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Local symmetries and order-disorder transitions in small macroscopic Wigner islands
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The influence of local order on the disordering scenario of small Wigner islands is discussed. A first
disordering step is put in evidence by the time correlation functions and is linked to individual excitations
resulting in configuration transitions, which are very sensitive to the local symmetries. This is followed by two
other transitions, corresponding to orthoradial and radial diffusion, for which both individual and collective
excitations play a significant role. Finally, we show that, contrary to large systems, the focus that is commonly
made on collective excitations for such small systems through the Lindemann criterion has to be made
carefully in order to clearly identify the relative contributions in the whole disordering process.
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I. INTRODUCTION temporal stabilities of the different configuratiof6,17,

. . their spectral propertig48,19 or the mean displacements of
Many efforts have been intended in past years to undefg,e particles[14]. Let us, however, indicate an interesting

stand properties of mesoscopic devices in which interactingyperimental work concerning the “melting” process of col-
particles are confined. For instance, these particles can bgjqa| interacting particles islandg0,21]. “Melting” in two-
vortices in mesoscopic shaped supercondudtbyd], elec-  dimensional quantum electron clusters has also been recently
trons in quantum dotf3], strongly coupled rf dusty plasma studied in Ref[22].

[4], trapped cooled ion5], vortices in superfluidHe [6], Phase transitions in two-dimensional large crystals have
electron dimples on a liquid helium surfalcd, vortices ina  mainly been described by the changes in the asymptotic
Bose-Einstein condensdi®|, or colloidal particle§9]. More  behavior of spatial correlation functions. For instance,
recently, in order to take advantage of the macroscopic scaltlse Kosterlitz-Thouless-Halperin-Nelson-Yourg{THNY)

to explore the properties of such systems, we have proposdtieory predicts a two-step melting scenario according to
a macroscopic system consisting Nfinteracting charged which the liquid phase is reached when bond-orientational
balls of millimetric size free to move on a plane conductorcorrelations become short-rang@3,24. Parallely, it has

and confined electrostatically, the temperature being simuPeen suggested that temporal correlations should have the
lated by a mechanical shakifd0]. Using this system we Same behavior as the spatial orl@S]. This has recently
observed the equilibrium configurations of the Wigner is-been put in evidence experimentally for colloidal systems
lands obtained for circulaf11] and elliptic confinements 9, , ) i

[12]. On the other hand, the previous studies on small interact-

Our previous study, essentially focused on static properE1g syst_ergs always re{c;r JO a glgenedra:hzgtmn_tc))f me wgll-
ties, conclude that at low temperature and for a circular con- hown Lindemanns method employed to describe the order-

. . . disorder transition for large systenh®7], which considers
fining potential, the observed small islandhé< 40) present .the liquid phase is reached when the mean square displace-

self-organized patterns constituted by concentric shells i ents relatively to the lattice parameter of the particles go

which the balls are located. As it was widely discussed in thebeyond the valuey, =0.1 (which seems to be independent of
M— .

l'tgt::g;reb[;t‘?;;g EEE gredcgrliﬁr ?rt]rtlécgjﬁi; dulizrt?attgfecgrﬁ_the interaction[27,28), or 0.05 for each coordinate. Note
P ; ng I angula YMthat it has been shown that, for infinite systems, the transition
metry, which appears for infinite two-dimensional electro-

static svstems. and the circular symmetry imposed b thtemperature exhibited there is the same as the one given by
C Sy " r sy 'y 1mp Y M%he correlation functiong29]. Let us underline that no such
confining potential. In the following, the Wigner islands will

. . . result is known for small systems.
be described by the configuratidilg—N;—N,—...) where : . . v e
: . i For the latter, the studies lying on Lindemann’s criterion
N; is the number of balls in thih shell from the center. or the jaue e studies lying o demann’s criterio

- . _ predict or observe that the shell-structured islands become
Surprisingly, the influence of the thermal fluctuations on

: X ; . less ordered while the temperature increases. They describe a
the phase behavior which was an important question IargelKNo—step process corresponding to two different transition

ls.‘:tlfd'g.d for thg .two—d|r|]”nen5||(|)nal texten(_jr?]d s¥ségms dhastbgetgmperatures. At very low temperature, each particle is ther-
Ittie discussed In such small systems. 1he studies devote mally excited in its local potential; a first transition appears

this question are essentially numerical and focused on thgt the temperatur&, when the orientational order between

the shells is lost. This first transition is followed by a second
one, at the temperatufBs, which corresponds to the emer-
*Electronic address: saintjean@gps.jussieu.fr gence of the radial diffusion of particles between the shells,
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as well as an angular diffusion in the shells. For higher temeach system can be reached. In spite of the radial displace-
perature, the initial order is completely destroyed. The tranments due to the temperature, the ringlike structure remains
sition temperature$, and Ty are, respectively, identified as and the configurations can be very well identified.
the temperatures at which the intershell angular and radial (i) For 18 balls:(1-6-11), (1-5-12), (0-6-12;
mean square displacements have a rapid and strong increaseji) For 19 balls:(1-6-12, (1-7-13), (1-5-13; and
[14]. , _ (iii) For 20 balls:(1-6-13, (1-7-12, (2-6-12.

