This expression is directly generalized to several succes-
sive pulses: assume that the pulsePt at time t was followed
by another pulsePt+t at timet+t with t.0. The work done
during the first pulse is given by Eq.s58d, while the work
done during the second pulse reads

Wst + t,t + t + dd = trfsrst + t + dd − rst + tddĤg

= trhrst + tdfPt+t Ĥ − Ĥgj

= trhrs0dEtPtEtfPt+t Ĥ − Ĥgj. s59d

Summing this up withWs0,t+dd, one gets for the com-
plete work for the two-pulse situation

Ws0,t + t + dd = trhrs0dfEtPtEt Pt+t Ĥ − Ĥgj, s60d

as should be.

B. Parametrization of pulses

As seen from Eqs.s43d ands53d, and taking into account
the condition s51d which, to all effects, can be taken as
d→0, any pulse corresponds to the most general unitary op-
eration in the Hilbert space of the spinsthis would corre-
spond to a rotation in the classical languaged. It is convenient
to parametrize pulses by coefficientsca,b as

Pŝa ; ÛP
†stdŝaÛPstd = o

b=±,z
ca,bŝb, a = ± ,z. s61d
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For more detailed applications, we will need the explicit

form of ÛP
†std fsee Eq.s50dg as a 232 unitary matrix whose

determinant can be taken to be unity without loss of gener-
ality,

ÛP
†std = Se−if cosq − e−ic sinq

eic sinq eif cosq
D , s62d

where

0 ø f, c ø 2p, 0 ø q ø
p

2
. s63d

Parametrizations similar to Eq.s62d are frequently applied
in NMR and ESR experimentsf18,31,32,37–39,47g where
the spin is rotated certain degrees over a well-defined axis by
tuning the parameters of the lasersmicrowaved pulse applied.

IV. REALIZATIONS OF THE MODEL

Once the model with all its ingredients has been defined,
we discuss some of its realizations and provide some num-
bers. A two-level system coupled to a thermal bath is a stan-
dard model for practically all fields where quantum systems
are studied: NMR, ESR, quantum optics, supertonics, Joseph
junctions, etc. Two particular conditions are, however, nec-
essary to apply the model we study: the conditionT1@T2 on
the characteristic relaxation times and the availability of suf-
ficiently strong pulses. On the other hand, we can allow for
rather short timesT2

* , since as we will see this time scale can
be overcome with the spin-echo technique.

There are experimentally realized examples of two-level
systems which have sufficiently longT2 times, satisfy inT1
@T2, e.g.,T1 exceedsT2 by several orders of magnitude, and
admit strong pulses of external fields. For atoms in optical
traps, whereT2,1 s, 1/G,10−8 s, there are efficient meth-
ods for creating nonequilibrium initial states and for manipu-
lating atoms by external laser pulsesf50g. For an electronic
spin injected or optically excited in a semiconductor,T2
,1 ms f51g, and for an exciton created in a quantum dot
T2,10−9 s f52g; in both situations 1/G,10−9−10−13 s, and
femtoseconds10−15 sd laser pulses are available. In the case
of NMR physics,T2,10−6−103 s, 1/G,1 ms, and the du-
ration of pulses can vary between 1 ps and 1ms f37,38,53g.

In all the above examples, the response time 1/G of the
bath is much shorter than the internal time 1/V of the spin.
Sometimes it is argued that such a separation is related to the
large size of the bath and is something generic by itself. This
is clearly incorrect, since as seen from the derivation in Sec.
II, the dimensionless parameterV /G has to do with the form
of the bath-spin interaction, rather than with the size of the
bath. Moreover, several examples of bath-spin interaction are
known and were analyzed both experimentally and theoreti-
cally, whereV /G,1. For example, Ref.f54g focuses on
relaxation of nuclear spins with hyperfine frequenciesV
.700 MHz, 1/T2,90 MHz, and the ratioV /G may vary
between 10 and 0.1.

Another important parameter that characterizes our setup
is the initial polarizationukŝzlu of the spin. It is known in
NMR and ESR physics that the response of magnetic atoms

snucleusd to external dc magnetic field is best characterized
by the frequency/ field ratiof18g, which is, for example,
equal to 42 MHz/T for a proton. For an electron, this ratio is
103 times larger due to the difference between atomic and
nuclear Bohr magnetons, and for15N it is 10 times smaller.
Thus at temperatureT=1 K and magnetic fieldB=1 T, the
equilibrium polarization of a proton is onlyukŝzlu
=tanhs"mB/2kBTd=10−3, while for an electron it is,1.

Exact solution versus various approximations

The model as stated above—that is, with the Hamiltonian
s1d ands44d—is exactly solvable for all temperatures and all
bath-spin coupling constants. It is useful at this point to re-
mind the reader what are the specific reasons to insist on this
feature. The model with Hamiltonians1d is a particular case
of a more general spin-boson model, where the influence of
T1 time is retained either via an additional term~ŝx in the
Hamiltonian of the spin, or via an additional coupling in the
interaction Hamiltonian. This model is in general not solv-
able, and what is worse there are no reliable approximate
methods which apply for a fixedsmaybe weakd coupling to
the bath and for all temperatures including the very low ones.
The standard weak-coupling theories—both Markovian,
leading to well-known Bloch equations, and non-Markovian
ones—are satisfactory only for sufficiently high tempera-
tures, while at low temperatures weak-coupling series are
singular, and different methods of their resummation produce
different results. In this context, compare, e.g., convolution-
less master equations extensively discussed inf19g with a
convolutional one worked out inf55g.

This situation becomes even more problematic under
driving by external fields. The objects studied by us—such as
work and energy of the spin—can be rather fragile to various
not very well-controlled approximations, since there are gen-
eral limitations governing their behavior: Thomson’s formu-
lation of the second law and restrictions on work extraction
from a two-temperature systemsdiscussed belowd. These
limitations are derived from the first principles of quantum
mechanicsf23–28g and have to be respected in any particular
model.

V. GENERAL RESTRICTIONS ON WORK EXTRACTION

The setup of two systems having initially different tem-
peratures and interacting with a source of work allows us to
draw a number of general relations on work extraction. We
start from the following general assumptions.

sid Out of equilibrium initial conditions. The initial con-
ditions at the momentt=0 are given by Eq.s40d, where the
bath and the spin have initially different temperaturesT and
TS, respectively. Recall from the discussion in Sec. II D that
after a small lapse, this initial condition is equivalent to the
factorized ones17d ands41d. We use the former one since it
is more convenient when dealing with the general restric-
tions on the work extraction.

sii d Cyclic external fields. For the following derivation,

the HamiltonianĤFstd of external fields acting on the spin is
completely arbitrary. In particular, it need not be composed
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by pulses, where it would vanish outside of the pulses. The

only general assumption made onĤFstd is that its action is
cyclic at some final timetf,

ĤFs0d = ĤFstfd = 0. s64d

We can find the following two relationssderived explicitly in
Appendix Dd:

Wù S1 −
T

TS
DDHS, s65d

Wù S1 −
TS

T
DsDHI + DHBd, s66d

where

DHk = trhĤkfrstfd − rs0dgj, k = S,I,B s67d

are the changes of the corresponding average energies of the
spin, bath, and interaction, withrstfd being the complete den-
sity matrix of the spin and bath at timetf, and where the total
work reads

W= DHS + DHI + DHB. s68d

Here are the implications of Eqs.s65d and s66d.
sid If TS.T and work is extracted,W,0, Eq.s65d implies

DHS , 0, DHI + DHB . 0. s69d

The system loses energy, while the bath gains it and the
amount of the extracted workuWu is then bounded from
above byuDHSu.

sii d If T=TS, both Eqs.s65d and s66d produce Wù0,
which is, in fact, the statement of the second law in Thom-
son’s formulation: no work can be extracted from an equilib-
rium system by means of cyclic perturbations.

siii d If TS,T, inequalities in Eq.s69d are reversed: now
work extraction implies that

DHS . 0, DHI + DHB , 0, s70d

and uWu is then bounded from above byuDHI +DHBu.
These conclusions are close to what one could have ex-

pected from the standardsphenomenologicald thermody-
namical reasoningf1g. However, it should be emphasized
that in contrast to typical textbook derivations, Eqs.s65d and
s66d were derived starting from first principlesssee Appendix
Dd, and, moreover, their derivation is by no means restricted
to a weak bath-spin coupling, a condition which need not be
satisfied in practice.

