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The influence of local order on the disordering scenario of small Wigner islands is discussed. A first
disordering step is put in evidence by the time correlation functions and is linked to individual excitations
resulting in configuration transitions, which are very sensitive to the local symmetries. This is followed by two
other transitions, corresponding to orthoradial and radial diffusion, for which both individual and collective
excitations play a significant role. Finally, we show that, contrary to large systems, the focus that is commonly
made on collective excitations for such small systems through the Lindemann criterion has to be made
carefully in order to clearly identify the relative contributions in the whole disordering process.
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I. INTRODUCTION

Many efforts have been intended in past years to under-
stand properties of mesoscopic devices in which interacting
particles are confined. For instance, these particles can be
vortices in mesoscopic shaped superconductorsf1,2g, elec-
trons in quantum dotsf3g, strongly coupled rf dusty plasma
f4g, trapped cooled ionsf5g, vortices in superfluid4He f6g,
electron dimples on a liquid helium surfacef7g, vortices in a
Bose-Einstein condensatef8g, or colloidal particlesf9g. More
recently, in order to take advantage of the macroscopic scale
to explore the properties of such systems, we have proposed
a macroscopic system consisting ofN interacting charged
balls of millimetric size free to move on a plane conductor
and confined electrostatically, the temperature being simu-
lated by a mechanical shakingf10g. Using this system we
observed the equilibrium configurations of the Wigner is-
lands obtained for circularf11g and elliptic confinements
f12g.

Our previous study, essentially focused on static proper-
ties, conclude that at low temperature and for a circular con-
fining potential, the observed small islandssN,40d present
self-organized patterns constituted by concentric shells in
which the balls are located. As it was widely discussed in the
literaturef13–15g, this peculiar structure is due to the com-
petition between the ordering into a triangular lattice sym-
metry, which appears for infinite two-dimensional electro-
static systems, and the circular symmetry imposed by the
confining potential. In the following, the Wigner islands will
be described by the configurationsN0−N1−N2− . . .d where
Ni is the number of balls in theith shell from the center.

Surprisingly, the influence of the thermal fluctuations on
the phase behavior which was an important question largely
studied for the two-dimensional extended systems has been
little discussed in such small systems. The studies devoted to
this question are essentially numerical and focused on the

temporal stabilities of the different configurationsf16,17g,
their spectral propertiesf18,19g or the mean displacements of
the particlesf14g. Let us, however, indicate an interesting
experimental work concerning the “melting” process of col-
loidal interacting particles islandsf20,21g. “Melting” in two-
dimensional quantum electron clusters has also been recently
studied in Ref.f22g.

Phase transitions in two-dimensional large crystals have
mainly been described by the changes in the asymptotic
behavior of spatial correlation functions. For instance,
the Kosterlitz-Thouless-Halperin-Nelson-YoungsKTHNY d
theory predicts a two-step melting scenario according to
which the liquid phase is reached when bond-orientational
correlations become short-rangef23,24g. Parallely, it has
been suggested that temporal correlations should have the
same behavior as the spatial onesf25g. This has recently
been put in evidence experimentally for colloidal systems
f9,26g.

On the other hand, the previous studies on small interact-
ing systems always refer to a generalization of the well-
known Lindemann’s method employed to describe the order-
disorder transition for large systemsf27g, which considers
the liquid phase is reached when the mean square displace-
ments relatively to the lattice parameter of the particles go
beyond the valuegM =0.1 swhich seems to be independent of
the interactionf27,28gd, or 0.05 for each coordinate. Note
that it has been shown that, for infinite systems, the transition
temperature exhibited there is the same as the one given by
the correlation functionsf29g. Let us underline that no such
result is known for small systems.

For the latter, the studies lying on Lindemann’s criterion
predict or observe that the shell-structured islands become
less ordered while the temperature increases. They describe a
two-step process corresponding to two different transition
temperatures. At very low temperature, each particle is ther-
mally excited in its local potential; a first transition appears
at the temperatureTO when the orientational order between
the shells is lost. This first transition is followed by a second
one, at the temperatureTR, which corresponds to the emer-
gence of the radial diffusion of particles between the shells,*Electronic address: saintjean@gps.jussieu.fr
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as well as an angular diffusion in the shells. For higher tem-
perature, the initial order is completely destroyed. The tran-
sition temperaturesTO andTR are, respectively, identified as
the temperatures at which the intershell angular and radial
mean square displacements have a rapid and strong increase
f14g.

