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We present phase diagrams that were calculated both in mean-field theory and via Monte CarlosMCd
simulations for binary mixtures of a ferromagnetic Ising fluid and a nonmagnetic fluidsIsing mixturesd in the
absence of an external field. We look at both the simple ideal Ising mixture, consisting of an ideal Ising fluid
and a hard-sphere fluid, as well as at the general case with one component being a nonideal Ising fluid and the
other a van der Waals fluid. It is shown that the mean-field phase diagram of the ideal Ising mixture in the limit
of infinite pressure is identical to that of the Blume-Capel model for3He-4He mixtures. The MC phase
diagrams were obtained using the Gibbs ensemble, the cumulant intersection technique, and the multihistogram
reweighting method, adapted to the semigrand ensemble. The results are qualitatively compared with mean-
field theory, and both types of tricritical lines occurring there are verified in the computer simulations.
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I. INTRODUCTION

While there are, apart from undercooled droplets of cer-
tain exotic metal alloysf1,2g, no realistic examples of ferro-
magnetic fluids known today, the study of phase transitions
in magnetic fluids and their mixtures is still of great value
and interest, due to several reasons. First of all, the magnetic
fluid can serve as a simplified model for other real systems
showing a similar phase behavior. Some examples would be
dipolar fluids, which are often studied using the more realis-
tic Stockmayer fluid modelf3–5g, or ionic fluids, commonly
described by the so-called restricted primitive modelsRPMd
f6,7g. Both these systems exhibit phase diagram topologies
that are also obtained within the magnetic fluid model.

Another system that can be described with magnetic fluids
is the3He-4He mixture. In this case, the spin degree of free-
dom corresponds to the superfluid order parameter of the4He
component. Since the actual order parameter—the complex
superfluid wave function—is two dimensional, the best
model would be a mixture of anXY spin fluid and a non-
magnetic fluid. However, a simple Ising spin, as applied
in the Blume-Emery-Griffiths sBEGd lattice model for
3He-4He mixturesf8g, already provides the correct topology
of the phase diagram. The so-called vectoralized BEG
sVBEGd modelf9–11g, usingXY spins instead, exhibits simi-
lar phase behavior. If one is interested in the universal quan-
tities associated with critical phenomena, on the other hand,
the choice of the spin dimensionality is of course essential.
As will be shown in this paper, the mixture of an ideal Ising
fluid and a nonmagnetic fluid in mean-field theory can be
considered as a generalization of the BEG model to the con-
tinuum, yielding the BEG phase diagrams in the limit of
infinite pressuresthe phase behavior of mixtures at extremely
high pressures is also of interest in chemical physics; see
f12gd.

Another interesting feature that is unique to the Ising fluid
model is the fact that it can be mapped exactly onto a sym-
metrical snonmagneticd binary mixturef13,14g. Since there
are only two possible states for the spin, +1 and −1, one can
regard spin-up and spin-down particles as two different spe-

cies, having identical interactions with particles of the same
kind, but a different one with particles of the other compo-
nent. The magnetization then corresponds to the concentra-
tion of the mixture, and the magnetic field to the chemical
potential difference of the two species. Results obtained for
an Ising fluid therefore also apply to symmetrical mixtures
and, accordingly, results for Ising mixtures to ternary mix-
tures.

Finally, another motivation for studying magnetic fluids is
that they exhibit a rich variety of critical phenomena in the
phase diagram, which are worth investigating in their own
right. While the pure fluids show symmetric and unsymmet-
ric tricritical points as well as critical end points, the mixture
of a magnetic fluid features tricritical lines, lines of critical
end points, and lines of magnetic critical points.

A large number of papers dealing with magnetic fluids has
been published so far, using mean-field theoryf15–20g, den-
sity functional theoryf21–23g, integral equation methods
f14,24–28g, the hierarchical reference theoryf29g, or Monte
Carlo simulationsf14,21,23,24,30–33g. Mostly, the liquid-
vapor phase transition in the absence of a magnetic field was
investigated, but some studies also focused on the magnetic
order-disorder transitionf29,30,32,34,35g or the influence of
an external fieldf14,20,25,27,28,36g. However, most of these
works treated ideal Ising or Heisenberg fluids, and all were
restricted to pure magnetic fluids. A study of mixtures of
ideal or nonideal magnetic fluids and a nonmagnetic fluid
was missing so far, until we published inf37g the mean-field
theory for mixtures of an Ising fluid and a van der Waals
fluid. The subsequent goal was to perform Monte Carlo
simulations and compare the obtained phase diagrams with
the mean-field ones, in order to find out whether the topolo-
gies predicted by the theory would also show up in the pres-
ence of fluctuations. Since the mean-field approximation is a
rather crude one, one could not expect quantitative coinci-
dence with the simulations, and therefore the phase diagrams
were only qualitatively compared. Also, it was no aim to
determine exact locations ofstridcritical points or values of
critical exponents, but rather to get an idea of the overall
phase behavior in the three-dimensional thermodynamic
phase diagram.
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To explore as much of the phase diagrams as possible,
several Monte CarlosMCd techniques in various ensembles
were adapted to the systems under consideration, ranging
from the standard Gibbs ensemble methodf38g to techniques
that have not been applied to continuous-space fluids until
only several years ago, like the histogram reweighting
schemef39,40g.

We will now give a brief outline of this paper. In the
following section, the mean-field theory of Ising mixtures
will be reviewed, showing new phase diagrams of typical
examples for each occurring topology, including the case of
the ideal Ising mixture that was not covered inf37g. Section
III will focus on the simulation methods we have used, es-
pecially the multihistogram reweighting technique applied to
the semigrand and the isobaric-isothermal ensemble. In Sec.
IV, the simulations performed for the Ising mixtures will be
described and the results will be presented in the form ofT,x
and p,x as well as three-dimensionalT,p,x diagrams. A
short conclusion and summary of the results will finally
round off the work.