In this paper, we discuss the influence of the local order \we can notice that only one ball jump from a shell to
on the “melting”. Indeed, for small islands, singular eventsypgther is necessary to induce a configuration switch.
such as a unique jump of only one particle from one shell 10 thege configurations correspond exactly to those com-
another one result to an important modification of the syste%uted in Ref.[13] for logarithmic interparticle interaction

since such an intershell jump corresponds to a transition b otential, strongly suggesting this kind of interaction be-

tween well-separated stable and metastable equilibrium con)- S .
figurations of different geometry. Consequently, such jumpstween the balls, at least within the range of our experimental

will modify the bond-orientational correlation functions. We interparticle dlstancél;]. This conclusmn_ has _been con-
rmed later by comparing the ground configuration obtained

shall show that, for a given temperature, those configuration L ; . ) ' .
switches and thus the disordering process are controlled BY" elliptic confinement with the configuration of vortices

the local geometry. In order to distinguish between thosé@lculated in similar shaped mesoscopic superconductors for
events and the collective excitations of the particles, we calWhich the intervortices interaction is logarithmic in the con-
culate the Lindemann parameters on each shell and for eadffered range of interparticle distand®,30. From the en-
configuration separately, without taking into account jumpsergetic point of view, the local symmetry differences be-
between shells. We determine the temperatures at which tH&een the various systems induce strong differences in their
collective excitations appear and destroy the ordered corfXcitation energy spectfd3]. The configuration energies for
figurations. This unusual Lindemann procedure is in agreeN=19 andN=18 are well separated, however, the gap be-
ment with our definition of an ordered system as a systenfVeen the ground and the first excited state is _Iarger for the
always close to its most symmetrical configuration. For in-Magic number system. By contrast, the latter is very small
stance, an intershell jump which does not destroy the locdier N=20. ) . .
symmetry does not have to be considered as relevant in our N Sec. Il, we present the experiments which validate the
description. This will explain why the obtained critical tem- Mechanical shaking as an effective thermodynamic tempera-
peratures will be higher than the one determined by the usuyré and we describe the parameters used to characterize the
Lindemann method which includes all kind of displacementsdisorder, the configuration transitions and the collective ex-
in the calculation of the parameters, as in Ha#)]. Notice ~ citations. The evolutions Wlth temperature of these param-
that this question is specific to small systems since in larg€ters forN=18, 19, and 20 islands will be described and

systems there is a continuum of states and individual excitadiscussed in details in Sec. lll. In Sec. IV, the respective
tions are hidden by collective ones. influence on the disordering of the individual and collective

ferent contributions to the “melting”, we have experimen-the considered parameter, different transition temperatures

tally observed the evolution of macroscopic Wigner crystalscan be identified. In particular, the systems present an impor-
while the effective temperature is increased. To emphasiz[@”t configuration transition activity |ndu0|_ng disorder a_t a
the contribution of the individual excitations with respect to temperature smaller than those characterized by the Linde-
the collective ones, we have selected a set of systems whi¢Rann _crlterlor_L The melting will hgve to be considered rather
have very different local symmetry for a similar number of s @ disordering than a real melting.

balls in order to present different configuration transition be-

haviors for aI.most _the same kir_ld.of collective excitations. Il. EXPERIMENTAL PROCEDURES AND

We chose Wigner islands consisting W=18, 19, and 20 CHARACTERIZATION PARAMETERS

interacting particles confined in a circular frame. These sys-

tems, in spite of a very close number of balls, are very dif- Our Wigner islands are constituted by millimetric stain-
ferent from the local symmetry point of view and the result-less steel balls(of diameter d=0.8 mm and weightm

ing excitation energy spectra. Indeed, the “magic number=2.15 mg located on the bottom electrode of a horizontal
systemN=19 exhibits a threefold symmetry, as its ground plane capacitofa doped silicon wafer whereas the top elec-
configuration is(1-6-12. In fact, the latter shell can be di- trode is a transparent conducting glagen isolated metallic
vided into two subshells of 6 balls, as it was numericallycircular frame of diameterD=10 mm and heighth
shown in Ref[13], however, the difference between the two =1.5 mm intercalated between the two electrodes confines
radii being rapidly of the same order as the thermally in-the balls[11]. When a potentiaV/ is applied to the top elec-
duced radial fluctuations, we will still refer to this configu- trode (the bottom one and the frame being linked to the
ration as thg1-6-12 one. By contrast, the ground configu- ground, the balls become monodispersely charged, repel
rations of N=18 and N=20 systems are constituted by each other, and spread throughout the whole available space.
incommensurable shellén the sense that the ratio between For the currently used potenti®l (around a few hundred of
the number of balls on each shell is not an intggéreir  volts), the charge of each ball has been evaluated to about
ground states being respectivély6-11) and(1-6-13. When  10° electrons. The whole cell is fixed on a plate linked with
the temperature increases, the two lower excited states ofvo independent loudspeakers supplied by a white noise
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FIG. 1. Temperature calibratiorfa) x position distribution for a trapped ball moving on an inclinated plénee) and submitted to
mechanical shakinglog scal¢. The good fit with Boltzmann law validates the mechanical shaking as an effective tempethiure.
Calibration of the effective temperature.

voltage. As we shall show later, this horizontal shaking re-horizontal distances of the ball center from the bottom wall
sults in an erratic movement of the balls which simulates arfave been measured through the capture of a few thousand
effective temperature that can be modified by tuning thesnapshots of the ball. The recorded randeomositions are
shaking amplitude. In the experiment presented here, the sydistributed following the densitP(x).
tem is always prepared in its ground configuration at low In order to compare this density with the Bolzmann
effective temperature and the temperature is progressivelheory, it was fitted with the function
increased.