In this paper, we discuss the influence of the local order
on the “melting”. Indeed, for small islands, singular events
such as a unique jump of only one particle from one shell to
another one result to an important modification of the system
since such an intershell jump corresponds to a transition be-
tween well-separated stable and metastable equilibrium con-
figurations of different geometry. Consequently, such jumps
will modify the bond-orientational correlation functions. We
shall show that, for a given temperature, those configurations
switches and thus the disordering process are controlled by
the local geometry. In order to distinguish between those
events and the collective excitations of the particles, we cal-
culate the Lindemann parameters on each shell and for each
configuration separately, without taking into account jumps
between shells. We determine the temperatures at which the
collective excitations appear and destroy the ordered con-
figurations. This unusual Lindemann procedure is in agree-
ment with our definition of an ordered system as a system
always close to its most symmetrical configuration. For in-
stance, an intershell jump which does not destroy the local
symmetry does not have to be considered as relevant in our
description. This will explain why the obtained critical tem-
peratures will be higher than the one determined by the usual
Lindemann method which includes all kind of displacements
in the calculation of the parameters, as in Ref.f14g. Notice
that this question is specific to small systems since in large
systems there is a continuum of states and individual excita-
tions are hidden by collective ones.

In order to evaluate the relative importance of these dif-
ferent contributions to the “melting”, we have experimen-
tally observed the evolution of macroscopic Wigner crystals
while the effective temperature is increased. To emphasize
the contribution of the individual excitations with respect to
the collective ones, we have selected a set of systems which
have very different local symmetry for a similar number of
balls in order to present different configuration transition be-
haviors for almost the same kind of collective excitations.
We chose Wigner islands consisting inN=18, 19, and 20
interacting particles confined in a circular frame. These sys-
tems, in spite of a very close number of balls, are very dif-
ferent from the local symmetry point of view and the result-
ing excitation energy spectra. Indeed, the “magic number”
systemN=19 exhibits a threefold symmetry, as its ground
configuration iss1-6-12d. In fact, the latter shell can be di-
vided into two subshells of 6 balls, as it was numerically
shown in Ref.f13g, however, the difference between the two
radii being rapidly of the same order as the thermally in-
duced radial fluctuations, we will still refer to this configu-
ration as thes1-6-12d one. By contrast, the ground configu-
rations of N=18 and N=20 systems are constituted by
incommensurable shellssin the sense that the ratio between
the number of balls on each shell is not an integerd, their
ground states being respectivelys1-6-11d ands1-6-13d. When
the temperature increases, the two lower excited states of

each system can be reached. In spite of the radial displace-
ments due to the temperature, the ringlike structure remains
and the configurations can be very well identified.

sid For 18 balls:s1-6-11d, s1-5-12d, s0-6-12d;
sii d For 19 balls:s1-6-12d, s1-7-11d, s1-5-13d; and
siii d For 20 balls:s1-6-13d, s1-7-12d, s2-6-12d.
We can notice that only one ball jump from a shell to

another is necessary to induce a configuration switch.
These configurations correspond exactly to those com-

puted in Ref.f13g for logarithmic interparticle interaction
potential, strongly suggesting this kind of interaction be-
tween the balls, at least within the range of our experimental
interparticle distancef11g. This conclusion has been con-
firmed later by comparing the ground configuration obtained
for elliptic confinement with the configuration of vortices
calculated in similar shaped mesoscopic superconductors for
which the intervortices interaction is logarithmic in the con-
sidered range of interparticle distancef12,30g. From the en-
ergetic point of view, the local symmetry differences be-
tween the various systems induce strong differences in their
excitation energy spectraf13g. The configuration energies for
N=19 andN=18 are well separated, however, the gap be-
tween the ground and the first excited state is larger for the
magic number system. By contrast, the latter is very small
for N=20.

In Sec. II, we present the experiments which validate the
mechanical shaking as an effective thermodynamic tempera-
ture and we describe the parameters used to characterize the
disorder, the configuration transitions and the collective ex-
citations. The evolutions with temperature of these param-
eters forN=18, 19, and 20 islands will be described and
discussed in details in Sec. III. In Sec. IV, the respective
influence on the disordering of the individual and collective
excitations will be discussed. We will show that, according to
the considered parameter, different transition temperatures
can be identified. In particular, the systems present an impor-
tant configuration transition activity inducing disorder at a
temperature smaller than those characterized by the Linde-
mann criterion. The melting will have to be considered rather
as a disordering than a real melting.

II. EXPERIMENTAL PROCEDURES AND
CHARACTERIZATION PARAMETERS

Our Wigner islands are constituted by millimetric stain-
less steel ballssof diameter d=0.8 mm and weightm
=2.15 mgd located on the bottom electrode of a horizontal
plane capacitorsa doped silicon wafer whereas the top elec-
trode is a transparent conducting glassd. An isolated metallic
circular frame of diameterD=10 mm and height h
=1.5 mm intercalated between the two electrodes confines
the ballsf11g. When a potentialV is applied to the top elec-
trode sthe bottom one and the frame being linked to the
groundd, the balls become monodispersely charged, repel
each other, and spread throughout the whole available space.
For the currently used potentialV saround a few hundred of
voltsd, the charge of each ball has been evaluated to about
109 electrons. The whole cell is fixed on a plate linked with
two independent loudspeakers supplied by a white noise
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voltage. As we shall show later, this horizontal shaking re-
sults in an erratic movement of the balls which simulates an
effective temperature that can be modified by tuning the
shaking amplitude. In the experiment presented here, the sys-
tem is always prepared in its ground configuration at low
effective temperature and the temperature is progressively
increased.