Efficiency and heat

Another useful notion is the efficiencyh of the work ex-
traction, which shows how economically nonequilibrium,
two-temperature resource is employed in work extraction
f1–3g. The special importance of efficiency is related to the
fact that in standard thermodynamics, it is bounded from
above by Carnot’s value, which is a system-independent
quantity.

Though our system starts out of equilibrium due to differ-

ent initial temperatures of the spin and the bath, the notion of
efficiency should be studied for it anew, since it does not
automatically fall into the class of heat-engine models, as
studied in textbooks of thermodynamics and statistical phys-
ics f1–3g.

sid There is no working body which operates cyclically
between two thermal baths. With us, cyclic processes are
defined with respect to the work source.

sii d The interaction between the systems having different
temperatures—in the case discussed here, the spin and the
bath—need not be weak.

siii d We do not require that our systems always stay very
close to equilibrium. In contrast, both during and immedi-
ately after the work-extraction process, the spin is in a non-
equilibrium state, which in general cannot be described in
terms of a time-dependent temperature.

However, in spite of all these differences, we can define
the notion of efficiency, and this will be an equally useful
characterization of the work-extraction processf1–3g.

Recall that external fields are acting exclusively on the
spin variables and not on those of the bath. This implies that
when during work extraction the source of work receives
energy uWu, this energy consists of a contribution coming
directly from the spin and of a part which comes to the work
source from the bath but through the spin. In this context,
one can write the change of energy of the spin as

d

dt
tr„rSstdĤSst…d = trFS d

dt
rSstdDĤSstdG + trFrSstdS ]

]t
ĤSstdDG

=
d

dt
Q +

d

dt
W, s71d

where in our case the Hamiltonian of the spin reads from
Eqs.s2d and s43d fnote the analogy with Eq.s44dg

ĤSstd =
«

2
ŝz +

1

2 o
k=x,y,z

hkstdŝk. s72d

The partial time derivative in Eq.s71d stresses that we are in
a Schrödinger representation. When deriving Eq.s71d, we

have used]tĤSstd=]tĤFstd and Eq.s56d. The last equality in
Eq. s71d serves as a definition of heatsdQd f56g.

Integrating this from 0 totf and using Eqs.s64d ands68d,
we obtain

DQ = − sDHI + DHBd. s73d

Note that in the above definition of heat, the average in-
teraction energy is attributed to the heat received from the
bath, although by itself it depends also on the variables of the
spin; see Eq.s5d. The reason for this asymmetry is clearly
contained in the very initial statement of the problem, where
we—quite in accordance with the usual practice of statistical
physics—restricted the work source to act only on the spin.

All this being said, one can now proceed forW,0 swork
extractiond with the usual definition of efficiency as the ratio
of the useful energyuWu to the maximal energy involved in
the work extraction,
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h ;
uWu

maxsuDHSu,uDHI + DHBud
. s74d

For TS.T, Eqs. s68d and s69d and W,0 imply uWu
= uDHSu− uDHI +DHBu, and then Eq.s74d results in

h =
uWu

uDHSu
. s75d

Analogously, forTS,T we have

h =
uWu

uDHI + DHBu
=

uWu
uWu + uDHSu

s76d

from uWu= uDHI +DHBu− uDHSu.
It is now seen from Eqs.s65d, s66d, s69d, ands70d that the

efficiency is always bounded by the Carnot value,

h ø 1 −
minsT,TSd
maxsT,TSd

. s77d

VI. WORK EXTRACTION VIA TWO PULSES

A. Setup of pulsing

Let us now show in detail the setup of work extraction.
The spin and the bath are prepared in the states40d with
different temperaturesTS and T for the spin and the bath,
respectively. Thus, the initial average population difference
kŝzl is given by Eq.s42d.

Alternatively, we can prepare the spin+bath in the state
s17d and s41d. In this case, one waits for a timet@1/G for
ensuring the robustness of the results. Then the setup does
not depend on details of the initial preparation, because the
initial conditions s17d, s41d, and s40d have become equiva-
lent.

The final ingredient of the setup are pulses

Pt = P1, Pt+t = P2, s78d

applied at timest and t+t, respectively.

B. Formulas for work

The work done for the first pulse readsfas defined in Eqs.
s58dg

W1 =
«

2
kP1ŝz − ŝzlt +

"

2
ksP1ŝz − ŝzdX̂lt, s79d

where for any operatorÂ the average

kÂlt = trfÂrstdg s80d

refers to the timet just before the application of the pulse.
The value ofW1 is worked out by recalling the parametriza-

tion s62d, the evolution of the collective bath coordinateX̂ as
given by Eq.s9d, and finally the initial conditions17d and
s41d. The final result reads

W1 = s1 − cz,z
s1ddF"

2
G −

«

2
kŝzlG , s81d

whereG=gG is the limit of Gstd for Ggg1, and wherecz,z
s1d is

the corresponding parametrization coefficient of the first
pulse as defined by Eq.s61d.

As follows from TS.0 and kŝzl,0 fsee Eq.s42dg, the
work W1 is always positive. This is in agreement with the
thermodynamic wisdom of local equilibrium: the second
term on the RHS of Eq.s81d is the contribution from the spin
energy and it is positive, since the spin was in equilibrium
before the application of the first pulse. Another positive
term 1

2s1−cz,z
s1dd"G on the RHS of Eq.s81d comes from the

interaction Hamiltoniansthe bath operators, and thus the bath
Hamiltonian, are not influenced by this first pulsed. Again, it
is intuitively expected that the interaction Hamiltonian
should make the average energy costs higher.

The work done for the second pulse reads analogously to
Eq. s79d,

W2 =
«

2
kP2ŝz − ŝzlt+t +

"

2
ksP2ŝz − ŝzdX̂lt+t, s82d

where the averagesk¯lt+t refer to the time just before the
application of the second pulse.

Equations82d is worked out in Appendix G with the result
for the total workW=W1+W2 being

W= −
«

2
s1 − cz,z

s2dcz,z
s1ddkŝzl + «e−jstd Rehc+,z

s1dcz,+
s2deiVtkeix2ŝzŝzlj

s83d

+
"G

2
s1 − cz,z

s1dd +
"

2
s1 − cz,z

s2ddfGstd + g2stdcz,z
s1dg s84d

+ e−jstd Rehc+,z
s1dcz,+

s2deiVtfi"j̇stdkeix2ŝzŝzl + "g2stdkeix2ŝzlgj.

s85d

The detailed explanation of various terms in this expres-
sion and of their physical meaning comes as follows.

The first term on the RHS of Eq.s83d is the contribution
from the initial spin energy. The second term comes from the
transversal degrees of freedom excited by the first pulse. The
factor e−jstd accounts for the reduction of these terms in the
time intervalt between pulses. Recall that the parametriza-
tion coefficientsc+,z

s1,2d and cz,z
s1,2d for the first and the second

pulse are defined in Eq.s61d.
The terms in Eqs.s84d ands85d are the joint contribution

from the bath Hamiltonians3d and from the interaction
Hamiltonians5d. The last of them couples to the transversal
degrees of the spin, as reflected by the presence ofe−jstd.
Recall that the averagesk¯l in Eqs. s83d and s85d refer to
the initial state Eqs.s17d and s41d. Finally, the factors

g2std ; G − Gstd =
gG

1 + t2G2 , s86d
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x2std = − g arctanstGd s87d

sthe lower index 2 refers to the two-pulse situationd come
from the backreaction of the spin to the bath.

Next we note that the behavior ofW=W1+W2 is con-
trolled by five dimensionless parametersssee Appendix Gd,
which for the Ohmic case reads

W= W1 + W2 =
"gG

2
wS T

"G
,g,

«

"G
,kŝzl,tGD . s88d

Note that the spin temperatureTS enters only through the
initial sat t=0d kŝzl as given by Eq.s42d.

There are two situations within the present setup, where
work extraction is not prohibited:T.TS andT,TS. We deal
with them separately, since for these cases the work-
extraction effect exists in different ranges of the parameters.