Throughout the experiment, images of the arrays of balls P(x) =
are recorded in real-time using a charge coupled device B

(CCD) camera, and their center of mass is detected. For ea%hereE(x):mgxtana is the potential energy of the ball and

temperature, the positions of each ball are followed duri_ng]. the fit parameter which corresponds to the expected effec-

400 s, the minimum time .between two_sngpshots pe'nine temperaturekg being the Boltzmann constant.
100 ms. The characteristic time of the oscillation of a single Figure 1a) presents the experimental data obtained for
ball in its local potential is, at low temperature, about half a voltage amplitudé\=1.0 a.u. and the corresponding fit

second. Then, the choice of the total experiment time and thg‘t evidence Boltzmann law is obeyed. This very good agree-

t|_n;e m(;cetrval allotvv us to tragk thte Pi!(?t Ielfm Iln the tcgmt' ment being observed whatever the voltagesve may con-
sidered temperature rangend get stafistically relevant data. clude that the mechanical shaking corresponds to an effective

The different configurations reached are then determined b%’emperature. This effective temperature is obtained thanks to

counting the number of balls in each shell. In this procedureihe fitting analysis, or more simply through the relationship

the radial limits of a shell are defined as the mean values_ o
between its radius and its neighbor’s one, that have bee%_mgo(> tana/kg and a calibration curve(A) has then

measured in the ground state. They are independent from t een be o_btam_ed. AS. s_hown in Figbll, the r_elatlon between
temperature and T is affine within the range required to study the

“melting”. Let us indicate that the temperature range is about

10" K, which has no other signification than the energy
A. Temperature calibration range.

Before studying the “melting” of such systems, strong Finally, we have used this calibration to developimsitu
attention has been paid to show that the cell shaking effedhermometer which is constituted by a single ball trapped in
tively results in a brownian motion of the balls allowing the @ Seécond circular frame located near the main one and sub-
identification of this shaking with an effective temperature.Mitted to the same voltage. The effective temperature is de-
We present here the experiments performed in order to calférmined by measuring the radial mean square displacement
brate this effective temperature and the &itu” thermometer (%) of this unique ball for each given shaking amplituéle
we have developed. and by identifying this displacement with the temperature

As in Ref.[31], we used a system for which the energy is T(A) previously determined by the calibration procedure.
well known: the calibration was obtained by the use of aWhatever the various thermometer diameters tested in
single ball rolling on the silicon wafer which has been order to optimize the sensibility of this thermomet
winded with an anglex=25' from the horizontal plane. The =5,6,7,8, and 10 minand the applied potential/ (V
ball can elastically bounce on a bottom wall. No electrostatic= 700,800,900, 1000 Vthe mean square displacemént)
force is at stake and the only energy is the gravitational povaries linearly with the temperature. The same linearity is
tential. For each voltagé applied on the loudspeakers, the observed for the mean square speed. Figure 2 presents the

mgtana o EMIkgT
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7
R;= IimNJ—(t),
6 . e
I where N;(t) is the total number of configuration switches
,\5 I i during the periodt. This parameter is an indicator of the
"E . | | “transition activity” of the system. Qualitatively, this param-
oo | eter is small at low temperature when only a few transitions
= | occurs and increases strongly with temperature when ener-
L getical barriers can be overcome.
A\ . . .
5L ] A second way to characterize more quantitatively the tran-
I ) sition rate is to measure the mean time required to escape
1k 4 from each state or the mean residence time in each state. Let
L L L L L L L us consider for instance a Wigner island at low temperature;

2 4 & 8§ 10 12 14 16 18 20 this system can be understood as a two level system charac-
S pEECar (601 terized by a ground staf, and one metastable stdg, (the

only one that is reachable if the temperature is sufficiently

low). The thermal fluctuations induce transitions between

those two configurations. These transitions in the real space

. _ _ can be mapped in the phase space by the jump of a fictive

variation <r2). (M) cqrrespondmg to th? potential=900 V_ particle from a well to another, characterized by their depth

a_nd the retguned dlam_etél_:6 mm. This thermometer will E, andE,, and a saddle poirk,

give a precise determination of the temperature for any ex-~ jnder the assumption that all escape attempts are inde-

periment to come, independently from the variations aSSOCipendent and of weak probability, the probability for the par-

ated to the total weight of the support or to the loudspeakers;iqje to stay in a state of enerdy during a timer is:

aging.

FIG. 2. Mean square displacemen) of the ball plotted vs
temperature foD=6 mm andv=900 V.