Throughout the experiment, images of the arrays of balls
are recorded in real-time using a charge coupled device
sCCDd camera, and their center of mass is detected. For each
temperature, the positions of each ball are followed during
400 s, the minimum time between two snapshots being
100 ms. The characteristic time of the oscillation of a single
ball in its local potential is, at low temperature, about half a
second. Then, the choice of the total experiment time and the
time interval allow us to track the ballssat least in the con-
sidered temperature ranged and get statistically relevant data.
The different configurations reached are then determined by
counting the number of balls in each shell. In this procedure
the radial limits of a shell are defined as the mean values
between its radius and its neighbor’s one, that have been
measured in the ground state. They are independent from the
temperature.

A. Temperature calibration

Before studying the “melting” of such systems, strong
attention has been paid to show that the cell shaking effec-
tively results in a brownian motion of the balls allowing the
identification of this shaking with an effective temperature.
We present here the experiments performed in order to cali-
brate this effective temperature and the “in situ” thermometer
we have developed.

As in Ref.f31g, we used a system for which the energy is
well known: the calibration was obtained by the use of a
single ball rolling on the silicon wafer which has been
winded with an anglea=258 from the horizontal plane. The
ball can elastically bounce on a bottom wall. No electrostatic
force is at stake and the only energy is the gravitational po-
tential. For each voltageA applied on the loudspeakers, the

horizontal distancesx of the ball center from the bottom wall
have been measured through the capture of a few thousand
snapshots of the ball. The recorded randomx positions are
distributed following the densityPsxd.

In order to compare this density with the Bolzmann
theory, it was fitted with the function

Psxd =
mgtana

kBT
e−Esxd/kBT,

whereEsxd=mgxtana is the potential energy of the ball and
T the fit parameter which corresponds to the expected effec-
tive temperature,kB being the Boltzmann constant.

Figure 1sad presents the experimental data obtained for
the voltage amplitudeA=1.0 a.u. and the corresponding fit.
At evidence Boltzmann law is obeyed. This very good agree-
ment being observed whatever the voltagesA, we may con-
clude that the mechanical shaking corresponds to an effective
temperature. This effective temperature is obtained thanks to
the fitting analysis, or more simply through the relationship
T=mg kxl tana /kB and a calibration curveTsAd has then
been be obtained. As shown in Fig. 1sbd, the relation between
A and T is affine within the range required to study the
“melting”. Let us indicate that the temperature range is about
1011 K, which has no other signification than the energy
range.

Finally, we have used this calibration to develop anin situ
thermometer which is constituted by a single ball trapped in
a second circular frame located near the main one and sub-
mitted to the same voltage. The effective temperature is de-
termined by measuring the radial mean square displacement
kr2l of this unique ball for each given shaking amplitudeA
and by identifying this displacement with the temperature
TsAd previously determined by the calibration procedure.
Whatever the various thermometer diameters tested in
order to optimize the sensibility of this thermometersD
=5,6,7,8, and 10 mmd and the applied potentialV sV
=700,800,900,1000 Vd the mean square displacementkr2l
varies linearly with the temperature. The same linearity is
observed for the mean square speed. Figure 2 presents the

FIG. 1. Temperature calibration:sad x position distribution for a trapped ball moving on an inclinated planesinsetd and submitted to
mechanical shakingslog scaled. The good fit with Boltzmann law validates the mechanical shaking as an effective temperature.sbd
Calibration of the effective temperature.
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variation kr2l sTd corresponding to the potentialV=900 V
and the retained diameterD=6 mm. This thermometer will
give a precise determination of the temperature for any ex-
periment to come, independently from the variations associ-
ated to the total weight of the support or to the loudspeakers’
aging.

B. Correlation functions

The bond-orientational correlation functiong6std is rel-
evant in order to characterize phase transitions in two-
dimensional systems. It is defined by

g6std = ukei6fust+t0d−ust0dglu,

whereustd is the angle of a fixed bond between two particles
and k l denotes an averaging over all bonds. In infinite two-
dimensional systems,g6 tends to a constant roughly equal to
1 at low temperature. The system is then like an ordered
crystal. If the temperature is higher than a temperatureTl, a
strong decay with time is observed, which denotes a liquid
phase.

Such a dynamical criterion offers experimental facilities
since it is often easier to have long time acquisition rather
than to observe a large sample of particles. In particular, we
can readily use this criterion to characterize order-disorder
transitions in small systems.

Note that the factor 6 in the exponential is adapted for
hexagonal lattices, therefore we can expect the limit value at
low temperature to be lower than 1 for our small systems in
which the threefold symmetry is broken. On the other hand,
the averaging being made only onNsN−1d /2 links, we can-
not expectg6 to go until zero value in the liquid phase, even
at large time. These points apart, this parameter still mea-
sures the correlations and we can expect to measure the same
global behaviors according to the temperature.