II. MEAN-FIELD THEORY

A. General model

Consider a binary mixture in the molar volumev consist-
ing of a van der Waals fluidsfluid 1d and an Ising fluidsfluid
2d. The mole fraction of the second component shall be de-
noted asx and its magnetization per particle asm. The sys-
tem is described by a van der Waals one-fluid equation of
state,

psT,v,x,md =
RT

v − b
−

asx,md
v2 , s1d

whereR is the molar gas constant, the attraction parametera
is defined according to the quadratic mixing rule as

asx,md = a11s1 − xd2 + 2a12xs1 − xd + Sa22 +
1

2
amm2Dx2,

s2d

and the size parameterb is assumed constant. In Eq.s2d, a11
and a22 denote the nonmagnetic interactions between par-
ticles of the same kind,a12 the nonmagnetic interaction be-
tween unlike particles, andam the magnetic interaction in the
Ising fluid. If am=0, the model becomes identical to the
mean-field description of binary van der Waals mixtures by
van Konynenburg and Scottf41g. For the magnetization, the
equation of state in the absence of a magnetic field reads

msT,v,xd = tanhSamxm

vRT
D . s3d

The molar Helmholtz free energy of the system correspond-
ing to Eqs.s1d and s3d with respect to the reference state of
an ideal unmixed gas with molar volumev0=b is given by

f relsT,v,x,md = fsT,v,x,md − f0sT,v0d

= xfssT,md + RTfs1 − xdlns1 − xd + x ln xg

− RT lnSv − b

b
D −

asx,md
v

, s4d

where

fssT,md = RTS1 − m

2
ln

1 − m

2
+

1 + m

2
ln

1 + m

2
D s5d

is the entropy part of the free energy of the Ising fluid com-
ponent. The mixture can be characterized by the three re-
duced parametersz, L, andRm,

z =
a22 − a11

a11 + a22
, L =

a11 − 2a12 + a22

a11 + a22
, Rm =

1

2

am

a22
. s6d

Now one can define dimensionless variables scaled by the
critical parameters of component 2,

Tr =
27

8

bRT

a22
=

27

4
Rm

bRT

am
, pr =

27b2p

a22
, vr =

v
b

. s7d

The conditions for the coexistence of two phasesa andb at
a temperatureT0 and pressurep0 are given by

psxa,va,mad = psxb,vb,mbd = p0, s8d

m1sxa,vad = m1sxb,vbd, s9d

m2sxa,va,mad = m2sxb,vb,mbd, s10d

ma = msxa,vad, mb = msxb,vbd. s11d

By solving these equations numerically, one can find the
first-order phase transition surfaces inx,T,p space.

Instead of a Curie line, the three-dimensional phase dia-
gram of the mixture exhibits a surface of magnetic phase
transitions or Curie surface as it can be called. It is defined as
the set of points where the magnetizationm as a solution of
the magnetic equation of states3d goes to zero, given by

v =
xam

RT
. s12d

Inserting this into Eq.s1d and settingm=0 gives the equation
of the Curie surface inx,T,p space.

Lines of second-order phase transitionssplait point and
consolute point linesd are calculated from the equations

S ]2g

]x2D
T,p

= 0, S ]3g

]x3D
T,p

= 0, s13d

where g= f −s]f /]vdv is the molar Gibbs free energy. Ex-
pressing these conditions in terms of the Helmholtz free en-
ergy yields

f2vf2x − fvx
2 = 0, s14d

f3vf2x
2 − 3f2vxfvxf2x + 3fv2xfvx

2 − f3xf2vfvx = 0, s15d
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f3xf2v
2 − 3f2xvfvxf2v + 3fx2vfvx

2 − f3vf2xfvx = 0, s16d

where

f iv jx ; S ]i+j f

]vi]xjD
T
. s17d

In the case of a tricritical line the first of these conditions
taken in the limit ofm→0 yields an analytic expression for
the tricritical temperature as a function of the mole fraction
x. It turns out that depending on the three mixture param-
eters, the tricritical line has either the character of a conso-
lute point line and goes to infinite pressurestype-A behaviord
or it resembles a plait point line and eventually becomes
unstable in a tricritical end pointstype-Bd. In the three-
dimensional parameter space, the boundary surface separat-
ing these two types of behavior is described by the equation

L = −
Rm

4
s1 + zd. s18d

If

L +
Rm

4
s1 + zd . 0, s19d

the system is of type A; otherwise, it is of type B.

B. Ideal Ising mixture

Equationss1d–s4d describe the general case of a mixture
where both components have van der Waals interactions
characterized by the parametersa11,a12, anda22 and particles
belonging to the second species show an additional magnetic
interaction of strengtham. However, there are certain special
cases of the system with not all interactions present which
still show quite an interesting phase behavior. This section
will focus on the simplest possible case featuring magnetic
interaction, but no van der Waals interaction at allsa11=a12

=a22=0d. It corresponds to the mixture of an ideal Ising fluid
sRm=`d and a hard-sphere fluid. Apart from excluding a
fraction of the volume, the nonmagnetic species in this case
does not interact at all, such that the system can be consid-
ered a diluted ideal Ising fluid. On the other hand, it can also
be seen as the limiting case of an Ising mixture where the
magnetic interparticle force is much stronger than any other
interaction in the system.

The reduced free energy of an Ising mixture withaij =0 is
given by

f r ;
bf

am
= xTrS1 − m

2
ln

1 − m

2
+

1 + m

2
ln

1 + m

2
D

− Tr lnsvr − 1d −
1

2

x2m2

vr

+ Trfs1 − xdlns1 − xd + x ln xg. s20d

The reduced temperatureTr and pressurepr are now defined
as

Tr =
bRT

am
, pr =

b2p

am
, s21d

since the previous definitionss7d were based on the critical
temperature and pressure of component 2, which are now
zero. As one can see, there is no parameter left in the free
energys20d. In order to find the first-order phase transitions,
conditionss8d–s11d have to be applied, with the constraint
that now one of the phases always has a finite magnetization
m and the magnetization of the other phase is zero.

Having no van der Waals interactions, the system lacks a
line of critical points. However, it exhibits a tricritical line
starting at the tricritical point of the ideal Ising fluid and
going to infinite pressurestype-A behaviord, which complies
with condition s19d if L andz are considered as indetermi-
nate but finite quantities here. The equation of the tricritical
line is rather simple for this mixture: namely,

Tt = xt −ÎxtSxt −
1

3
D,

1

3
ø xt ø 1. s22d

It lies on the surface of magnetic phase transitions which,
according to Eq.s12d, is given by

vr =
x

Tr
s23d

or, inserting intos1d with m=0,

pr =
Tr

2

x − Tr
. s24d

For pr →`, it reaches the limiting pointTt
`=xt

`= 1
3.

Figure 1 shows the three-dimensional phase diagram of
the ideal Ising mixture and Fig. 2 sections at constant pres-
sures and temperatures.

An interesting feature of this system is that in the limit of
infinite pressure its mean-field description becomes equiva-

FIG. 1. x,T,p diagram of an ideal Ising mixture. Thick line,
liquid-vapor curve of the pure Ising fluid; thin lines, isobaric curves
on the first-order surface; dotted line, tricritical line; dark surface,
Curie surface; light surface, coexistence surface of para-ferro first-
order transitions.
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lent to that of the well-known BEG modelf8g, or rather a
special case of it, known as the Blume-Capel model
f8,42,43g ssee Appendix A for a detailed derivationd. It can
also be shown that the general version of the BEG model is
obtained by applying the same limit to the mixture of an
ideal Ising fluid and a van der Waals fluid.