1
. . P(T) = — _T/TO’
B. Correlation functions T
The bond-orientational correlation functiag(t) is rel-
evant in order to characterize phase transitions in two
dimensional systems. It is defined by

where 7o=(7) is the mean residence or Kramers time. It de-
pends on the energy barrier and on the temperature and is
given by[32]:

gs(t) = |(¢ 6[0(t+t0)_0(t°)]>|1 (7) = 7,eBsB/keT
r [l

whered(t) is the angle of a fixed bond between two particles
and( ) denotes an averaging over all bonds. In infinite two-
dimensional systemgj tends to a constant roughly equal to
1 at low temperature. The system is then like an ordere(gh
crystal. If the temperature is higher than a temperalyra
strong decay with time is observed, which denotes a liqui
phase.

Such a dynamical criterion offers experimental facilities
since it is often easier to have long time acquisition rather_.
than to observe a large sample of particles. In particular, w%'

can readily use this criterion to characterize order-disorde o . o
possibility for a particle to escape a well in different ways

transitions in small systems. whose relative weight should depends on the geometry leads
Note that the factor 6 in the exponential is adapted for 9 P 9 y
t{) a more acute problem.

hexagonal lattices, therefore we can expect the limit value a We have tested the validity of this analysis in the case of

low temperature to be lower than 1 for our small systems ir‘l
. . he two-level system&l=5 andN=6. These two cases are
which the threefold symmetry is broken. On the other handinteresting since they involve in their respective configura-

;hoet zxe(rai%n?obe(;ngnrtrillideeroocglluoemi'\rl\_tfj{za/ﬁ I[Z?(Ij(s,hvgiecag\;en tion transitions the two kinds of individual jump observed in
Pecs 10 9 quid p ! the Wigner excitations. FON=5, the ground configuration

at large time. Th_ese points apart, this parameter sl M€ onsists in a unique sheéb) whereas the metastable configu-
sures the correlations and we can expect to measure the sal

. . PX¥ion (1-4) requires a centripetal displacement of a ball. By
global behaviors according to the temperature. contrast, theN=6 ground state is a centered configuration

(1-5 and the metastable configurati¢®) is reached after a
centrifugal displacement of ball.

Two parameters easy to get experimentally have been In Fig. 3 we present the variation with the temperature of
identified in order to characterize the configuration transithe ratio{7eentered/{ Tcircle)» WhererenteregStands for the resi-
tions. The first of them is the jump rak: dence time in the centered configuration, respectiyihs)

where Es—E is the barrier energy, and is the relaxation
time within the well.

The energetical barriers can be measured by the slope of
e curve describing the variations of the mean residence
c{imes in log scale as a function of T/ Similarly, the spec-
rum of the excitation energies is determined through the
ratio of mean residence times in the two wells.

Qualitatively, this analysis can be extended to the case of
gh temperature for which the system explores more than
e two first levels and reaches higher excited levels. But the

C. Configurations transition parameters
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R rozllv’%, wheren is the balls density, is the mean radial
free space for a ball andy=27/Ng is the mean interball
e angular distance in the shell consistingNg balls. ) indi-
cates an average over time.
These deviations are relative displacemédntih respect
to another ball or the center of the sysjetherefore they are
relevant in order to exhibit a Lindemann-like criterion com-
parable to the one used for larger two-dimensional systems
[27]. However, we will not be able to discuss as in the latter
paper about the values of the dimensionless paranieter
0.1} 1 =E/KgT, whereE is a typical interaction energy between two
. particles, since we do not have numerical values for the po-
L e — L v—— ; y tential energies in our system at the present time.
003 0.04 0.05 Oﬁse:;g;;fr: (01'8.?1 E.’J)O 0-11 01 Npte that we h_avc_a discriminatgd between _the c_iifferent
configurations. This is allowed since the radial displace-
FIG. 3. Evolution with the temperature of the residence mearMents, as we shall show, are around a sixth of the distance
times ratio for two-level systems: five balll) and six balls@).  between the two shells whatever the effective temperature,
Ratios are in log scale. Note the signs of the slopes that prove thdhen the shells are always well identified. This choice is mo-
(5) and (1-5 are the ground states for the five-ball and six-ball tivated by our requirements of precise information about the
systems, respectively. influence of the local order on the “melting”. The tempera-
ture dependencies of the displacements averaged over all the
or (1-5), and e denotes the residence time in the One_configurations have also been_calculated. This prqce_dure is
shell configuration, respectivel§s) or (6). For the two se- NOt the same as the one used in R&#], where the distinc-
lected systems these variations obey Kramers' relation. ~ tion between shells is only made at the beginning of the
According to this Boltzmanian description, we will char- Numerical simulation, so we shall expect lower values for
acterize in the following the configurations transitionsy ~ OUr radial displacements that do not include intershell jumps.
and by the mean residence times in each configuration. These
parameters depend on the configuration energy spectra and
thus, are extremely sensitive to the local symmetry of the
configurations.