C. Configurations transition parameters

Two parameters easy to get experimentally have been
identified in order to characterize the configuration transi-
tions. The first of them is the jump rateRJ:

RJ = lim
t→`

NJstd
t

,

where NJstd is the total number of configuration switches
during the periodt. This parameter is an indicator of the
“transition activity” of the system. Qualitatively, this param-
eter is small at low temperature when only a few transitions
occurs and increases strongly with temperature when ener-
getical barriers can be overcome.

A second way to characterize more quantitatively the tran-
sition rate is to measure the mean time required to escape
from each state or the mean residence time in each state. Let
us consider for instance a Wigner island at low temperature;
this system can be understood as a two level system charac-
terized by a ground stateEg and one metastable stateEm sthe
only one that is reachable if the temperature is sufficiently
lowd. The thermal fluctuations induce transitions between
those two configurations. These transitions in the real space
can be mapped in the phase space by the jump of a fictive
particle from a well to another, characterized by their depth
Eg andEm and a saddle pointEs.

Under the assumption that all escape attempts are inde-
pendent and of weak probability, the probability for the par-
ticle to stay in a state of energyE during a timet is:

Pstd =
1

t0
e−t/t0,

wheret0=ktl is the mean residence or Kramers time. It de-
pends on the energy barrier and on the temperature and is
given by f32g:

ktl = tre
sEs−Ed/kBT,

where Es−E is the barrier energy, andtr is the relaxation
time within the well.

The energetical barriers can be measured by the slope of
the curve describing the variations of the mean residence
times in log scale as a function of 1/T. Similarly, the spec-
trum of the excitation energies is determined through the
ratio of mean residence times in the two wells.

Qualitatively, this analysis can be extended to the case of
high temperature for which the system explores more than
the two first levels and reaches higher excited levels. But the
possibility for a particle to escape a well in different ways
whose relative weight should depends on the geometry leads
to a more acute problem.

We have tested the validity of this analysis in the case of
the two-level systemsN=5 andN=6. These two cases are
interesting since they involve in their respective configura-
tion transitions the two kinds of individual jump observed in
the Wigner excitations. ForN=5, the ground configuration
consists in a unique shells5d whereas the metastable configu-
ration s1–4d requires a centripetal displacement of a ball. By
contrast, theN=6 ground state is a centered configuration
s1–5d and the metastable configurations6d is reached after a
centrifugal displacement of ball.

In Fig. 3 we present the variation with the temperature of
the ratioktcenteredl / ktcirclel, wheretcenteredstands for the resi-
dence time in the centered configuration, respectivelys1–4d

FIG. 2. Mean square displacementkr2l of the ball plotted vs
temperature forD=6 mm andV=900 V.
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or s1–5d, and tcircle denotes the residence time in the one-
shell configuration, respectively,s5d or s6d. For the two se-
lected systems these variations obey Kramers’ relation.

According to this Boltzmanian description, we will char-
acterize in the following the configurations transitions byRJ
and by the mean residence times in each configuration. These
parameters depend on the configuration energy spectra and
thus, are extremely sensitive to the local symmetry of the
configurations.

D. Lindemann-like criterion

In order to explore the collective excitations of Wigner
islands through a Lindemann criterion, the mean square de-
viations of the balls from their equilibrium locations have to
be calculated.

For three-shell configurations and circular symmetryf14g,
we have to calculate, for each configuration and for shells 1
and 2, the radial displacements

ur
2 =

1

Ns
o
i=1

Ns

skr i
2l − kr il2d/r0

2,

the relative angular intrashell displacements

uu1
2 =

1

Ns
o
i=1

Ns

sksui − ui1
d2l − kui − ui1

l2d/u0
2,

and, for each configuration and for shell 1, the relative an-
gular intershell displacements

uu2
2 =

1

Ns
o
i=1

Ns

sksui − ui2
d2l − kui − ui2

l2d/u0
2,

wheresr i ,uid are the polar coordinates of a ball with respect
to the center of the confining frame,i1 indicates the right
neighbor of the balli, andi2 indicates its nearest neighbor in
the surrounding shell, which is determined every snapshot.

r0=1/Îpn, wheren is the balls density, is the mean radial
free space for a ball andu0=2p /Ns is the mean interball
angular distance in the shell consisting inNs balls. k l indi-
cates an average over time.

These deviations are relative displacementsswith respect
to another ball or the center of the systemd, therefore they are
relevant in order to exhibit a Lindemann-like criterion com-
parable to the one used for larger two-dimensional systems
f27g. However, we will not be able to discuss as in the latter
paper about the values of the dimensionless parameterG
=E/kBT, whereE is a typical interaction energy between two
particles, since we do not have numerical values for the po-
tential energies in our system at the present time.

Note that we have discriminated between the different
configurations. This is allowed since the radial displace-
ments, as we shall show, are around a sixth of the distance
between the two shells whatever the effective temperature,
then the shells are always well identified. This choice is mo-
tivated by our requirements of precise information about the
influence of the local order on the “melting”. The tempera-
ture dependencies of the displacements averaged over all the
configurations have also been calculated. This procedure is
not the same as the one used in Ref.f14g, where the distinc-
tion between shells is only made at the beginning of the
numerical simulation, so we shall expect lower values for
our radial displacements that do not include intershell jumps.