C. Nonideal Ising mixtures

Consider now the case that both species also exhibit a
nonmagnetic van der Waals interaction. Thus, the spin par-

ticles now interact with each other both via magnetic and
nonmagnetic forces and they also interact with particles of
the other component.

Contrary to the special case of the mixture with an ideal
Ising fluid, in the general case the coexistence of two phases
a and b with nonzero magnetizationsma and mb is also
possible. The system exhibits a tricritical as well as a critical
line. The latter one can in general show one of five different
topologies, depending on the values of the parametersz and
L. These are the types I–V described by van Konynenburg
and Scott inf41g. For the sake of simplicity, only cases with
a continuous critical line connecting the critical points of the
two pure components are considered here, restricting the val-
ues ofz and L to the region of type I in the global phase
diagram. However, this only applies to nonmagnetic critical
lines. The inclusion of the magnetic equation of state in Eqs.
s14d–s16d leads to additional solutions with respect to those
in f41g: namely, critical lines with a finite magnetizationssee
the Appendix off37gd. These lines occur especially at high
pressures in the form of consolute point lines where demix-
ing into two magnetic liquid phases sets in.

As to the tricritical line, it can appear in the two topolo-
gies described in Sec. II A. In the case of type A, the line
approaches infinite pressure at a concentration

xt
` =

4L + Rms1 + zd
4L + 3Rms1 + zd

s25d

and temperatureTt
`=s27Rm/4dxt

`.
As examples illustrating the occurring topologies one rep-

resentative of each type, A and B, was chosen, whose com-
plete three-dimensional phase diagrams are shown in Fig. 3,
whereas in Figs. 4 and 5 sections through these diagrams at
constant values of pressure or temperature are displayed.

For the type-A system, Fig. 3sad, Rm was chosen corre-
sponding to an Ising fluid of type III in the nomenclature
introduced inf33g. Accordingly, the pure magnetic compo-
nent shows a critical, but no tricritical point. Still, a tricritical
line shows up in the mixture which has the character of a
pure demixing line, starting at infinite pressure inxt

`

=0.0526,Tt
`=0.0533 and ending in a tricritical end point on

the gas-liquid coexistence surface. Below the tricritical tem-
perature, the system demixes into a ferromagnetic, 2-rich liq-
uid and a paramagnetic, 1-rich liquid. An examination of the

FIG. 2. Constant-p and -T sections of the phase diagram in Fig.
1. Thick line, para-ferro phase coexistence curve; dashed line, Curie
line; gray dot, tricritical point.

FIG. 3. x,T,p diagrams of Ising mixtures
with sad z=0.5, L=−0.05, Rm=0.15 andsbd z
=0.5,L=−0.25,Rm=0.4. Systemsad is of type A,
whereas systemsbd is of type B. Thick line,
liquid-vapor curve of the pure Ising fluid compo-
nent; thin lines, isobaric curves on the first-order
surface; dotted line, tricritical line; dashed line,
critical line; hatched surface insad and dark sur-
face insbd, surface of magnetic phase transitions;
light surface, surface of first-order phase
transitions.
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phase behavior forp→` reveals that the tricritical line be-
comes metastable at high pressures and instead a line of
magnetic consolute points appears, accompanied with a de-
mixing transition into two ferromagnetic liquid phases,
which persists up to infinite pressure. The Curie surface seen
in Fig. 3sad is bounded by the Curie line of the pure Ising
fluid at x=1, the tricritical line, and a line of critical end
points that connects the critical end point of the Ising fluid
and the tricritical end point.

In the type-B case shown in Fig. 3sbd, Rm was chosen to
be in the type-I region of the Ising fluid parameter space, and
thus there is only a tricritical point present in the pure mag-
netic component. From there, the tricritical line emerges, but
contrary to the type-A topology, it reaches a maximum pres-
sure value and then drops down again, ending in a tricritical
end point. It has the character of a plait point line, below
which a phase transition from paramagnetic gas to ferromag-
netic liquid occurs. However, similar to the type-A mixtures
at high pressure, the system also exhibits a demixing transi-
tion, where the mixture resolves into two ferromagnetic liq-
uid phases with different concentrations and magnetizations.
These phases become identical in a magnetic critical point. A
line of such points starts in a magnetic critical end point on
the first-order coexistence surface and continues up to infi-
nite pressure. The Curie surface is now bounded by the Ising

fluid Curie line, the tricritical line, and a line of critical end
points along which it intersects the first-order demixing sur-
face. Since the type-I Ising fluid has no stable critical point,
the critical line extending from the plait point of the van der
Waals fluid also becomes metastable when it hits the surface
of first-order para-ferro phase transitionsfthis is not visible
in Fig. 3sbdg.

III. SIMULATION DETAILS

Besides simulations in the well-known Gibbs ensemble
f38,44g we have also carried out calculations within the
semigrand ensemblef45g. In combination with the histogram
reweighting techniquef39,40g, it provides better efficiency
especially near the critical regions, and it avoids the disad-
vantage of particle insertion and deletion moves that restrict
the accessible density and temperature range for the simula-
tions considerably. Since the application of histogram re-
weighting to the semigrand ensemble needs some consider-
ation, we will explain this point in detail.

In the case of a grand-canonical simulation, one can com-
pile a two-dimensional histogram of the observed total po-
tential energy and particle number,HsU ,Nd at a certain sys-
tem inverse temperatureb=1/kBT and chemical potentialm.

FIG. 4. Constant-p and -T sections of the phase diagram in Fig.
3sad. Thick line, para-ferro phase coexistence curve; thin line, para-
para phase coexistence curve; dashed line, Curie line; gray dot,
tricritical point; black dot, critical point.