>/< >
centered / Tcirde
-
T
1

<t

IIl. IDENTIFICATION OF TRANSITION
TEMPERATURES

A. Bond-orientational decorrelations

In Figs. 4a)-4(c) we present typical time correlation
) o i functions gg(t) for five different temperatures and for the
_In order to explore the collective excitations of Wigner e systems, for which the same behaviors are observed: at
islands through a Lindemann criterion, the mean square dgq\, temperature, a constant value is reached, indicating an
viations of the balls from their equilibrium locations have to 5 qered state. At higher temperature, the correlations decay
be calculated. , , , strongly. As in large systems, we can define a “melting” tem-

For three-shell configurations and circular symmei, eratureT,(N). We notice that theN=19 system keeps an
we have to calculate, for each configuration and for shells ﬁrdered structure denoted by a quasiconstant correlation

D. Lindemann-like criterion

and 2, the radial displacements function until a much higher temperature than the two other
1 Ng systems. Indeed, the transition temperaturié¢hl) are sensi-
Ur2 ==> (<ri2> - <ri>2)/r(2), tively different according to the number of baNs T,(18) is
Nsi=1 less than 1% 10K, whereasT,(19) is more than 18

X 10' K and T,(20) between both. Note our goal is not to
measure precise transition temperatures, but to put in evi-
, 1Q X ) dence the mechanisms involved in the disordering. As we

Uy = Wz (6= 6,)% = (6~ 6,)°)/ 65, shall see, the different transition temperatures are sufficiently

si=1 separated to do such an analysis. In the following, we will

and, for each configuration and for shell 1, the relative anthen investigate the two expected mechanisms for this disor-
gular intershell displacements dering: configuration transitions and collective excitations
through Lindemann criterion.

the relative angular intrashell displacements
N

N

1 S
Uz = WE (6= 6,)%) = (6.~ 6,)°)1 63,
si=1 B. Configurations transitions
where(r;, 6,) are the polar coordinates of a ball with respect  The first indication of the configuration transition activity
to the center of the confining frame, indicates the right can be evidenced by observing the evolution of the jump rate
neighbor of the ball, andi, indicates its nearest neighbor in R; while the effective temperature increases. These varia-

the surrounding shell, which is determined every snapshotions are shown in Fig.(d) for the different studied systems.
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Whatever the number of ballR; presents the same quali- since each configuration switch involves only one ball jump
tative behavior: it is close to zero at low temperature androm one shell to another.
increases strongly at higher temperature. These variations These behavior differences between the systems are still
correspond to a progressive augmentation of the number ahore obvious when we study their mean residence times in
transitions activated at the effective temperature. Whatevethe ground state. In Fig. 5 we have plotted the logarithm of
the temperature, the smallest jump rate is associated to these timeg7) versus the inverse of the effective tempera-
=19 system and the one associatedNe20 is always ture. We obtain a linear variation, which is in agreement with
smaller than the one corresponding No=18. In order to  the Boltzmann law description presented earlier, the curves
describe more quantitatively these behaviors and their differslopes being equal to the barrier heights for escaping the
ences, let us introduce transition temperatures which charagonfiguration. We can observe that these slopes are different
terize the “beginning” of th&; increases. We have chosen to according to the number of balls. The highest slope is asso-
name transition temperature the temperature at which theiated to the ground stat&N=19 and is equal to 192
ground configuration begin to switch. Let us nevertheless< 10! K, those corresponding fd=18 and 20 being respec-
indicate that this transition temperatures does not corresportiVely equal to 99 10! K and 107x 10 K. This indicates
to an actual sudden transition since the jump MRjeises  that the ground state fod=19 is much more stable than the
progressively. Note that experimentally, the infinite timeground states associated =18 and 20, whose barrier
limit in the R; definition corresponds to the maximum mea-
surement time and its finite value could alter Revalue.

T— T T ' T ' deetked ¢sd s's o o
However, a complete analysis has shown that the variation * e
with temperature oR; is independent from this experimental . . ‘ =
limit provided that this limit was largely higher than the 100 ‘oo . 3
mean residence time of the system in each configuration. In . *%°
our experiments we chosg,,.=400 s which satisfied this _ K = "
condition. L et e,

The analysis of the evolution of the residence times dis- = Ly h e ¢ E
tribution shows that, foN=19, the transition temperature # op °° 0 1-6-11 (18 balls)
T5(19) is 20X 10" K, much higher than the temperatures S o= ® 1-6-12 (19 balls)
T,(18) and T;(20) which are, respectively, 410" K and i ﬁ e
17x 10! K. At larger temperature, the second excited states
are reached. The corresponding temperatures are, respec- .5 004 05 UD6 D07 DB D08 5A0 0:f
tiVer, 21X 1011 K, 16X 1011 K, and 21X 1011 K for N:19, 1/Temperature (10‘11 K'1)