III. IDENTIFICATION OF TRANSITION
TEMPERATURES

A. Bond-orientational decorrelations

In Figs. 4sad–4scd we present typical time correlation
functions g6std for five different temperatures and for the
three systems, for which the same behaviors are observed: at
low temperature, a constant value is reached, indicating an
ordered state. At higher temperature, the correlations decay
strongly. As in large systems, we can define a “melting” tem-
peratureTlsNd. We notice that theN=19 system keeps an
ordered structure denoted by a quasiconstant correlation
function until a much higher temperature than the two other
systems. Indeed, the transition temperaturesTlsNd are sensi-
tively different according to the number of ballsN: Tls18d is
less than 1331011 K, whereas Tls19d is more than 18
31011 K and Tls20d between both. Note our goal is not to
measure precise transition temperatures, but to put in evi-
dence the mechanisms involved in the disordering. As we
shall see, the different transition temperatures are sufficiently
separated to do such an analysis. In the following, we will
then investigate the two expected mechanisms for this disor-
dering: configuration transitions and collective excitations
through Lindemann criterion.

B. Configurations transitions

The first indication of the configuration transition activity
can be evidenced by observing the evolution of the jump rate
RJ while the effective temperature increases. These varia-
tions are shown in Fig. 4sdd for the different studied systems.

FIG. 3. Evolution with the temperature of the residence mean
times ratio for two-level systems: five ballssjd and six ballssPd.
Ratios are in log scale. Note the signs of the slopes that prove that
s5d and s1–5d are the ground states for the five-ball and six-ball
systems, respectively.
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Whatever the number of balls,RJ presents the same quali-
tative behavior: it is close to zero at low temperature and
increases strongly at higher temperature. These variations
correspond to a progressive augmentation of the number of
transitions activated at the effective temperature. Whatever
the temperature, the smallest jump rate is associated toN
=19 system and the one associated toN=20 is always
smaller than the one corresponding toN=18. In order to
describe more quantitatively these behaviors and their differ-
ences, let us introduce transition temperatures which charac-
terize the “beginning” of theRJ increases. We have chosen to
name transition temperature the temperature at which the
ground configuration begin to switch. Let us nevertheless
indicate that this transition temperatures does not correspond
to an actual sudden transition since the jump rateRJ rises
progressively. Note that experimentally, the infinite time
limit in the RJ definition corresponds to the maximum mea-
surement time and its finite value could alter theRJ value.
However, a complete analysis has shown that the variation
with temperature ofRJ is independent from this experimental
limit provided that this limit was largely higher than the
mean residence time of the system in each configuration. In
our experiments we chosetmax=400 s which satisfied this
condition.

The analysis of the evolution of the residence times dis-
tribution shows that, forN=19, the transition temperature
TJs19d is 2031011 K, much higher than the temperatures
TJs18d and TJs20d which are, respectively, 1431011 K and
1731011 K. At larger temperature, the second excited states
are reached. The corresponding temperatures are, respec-
tively, 2131011 K, 1631011 K, and 2131011 K for N=19,
18, and 20 and are indicated by arrows in Fig. 4sdd. Those
temperatures might correspond to the critical temperatures
given in Ref.f16g where the rate of radial jumps is calcu-
lated. This is exactly the same parameter as our jump rate

since each configuration switch involves only one ball jump
from one shell to another.

These behavior differences between the systems are still
more obvious when we study their mean residence times in
the ground state. In Fig. 5 we have plotted the logarithm of
these timesktl versus the inverse of the effective tempera-
ture. We obtain a linear variation, which is in agreement with
the Boltzmann law description presented earlier, the curves
slopes being equal to the barrier heights for escaping the
configuration. We can observe that these slopes are different
according to the number of balls. The highest slope is asso-
ciated to the ground stateN=19 and is equal to 192
31011 K, those corresponding toN=18 and 20 being respec-
tively equal to 9931011 K and 10731011 K. This indicates
that the ground state forN=19 is much more stable than the
ground states associated toN=18 and 20, whose barrier

FIG. 4. Variations of orienta-
tional correlation function and
jump rate with temperature. Bond-
orientational time correlation
function for five temperatures:
sjd T=9.631011 K, sPd T=13.0
31011 K, smd T=17.831011 K,
s.d T=23.031011 K, sld T
=30.231011 K; sad N=18, sbd N
=19, andscd N=20. sdd Jump rate
vs temperature. Arrows show the
temperature at which the second
excited state is reached.

FIG. 5. Evolution with the temperature of the residence mean
times in the ground statesthe 400 s limit corresponds to the record-
ing time but it is actually infinited. Times are in log scale.
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heights are very similar since their corresponding slopes are
roughly identical.