FIG. 5. Constant-p and -T sections of the phase diagram in Fig.
3sbd. Thick line, para-ferro phase coexistence curve; thin line, ferro-
ferro phase coexistence curve; dashed line, Curie line; gray dot,
tricritical point; black dot, magnetic critical point.
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Then thesnormalizedd histogram will provide an estimate of
the grand-canonical probability distributionPbmsU ,Nd ac-
cording to

HbmsU,Nd < PbmsU,Nd =
VsU,Nde−bU+bmN

Jsb,md
, s26d

whereVsU ,Nd is the microcanonical andJsb ,md the grand-
canonical partition function, given by

Jsb,md = o
U

o
N

VsU,Nde−bU+bmN. s27d

Using Eq.s26d, one can obtain an estimate for the distri-
bution functionPb8m8sU ,Nd by “reweighting” HbmsU ,Nd:

Pb8m8sU,Nd <
Jsb,md

Jsb8,m8d
e−sb8−bdU+sb8m8−bmdNHbmsU,Nd

~ e−Udb+NdmrHbmsU,Nd, s28d

wheredb;b8−b, mr ;bm, anddmr ;mr8−mr.
The idea behind the multihistogram method is now to

perform a number ofn simulations at different parameters
bi ,mi whose histograms cover the whole region of interest in
the U ,N plane. Provided there is enough overlap between
neighboring histograms, it is then possible to interpolate his-
tograms at intermediate thermodynamic statesb ,m that were
not simulated beforehand. If the simulations have a length of
Ki observations, then histogramsHisU ,Nd can be combined
into an estimated distribution functionPbmsU ,Nd in the fol-
lowing way f40g:

PbmsU,Nd =

o
i=1

n

HisU,Nde−bU+bmN

o
i=1

n

Kie
−biU+bimiN−Ci

. s29d

The reweighting factorsCi occurring in Eq.s29d have to be
calculated self-consistently via the condition

eCi = o
N

o
U

Pbimi
sU,Nd, s30d

for example, by doing a simple iteration.
Now contrary to pure fluids, the phase behavior of a bi-

nary mixture is fully covered only in a three-dimensional
phase diagram—for example, in concentration-temperature-
pressure space. Accordingly, reweighting to another state
point in general requires to specify a three-dimensional dif-
ference vector to the new state point. If one looks at the
probability distribution in the semigrand ensemble, which
can be written as

PbpDsU,V,N2d =
VsU,V,N2de−bU−bpV+bDN2

Ysb,p,Dd
, s31d

whereD=m2−m1, VsU ,V,N2d is the density of states, and
Ysb ,p,Dd the semigrand-canonical partition function, given
by

Ysb,p,Dd = o
U

o
V

o
N2

VsU,V,N2de−bU−bpV+bDN2, s32d

it can be seen that the reweighting scheme for Eq.s31d yields

Pb8p8D8sU,V,N2d

~ e−sb8−bdU−sb8p8−bpdV+sb8D8−bDdN2HbpDsU,V,N2d

= e−Udb−Vdpr+N2dDrHbpDsU,V,N2d, s33d

with dpr ;pr8−pr, pr ;bp, dDr ;Dr8−Dr, andDr ;bD. Thus,
instead of just replacing the factore−Udb+Ndmr occurring in
Eq. s28d with e−Udb+N2dDr, one needs an additional factor
e−Vdpr and, more importantly, one has to store a three-
dimensional histogramHsU ,V,N2d. It turns out, however,
that in the special cases when eitherdb or dp;p8−p is
chosen as zero, it is again sufficient to use a two-dimensional
histogram.

Most evidently, reweighting at constant temperaturesdb
=0d eliminates the total energyU from Eq. s33d, yielding

Pbp8D8sV,N2d ~ e−Vdpr+N2dDrHbpDsV,N2d, s34d

such that only the histogramHsV,N2d needs to be recorded
during the simulation. The constant pressure casesdp=0d is
a bit more subtle, however, sincedp=0 does not implydpr
=0. Instead, one obtains

Pb8pD8sU,V,N2d ~ e−Udb−Vsb8p−bpd+N2dDrHbpDsU,V,N2d

= e−sU+pVddb+N2dDrHbpDsU,V,N2d, s35d

which indicates that the proper quantity to be stored is in this
case the enthalpyE=U+pV. Hence, one can write

Pb8pD8sE,N2d ~ e−Edb+N2dDrHbpDsE,N2d, s36d

for the reweighting procedure at constant pressure. Compar-
ing Eqs.s34d ands36d with Eq. s28d shows that the reweight-
ing scheme for a binary mixture in the semigrand ensemble
at constant temperature or pressure takes the same form as
that of a pure fluid in a grand-canonical ensemble, making its
application not more computationally extensive. One can
even use the same program to reweight the binary mixture
and the pure fluid histograms.

Following the same arguments as in the pure fluid case,
one can also perform multiple-histogram reweighting in the
semigrand ensemble. If alln simulations were done at the
same temperatureb but at different pressurespi and chemi-
cal potential differencesDi, the formulas

PbpDsV,N2d =
oi=1

n
HisV,N2de−bpV+bDN2

oi=1

n
Kie

−bpiV+bDiN2−Ci
s37d

and

eCi = o
V

o
N2

PbpiDi
sV,N2d s38d

apply, whereas for combiningn histograms obtained at the
same pressurep but different temperaturesbi and chemical
potential differencesDi, one has to use
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PbpDsE,N2d =
oi=1

n
HisE,N2de−bE+bDN2

oi=1

n
Kie

−biE+biDiN2−Ci
s39d

and

eCi = o
E

o
N2

PbipDi
sE,N2d. s40d

Finding the coexistence curve at constantp or b is now
analogous to the pure fluid case. One calculates the one-
dimensional concentration distribution PbpDsN2d
=oVPbpDsV,N2d or PbpDsN2d=oEPbpDsE,N2d. By tuning D
and applying the equal-area criterion for the peaks in the
distribution of the mole fractionx=N2/N, the equilibrium
concentrations are found, and thus aT, x or p, x phase dia-
gram can be built up.

If one is interested in the distribution of the magnetization
rather than the concentration, as is the case if one wants to
determine the locus of second-order magnetic phase transi-
tions in an Ising mixture, a similar procedure can be applied.
The partition function of a magnetic fluid simulated in the
isobaric-isothermal ensemble at constant temperature, pres-
sure, and magnetic fieldH is given by

Zsb,p,Hd = o
U

o
V

o
M

VsU,V,Mde−bU−bpV+bHM , s41d

with M being the total magnetization andVsU ,V,Md the
density of states, and the corresponding probability distribu-
tion by

PbpHsU,V,Md =
VsU,V,Mde−bU−bpV+bHM

Zsb,p,Hd
. s42d

Since the phase transition one is interested in occurs only at
H=0, the term including the magnetization vanishes. As in
the semigrand ensemble, it is again convenient to perform
the reweighting method either at constant pressure or con-
stant temperature. In the first case one has