C. Work extraction for T.TS

It was seen above that the first pulse always costs work,
since it is applied on the spin whose state issinitially d in
local equilibrium at temperatureTS. However, the first pulse
can do more than simply wasting work. Consider, for ex-
ample, ap2/ pulse in they direction f57g,

P1 = PSp

2
;yD , s89d

where

Psw;ydŝz ; eiwŝy/2ŝze
−iwŝy/2 = ŝz cosw − ŝx sinw,

s90d

Psw;ydŝx ; eiwŝy/2ŝxe
−iwŝy/2 = ŝz sinw + ŝx cosw,

s91d

Psw;ydŝy ; ŝy. s92d

This pulse excites the transversal componentkŝxl which
starts to decay under action of the bath, and thus correlations
between the spin and the bath are established. The proper
second pulse is then applied at timet, for instance +p /2 in
the x direction,

P2 = PSp

2
;xD , s93d

where

Psw;xdŝz ; eiwŝx/2ŝze
−iwŝx/2 = ŝz cosw + ŝy sinw,

s94d

Psw;xdŝy ; eiwŝx/2ŝye
−iwŝx/2 = − ŝz sinw + ŝy cosw,

s95d

Psw;xdŝx ; ŝx. s96d

Note that our choice of pulses corresponds to

c+,z
s1d = 1, cz,+

s2d =
1

2i
, cz,z

s1d = 0, cz,z
s2d = 0. s97d

It appears that not only is some work extracted by the second
pulse, but the overall work by the two pulses can be negative
for properly chosen timet,

W= W1 + W2 , 0, s98d

as seen in Figs. 1 and 2. This is one of the central results of
this paper.

The timet needed for work extraction should be neither
too shortsotherwise the two pulses will effectively sum into
one, and we know that no work extraction is achieved by a
single pulsed nor too longsotherwise the transversal degree
of freedom excited by the first pulse will decay, and we will
have two isolated single pulsesd. This is seen in Figs. 1 and
2. Note that the choice of pulses is obviously important for

FIG. 1. Dimensionless total workw fsee Eq.s88d in the text,
W="gGw/2g vs dimensionless timetG sthe waiting time between
the two pulsesd in the regimeT.TS. We compare the extracted
work for different values of the initial polarizationsor, equivalently,
of the initial temperatured of the spin. T/"G=10; g=1; « /"G
=0.01; kŝzl=−0.8,−0.5,−0.4,−0.3sfrom bottom to topd. The two
pulses are given by Eqs.s89d, s93d, ands97d. Work extraction dis-
appears for largerkŝzl, that is, for closersinitiald temperatures of
the spin and the bath.

FIG. 2. The ratioW/"G=wg /2 fsee Eq.s88d in the textg vs the
dimensionless timetG for two pulses in the regimeT.TS. We
compare the extracted work for different values of the dimension-
less bath-spin coupling constantg. T/"G=10; « /"G=0.01; kŝzl
=−0.8; andg=4 supper solid curved, g=2 slower solid curved, g
=0.5 sbold curved, and g=0.1 sdotted curved. The two pulses are
given by Eqs.s89d, s93d, and s97d. It is seen that the maximal
extracted work is a nonmonotonous function of the dimensionless
coupling constantg.
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having work extraction. Equationss89d and s93d represent
only one particular example leading to work extraction in the
regimeT.TS.

As for the magnitude of the extracted work, one notes
from Eq.s88d and Fig. 1 that it is of order of"G /2, which is
basically the response energy of the bath. This is not occa-
sional, since as seen from Eq.s70d, the work in this regime
T.TS is coming from the bath.

Noting the ratio« / s"Gd=0.01 in Fig. 1—this and even
smaller ratios are usual for the realizations of the model as
we discussed in Sec. IV—we conclude that the extracted
work can be several orders of magnitude larger than the en-
ergy of the spin. On the other hand, the extracted work is
limited by ,T, which is the characteristic thermal energy
available in the bath. Indeed, as seen in Fig. 1, the extracted
work can be of order"G /2, while the bath temperature is
nearly 20 times larger:T=10"G. Not unexpectedly, work
extraction disappears when the temperaturesT and TS are
close to each other; see Fig. 1.

Let us return once again to the optimal time intervalt. As
Figs. 1 and 2 show, the value oft at which the extracted
work is maximal is roughly of the same order of magnitude
as 1/G. However, the optimalt can be much largerse.g.,
,103/Gd for smaller coupling constantsg, that is, one can
increase the waiting time between the pulses at the expense
of reducing the magnitude~"gG of the extracted work.

D. Work extraction for T,TS

Let us now turn to scenarios of work extraction in the
regimeTS.T. As seen from Eq.s69d, if there is work ex-
traction at all in this regime, the work should come from the
average energy difference of the spin, whileDHI +DHB is
then necessarily positive. Since the latter quantity is of order
of gG sresponse energy of the bathd, and the spin’s energy
difference is obviously of order«, there are two ways to try
to achieve work extraction, that is, to getW= uDHI +DHBu
− uDHSu,0: One should either take« / s"Gd,1 or take the
dimensionless coupling constantg very small. The second
way did not lead to work extraction, since the required cou-
pling constants are so small that the spin effectively de-
couples from the bath. In contrast, the first case with
« / s"Gd,1 led to a sizable work extraction, as seen in Fig. 3.
Recall in this context that systems with« / s"Gd=V /G,1 are
well known; see Sec. IV for details.

As compared to the previous regime, here the choice of
pulses has to be different for the work extraction to be pos-
sible. For example,

P1 = PS−
p

2
;xD, P2 = PS−

p

2
;yD , s99d

for the first and the second pulses, respectively; see Eqs.s92d
and s96d for the definitions of pulses. We see from Eq.s62d
that this choice amounts to substituting

c+,z
s1d = i, cz,+

s2d =
1

2
, cz,z

s1d = 0, cz,z
s2d = 0, s100d

into Eqs.s82d, s84d, ands85d.

E. Efficiency of work extraction

We shall now discuss the efficiency of work extraction as
defined by Eqs.s74d, s75d, and s76d. To calculate it, one
needs to know the total work given by Eqs.s81d, s83d, and
s85d, and the contributionDHS to the workW coming from
the average energy of the spin t, which is given by the RHS
of Eq. s83d.

The efficiency as a function oftG is presented by Figs. 4
and 5 forT.TS andT,TS, respectively. There are several
important things to note.

sid For T.TS, the efficiency can be very close to unity, if
the temperaturesT and TS are sufficiently separated from
each other, which is the case in Fig. 4. It is, however, always
limited by Carnot’s value, as given by Eq.s77d. For T,TS,
the efficiency is sizable, but is rather below the correspond-
ing Carnot value.

sii d The work and efficiency are maximized overtG si-
multaneously.

siii d Recall in this context that in standard thermodynam-
ics, efficiencies close to the optimal value are connected to
very small work per unit of timeszero power of workd, since
they are achievable for very slow processes. This is not the
case with the presented setup. As seen from Figs. 1, 2, and 3,
the work is extracted on times which are of order of 1/G

FIG. 3. Dimensionless workw fsee Eq.s88dg vs dimensionless
time tG for two pulses in the regimeT,TS in the case ofg=0.1,
kŝzl=−0.01. The choice of pulses is given by Eqs.s99d and s100d.
Full line: T/"G=0.1, « /"G=3; dashed line:T/"G=0.1, « /"G=2;
bold line: T/"G=1, « /"G=3.

FIG. 4. Efficiencyh vs dimensionless timetG for two pulses in
the regimeT.TS. T/"G=10, g=1, « /"G=0.01, kŝzl=−0.8. The
two pulses are given by Eqs.s89d, s93d, ands97d. The efficiency is
slightly below the corresponding Carnot’s value and is maximized
over tG almost simultaneously with the dimensionless workw; see
Fig. 1.

WORK EXTRACTION IN THE SPIN-BOSON MODEL PHYSICAL REVIEW E71, 046106s2005d

046106-11



sresponse time of the bathd, which is typically much smaller
than the internal characteristic time 1/V of the spin. Thus, in
Fig. 4 we have nearly optimal efficiencies together with the
maximal work and a finite power of work.