This analysis can be completed by studying the excited
statessFig. 6d. The slopes forN=18 is 6431011 K and is
equal to 10131011 K for N=19; in both systems, this sug-
gests that the barrier is much lower than the ground state’s
one. On the contrary, the slope associated to the first excited
state ofN=20 is equal to 9631011 K, almost the same as the
barrier for the ground state. All these results are in good
agreement with the energy levels calculated in Ref.f13g. Let
us indicate that even when they are reachable, the other ex-
cited states are not easy to study since their higher energy
involves too small statistical occurrences. Finally, these mea-
surements allow us to determine the first excitation energy
associated to each system. These energies are 3531011 K,
9131011 K, 1131011 K, respectively, forN=18,19,20.

These measurements show that the “magic number” sys-
tem corresponds to the deeper ground state and confirms its
strong stability in comparison with the two other systems. As
expected, the commensurability influences strongly the depth
of the well, and consequently the transition temperature in
RJ.

Let us conclude this section by indicating that obviously
the jump rateRJ is related to the mean residence times. For
instance, for a two-level system,RJ is simply equal to
2/skt1l+kt2ld, where subscripts 1 and 2 stand for the two
levels. This relation is satisfied and confirms the self consis-
tency of our results, at least up to a temperature at which a
third level is reached.

C. Mean square displacements

We now turn to the study of the “melting” through
Lindemann-like criterion. We will successively present the
radial, intrashell and intershell mean square displacements
averaged over all the configurations. In order to explore
more precisely the relation between the local order and these
collective parameters, we have compared them to the corre-
sponding parameters before averaging. We shall show in par-
ticular that the procedure of averaging over the configura-
tions, commonly used in literature, mask actually subtle

effects resulting from the configurations transitions, even
though they do not infer that much on transition tempera-
tures.

1. Radial displacements

The temperature dependencies of the radial mean dis-
placements averaged over all the configurations are pre-
sented for the three different numbers of balls in Fig. 7sad.

The displacements corresponding to the inner shellsshell
1d present similar behaviors for the three systems. They vary
regularly from 0.005 at low temperature and go on increas-
ing until 0.05 at the highest experimental temperature, the
highest and the lowest radial displacements being respec-
tively associated to the systemsN=20 andN=19, whatever
the temperature. In this experimental temperature range, the
low values ofur

2, smaller than the Lindemann criterion, in-
dicate that each shell remains very well identified and that
we can always discuss qualitatively the results in terms of
shell entities. Notice that the highest obtained temperature
corresponds to the ball-tracking limit, but we could forecast
that the value would increase strongly beyond 0.05 after this
temperature limit, since this value is far from being the maxi-
mal possible value, even though jumps from one shell to
another are not taken into account. From this point of view,
we can consider the highest experimental temperature is very
close to the radial transition temperature transitionTR of
these systems. The radial displacements of the outer shell
sshell 2d are qualitatively similar to those observed for the
shell 1 although their values are smaller and vary from 0.005
until 0.03. This can be explained by the fact that this shell is
submitted to a regular and constant potential resulting from
the confinement frame whereas shell 1 is submitted to fluc-
tuant potential from both sidesf14g.

We have seen that geometrical considerations are respon-
sible for the different configuration transition rates observed.
It is therefore natural to examine if it is the same for the
displacements. The radial mean displacements for the differ-
ent configurations of the different systems are presented in
Fig. 8. Notice that data for the excited states with low resi-
dence time present higher statistical error due to the smaller
number of their occurrences; this is the case for instance for
the second excited state for 18 and 20 balls and for both
excited states for 19 balls.

As for the averaged curves, the radial displacements in the
two shells of the systems in their ground configurations
present regular increases with temperature. More precisely,
for shell 1, we can observe that theN=19 s1-6-12d and N
=20 s1-6-13d curves are identical whereas the displacement
corresponding toN=18 s1-6-11d is higher whatever the tem-
perature. For shell 2 the displacements are identical forN
=18 s1-6-11d andN=19 s1-6-12d whereas those associated
to N=20 s1-6-13d presents a higher value. The temperature
dependencies observed for the excited states look like those
associated to the ground states, with a constant switch. The
highestur

2 values are now observed forN=20 s1-7-12d in the
case of the shell 1 and forN=18 s1-5-12d in the case of the
shell 2.

We cannot define a precise rule to explain the different
behaviors. It seems, however, that, for a given temperature,

FIG. 6. Evolution with the temperature of the residence mean
times in the first excited state. Times are in log scale.
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the more balls in the shell, the larger the radial displace-
ments. In the case of equalityfthat is to say, for the first shell,
the coupless1-6-11d,s0-6-12d and s1-6-13d,s2-6-12d and for
the second shell the coupless1-5-12d,s0-6-12d and s1-7-
12d,s2-6-12dg, we observe that the commensurable states
have lower radial displacements. Those differences are
higher than a possible distortion due to a renormalization by
a differentNs.

The first statement can be simply understood by the fact
that orthoradialy squeezed balls have more kinetic energy to
involve in their radial movement. In the case of a commen-
surable state, all the ballssfor the first shelld or half of them
sfor the second shelld find themselves in front of a repelling
ball of the other shell, which restrains their radial fluctua-
tions. Note this result is opposite to what was reported for
quantum dots in Ref.f22g: the authors exhibit higher radial
displacements for magic numberN=19.