Pb8psE,Md ~ e−EdbHbpsE,Md s43d

or

PbpsE,Md ~
oi=1

n
HisE,Mde−bE

oi=1

n
Kie

−biE−Ci
s44d

and

eCi = o
E

o
M

Pbip
sE,Md. s45d

On the other hand, ifb8=b, one can write

Pbp8sV,Md ~ e−VdprHbpsV,Md s46d

and, for multiple histograms,

PbpsV,Md ~
oi=1

n
HisV,Mde−bpV

oi=1

n
Kie

−bpiV−Ci
, s47d

with

eCi = o
V

o
M

Pbpi
sV,Md. s48d

IV. MC SIMULATIONS

A. Ideal Ising mixture

As a model for the interaction in an ideal Ising mixture—
i.e., a mixture of an ideal Ising fluid and a hard-sphere
fluid—the potentialuijsrd was chosen as

uijsrd = Huscsrd + sisjJsrd, r , rc,

0, r . rc,
J s49d

with Jsrd being a Yukawa potential,

Jsrd = − «
e−sr−sd/s

r/s
, s50d

anduscsrd having the form of a Lennard-Jones potential trun-
cated at the minimum and shifted up by the well depth to
give a repulsive potential smoothly decaying to zero:

uscsrd = 54eFSs

r
D12

− Ss

r
D6G + e, r , Î6 2s,

0, r ù Î6 2s.
6 . s51d

Such a soft-core potential is often referred to as a Weeks-
Chandler-AndersensWCAd potential. The spinssi are de-
fined in such a way that they are either +1 or −1 if the
particle is of species 2sthe ideal Ising fluidd and zero if it is
of species 1sthe hard-sphere fluidd. Thus, only the magnetic
particles feel an attractive interaction between each other,
whereas the nonmagnetic ones just repell each other at short
distances.

The size of the particles is assumed equal for both species
and denoted bys, andr = ur i −r ju is the interparticle distance.
Periodic boundary conditions were applied, and the potential
uijsrd was truncated at a cutoff distancerc equal to half the
length of the simulation box. This truncation was accounted
for by adding an appropriate long-range correction. The
strengthe of the WCA potential was set equal to the strength
« of the Yukawa potential.

To locate the phase equilibria and construct the three-
dimensional phase diagram of the ideal Ising mixture, the
following simulation methods were applied: the constant-
pressure Gibbs ensemble, the semigrand ensemble combined
with multihistogram reweighting, and the isobaric-isothermal
ensemble together with the cumulant intersection method to
locate the surface of second-order magnetic phase transi-
tions.

The Gibbs ensemble simulations were performed with a
total number of particlesN of 500 or 1000 for runs close to
the critical region. They were arranged in cycles consisting
of N trial particle displacements,N2 spin-flip attempts, one
volume change attempt, and a number of particle swap at-
tempts which was chosen to yield about 1%–3% of the par-
ticles being swapped in one cycle. Typically, the number of
performed cycles was about 106. In all the Gibbs ensemble
simulations, the excluded volume map samplingsEVMSd
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methodf46g was utilized in order to facilitate runs at higher
densities.

The simulations in the semigrand ensemble were con-
ducted with a particle number ofN=300. Typical runs con-
sisted of 43109 MC steps, where one step was either an
attempted identity change, a trial particle displacement, a
spin-flip attempt, or a volume rearrangement attempt. De-
pending on whether reweighting at constant pressure or at
constant temperature was to be performed, either the ob-
served values of the volume or those of the enthalpy were
stored together with the number of particles of species 2 in a
histogram with 300 bins in both dimensions. From the com-
bined histograms of all simulations at a certain pressure or
temperature, the coexistence concentrations in the phase dia-
gram were then obtained via multi-histogram reweighting.

Points on the Curie surface were found via the cumulant
intersection techniquef47,48g. Simulations in the constant-
NpT ensemble were carried out, consisting of about 109

Monte Carlo steps, each of which was either a trial particle
displacement, a trial spin-flip or a volume rearrangement at-
tempt. During these runs, two-dimensionalV, M or E, M

histograms, respectively, were obtained and afterwards ex-
trapolated to other temperatures or pressures via the multi-
histogram reweighting technique. Thus, the fourth-order cu-
mulant ratio U4 of the magnetization distributionPsmd,
defined as

U4 = 1 −
km4l

3km2l2 s52d

with the kth moment ofm given by

kmkl =E mkPsmddm, s53d

could be calculated as a function ofT or p. This was done for
three different system sizesN=150, N=300, andN=500,
and the intersection point of the resulting curves was deter-
mined as an estimate for the critical temperature or pressure
of the infinite system. Figure 6 shows a typical plot forx
=0.4 andp* =3. For the interaction potentials49d with long-
range correction we find a critical cumulant ratio ofU4c
<0.38, just as in the pure Ising fluid case withx=1 susing a
truncated potential as inf29g for the pure fluid, we reproduce
their value ofU4c<0.46d. In the case of the mixture a weak
concentration dependence ofU4c was observed, similar to
the density dependence in the pure fluid.

The results of the simulations are presented in Figs. 7 and
8. Figure 7sad showsT, x phase diagrams obtained at several
constant pressures, including Curie lines, and Fig. 7sbd p, x
coexistence curves and Curie lines calculated at constant
temperature. These curves at constantp or T are cross sec-
tions of the complete three-dimensional phase diagram of the
studied system and can be qualitatively compared with
the corresponding sections calculated in mean-field theory
sFig. 2d. As one can see, the phase behavior is quite similar,
with demixing into a paramagnetic and a ferromagnetic
phase. Since the critical regions were not investigated thor-
oughly within this study, the question whether the ideal Ising
mixture exhibits a line of tricritical points as predicted by

FIG. 6. The fourth-order cumulant ratioU4 as a function of
temperature and system sizesN=150, 300, and 500d for the ideal
Ising mixture at a concentration ofx=0.4 and a pressure ofp* =3.
The lines result from multihistogram reweighting. The critical tem-
peratureTc

* =3.83 obtained from the intersection point is indicated
as a vertical line.

FIG. 7. sad T, x phase diagrams of the ideal
Ising mixture at different pressuressp* =0.5, 1, 2,
and 3d from MC calculations.sbd p, x phase dia-
grams of the ideal Ising mixture at different tem-
peraturessT* =2.5, 3, 3.5, and 4d obtained from
MC calculations. Large symbols, Gibbs ensemble
simulations; small symbols, semigrand ensemble
simulations and multihistogram reweighting;
symbols connected with dashed lines, para-ferro
magnetic critical points at fixed concentrations
obtained from the cumulant intersection method.
All lines are only guides to the eye.
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mean-field theory remains unanswered. However, as far as
the simulations go, they do not rule out the existence of such
a tricritical line.

An even better impression of the overall topology of the
whole phase diagram is given in Fig. 8, where the isothermal
and isobaric cross sections are assembled into a three-
dimensionalx, T, p diagram. Comparison with Fig. 1 shows
the agreement with the mean-field topology.