VII. WORK EXTRACTION VIA SPIN-ECHO PULSES

So far we assumed that we deal either with a single spin
coupled to the bath, or, equivalently, with an ensemble of
identical noninteracting spins each coupled with its own bath
f58g. However, many experiments—especially in NMR
physics—are done on ensembles of noninteracting spins
which are not in identical environments. The difference lies
in the different energies«. This can be caused by inhomoge-
neous fields contributing into energy«, or by action of envi-
ronment, e.g., chemical shifts for nuclear spinsf37–39g or
effectiveg factors for electronic spins in a quantum dot. It is
customary to regard these energies as random quantities, so
that the collective outcomes from such ensembles are ob-
tained by averaging over«="V the corresponding expres-
sions for a single spin. We shall assume that the distribution
of V is Gaussian with averageV0 and dispersiond f59g,

PsVd =
1

Î2pd
e−sV − V0d2/s2dd. s101d

It is now clear that by averaging overPsVd, the oscillat-

ing termseiVt will produce,e−dt2/2, that is, a strong decay
on characteristic times

T2
* ~ 1/Îd. s102d

For t /T2
* @1, all the terms containingeiVt will be zero

after averaging, and the corresponding averaged work for
two pulses will always be positive, as seen from Eqs.s81d,
s83d, s84d, and s85d. Indeed, all possible negative values of
the full work W were related to transversal degrees of free-
dom excited by the first pulse. These terms come with the
factor eiVt, which is connected to the free evolution in the
time intervalt between the two pulses. Due to the decay of
these terms aftert /T2

* @1, it is impossible to extract work
from this ensemble via two pulses.

However, we can extract work even in the strongly disor-
dered situation withT2

* being short, if we combine our work-
extraction setup with the spin-echo phenomenonf31,32g. For
our present purposes, this amounts to applying ap pulse, for
instance in thex direction,

Ppŝz = − ŝz, Ppŝy = − ŝy, Ppŝx = ŝx, s103d

right in the middle of two pulsesP1 andP2 sto be tuned later
ond applied at timest andt+2t, respectively. The work done
by the first pulse reads from Eq.s81d after averaging over
PsVd given by Eq.s101d,

W1 = s1 − cz,z
s1ddF"

2
G − EG , s104d

where

E = −
"

2
E dVPsVdV tanh

bS"V

2
, 0 s105d

is the average initial energy of the ensemble of spins. The
work done by thep pulse at timet+t is found from Eq.s82d
by substituting there the parameterscz,z

s2d=−1 andcz,+
s2d =0 of

this pulse,

Wp = "Gstd + "g2stdcz,z
s1d − 2Ecz,z

s1d, s106d

whereg2std is defined in Eqs.s86d. It is seen thatWp.0,
because thep pulse does not couple properly with the trans-
versal degrees of freedom excited by the first pulse. Thus,
both pulsesP1 andPp waste work.

Ultimately, the total workW=W1+Wp+W2 done by the
three pulses together is derived in Appendix H to be

W=
"G

2
s1 + cz,z

s2dcz,z
s1dd + "Gstds2 − cz,z

s2d − cz,z
s1dd −

"Gs2td
2

s1 + cz,z
s2dcz,z

s1d − cz,z
s1d − cz,z

s2dd s107d

+ e−4jstd+js2td Re„c−,z
s1dcz,+

s2dhf2"j̇std − "j̇s2tdg

3fsinx3 + im cosx3g − "g3fcosx3 − im sinx3gj…
s108d

− Es1 + cz,z
s2dcz,z

s1dd + e−4jstd+js2td Rehc−,z
s1dcz,+

s2ds2E cosx3

− i"V0 sinx3dj, s109d

where

g3std = G − Gs2td =
gG

1 + 4t2G2 , s110d

x3std = 2Fstd − Fs2td = gfarctans2tGd − 2 arctanstGdg,

s111d

are the backreaction factors for the considered setup of
pulses, and where

m= −E dVPsVdtanh
bS"V

2
, 0 s112d

is the average magnetization of the ensemble.

FIG. 5. Efficiencyh supper curved and dimensionless workw
slower curved vs dimensionless timetG for two pulses in the regime
T,TS. T/"G=0.1, g=0.1, « /"G=3, kŝzl=−0.01. The two pulses
are given by Eqs.s99d and s100d. The efficiency is below the cor-
responding Carnot’s value 0.99 and is maximized overtG almost
simultaneously with the dimensionless workw.
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As compared to Eqs.s83d–s85d, which present the work
for two pulses, Eqs.s107d–s109d are different in several as-
pects.

sid There are no oscillating factorseiVt which after aver-
aging over the distributionPsVd would produce damping on
timesT2

* . This is due to thep pulses103d in the middle of
two pulsessspin-echo setupd. A simple explanation on why
the terms~eiVt are absent is as follows. Assume that the
interaction with the bath is absent and the spin moves under

dynamics generated by the free HamiltonianĤS=s"V /2dŝz.
Denote byEt

s0d the corresponding Heisenberg evolution op-

erator:Et
s0dÂ=expfsit /"dĤSgÂ expf−sit /"dĤSg. It is now seen

with help of Eq.s103d that the factoreiVt drops outsas if the
time had been reversedd,

Et
s0dP2Et

s0dŝ+ = eiVtEt
s0dP2ŝ+ = eiVtEt

s0dŝ− = eiVte−iVtŝ− = ŝ−.

s113d

sii d The decaysdecoherenced factor e−4jstd+js2td in Eqs.
s108d ands109d is different frome−js2td. The last decay factor
is the one generated by the freesunpulsedd evolution during
the time 2t. Only in the exponential regimejstd. t /T2 will
we havee−4jstd+js2td.e−js2td. sRecall that the exponential re-
gime is present for the Ohmic spectrum at long times, see
Sec. II C.d For Gaussian decayjstd. t2/T2

2, e−js2td predicts
sizable decay in contrast toe−4jstd+js2td.1. This partial inhi-
bition of decay due top pulsessd is known in NMR physics
f37g and has been recently reinterpreted as a quantum error-
correction schemef22,34g.

siii d Now there are two independent parameters which
characterize the initial state of the ensemble of spins:E and
m. The workW in Eqs.s107d–s109d can be expressed in the
dimensionless form similar to Eq.s88d,

W=
"gG

2
wS T

"G
,g,

V0

G
,
TS

"G
,

d

G2,tGD . s114d

It is now more convenient to account for the temperature of
the spin viaTS/"G, and there is a new dimensionless param-
eterd/G2 which quantifies the ratio of the response time 1/G
to T2

* =1/Îd. The average magnetizationm is expressed via
TS/"G andd/G2.

Figure 6 describes a scenario of work extraction in the
regimeTS.T and for pulses

P1 = PSp

2
;xD, P2 = PS−

p

2
;yD . s115d

This choice of pulses amounts to substituting

c−,z
s1d = i, cz,+

s2d =
1

2
, cz,z

s2d = 0, cz,z
s1d = 0 s116d

in Eqs.s107d–s109d.
Recall that in the regimeTS.T, there is a positive con-

tribution to the total work coming from the bath, and sizable
average frequenciesV0/Gù5 are needed to overcome this
contribution, as seen from Fig. 6. This restriction on thesav-
eraged frequency is similar to the one present in the two-
pulse work-extraction scenario for the nondisordered en-
semble of spins in the regimeTS.T.

It is seen from Fig. 6 that the initial high-temperature
ensemble of spins is strongly disordered:d/G2=102@1. This
ratio cannot be much larger, since there will be too much
random energy in the ensemble, that is, the positive term −E
in Eq. s109d will be too large and cannot be compensated by
potential negative terms. Simultaneously, the average mag-
netizationumu will be too small. For the same reasons, there
are no interesting scenarios of work extraction for a strongly
disordered ensemble in the regimeTS,T: the average mag-
netizationumu is too small.

VIII. CONCLUSION

This paper describes several related scenarios of work ex-
traction based on the spin-boson model: spin-1

2 interacting
with external sources of work and coupled to a thermal bath
of bosons. The work sources act only on the spin, since the
bath is viewed as something out of any direct access. The
model has two basic characteristic features. First, the trans-
versal relaxation timeT2 is assumed to be much shorter than
the longitudinal relaxation timeT1. This condition allows the
notion of local equilibrium, because once transversal compo-
nents decay at timeT2, the spin can be described via a tem-
perature different from that of the bath. Second, the external
fields are acting in the regime of short and strong pulses.
This feature makes the analytical treatment feasible. Both
these idealizations are well known in NMR/ESR physics and
related fields, and were applied and discussed extensively in
the literaturef22,34,37–39,60g. It may be of interest to see in
the future how precisely finiteT1 times and finite pulsing
times influence the work-extraction effect.