18, and 20 and are indicated by arrows in Figd)4Those

temperatures might correspond to the critical temperatures FIG. 5. Evolution with the temperature of the residence mean
given in Ref.[16] where the rate of radial jumps is calcu- times in the ground statghe 400 s limit corresponds to the record-
lated. This is exactly the same parameter as our jump rateg time but it is actually infinite Times are in log scale.
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T T, effects resulting from the configurations transitions, even
o 1-5-12 (18 balls) . though they do not infer that much on transition tempera-
e 1-7-11 (19 balls) " tures.
10L ® 1-7-12(20ball) . .,
: e® ® 1. Radial displacements
L]
& . ot o ° The temperature dependencies of the radial mean dis-
g "% 0 o0o° placements averaged over all the configurations are pre-
v o~ oo ©° sented for the three different numbers of balls in Fi@).7
1k ".' 0 090" o The displacements corresponding to the inner gisékll
oo © 1) present similar behaviors for the three systems. They vary
R e regularly from 0.005 at low temperature and go on increas-
. ing until 0.05 at the highest experimental temperature, the
—— p— p— p— highest and the lowest radial displacements being respec-

tively associated to the systeriks=20 andN=19, whatever

the temperature. In this experimental temperature range, the
FIG. 6. Evolution with the temperature of the residence meaHQW values ofu?, smaller tha.n the L'ndem?-nn criterion, In-
dicate that each shell remains very well identified and that
we can always discuss qualitatively the results in terms of
shell entities. Notice that the highest obtained temperature

heights are very similar since their corresponding slopes are S
roughly identical. corresponds to the ball-tracking limit, but we could forecast

. : . .. that the value would increase strongly beyond 0.05 after this
This analysis can be completed by studying the excite emperature limit, since this value is far from being the maxi-
states(Fig. 6). The slopes folN=18 is 64x 10'* K and is P ’ g

1 A i _ mal possible value, even though jumps from one shell to
equal to 10k 10K for N=19; in both systems, this sug another are not taken into account. From this point of view,

gests that the barrier is much lower than the ground Statese can consider the highest experimental temperature is ver
one. On the contrary, the slope associated to the first excite 9 P P y

state ofN=20 is equal to 9& 101 K, almost the same as the =.0oc to the radial transition temperature transitifp of
; . hese systems. The radial displacements of the outer shell
barrier for the ground state. All these results are in goo

) . shell 2 are qualitatively similar to those observed for the
agreement with the energy levels calculated in RE3). Let .
o shell 1 although their values are smaller and vary from 0.005
us indicate that even when they are reachable, the other eX-

cited states are not easy to study since their higher ener until 0.03. This can be explained by the fact that this shell is

) o . Blubmitted to a regular and constant potential resulting from
involves too small statistical occurrences. Finally, these Meay . ~onfinement frame whereas shell 1 is submitted to fluc-

surements allow us to determine the first excitation energy ial f both sid
associated to each system. These energies arxelG5 K uant potential from both si 6{3.4]' . .
) ' We have seen that geometrical considerations are respon-

91x 10 K, 11x 10" K, respectively, foN=18, 19, 20. sible for the different configuration transition rates observed
These measurements show that the “magic number” sys- 9 S '
1t is therefore natural to examine if it is the same for the

tem corresp_on(_js to the d_eeper.ground state and confirms Ioslsplacements. The radial mean displacements for the differ-
strong stability in comparison .W't.h the two other systems. As nt configurations of the different systems are presented in
expected, the commensurability influences strongly the dept

i . Fig. 8. Notice that data for the excited states with low resi-
of the well, and consequently the transition temperature in, . ) 7
R, ence time present higher statistical error due to the smaller

number of their occurrences; this is the case for instance for

L_et us conclu_de this section by |nd|cat|_ng that pbwouslythe second excited state for 18 and 20 balls and for both
the jump rateR; is related to the mean residence times. For

instance, for a two-level systen is simply equal to exif?oﬁﬁfz\jg:alig ?:Itljsr;/es the radial displacements in the
2/({7y)+(1)), where subscripts 1 and 2 stand for the two 9 ' P

; L L . _two shells of the systems in their ground configurations
levels. This relation is satisfied and confirms the self consisy o cant regular increases with temperature. More precisely,
te_ncy of our results, at least up to a temperature at which r shell 1, we can observe that the=19 (1-6-12 andN
third level is reached. =20(1-6-13 curves are identical whereas the displacement
corresponding ttN=18 (1-6-11) is higher whatever the tem-
perature. For shell 2 the displacements are identicalNfor
We now turn to the study of the “melting” through =18(1-6-11) andN=19(1-6-12 whereas those associated
Lindemann-like criterion. We will successively present theto N=20 (1-6-13 presents a higher value. The temperature
radial, intrashell and intershell mean square displacementiependencies observed for the excited states look like those
averaged over all the configurations. In order to exploreassociated to the ground states, with a constant switch. The
more precisely the relation between the local order and theshiaighestur2 values are now observed fbi=20(1-7-12 in the
collective parameters, we have compared them to the correase of the shell 1 and fo¢=18 (1-5-12 in the case of the
sponding parameters before averaging. We shall show in pashell 2.
ticular that the procedure of averaging over the configura- We cannot define a precise rule to explain the different
tions, commonly used in literature, mask actually subtlebehaviors. It seems, however, that, for a given temperature,

1/Temperature (10" K

times in the first excited state. Times are in log scale.