B. Nonideal Ising mixtures

For the general mixture of an Ising and a van der Waals
fluid, the interaction potential used is

uijsrd = HuLJsrd + sisjJsrd, r , rc,

0, r . rc,
J s54d

where the spin-dependent interaction part only enters if both
particles belong to the magnetic componentssi =0 for par-
ticles of species 1, the van der Waals fluid, andsi = ±1 oth-
erwised. Also, the Lennard-Jones interaction strength« now
depends on the speciesa andb of the two particles,

uLJsrd = 4«abFSs

r
D12

− Ss

r
D6G , s55d

and the Yukawa potential is accordingly given by

Jsrd = − R«22
e−sr−sd/s

r/s
, s56d

such thatR corresponds to the ratio of magnetic and non-
magnetic interaction strengths of the Ising fluid component.
One can then define parametersz andL in analogy to Eq.s6d

with «11, «12, and«22 instead ofa11, a12, anda22.
Again, all simulations were performed with periodic

boundary conditions, the cutoff radiusrc was half the box
length, and tail correction terms were added to the potential
energy to compensate for the truncation of the potential.

Phase diagrams of the nonideal Ising mixture were inves-
tigated with Gibbs ensemble simulations at constant pressure
in the case of first-order phase transitions, as well as simu-
lations in the constant-NpT ensemble and the cumulant
crossing technique for the second-order para-ferro phase
transitions. Moreover, the first-order transitions were also in-
vestigated with the semigrand ensemble and multihistogram
reweighting.

The simulations in the Gibbs ensemble were performed
with a total number of particlesN of 500 or 1000 for runs
near the critical region. They were arranged in cycles con-
sisting of N trial particle displacements,N2 spin-flip at-
tempts, one volume change attempt, and a number of particle
interchange attempts chosen to yield about 1%–3% of the
particles being swapped in one cycle. Typically, about
106 cycles were performed per simulation run. The EVMS
method was applied in order to facilitate runs at higher den-
sities.

Simulations in the semigrand ensemble were conducted
with a particle number ofN=300 and a typical length of 4
3109 MC steps, where one step was either an attempted
identity change, a trial particle displacement, a spin-flip at-
tempt, or a volume rearrangement attempt. Depending on
whether reweighting at constant pressure or at constant tem-
perature was to be performed, either the observed values of
the volume or those of the enthalpy were stored together
with the number of particles of species 2 in a histogram with
300 bins in both dimensions. From the combined histogram
of all simulations at a certain pressure or temperature, the
coexistence concentrations of the phase diagram were then
obtained via multihistogram reweighting.

Points on the Curie surface were found via the cumulant
intersection technique. During simulations in the constant-
NpT ensemble, consisting of about 109 MC steps, the two-
dimensionalE, M histograms were obtained and extrapolated
to other temperatures via the multihistogram reweighting
technique. Thus, the fourth-order cumulant ratio of the mag-
netization distributionPsmd could be calculated as a function
of temperature. This was done for three different system
sizesN=150,N=300, andN=500, and the intersection point
of the resulting curves was determined as an estimate for the
critical temperature of the infinite system.

In order to find out whether the two phase diagram to-
pologies found in mean-field theory are also observed in
Monte Carlo simulations, two systems were studied, whose
parameter values correspond to the examples given in Sec.
II C—namely, z=0.5, L=−0.05,R=0.05 for a type-A mix-
ture andz=0.5, L=−0.25,R=0.1333 for a type-B mixture.
The values ofR were chosen as representatives of type-I
and -III Ising fluids according to the results of the simula-
tions of the pure nonideal Ising fluidf33g.

1. Type A

Figures 9 and 10 showT,x diagrams of the type-A mix-
ture atp* =ps3/«22=0.08 andp* =0.15 andp,x diagrams at

FIG. 8. x, T, p phase diagram of the ideal Ising mixture obtained
from MC calculations. Circles, data from Gibbs ensemble and semi-
grand ensemble simulations; triangles, para-ferro magnetic critical
points obtained with the cumulant intersection method. All lines and
surfaces are only guides to the eye.
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T* =kBT/«22=0.6 andT* =0.9. At p* =0.08, the system exhib-
its a critical end point where the Curie line intersects the
phase coexistence curve, separating first-order para-para
phase transitions occurring at temperatures above from para-
ferro phase transitions below the critical end point tempera-
ture. A similar phase behavior is seen in mean-field theory
fFig. 4sadg. The features predicted for low temperatures at
this pressure were not found in the simulations, however, due
to the limitation of the accessible temperature range, result-
ing from low acceptance probabilities in the particle inter-
change steps. At a higher pressure value,p* =0.15, the Curie
line does not connect to the para-para gas-liquid two-phase
region, which has now become a separate area. Instead, it
obviously passes into a para-ferro first-order demixing tran-
sition via a tricritical point, just as in the mean-field picture
fFig. 4sbdg. This behavior also shows nicely in the constant-
T diagram in Fig. 10sad. Clearly, a triple point can be ob-
served, above which para-para gas-liquid and para-ferro
liquid-liquid transitions coexist separately, whereas below
only a transition from paramagnetic gas to ferromagnetic liq-
uid is present, which is exactly the topology predicted by
mean-field theoryfFig. 4scdg. At a higher temperaturefT*

=0.9, Fig. 10sbdg, the liquid-liquid transition has vanished
and, instead, there is a para-para and a para-ferro gas-liquid
transition, separated by a critical end point, the same way as
in the mean-field calculationsfFig. 4sddg.

To get an idea of the topology of the whole phase diagram
in x,T,p space, the two-dimensionalx,T andx,p diagrams
shown in Figs. 9 and 10, together with some additional ones,
are assembled in a three-dimensional plotsFig. 11d. The ex-
trapolated loci of the tricritical demixing points are also in-
cluded, connected by a line as an estimate for the tricritical
line. Comparison with the type-A mean-field diagramfFig.
3sadg leads to the conclusion that the mean-field topology is
also found in the Monte Carlo simulations, at least in the
accessible temperature range.

2. Type B

T,x and p,x sections of the type-B Ising mixture phase
diagram can be seen in Figs. 12 and 13. Both constant-
pressure diagrams, obtained atp* =0.175 andp* =0.24, show
para-ferro gas-liquid phase transitions in the whole tempera-
ture range, and all calculated points of the Curie surface lie
inside the two-phase region. This is in agreement with the

FIG. 9. T,x phase diagrams of the Ising mix-
ture withz=0.5,L=−0.05, andR=0.05 at differ-
ent pressuressp* =0.08 and 0.15d obtained from
MC calculations. Large squares, Gibbs ensemble
simulations; small squares, semigrand ensemble
simulations and multihistogram reweighting;
circles, para-ferro magnetic critical points at cer-
tain concentrations obtained with the cumulant
intersection method. Solid symbols indicate para-
ferro phase coexistence, open symbols para-para
coexistence. All lines are only guides to the eye.