The work is extracted from an initial local-equilibrium
state of the spin at temperatureTS which is not equal to the
temperatureT of the equilibrium bath. As we recalled several
times, Thomson’s formulation of the second law prohibits
work extraction via cyclic processes from an equilibrium
state of the entire system:T=TS f23–28g. In this spirit, one
would expect that work extraction is also absent when exter-
nal fields are acting only on the spin in a local equilibrium

FIG. 6. Dimensionless work for three spin-echo pulses.T/"G
=10,5,1,0.5 sfrom top to bottomd; TS/"G=103; d/G2=102; g
=0.1; V0/G=8. Work extraction is poor or disappears for smaller
d/G2 or V0/G, because there is too much random thermal energy in
the ensemble.
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statef37,39g. We have shown, however, that this is not the
case. It is possible to extract work in this latter setup due to
the common action of the following factors:sid backreaction
of the spin to the thermal bath;sii d generation of coherences
si.e., transversal components of the spind during the work
extraction process.

With help of the spin-echo phenomenon, it is possible to
extract work from a disordered ensemble of spins having
random frequencies. This ensemble can even be strongly dis-
ordered in the sense that the relaxation timeT2

* induced by
the disorder is much smaller than both theT2 time and the
response time of the bath.

As to provide further perspectives on the obtained results,
let us discuss them in two related contexts, those of lasing
without inversion and quantum heat engines.

A. Comparing with lasing without inversion

As we discussed in the Introduction, besides the standard
lasing effect, where work is extracted from a spin having
population inversionsi.e., having a negative temperatured,
there are schemes of lasing which operate with a weaker
form of nonequilibrium, since they employ three- or higher-
level atoms which are initially in a state with nonzero coher-
encessi.e., nonzero off-diagonal elements of the density ma-
trix in the energy representationd. There are numerous works
both theoretical and experimental, partially reviewed in
f29,30g, showing that in such systems one can have various
scenarios of lasing without inversions in populations of
atomic energy levels. In quantum optics, lasers without in-
version are expected to have several advantages over those
with inversion.

The effects described by us also qualify as lasing without
inversionsor more precisely gain or work extraction without
inversiond. There are, however, several important differences
as compared to the known mechanisms.

sid We do not require coherences present in the initial
state. Our mechanism operates starting from an initial local
equilibrium state of the spin, which by itself is stable with
respect to decoherencesi.e., to bothT2 andT2

* time scalesd. It
does employ coherences, however, but they are generated in
the course of the work-extraction process, which, in particu-
lar, means that all the energy costs needed for their creation
are included in the extracted work.

sii d We do not need to have three-level systems: the effect
is seen already for two-level ones.

siii d In one of our scenarios, the extracted work comes
from the bath if its temperature is higher than the initial
temperature of the spin. Due to this fact, the extracted work
can be much larger than the energy change of the spin. Thus
the work extracted per cycle of operation can be much larger
than for the standard lasing mechanism, where it is of order
of the spin’s energy.

sivd The work is extracted due to an initial difference be-
tween the temperature of the spin and that of the bath. This
difference can be created, e.g., by cooling or heating up the

bath on times shorter than theT1 time. Alternatively, one can
cool or heat up the spin with the same restriction on the
times. The latter preparation of an initially nonequilibrium
state is similar to the analogous one in the standard lasing
mechanism, except that no population inversion has to be
createdsi.e., no overcooling of the spind, and the spin’s tem-
perature can be increased or decreased.

B. Comparing with quantum heat engines

The standard thermodynamic model of a heat engine is a
system sworking bodyd operating cyclically between two
thermal baths at different temperature and delivering work to
an external sourcef1,3g. The work produced during a cycle,
as well as the efficiency of the production, depend on the
details of the operation. The upper bound on the efficiency is
given by the Carnot expression, which is system-independent
suniversald. This efficiency is reached for the Carnot cycle
during the very slowsslower than all the characteristic relax-
ation timesd and therefore reversible mode of operationf1,3g.
Though Carnot’s cycle illustrates the best efficiency ever at-
tainable, it is rather poor as a model for a real engine. This is
explicitly caused by the very long duration of its cycle: the
work produced in a unit of time is very smallszero powerd.
This problem initiated the field of finite-time thermodynam-
ics, which studies, in particular, how precisely the efficiency
is to be sacrificed so as to reach a finite power of workf62g.

In a similar spirit, a number of researchers transferred
these ideas into quantum domain designing models for en-
gines where the basic setup of the classic heat engine is
retained, while the working body operating between the
baths is quantumf8–10,12,13g.

Our setup for work extraction can also be viewed as a
model for a quantum engine. It is, however, of a nonstandard
type since there is no working body operating between two
different-temperature systemssin our case these are the
bosonic thermal bath and the ensemble of spinsd. The two
systems couple directly and the work source is acting on
only one of them. In spite of this difference, the notion of
efficiency can be defined along the standard lines, and it is
equally useful as the standard one; in particular, it is always
bound from above by the Carnot value. We have shown that
the efficiency can approach this value at the same time as the
extracted work approaches its maximum. This is a necessary
condition for a large efficiency to be useful in practice.
Moreover, the whole process of work extraction takes a finite
time of order of the response time of the bosonic bath, which
is actually much smaller than relaxation times of the spin.
Thus, the three desired objectives can be achieved simulta-
neously: maximal work, maximal efficiency, and a large
power of work.
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APPENDIX A: QUANTUM NOISE GENERATED
BY AN OHMIC BATH

Here we discuss properties of the function,

Kstd = gE
0

`

dvv coths"vb/2de−v/G cosvt. sA1d

In the given integration domain, one can use

coths"vb/2d = 1 + 2
1

e"vb − 1
= 1 + 2o

n=1

`

e−"vbn sA2d

and get from Eq.sA1d,

Kstd = gG2 1 − G2t2

s1 + G2t2d2 + 2go
n=1

`
sG−1 + "bnd2 − t2

fsG−1 + "bnd2 + t2g2 .

sA3d

With the help of a standard relation,

o
n=1

`
1

t2 + y2sn + kd2 =
i

2ty
FcS1 + k − i

t

y
D − cS1 + k + i

t

y
DG ,

sA4d

where cszd=G8szd /Gszd with G being the Euler Gamma
function,

o
n=1

`
sk + nd2 − t2

fsk + nd2 + t2g2 =
1

2
fc8s1 + k − itd + c8s1 + k + itdg.

sA5d

Combining Eq.sA5d with Eq. sA3d and k=1/s"bGd, one
ends up with the following formula:

Kstd = gG2 1 − G2t2

s1 + G2t2d2 +
gT2

"2 Fc8S1 +
1

"Gb
− i

t

"b
D

+ c8S1 +
1

"Gb
+ i

t

"b
DG . sA6d

Let us now consider separately the cases of low and high
temperatures. For"Gb@1, one uses the known relation

GS1 − i
t

"b
DGS1 + i

t

"b
D =

pt

"b

1

sinhfpt/s"bdg
, sA7d

and obtains from Eq.sA6d,

Kstd = gG2 1 − G2t2

s1 + G2t2d2 +
g

t2
−

gT2p2

"2

1

sinh2fpt/s"bdg
.

sA8d

For smallt st!1/Gd, Kstd is positive, as it should be,

Kstd = gG2 +
gT2p2

3"2 . sA9d

In contrast, fort,"b@1/G it becomes negative, namely,
the noise is anticorrelated,

Kstd = 3g
1

G2t4
−

gT2p2

"2

1

sinh2fpt/s"bdg
. sA10d

At the end it is again correlated in the limit of very large
times t@"b where the first term on the RHS of Eq.sA10d
dominatessthis domain is shrunk for low temperaturesd.