C. Mean square displacements
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FIG. 7. Mean square displacements averaged over the three configurations versus tem@rsﬁd'ml:displacemenus;r2 for both shells,
(b) intershell angular displacemem%, (c) intrashell angular displacemeru%1 in shell 1, and(d) intrashell angular displacemen]%1 in
shell 2.

the more balls in the shell, the larger the radial displace€an be seen in Fig. 9. So we will only discuss the mean
ments. In the case of equalitthat is to say, for the first shell, displacements averaged over the configuratidfigs. 7c)
the coupleg(1-6-11),(0-6-12 and (1-6-13,(2-6-12 and for  and 7d)]. Like the radial displacements, the intrashell ortho-
the second shell the coupld4-5-12,(0-6-12 and (1-7- radial displacements associated with the inner shell of
12),(2-6-12], we observe that the commensurable stateground configurations increase with the temperature. How-
have lower radial displacements. Those differences arever, whereas the former keep on rising slowly, the angular
higher than a possible distortion due to a renormalization bynes begin to vary linearly and change very rapidly at almost
a differentNg. the same temperature whatever the number of balls. By con-
The first statement can be simply understood by the factrast, this similarity of behaviors is not observed for the outer
that orthoradialy squeezed balls have more kinetic energy tehell: whereas the intrashell orthoradial displacements are
involve in their radial movement. In the case of a commen-identical forN=18 andN=20, in the cas&=19, it remains
surable state, all the bal(for the first shell or half of them  smaller than 0.005 and without rapid rise.
(for the second shelffind themselves in front of a repelling The changes are observed when the displacements reach
ball of the other shell, which restrains their radial fluctua-the critical value 0.05 in accordance with the Lindemann
tions. Note this result is opposite to what was reported forcriterion. Thus, we can define from these data a transition
guantum dots in Ref.22]: the authors exhibit higher radial temperatureTy or, rather, a temperature interval centered
displacements for magic numbhsi=19. temperature oril, (between 2& 10 K and 30x 10! K)
Beyond these specific results, the comparison between thadter which intrashell orientational order is lost in a given
averaged and nonaveraged radial displacements show thatnfiguration forN=18 andN=20. We can expect that the
even if some differences can be exhibited concerning theicorresponding temperature is not far from the experimental
precise and relative values, global behavior remains thémit in the case ofN=19 since the balls in the shell 1 have
same: each shell will radialy melt at the same temperaturbegun to be non-correlated whereas the shell 2 is still rigid.

whatever the configuration.
3. Intershell angular displacements

2. Intrashell angular displacements Let us now consider the intershell relative displacements

In the case of the angular mean displacements, the avewhich measures the ability of the two shells to find a stable
aging does not introduce any distortion in the analysis, as iposition one with respect to the other. Their variations with
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FIG. 8. Radial mean square displacemalftior the three systems and all configurations vs temperature.

temperature averaged over configurations are presented well defined rigid shells in which the balls are regularly
Fig. 7(b) for the three systems. We can notice that even aspaced.

low temperature these displacements are high and @intil At large temperaturél > 18X 10 K, the intershell angu-
~18X 10" K, the intershell angular displacements arelar displacements reach the same finite value whatever the
larger than the corresponding intrashell and radial displacesystem, this value being in fact its theoretical maximum. In
ments. This indicates that at low temperature these intershetis temperature range, the thermal energy is sufficient to
movements are the main effects resulting from the thermabvercome the barrier energies, which correlate the inner and
fluctuations. Moreover, this temperature being smaller thamuter shells. Since disorder is characterized by a deviation of
To andTg, we are allowed to discuss these results in terms othe whole island from the symmetrical situation, note that the
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FIG. 9. Intrashell mean square displacemeﬁjisfor the three systems and all configurations vs temperature.

intershell displacements are calculated considering the neatheir ground state and the intershell angular displacement is
est neighbor at each time step, in order to take into accourtbwer for 19 balls than for 18 and 20 balls, the latter remain-
the invariance towards some rotations. Consequently, we wilhg of the same order. This can be simply explained by com-
always have a small maximum value and will never observenensurability arguments: let us consider the shells as rigid
a steep rise as in Ref14]. rings; in the 1-6-12 configuration, shell 1 is submitted to a
Below this temperature, a temperature range in which th@/12 periodic potential due to shell 2, then each of its balls
effect of the local order has an essential play is well exhibcan find itself in a potential well. On the contrary, in any
ited. In this temperature domain, the systems are mainly imther configuration uncommensurability implies that, if rigid,
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TABLE I. Summary of the different transition temperatufas

101 K).

N T T; To Tr

18 T,<13 14 29 Te>30

19 T,>18 20 30 Te>30
(b) 20 13<T,<18 17 29 Tp>30

FIG. 10. Mean crystals fofa) T<T;, (b) To<T<Tg, and(c)

T~ Tr tion activity in the loss of the orientational order: according

to the values of the angular displacements, particles positions
the two shells cannot find a position for which every ball will should be distinguishable.
pe located in a minimum of energy, hence a higher instabil- This kind of two-stage “melting” had been suggested by
ity. previously cited works, especially in Refl4], where the
authors focus on a global Lindemann criterion that includes
different mecanisms that we have exhibited there. In particu-
IV. DISORDERING SCENARIO lar, we have distinguished two contributions in the radial
displacements, namely the individual jumps and the mean

lation functions show that they depend strongly on the IocaPehaVlor' In C°”°'d3' systen{QQ,Z]} the system is arran_ggd
order. Indeed, those temperatures are very different for thgt low .temperature'm a shell-like structure. It a]so exhibits a
three systems' th=19 magic system being more stable. As very similar behavior when the temperature increases, ex-
for temperatur,es arouni, the systems can still be seen ascepted a re-entrant ordered phase which was not observed in

sets of shells, comparison can be made between the tempePaqr case, this phase being specific to the hard wall confine-

turesT, and the temperaturel of first configuration transi- ment[33].