FIG. 10. p,x phase diagrams of the Ising mix-
ture withz=0.5,L=−0.05, andR=0.05 at differ-
ent temperaturessT* =0.6 and 0.9d obtained from
MC calculations. Large squares, Gibbs ensemble
simulations; small squares, semigrand ensemble
simulations and multihistogram reweighting;
circles, para-ferro magnetic critical points ob-
tained via linear interpolation of the Curie lines at
p* =0.08 and 0.15sFig. 9d to T* =0.9. Solid sym-
bols indicate para-ferro phase coexistence, open
symbols para-para coexistence. All lines are only
guides to the eye.
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mean field diagrams in Figs. 5sad and 5sbd. The features oc-
curring at low temperatures in the mean-field diagram with
pr =2.5—namely, the tricritical point and the demixing tran-
sition into two ferromagnetic phases—could not be found by
the simulations, however. The reason was not so much the
failure of the Monte Carlo methods due to the small accep-
tance probabilities at such low temperatures, but the occur-
rence of a liquid-solid transition before these temperatures
are reached. Since the applied mean-field theory does not
allow for solid phasesa priori, this transition does not show
up in the corresponding mean-field phase diagrams.

The p,x diagrams displayed in Fig. 13 show very nice
compliance with mean-field theory. Both isothermal sections,

obtained atT* =0.8 andT* =1.2, exhibit para-ferro gas-liquid
transitions in the whole pressure range. While the gas branch
of the binodal is curved at lower temperatures, a crossover
can be observed when going to higher temperatures, where
both branches show a pronounced linear shape, quite the
same as in the mean-field diagrams in Figs. 5scd and 5sdd,
strongly suggesting tricritical behavior. The positions of the
supposed tricritical points were determined by linear ex-
trapolation of the liquid and gas branches of the binodals and
are indicated in Fig. 13.

All isobaric and isothermal sections were subsequently
compiled to build up the three-dimensionalx,T,p phase dia-
gram of the type-B Ising mixture, shown in Fig. 14. The line
connecting the extrapolated tricritical points can be seen to
hit a pressure maximum and then bend down again at lower
temperature, the same way the tricritical line does in the
mean-field diagramfFig. 3sbdg. Thus one can say that it has
the character of a gas-liquid plait point line, and therefore the
mean-field topology is also present in the regions of the
phase diagram that were covered by the Monte Carlo calcu-
lations. The magnetic critical line showing up at low tem-
peratures in the mean-field diagram, however, does not ap-
pear in the Monte Carlo diagram, as it is oppressed by the
presence of the solid phase in the simulated system.

V. CONCLUSION

In this paper we have presented the results of Monte Carlo
simulations investigating first- and second-order phase tran-
sitions in mixtures of an Ising fluid and a nonmagnetic fluid.
Since for Ising mixtures there are at the moment only phase
diagrams available which were obtained within mean-field
theory, the investigations of these systems were restricted to
a topological comparison with the phase diagrams from
Monte Carlo calculations. Nevertheless, it turned out that the
mean-field theory provides quite a good prediction of the
qualitative phase behavior. The two types of tricritical lines
that occur in the mean-field diagrams, one having plait point
character and one behaving like a consolute point line, could
both be verified in the computer simulations. Of course, the

FIG. 11. x,T,p phase diagram of the Ising mixture withz=0.5,
L=−0.05, andR=0.05 from MC calculations. Small circles, data
from Gibbs ensemble and semigrand ensemble simulations Large
circles, tricritical points obtained via linear extrapolation of the de-
mixing binodals; triangles, para-ferro magnetic critical points ob-
tained with the cumulant intersection method. The squares corre-
spond to the liquid-vapor curve of the pure Ising fluid. All lines and
surfaces are only guides to the eye.

FIG. 12. T,x phase diagrams of the Ising mix-
ture withz=0.5,L=−0.25, andR=0.1333 at dif-
ferent pressuressp* =0.175 and 0.24d obtained
from MC calculations. Large squares, Gibbs en-
semble simulations; small squares, semigrand en-
semble simulations and multihistogram reweight-
ing; circles, para-ferro magnetic critical points at
certain concentrations obtained with the cumulant
intersection method. Solid symbols indicate para-
ferro phase coexistence. All lines are only guides
to the eye.
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MC calculations were restricted to a limited temperature
range and therefore could not probe the whole thermody-
namic space covered by the mean-field diagrams. Further-
more, it was found that the existence of a solid phase cannot
be ignored because it prohibits the formation of certain fea-
tures predicted by the mean-field theory, such as the demix-
ing transition into two magnetic liquid phases at very low
temperatures. Therefore, the inclusion of solid phases into
the mean-field description of the Ising mixturesusing, e.g.,
the theory inf49gd would be a possible improvement. An-
other task to be undertaken in the future is the application of
an integral equation theory such as the soft mean spherical
approximationsSMSAd used inf14g to mixtures of an Ising
and a Lennard-Jones fluid, thus allowing a quantitative com-
parison with the phase diagrams obtained in the computer

simulations. First, however, the theory has to be adapted to
the nonideal Ising fluid itself, using a Yukawa potential for
the magnetic and a Lennard-Jones potential for the nonmag-
netic interaction. Both these undertakings are planned for the
near future.
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APPENDIX: IDEAL ISING MIXTURE IN THE LIMIT p
\`

From Eq. s20d one can derive the pressure, the relative
activitiesl1

* andl2
* and the magnetization of the ideal Ising

mixture as

pr =
Tr

vr − 1
−

1

2

x2m2

vr
2 , sA1d

ln l1
* ;

m1 − m1
0

RT
= ln

1 − x

vr − 1
+

vr

vr − 1
, sA2d

ln l2
* ;

m2 − m2
0

RT
= −

xm2

vrTr
+

1 − m

2
ln

1 − m

2

+
1 + m

2
ln

1 + m

2
+ ln

x

vr − 1
+

vr

vr − 1
, sA3d

m= tanhS xm

vrTr
D . sA4d

Now Eq. sA3d can be simplified using Eq.sA4d, since

FIG. 13. p,x phase diagrams of the Ising mix-
ture withz=0.5,L=−0.25, andR=0.1333, at dif-
ferent temperaturessT* =0.8 and 1.2d obtained
from MC calculations. Large squares, Gibbs en-
semble simulations; small squares, semigrand en-
semble simulations and multihistogram reweight-
ing; stars, tricritical points obtained from linear
extrapolation of the binodals. Solid symbols indi-
cate para-ferro phase coexistence. All lines are
only guides to the eye.