In the high-temperature limit"bG!1, one can use in Eq.
sA6d the Stirling formula,

c8szd =
1

z
+

1

2z2 + ¯ , zù 1 sA11d

and then the quasiclassical limit for the quantum noise reads
safter some more simplificationsd

Kstd = gG2 1 − G2t2

s1 + G2t2d2 +
2gTG

"

1

1 + t2G2 . sA12d

In the purely classical limit, the first term on the RHS can be
neglected and we returnsfor tG@1d to the classical white
noise with the strength 2pgT.

Finally, in the context of Eq.sA6d we notice the following
useful relations:

j̇std =E
0

t

dt8Kst8d

= gGH tG

1 + G2t2
+

iT

"G
FcS1 +

1

"Gb
− i

t

"b
D

− cS1 +
1

"Gb
+ i

t

"b
DGJ , sA13d

jstd =E
0

t

dt8E
0

t8
dt9Kst9d

= g ln3 G2S1 +
1

"Gb
DÎ1 + t2G2

GS1 +
1

"Gb
− i

t

"b
DGS1 +

1

"Gb
+ i

t

"b
D4 ,

sA14d

which are used in the main text.

APPENDIX B

Here we shortly outline how the two-temperature state
s40d can be prepared starting from the overall equilibrium
state,

rs0d =
1

Z
expf− bSĤS − bSsĤI + ĤBdg,

Z = tr e−bSĤS−bSsĤI+ĤBd, sB1d

which has equal temperatures of the spin and the bath.
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Assume that the bath was subjected to another much
larger thermal bathssuperbathd at temperatureT different
from TS, so that the total Hamiltonian of the spin, bath, and
superbath reads

Ĥtotal = Ĥ + Ĥsup, sB2d

where the latter operatorĤsup characterizes theweakinterac-
tion of the bath with the superbath and contains also the
self-Hamiltonian of the superbath. Thus

fĤS,Ĥsupg = 0. sB3d

Now the statement of this appendix is that under the ac-
tion of the superbath at temperatureT, the common state of
the spin and the bath will relax to the state Eq.sB11d or Eq.
s40d with different temperatures for the spin and the bath.
The reason is that due to Eq.sB3d, ŝz is conserved during the
whole evolution generated by the superbath, so thatŝz does
not relax and keeps its value given by Eq.sB1d f63g. In

contrast, the variables of the bath—includingX̂—do not have
such a protection, so they relax under the influence of the
superbath. Let us now substantiate this statement.

BecausefĤS,Ĥg=0, the initial equilibrium staters0d of
the spin and the bath can be represented as

rs0d = o
j=±1

pjjr j js0du jlk j u, sB4d

where

pjj =
e−jbS«/2

2 coshsbS«/2d
, j = ± 1 sB5d

are probabilities for the spin to be up or down, respectively,

u jl is the eigenstate ofĤS=s« /2dŝz with eigenvaluej = ±1,
and where

r j js0d =
1

Zj
expF− bSS j

2
X̂ + ĤBDG ,

Zj = trB e−bSs j /2X̂+ĤBd, j = ± 1 sB6d

are conditional states of the bath.
The total initial state of the spin, bath, and superbath thus

reads

rtotals0d = o
j=±1

pjjrsups0d ^ r j js0du jlk j u, sB7d

wherersups0d is the initial equilibrium state of the superbath.
Note that due to weak coupling between the bath and super-
bath, their initial states can be assumed to be factorized.

As follows from Eqs.sB3d and sB4d, the time-dependent
state of the total system consisting of spin, bath, and super-
bath can be presented as

rtotalstd = o
j=±1

pjjV j jstdu jlk j u, sB8d

where V j jstd—the conditional joint state of the bath and
superbath—satisfies the von Neumann equation

i"V̇ j j = F j

2
X̂ + ĤB + Ĥsup,V j jG sB9d

with the initial condition

V j js0d = rsups0d ^ r j js0d. sB10d

Thus, V j j moves according to the Hamiltonians j /2dX̂
+ĤB+Ĥsup. It is now clear that in the weak-coupling limit of
the bath-superbath interaction, the marginal conditional state
trsupV j jstd will—for sufficiently long timest—relax to Gibbs
distribution at temperatureT sequal to that of the superbathd
and with Hamiltonians j /2dX̂+ĤB. Thus thesunconditionald
marginal state of the spin and the bath will indeed relax to

r ~ expf− bSĤS − bsĤI + ĤBdg. sB11d

APPENDIX C

Here we explain in detail why the initial conditionss17d,
s41d, ands40d are equivalent.

One can write the full HamiltonianĤ defined in Eq.s1d as

Ĥ = o
k

"vkSâk
† +

gkŝz

2vk
DSâk +

gkŝz

2vk
D +

«

2
ŝz − o

k

"gk
2

4vk
,

sC1d

and diagonalize it via a unitary operator,

Û = expFo
k

gkŝz

2vk
sâk

† − âkdG ,

ÛâkÛ
† = âk −

gkŝz

2vk
, ÛŝzÛ

† = ŝz. sC2d

Let us define the operators

b̂k = âk +
gkŝz

2vk
, fb̂k,b̂l

†g = dkl. sC3d

As follows from Eqs.sC1d and s40d, various operator func-
tions

fsb̂k,b̂l
†, . . . dŝ, ŝ= 1̂,ŝz,ŝ+,ŝ−, sC4d

where f is an arbitrary function of arbitrary combinations of

b̂k’s and b̂l
†’s, has on the correlated states40d exactly the

same statisticsse.g., the same averaged as the corresponding
operator functionfsâk,âl

†, . . .dŝ on the factorized states17d
and s41d. One should notice here that Eq.sC4d represents
every function of the spin and the bath operators since the
Pauli matrix always forms linear functions due to the fact

that s2=1. Indeed, ifŝ is equal to 1ˆ or to ŝz, one has using
Eqs.sC1d and sC2d
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1

tr e−bĤ
trffsb̂k,b̂l

†, . . . dŝe−bĤg =
1

tre−bĤ
trfÛfsb̂k,b̂l

†, . . . dŝe−bĤÛ†g =
1

tre−bĤ
trffsÛb̂kÛ

†,Ûb̂l
†Û†, . . . dÛŝÛ†e−bÛĤÛ†

g

=
trffsâk,âl

†, . . . dŝe−bok"vkâk
†âke−bs«/2dŝzg

tre−bok"vkâk
†âktre−bs«/2dŝz

= kfsâk,âl
†, . . . dlkŝl, sC5d

where the averagesk¯l are taken over the factorized states17d and s41d.
Likewise, for ŝ=ŝ±,

1

tr e−bĤ
trffsb̂k,b̂l

†, . . . dŝ±e−bĤg =
1

tr e−bĤ
trffsÛb̂kÛ

†,Ûb̂l
†Û†, . . . dÛŝ±Û†e−bÛĤÛ†

g sC6d

=
trffsâk,âl

†, . . . de±oksgk/2vkdsâk
†−âkdŝ±e−bok"vkâk

†âke−bs«/2dŝzg

tr e−bok"vkâk
†âktr e−bs«/2dŝz

sC7d

=kfsâk,âl
†, . . . de±oksgk/2vkdsâk

†−âkdlkŝ±l sC8d

=0, sC9d

where when going from Eq.sC6d to Eq. sC7d we used Eq.
sC2d, and where Eq.sC9d follows from kŝ±l=0.

Now note that for the initial conditions40d, ŝzs0d and the
quantum noise operatorĥstd are in general not independent
variables, in contrast to the case of the factorized initial con-
dition s17d and s41d. However, fort@1/G they do become
independent,

ĥstd = ĥbstd + ŝzfGstd − Gg,

ĥbstd ; o
k

gkfb̂k
†s0deivkt + b̂ks0de−ivktg, sC10d

where

G ; o
k

gk
2

vk
sC11d

is the limit of Gstd for t@1/G. Taking the latter limit in Eq.
sC10d, one gets thatĥstd is equal toĥbstd and is thus inde-
pendent ofŝz. Recalling thatĥbstd has on the states40d the
same statistics asĥstd on the factorized states17d finishes the
argument: the equivalence holds for times larger than the
bath response times1/G for the Ohmic situationd.

Note that the thermodynamic limit for the bath is essential
for this conclusion. Otherwise,Gstd would be a finite sum of
cosines, and would not converge toG.

APPENDIX D: DERIVATION OF EQS. (65) AND (66)

Assume that the initial state of the spin and bath is

rs0d =
1

Z
expf− bSĤS − bsĤI + ĤBdg,

Z = tr e−bSĤS−bsĤI+ĤBd, sD1d

with different temperatures for the spin and the bath.