Beyond these specific results, the comparison between the
averaged and nonaveraged radial displacements show that
even if some differences can be exhibited concerning their
precise and relative values, global behavior remains the
same: each shell will radialy melt at the same temperature
whatever the configuration.

2. Intrashell angular displacements

In the case of the angular mean displacements, the aver-
aging does not introduce any distortion in the analysis, as it

can be seen in Fig. 9. So we will only discuss the mean
displacements averaged over the configurationsfFigs. 7scd
and 7sddg. Like the radial displacements, the intrashell ortho-
radial displacements associated with the inner shell of
ground configurations increase with the temperature. How-
ever, whereas the former keep on rising slowly, the angular
ones begin to vary linearly and change very rapidly at almost
the same temperature whatever the number of balls. By con-
trast, this similarity of behaviors is not observed for the outer
shell: whereas the intrashell orthoradial displacements are
identical forN=18 andN=20, in the caseN=19, it remains
smaller than 0.005 and without rapid rise.

The changes are observed when the displacements reach
the critical value 0.05 in accordance with the Lindemann
criterion. Thus, we can define from these data a transition
temperatureTO or, rather, a temperature interval centered
temperature onTO sbetween 2831011 K and 3031011 Kd
after which intrashell orientational order is lost in a given
configuration forN=18 andN=20. We can expect that the
corresponding temperature is not far from the experimental
limit in the case ofN=19 since the balls in the shell 1 have
begun to be non-correlated whereas the shell 2 is still rigid.

3. Intershell angular displacements

Let us now consider the intershell relative displacements
which measures the ability of the two shells to find a stable
position one with respect to the other. Their variations with

FIG. 7. Mean square displacements averaged over the three configurations versus temperature:sad radial displacementsur
2 for both shells,

sbd intershell angular displacementsuu2
2 , scd intrashell angular displacementsuu1

2 in shell 1, andsdd intrashell angular displacementsuu1
2 in

shell 2.
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temperature averaged over configurations are presented in
Fig. 7sbd for the three systems. We can notice that even at
low temperature these displacements are high and untilT
<1831011 K, the intershell angular displacements are
larger than the corresponding intrashell and radial displace-
ments. This indicates that at low temperature these intershell
movements are the main effects resulting from the thermal
fluctuations. Moreover, this temperature being smaller than
TO andTR, we are allowed to discuss these results in terms of

well defined rigid shells in which the balls are regularly
spaced.

At large temperature,T.1831011 K, the intershell angu-
lar displacements reach the same finite value whatever the
system, this value being in fact its theoretical maximum. In
this temperature range, the thermal energy is sufficient to
overcome the barrier energies, which correlate the inner and
outer shells. Since disorder is characterized by a deviation of
the whole island from the symmetrical situation, note that the

FIG. 8. Radial mean square displacementsur
2 for the three systems and all configurations vs temperature.
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intershell displacements are calculated considering the near-
est neighbor at each time step, in order to take into account
the invariance towards some rotations. Consequently, we will
always have a small maximum value and will never observe
a steep rise as in Ref.f14g.

Below this temperature, a temperature range in which the
effect of the local order has an essential play is well exhib-
ited. In this temperature domain, the systems are mainly in

their ground state and the intershell angular displacement is
lower for 19 balls than for 18 and 20 balls, the latter remain-
ing of the same order. This can be simply explained by com-
mensurability arguments: let us consider the shells as rigid
rings; in the 1-6-12 configuration, shell 1 is submitted to a
2p /12 periodic potential due to shell 2, then each of its balls
can find itself in a potential well. On the contrary, in any
other configuration uncommensurability implies that, if rigid,

FIG. 9. Intrashell mean square displacementsuu1
2 for the three systems and all configurations vs temperature.
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the two shells cannot find a position for which every ball will
be located in a minimum of energy, hence a higher instabil-
ity.

IV. DISORDERING SCENARIO

The study of the transition temperaturesTl through corre-
lation functions show that they depend strongly on the local
order. Indeed, those temperatures are very different for the
three systems, theN=19 magic system being more stable. As
for temperatures aroundTl, the systems can still be seen as
sets of shells, comparison can be made between the tempera-
turesTl and the temperaturesTJ of first configuration transi-
tion. Since they are very similar, we can infer that configu-
ration transitions play an important role in the disordering, at
least for intermediate temperatures. It can be simply under-
stood by the fact that the islands are invariant by many rota-
tions whatever the configuration, then a cycle of configura-
tion transitions can induce disordersfrom the correlation
point of viewd, since the initial particles positions are not
necessary recovered at the end of the transition cycle. More-
over, a configuration switch implies a complete reorganiza-
tion in the shells. This disorder mechanism involving only
one particle jump cannot be evidenced by the global param-
eters as the mean displacements used in the Lindemann ap-
proach. Note that even at low temperature, the orientational
order between adjacent shells is already lost while their in-
ternal order is conserved; this suggests that the trajectory of
the jumping particle might be not only radial but also ortho-
radial, taking advantage of the relative rotation of the two
implied shells. This is also in accordance with the fact that
commensurability considerations play a role for the intershell
rotations as well as for the height of the energetical barriers.
On the other hand, mere intershell rotation is not sufficient to
induce disorder as defined by the correlation function, since
the system will periodically find itself in the same position as
the initial one.