FIG. 14. x,T,p phase diagram of the Ising mixture withz=0.5,
L=−0.25, andR=0.1333 from MC calculations. Small circles, data
from Gibbs ensemble and semigrand ensemble simulations; large
circles, tricritical points obtained via linear extrapolation of the bin-
odals. The squares correspond to the liquid-vapor curve of the pure
Ising fluid. All lines and surfaces are only guides to the eye.
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1 − m

2
ln

1 − m

2
+

1 + m

2
ln

1 + m

2

=
1

2
Sln

1 − m

2
+ ln

1 + m

2
D +

m

2
ln

1 + m

1 − m

=
1

2
ln

1 − m2

4
+ m tanh−1m

= ln
Î1 − m2

2
+

xm2

vrTr
. sA5d

Then, Eq.sA3d becomes

ln l2
* = ln

Î1 − m2

2
+ ln

x

vr − 1
+

vr

vr − 1
. sA6d

Using Eqs.sA1d, sA2d, andsA6d, the conditions for phase
equilibrium, Eqs.s8d–s10d, become

Tr

va − 1
−

1

2

xa
2m2

va
2 = p0, sA7d

Tr

vb − 1
= p0, sA8d

ln
1 − xa

va − 1
+

va

va − 1
= ln

1 − xb

vb − 1
+

vb

vb − 1
, sA9d

ln Î1 − m2 + ln
xa

va − 1
+

va

va − 1
= ln

xb

vb − 1
+

vb

vb − 1
.

sA10d

These equations have to be solved in combination with the
magnetic equation of state for phasea,

m= tanhS xam

vaTr
D . sA11d

According to Eq. sA1d, taking the limit pr →` corre-
sponds tovr →1. Since Eqs.sA7d–sA10d have diverging
terms when applying this limit directly, one has to be more
careful. The pressurep0 itself can be eliminated by equating
Eqs.sA7d and sA8d,

Tr

va − 1
−

1

2

xa
2m2

va
2 =

Tr

vb − 1
. sA12d

We will now switch to the variablesa and b instead ofva

and vb, defined viava;1+a and vb;1+b, and apply the
limits a→0 andb→0 in the end. EquationsA12d then be-
comes

−
1

2

xa
2m2

Trs1 + ad2 =
a − b

ab
. sA13d

Similarly, Eq. sA9d can be written as

ln
1 − xa

1 − xb

= ln
a

b
+

a − b

ab
, sA14d

which can be combined with Eq.sA13d to give

ln
1 − xa

1 − xb

+
1

2

xa
2m2

Trs1 + ad2 = ln
a

b
. sA15d

Finally, Eq. sA10d yields

ln
xa

xb

+ ln Î1 − m2 = ln
a

b
+

a − b

ab
sA16d

or, with Eq. sA13d,

ln
xa

xb

+
1

2

xa
2m2

Trs1 + ad2 + ln Î1 − m2 = ln
a

b
. sA17d

In Eqs. sA15d and sA17d one can now take the limita ,b
→0, where

lim
a,b→0+

ln
a

b
= ln 1 = 0.

Together with the magnetic equation of statesA11d with va

=1, one then obtains

ln
1 − xa

1 − xb

+
1

2

xa
2m2

Tr
= 0, sA18d

ln
xa

xb

+
1

2

xa
2m2

Tr
+ ln Î1 − m2 = 0, sA19d

m= tanhSxam

Tr
D , sA20d

as conditions for a first-order phase equilibrium atpr =`.
These are only three equations instead of five, as in Eqs.
sA7d–sA11d, but since bothva=1 andvb=1, there are only
the three variablesxa, xb, andm left to determine.

As was already pointed out in Sec. II B, atpr =` a tric-
ritical point is present atTt

`=xt
`= 1

3. With Eq. s23d, the Curie
line at pr =` is given by

Tr = x. sA21d

Consider now the Blume-CapelsBCd model. Its Hamil-
tonian is given by

H = − Jo
ki,jl

SiSj + Do
i

Si
2, sA22d

whereD is the crystal field andJ the coupling constant. Each
lattice site is associated with a spin variableSi that can take
the values 0 and ±1. A3He atom at sitei corresponds toSi
=0 and a4He atom toSi = ±1. As order parameters one has a
“magnetization”M,

M = kSil, sA23d

corresponding to the superfluid ordering, and the concentra-
tion x of 4He atoms,

x = kSi
2l. sA24d

The mean-field equations forM andx read

x =
2 coshbJM

ebD + 2 coshbJM
, sA25d
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M =
2 sinhbJM

ebD + 2 coshbJM
, sA26d

whereb=1/kBT is now the inverse temperature andJ=zJ
with z being the number of nearest neighbors. As the mean-
field expression for the free energy per particle one obtains

F

N
=

1

2
JM2 −

1

b
lnf2e−bD coshbJM + 1g. sA27d

Regarding phase coexistence, there is always one phase
with M =0 and one phase withM Þ0. If M Þ0, one can
divide Eq.sA26d by Eq. sA25d and get

M = xa tanhbJM , sA28d

wherexa is the concentration of the magnetic phase, which is
found from

xa =
2 coshbJM

ebD + 2 coshbJM
. sA29d

The value ofxb corresponding to the nonmagnetic phase is
according to Eq.sA25d given by

xb =
2

ebD + 2
. sA30d

Now two phases characterized bysxa ,Md and sxb ,0d are in
equilibrium if they have the same free energy, yielding an
additional condition for phase coexistence,

1

2
bJM2 − lnf2e−bD coshbJM + 1g = − lnf2e−bD + 1g

sA31d

or

1

2
bJM2 = ln

ebD + 2 coshbJM

ebD + 2
. sA32d

Using Eqs.sA29d and sA30d, this becomes

1

2
bJM2 = ln

xb

xa

+ ln coshbJM . sA33d

Eliminating D from Eqs.sA29d and sA30d gives

xas1 − xbd
xbs1 − xad

= coshbJM sA34d

or, with Eq. sA33d,

ln
1 − xa

1 − xb

+
1

2
bJM2 = 0. sA35d

EquationssA28d, sA33d, and sA35d together constitute the
conditions for the coexistence of two phases at a temperature
b. With

1
Î1 − m2

=
1

Î1 − tanh2Sxam

Tr
D = coshSxam

Tr
D , sA36d

Eqs. sA18d–sA20d are identical to Eqs.sA35d, sA33d, and
sA28d, sincem is defined as

m=
1

N2
o
i=1

N

Si , sA37d

with N2 being the number of particles with spin, and there-
fore

xm=
N2

N

1

N2
o
i=1

N

Si = M . sA38d

The reduced temperature in the BC model corresponding to
Tr is obviouslyTr

BEG=1/bJ. Thus, the coexistence curves of
the mean-field phase diagram are the same for the BC model
and the ideal Ising mixture atp=`. Consequently, the locus
of the tricritical point,Tt

`=xt
`=1/3, and theline of second-

order phase transitions,Tr =x, are also identicalf8g.
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