An external fieldV̂std is acting on the system,

Ĥstd = Ĥ + V̂std sD2d

such that it is zero both initially and at the momentt=t,

V̂std = V̂s0d = 0. sD3d

This condition definescyclic process. The total work which
was done on this system reads

W= DHS + DHI + DHB, sD4d

where

DHk = trhĤkfrstd − rs0dgj, k = S,I,B sD5d

are the changes of the corresponding energies, and where
rstd is the overall density matrix at timet.

Recall that the relative entropyssee, e.g.,f19gd

Sfr i sg ; trsr ln r − r ln sd ù 0 sD6d

is non-negative for any density matricesr and s. One now
uses

Sfrstd i rs0dg = trfrstdln rstd − rstdln rs0dg

= trfrs0dln rs0d − rstdln rs0dg

= bSDHS + bsDHI + DHBd ù 0, sD7d

where we used Eq.sD1d and trrstdln rstd=trrs0dln rs0d is
due to the unitarity of the overall dynamics generated by the

time-dependent HamiltonianĤstd.
Combining Eq.sD7d with Eq. sD4d, one gets Eqs.s65d

and s66d,
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Wù S1 −
T

TS
DDHS, Wù S1 −

TS

T
DsDHI + DHBd.

sD8d

Finally, note that if we used the initial conditions

rs0d = rSs0d ^ rBs0d =
1

tr e−bĤS

e−bĤS ^
1

tr e−bĤB

e−bĤB

sD9d
we would not be able to conclude from the above derivation
that the efficiency is limited by the Carnot value. Indeed,
instead of Eqs.sD8d one has, respectively,

bSDHS + bDHB ù 0, Wù DHI + S1 −
T

TS
DDHS.

sD10d
The latter inequality is not informative with respect to Car-
not’s bound, since it cannot and should not in general be
excluded thatDHI is sizeable.

However, for the model studied in the present paper, the
initial conditionssD1d and sD9d are equivalent for sufficient
long times as shown in Appendix C.

Let us emphasize the main points by which the present
derivation differs from the standard textbook one.

sid No postulates were used: the whole derivation is based
on the quantum-mechanical equations of motion and certain
assumptions on the initial conditions.

sii d It was not assumed that the interaction between the
system and the bath is small, a restrictive assumption which
need not be satisfied in reality.

siii d The fact of using the initial conditions in Eq.sD1d is
important in the present derivation, though presumably Car-
not’s bound is valid in certain more general cases, such as, in
our case, factorized initial conditions from Eq.sD9d.

APPENDIX E: SOME CORRELATION FUNCTIONS

In this appendix and in the following ones, we study vari-
ous dynamical aspects of the model defined by Eqs.s1d–s3d
and s5d. The initial conditions are given by Eqs.s17d and
s41d. Hereafter,k¯l means averaging over this initial condi-
tion. Let us define some correlation functions.

sad For

t3 ù t2 ù t1, sE1d
and recalling definitionss11d and s15d, one derives using
Wick’s theorem in the same way as when deriving Eq.s25d,

kĥst3dP̂±st1,t2dl = ± o
k=0

`
is− 1dk

s2k + 1d!Et1

t2

¯ E
t1

t2

ds1 ¯ ds2k+1

3kTfĥst3dĥss1d ¯ ĥss2k+1dgl

= ± iE
t1

t2

dsKTst3 − sdexpF−
1

2
E

t1

t2E
t1

t2

3ds1ds2KTss1 − s2dG sE2d

= ± fi j̇st3 − t1d − i j̇st3 − t2d + Gst3 − t1d

− Gst3 − t2dge−jst2−t1d+iFst2−t1d, sE3d

where for deriving the last line we used the definition of
KTstd,

KTstd = Kstd − iĠstd = j̈std − iF̈std. sE4d

Note that fort3= t2, we can derive Eq.sE3d in a simpler
way by employing Eq.s25d and

kĥst2dP̂±st1,t2dl = 7 i]t2
kP̂±st1,t2dl. sE5d

sbd A correlation functionkP̂±st1,t2dĥst3dl under the same
condition sE1d is studied similarly to Eq.sE3d, the only dif-
ference being that the time-ordered correlation function
KTst3−sd in Eq. sE2d is substituted by the analogous time-
antiordered oneftime-antiordering comes due to Eq.sE1dg,

KAst3 − sd = KT
* st3 − sd. sE6d

These two functions are related by complex conjugation, as
seen from Eq.s21d. Thus,

kP̂±st1,t2dĥst3dl = ± fi j̇st3 − t1d − i j̇st3 − t2d − Gst3 − t1d

+ Gst3 − t2dge−jst2−t1d+iFst2−t1d. sE7d

As compared to Eq.sE3d, the sign ofG factors is seen to
change.

scd A correlation function between twoP̂ factors for

t4 ù t3 ù t2 ù t1 sE8d

is worked out as follows. First one notes

kP̂±st3,t4dP̂7st1,t2dl =KT expF± iE
t1

t4

dsfssdĥssdGL ,

sE9d

where

fssd = − 1, t1 ø sø t2,

=0, t2 ø sø t3,

=1, t3 ø sø t4. sE10d

One gets
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kP̂±st3,t4dP̂7st1,t2dl = expF−
1

2
E

t1

t2E
t1

t2

ds1ds2KTss1 − s2d −
1

2
E

t3

t4E
t3

t4

ds1ds2KTss1 − s2d +E
t1

t2E
t3

t4

ds1ds2KTss1 − s2dG
= expf− jst2 − t1d − jst4 − t3d − jst4 − t2d + jst4 − t1d + jst3 − t2d − jst3 − t1dg

3 expfiFst2 − t1d + iFst4 − t3d + iFst4 − t2d − iFst4 − t1d − iFst3 − t2d + iFst3 − t1dg. sE11d

APPENDIX F: EVOLUTION OF THE QUANTUM NOISE

AND P̂ FACTORS UNDER HEISENBERG
DYNAMICS

Note from Eqs.s8d and s11d how the quantum noise and

P̂ factors evolve under Heisenberg dynamics,

Etĥstd ; eiĤt/"ĥstde−iĤt/" = ĥst + td + ŝzfGstd − Gst + tdg,

sF1d

EtP̂±st1,t2d ; eiĤt/"P̂±st1,t2de−iĤt/"

= T expF± iE
t1

t2

dso
k

gkfâkstde−ivks + âk
†stdeivksgG

= P̂±st + t1,t + t2dexph± iŝzfFst2d − Fst1d

+ Fst + t1d − Fst + t2dgj. sF2d

When deriving these equations, we usedfĥst+ td ,ŝzg=0. Re-

call that ŝz is conserved under evolution generated byĤ:
Etŝz=ŝz.

APPENDIX G: DERIVATIONS FOR TWO PULSES

The work done by the second pulse is defined as

1

"
W2 =

1

"
kP2sĤS + ĤId − sĤS + ĤIdlt+t

=
V

2
kP2ŝz − ŝzlt+t +

1

2
ksP2ŝz − ŝzdX̂lt+t sG1d

=
V

2
scz,z

s2d − 1dkŝzlt+t +
1

2
scz,z

s2d − 1dkŝzX̂lt+t + V Rehcz,+
s2dkŝ+lt+tj

+ Rehcz,+
s2dkŝ+X̂lt+tj, sG2d

where the averages are taken at the timet+t immediately
before the second pulse, and where we used the definition
s61d of the parametrization coefficients. For clarity, we recall
that definition here,

Pkŝa = o
b=±,z

ca,b
skd ŝb, a = ± ,z, k = 1,2. sG3d

In order to calculateW2, we thus have to determineX̂st
+td, ŝ+st+td, andŝzst+td. Recall from Eq.s54d that, e.g.,

X̂st + td = EtP1EtX̂, sG4d

whereEt is the free evolutionssuperdoperator defined in Eq.
s53d. One infers from Eqs.s8d and s9d that

EtX̂ = ĥstd − ŝzGstd, sG5d

Etĥstd = ĥst + td − ŝzfGstd − Gst + tdg, sG6d

and then

X̂st + td ; EtP1EtX̂

= ĥst + td + fGstd − Gst + tdgŝz − GstdEtP1ŝz

sG7d

The formula forŝzst+td is more straightforward,

ŝzst + td = EtP1ŝz, sG8d

kŝzst + tdl = cz,z
s1dkŝzl, sG9d

where we noted that in

kEtP1ŝkl = o
n=±,z

ck,n
s1dkEtŝnl = ck,z

s1dkŝzl, k = ± ,z,

sG10d

only one term contributes, sincekŝ±l=keixŝzŝ±l=0 due to the
initial conditionss17d and s41d.