tion. Since they are very similar, we can infer that configu- n(IjnNF_%tz%[ZZJ,ntthi]aut?t?rls Stil;s'id tt?ne Vrci?rlltlng Imr:blig i
ration transitions play an important role in the disordering, a =<V quantum particles interacting coulombic

least for intermediate temperatures. It can be simply unde jeraction. They described the *melting” as a two stages pro-

stood by the fact that the islands are invariant by many rotaC€SS: first an orientational inter and intrashell disordering and

tions whatever the configuration, then a cycle of configura-then a radial *melting” at higher temperatures. The relative

tion transitions can induce disordéirom the correlation positions .Of Fhe transition temperatures found her'e. are in
point of view), since the initial particles positions are not good qualitative agreement with their results. In addition, we

necessary recovered at the end of the transition cycle. More2" clearly distinguish two phases in the angular disordering,

over, a configuration switch implies a complete reorganiza:namely an intershell rotation and then an intrashell "melt-

tion in the shells. This disorder mechanism involving onlyIng - This last point is also presented in numerical works on

C - classical coulombic particld27].
one particle jump cannot be evidenced by the global param- . '
partcie Jump V! y g P Whereas local geometry have an influence on the configu-

eters as the mean displacements used in the Lindemann 3p—ti N transitions throuah commensurability consideration
proach. Note that even at low temperature, the orientation pLo sttions ugh co Y erations,
we have shown that its effects are neglectable for the in-

order between adjacent shells is already lost while their in- ashell displacements as well as for the radial ones. On the
ternal order is conserved; this suggests that the trajectory i ISP W ! ’

the jumping particle might be not only radial but also ortho_other hand, correlation functions define very different tem-

radial, taking advantage of the relative rotation of the twoperraturres fo:nfnurri;hrde?ns¥séﬁm trhe Jra;ns:[]lgn tﬁ[:lprer?—
implied shells. This is also in accordance with the fact tha ures a etsu t?\ c i a t oreo el, a tﬁo t?]yto .
commensurability considerations play a role for the intershel arge systems, those temperatures are lower than the transi-

rotations as well as for the height of the energetical barriers.O" temperatures given by the Lindemann criterion. We have
On the other hand, mere intershell rotation is not sufficient t

hen to consider that beyond the well-known Lindemann sce-
induce disorder as defined by the correlation function, sinc

ario, there are other sources of disorder, namely the con-
the system will periodically find itself in the same position as iguration switches.
the initial one.

If we focus now on collective displacements, a first tran-
sition occurs at the temperatuiiey>T,, which corresponds
to the emergence of the angular intrashell diffusion. This In this paper we show that for a system constituted of a
stage in which the systems can be considered as independemhall number of interacting particles like Wigner islands, an
shells remains until a second transition temperafigén-  increase of temperature results in a disordering of the system
volving diffusion of particles between the shells. At higher more than a real melting. This disordering process is very
temperatures, the shell structure disappears. Figure 10 showsnsitive to the local order of the explored configurations.
the mean crystalésuperposition of the different positions of ~ This disordering results from both individual excitations
the particley obtained for instance foN=18 at three key that induce configuration transitions and collective excita-
temperatures. Figure {l9) illustrates the role of the transi- tions. This process is marked by three different transitions.

The study of the transition temperatufgghrough corre-

V. CONCLUSION
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The temporal correlation functions which describe the corretic of small systems. Indeed, these effects cannot be observed
lation loss of the system exhibits an exponential decrease &br large systems since the number of explored configura-
the “liquid transition temperatureT; (named after the usual tions is large enough to mask the individual excitations in the
convention. This first transition is identified without ambi- collective ones, hence, the coincidence between the transi-
guity as corresponding to the increase of configuration trantion temperatures described by the correlation functions and
sitions between the stable and metastable states of the sytkose identified by the Lindemann criterion.

tem. So the liquid transition temperature depends strongly on Whereas thd, transition was never discussed before, the
the local order as the transition rate. At larger temperatureswo following successive transitions have previously been
two other transitions appeafy and Tg characterizing, re- mentioned in the literature. The corresponding analyses are
spectively, intrashell and intershell diffusion. These transiin agreement with our results but their approach is very dif-
tions are evidenced by the change of the mean square diferent. We show that the description of the transition from
placements with temperature and correspond to collectivevell organized arrays towards liquid state resulting from suc-
excitations. The local order play a less significant role in thecessive excitations requires more detailed analyses than the
transition temperature values. single use of the Lindemann criterion.

This disordering process and the importance of the local Finally, let us conclude by suggesting that small Wigner
order on these temperatures are due the small number @flands that we proposed could be good candidates in order
configuration states explored by the system at a fixed temto explore experimentally the thermodynamic laws dedicated
perature. From this point of view, it is a specific characteristo small systems of interacting particlg34].
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