If we focus now on collective displacements, a first tran-
sition occurs at the temperatureTO.Tl, which corresponds
to the emergence of the angular intrashell diffusion. This
stage in which the systems can be considered as independent
shells remains until a second transition temperatureTR in-
volving diffusion of particles between the shells. At higher
temperatures, the shell structure disappears. Figure 10 shows
the mean crystalsssuperposition of the different positions of
the particlesd obtained for instance forN=18 at three key
temperatures. Figure 10sbd illustrates the role of the transi-

tion activity in the loss of the orientational order: according
to the values of the angular displacements, particles positions
should be distinguishable.

This kind of two-stage “melting” had been suggested by
previously cited works, especially in Ref.f14g, where the
authors focus on a global Lindemann criterion that includes
different mecanisms that we have exhibited there. In particu-
lar, we have distinguished two contributions in the radial
displacements, namely the individual jumps and the mean
behavior. In colloidal systemsf20,21g the system is arranged
at low temperature in a shell-like structure. It also exhibits a
very similar behavior when the temperature increases, ex-
cepted a re-entrant ordered phase which was not observed in
our case, this phase being specific to the hard wall confine-
ment f33g.

In Ref. f22g, the authors studied the “melting” ofN=19
andN=20 quantum particles interacting with coulombic in-
teraction. They described the “melting” as a two stages pro-
cess: first an orientational inter and intrashell disordering and
then a radial “melting” at higher temperatures. The relative
positions of the transition temperatures found here are in
good qualitative agreement with their results. In addition, we
can clearly distinguish two phases in the angular disordering,
namely an intershell rotation and then an intrashell “melt-
ing”. This last point is also presented in numerical works on
classical coulombic particlesf27g.

Whereas local geometry have an influence on the configu-
ration transitions through commensurability considerations,
we have shown that its effects are neglectable for the in-
trashell displacements as well as for the radial ones. On the
other hand, correlation functions define very different tem-
peratures for our three systemssall the transition tempera-
tures are summarized in Table Id. Moreover, and contrary to
large systems, those temperatures are lower than the transi-
tion temperatures given by the Lindemann criterion. We have
then to consider that beyond the well-known Lindemann sce-
nario, there are other sources of disorder, namely the con-
figuration switches.

V. CONCLUSION

In this paper we show that for a system constituted of a
small number of interacting particles like Wigner islands, an
increase of temperature results in a disordering of the system
more than a real melting. This disordering process is very
sensitive to the local order of the explored configurations.

This disordering results from both individual excitations
that induce configuration transitions and collective excita-
tions. This process is marked by three different transitions.

FIG. 10. Mean crystals forsad T,TJ, sbd TO,T,TR, and scd
T,TR.

TABLE I. Summary of the different transition temperaturessin
1011 Kd.

N Tl TJ TO TR

18 Tl ,13 14 29 TR.30

19 Tl .18 20 30 TR.30

20 13,Tl ,18 17 29 TR.30
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The temporal correlation functions which describe the corre-
lation loss of the system exhibits an exponential decrease at
the “liquid transition temperature”Tl snamed after the usual
conventiond. This first transition is identified without ambi-
guity as corresponding to the increase of configuration tran-
sitions between the stable and metastable states of the sys-
tem. So the liquid transition temperature depends strongly on
the local order as the transition rate. At larger temperatures,
two other transitions appear,TO and TR characterizing, re-
spectively, intrashell and intershell diffusion. These transi-
tions are evidenced by the change of the mean square dis-
placements with temperature and correspond to collective
excitations. The local order play a less significant role in the
transition temperature values.

This disordering process and the importance of the local
order on these temperatures are due the small number of
configuration states explored by the system at a fixed tem-
perature. From this point of view, it is a specific characteris-

tic of small systems. Indeed, these effects cannot be observed
for large systems since the number of explored configura-
tions is large enough to mask the individual excitations in the
collective ones, hence, the coincidence between the transi-
tion temperatures described by the correlation functions and
those identified by the Lindemann criterion.

Whereas theTl transition was never discussed before, the
two following successive transitions have previously been
mentioned in the literature. The corresponding analyses are
in agreement with our results but their approach is very dif-
ferent. We show that the description of the transition from
well organized arrays towards liquid state resulting from suc-
cessive excitations requires more detailed analyses than the
single use of the Lindemann criterion.

Finally, let us conclude by suggesting that small Wigner
islands that we proposed could be good candidates in order
to explore experimentally the thermodynamic laws dedicated
to small systems of interacting particlesf34g.
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