In the same way, one calculates

kŝzX̂lt+t = fGstd − Gst + tdgcz,z
s1d − Gstd, sG11d

ŝ+st + td ; EtP1Etŝ+ = e−iFstd+iVtEtP1P̂+s0,tdŝ+

= e−iFstd+iVt+ixŝzP̂+st,t + tdEtP1ŝ+, sG12d

where we used Eq.sF2d, fŝz,P̂±g=0, and where by definition
ffrom Eq. sF2dg

xst,td =E
0

t

dsfGssd − Gst + sdg = Fstd + Fstd − Fst + td.

sG13d

Now let us recall Eq.s25d,

kP̂±st1,t2dl = expf− jst2 − t1d + iFst2 − t1dg, sG14d

because it is used in averaging the RHS of Eq.sG12d,

kŝ+st + tdl = c+,z
s1deiVt−jstdkeixŝzŝzl, sG15d

where we additionally employed the reasoning which led us
to Eq. sG10d,

The last term we have to calculate iskŝ+X̂lt+t. Directly
multiplying Eqs.sG7d and sG12d, one gets
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kŝ+X̂lt+t = e−iFstd+iVt+ixŝzP̂+st,t + tdEtP1ŝ+ĥst + td

sG16d

+ fGstd − Gst + tdge−iFstd+iVt+ixŝzP̂+st,t + tdEthsP1ŝ+dŝzj

sG17d

− Gstde−iFstd+iVt+ixŝzP̂+st,t + tdEthP1ŝ+ŝzj. sG18d

Following Eq.sG3d, we now expandP1ŝ+ in Eqs.sG17d and
sG18d. With the same reasoning as for Eq.sG10d, we need to
keep in these expansions only terms proportional toc+,z

s1d

ssince kŝ±l=0 according to the initial conditionss17d and
s41dg. After further simplifications with help of Eq.sE7d we
obtain

kŝ+X̂lt+t = c+,z
s1deiVt−jstdhi j̇stdkeixŝzŝzl

+ fGstd − Gst + tdgkeixŝzlj. sG19d

The final formula for the work reads

1

"
W2 =

1

2
s1 − cz,z

s1dds1 − cz,z
s2ddGstd +

1

2
s1 − cz,z

s2ddcz,z
s1d

3fVkŝzl − Gst + tdg + V Rehcz,+
s2dkŝ+lt+tj

+ Rehcz,+
s2dkŝ+X̂lt+tj. sG20d

Note that in the limitt→` swhich meanst@1/Gd, one
has Gst+td→G, where G is defined in Eq.sC11d, and x
→x2std defined in Eq.s87d.

Equation sG20d can be put into dimensionless form as
announced by Eq.s88d. To this end note from Eqs.sA13d and

sA14d that jstd and s1/Gdj̇std can be expressed via dimen-
sionless quantitiestG, g, andT/ s"Gd. In the same way we
note from Eqs.s38d and s39d that s1/GdGstd and Fstd are
expressed viag andtG.

APPENDIX H: DERIVATIONS FOR THREE PULSES
(SPIN-ECHO SETUP)

Now we consider three pulses—P1, Pp, andP2—which
are applied, respectively, at timest, t+t, and t+2t. The
pulsesP1 andP2 are kept arbitrary, whilePp is thep pulse
defined by Eq.s103d.

The work done for the pulseP2 is defined by the same
formula sG2d, where now all the averages are taken at the
time t+2t immediately before the application ofP2. Our

calculations in the following will be relatively brief, since in
essence they follow the pattern of calculations in the previ-
ous appendix.

For ŝ+st+2td, we get

ŝ+st + 2td ; EtP1EtPpEtŝ+ = e−iFstd+ivtEtP1EtP̂+s0,tdŝ−

= e−4iFstd+iFs2tdEtP1P̂+st,2tdP̂−s0,tdŝ−

= e−4iFstd+iFs2tdEthP̂+st,2tdP̂−s0,tdjEthP1ŝ−j

= e−4iFstd+iFs2tdP̂+st + t,t + 2tdP̂−st,t + td

3e−ix3ŝzEthP1ŝ−j, sH1d

where we we used Eq.sF2d and defined

x3st,td = 2Fstd − Fs2td − 2Fst + td + Fstd + Fst + 2td.

sH2d

Taking in this equation the limitt@1/G and using Eq.s39d,
we return to the quantityx3std as defined by Eq.s111d.

With help of Eq.sE11d and the reasoning of Eq.sG10d,
one has

kŝ+st + 2tdl = c−,z
s1de−4jstd+js2tdke−ix3ŝzŝzl. sH3d

In the same way as for Eq.sH1d, we have

ŝzst + 2td ; EtP1EtPpEtŝz = − EtP1ŝz, sH4d

while applying Eqs.sG5d and sG6d one derives

X̂st + 2td ; EtP1EtPpEtX̂

= ĥst + 2td + f2Gstd − Gs2tdgEtP1ŝz

+ fGs2td − Gst + 2tdgŝz. sH5d

The only nontrivial relation in calculatingkŝ+X̂lt+2t is

kP̂+st + t,t + 2tdP̂−st,t + tdhst + 2tdl

= f2i j̇std − i j̇s2td − 2Gstd + Gs2tdge−4jstd+js2td,

sH6d

which is obtained in the same way as Eqs.sE7d and sE11d.
The easiest way to check this relation is to follow to the
derivation of Eq.sE5d, that is, to differentiate Eq.sE11d over
t4, to put t4= t+2t, t3= t2= t+t, t1= t, and then to change the
sign of all G factors in the final expression.

If the reader has followed us so long, he/she can continue
alone, since the remaining calculations are fairly straightfor-
ward.
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]

]d
eidĤ/"T expF−
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"
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t
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dsĤssdG
=

i

"
fĤ − eidĤ/"Ĥst + dde−idĤ/"geidĤ/"T expF−

i

"
E

t

t+d

dsĤssdG
= −

i

"
eidĤ/"ĤFst + dde−idĤ/"eidĤ/"T expF−

i

"
E

t

t+d

dsĤssdG,

WORK EXTRACTION IN THE SPIN-BOSON MODEL PHYSICAL REVIEW E71, 046106s2005d

046106-21



]

]d
T expF−

i

"
E

0

d

dseisĤ/"ĤFss+ tde−isĤ/"G
= −

i

"
eidĤ/"ĤFst + dde−idĤ/"T

3expF−
i

"
E

0

d

dseisĤ/"ĤFss+ tde−isĤ/"G .

f49g In order to get Eq.s55d from Eq. s56d, note that the external

fields are acting only on the spin and]tĤFstd=]tĤstd. Then in
Eq. s56d, we can change the reduced density matrixrS for the
full density matrix r since the only time dependence of the
Hamiltonian lives in the Hilbert space of the spin. Then Eq.
s56d can be written as

dW

dt
= trSrstd

]ĤFstd
]t

D = trSrstd
]Ĥstd

]t
D.

Now integrate this expression from tot,

E
0

t

dt
dW

dt
= Ws0,td =E

0

t

dttrSrstd
]Ĥstd

]t
D

= trfrstdĤstdg − trfs0dĤs0dg −E
0

t

dttrfṙstdĤstdg.

Note that the last integral is equal to zero due to the equation
of motion s57d.
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processsthe one which can be viewed as a chain of equilib-
rium statesd from functions of the state. In this context, the
change in heat is written asdQ. Here we considerspossibly
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se.g., energyd is a function of the process. Therefore, we do not
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hand, the results of this full optimization did not show any
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sucesfully achieving dynamical decouplingf61g. This prompts
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relaxation time of the bath under action of a superbath has to
be much smaller thatT1, so as to create the temperature differ-
ence between the spin and the bath.
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