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Phase behavior of Ising mixtures
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We present phase diagrams that were calculated both in mean-field theory and via MontéMrlo
simulations for binary mixtures of a ferromagnetic Ising fluid and a nonmagnetic(fhiity mixtures in the
absence of an external field. We look at both the simple ideal Ising mixture, consisting of an ideal Ising fluid
and a hard-sphere fluid, as well as at the general case with one component being a nonideal Ising fluid and the
other a van der Waals fluid. It is shown that the mean-field phase diagram of the ideal Ising mixture in the limit
of infinite pressure is identical to that of the Blume-Capel model’fde-*He mixtures. The MC phase
diagrams were obtained using the Gibbs ensemble, the cumulant intersection technique, and the multihistogram
reweighting method, adapted to the semigrand ensemble. The results are qualitatively compared with mean-
field theory, and both types of tricritical lines occurring there are verified in the computer simulations.
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[. INTRODUCTION cies, having identical interactions with particles of the same
kind, but a different one with particles of the other compo-
While there are, apart from undercooled droplets of cernent. The magnetization then corresponds to the concentra-
tain exotic metal alloy$1,2], no realistic examples of ferro- tion of the mixture, and the magnetic field to the chemical
magnetic fluids known today, the study of phase transitiongotential difference of the two species. Results obtained for
in magnetic fluids and their mixtures is still of great value @n Ising fluid therefore also apply to symmetrical mixtures
and interest, due to several reasons. First of all, the magnetf"d, accordingly, results for Ising mixtures to ternary mix-
fluid can serve as a simplified model for other real system&Ures- o . e
showing a similar phase behavior. Some examples would b% Finally, another motivation for studying magnetic fluids is
dipolar fluids, which are often studied using the more realis 1t they exhibit a r_|ch variety of (_:rltlcal_ ph?”f’me”a n the
tic Stockmayer fluid moddI3=5], or ionic fluids, commonly phase diagram, which are worth investigating in their own

X . I right. While the pure fluids show symmetric and unsymmet-
described by the so-called restricted primitive modPM) ric tricritical points as well as critical end points, the mixture

[6.7]. Both these ;ystem_s gxh|b|t phase.d|ag.ram tOpOIOQ'e8f a magnetic fluid features tricritical lines, lines of critical
that are also obtained within the ma_gnet|c_fIU|d mode_l. _end points, and lines of magnetic critical points.
. Angthezsystem that can be described with magnetic fluids A jarge number of papers dealing with magnetic fluids has
is the”He-"He mixture. In this case, the spin degree of free-peen published so far, using mean-field theld—20, den-
dom corresponds to the superfluid order parameter dfflee ity functional theory[21-23, integral equation methods
component. Since the actual order parameter—the complgX 4, 2428, the hierarchical reference thed39], or Monte
superfluid wave function—is two dimensional, the bestCarlo simulations[14,21,23,24,30-33 Mostly, the liquid-
model would be a mixture of aXY spin fluid and a non- vapor phase transition in the absence of a magnetic field was
magnetic fluid. However, a simple Ising spin, as appliedinvestigated, but some studies also focused on the magnetic
in the Blume-Emery-Griffiths (BEG) lattice model for order-disorder transitiof29,30,32,34,3bor the influence of
*He-“He mixtureg[8], already provides the correct topology an external field14,20,25,27,28,36 However, most of these
of the phase diagram. The so-called vectoralized BEGvorks treated ideal Ising or Heisenberg fluids, and all were
(VBEG) model[9-11], usingXY spins instead, exhibits simi- restricted to pure magnetic fluids. A study of mixtures of
lar phase behavior. If one is interested in the universal quanideal or nonideal magnetic fluids and a nonmagnetic fluid
tities associated with critical phenomena, on the other handyas missing so far, until we published[i87] the mean-field
the choice of the spin dimensionality is of course essentialtheory for mixtures of an Ising fluid and a van der Waals
As will be shown in this paper, the mixture of an ideal Ising fluid. The subsequent goal was to perform Monte Carlo
fluid and a nonmagnetic fluid in mean-field theory can besimulations and compare the obtained phase diagrams with
considered as a generalization of the BEG model to the corthe mean-field ones, in order to find out whether the topolo-
tinuum, yielding the BEG phase diagrams in the limit of gies predicted by the theory would also show up in the pres-
infinite pressuréthe phase behavior of mixtures at extremely ence of fluctuations. Since the mean-field approximation is a
high pressures is also of interest in chemical physics; semther crude one, one could not expect quantitative coinci-
[12)). dence with the simulations, and therefore the phase diagrams
Another interesting feature that is unique to the Ising fluidwere only qualitatively compared. Also, it was no aim to
model is the fact that it can be mapped exactly onto a symeetermine exact locations dffri)critical points or values of
metrical (nonmagnetit binary mixture[13,14]. Since there critical exponents, but rather to get an idea of the overall
are only two possible states for the spin, +1 and -1, one caphase behavior in the three-dimensional thermodynamic
regard spin-up and spin-down particles as two different spephase diagram.
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To explore as much of the phase diagrams as possible, (T, y,x,m)=f(T,v,x,m) - f%T,v°%
several Monte Carl¢MC) technigues in various ensembles
were adapted to the systems under consideration, ranging =xf(T,m) + RT(1 =x)In(1 =x) +xIn x]
from the standard Gibbs ensemble meth®g] to techniques v-b\ a(x,m)
that have not been applied to continuous-space fluids until ~RTin b | o
only several years ago, like the histogram reweighting
schemd 39,40. where

We will now give a brief outline of this paper. In the
following section, the mean-field theory of Ising mixtures f(T.m) = RT(l -m i-m 1+m 1 +m> 5)
will be reviewed, showing new phase diagrams of typical 2 2 2 2

examples for each occurring topology, including the case of . .
the idgal Ising mixture that \?vaspnot %ﬁverec[ﬁ?]q Section 'S the entropy part of the free energy of the Ising fluid com-

Il will focus on the simulation methods we have used, es_ponent. The mixture can be characterized by the three re-

pecially the multihistogram reweighting technique applied toduced parameters A, andRp,

the semigrand and the isobaric-isothermal ensemble. In Sec. Ay — Ay Ay, — 235+ 8y 1a,
IV, the simulations performed for the Ising mixtures will be {=——— == =;
described and the results will be presented in the forih, &f

and p,x as well as three-dimensiondl,p,x diagrams. A Now one can define dimensionless variables scaled by the
short conclusion and summary of the results will finally critical parameters of component 2,

round off the work.

, (4)

(6)

] N m— .
ap;tay a;ptay 23y,

27bRT 27 _ bRT 270%p v
= =" _1 pr = —l vr = _' (7)
8 Ao 4 am adoo b

;

Il. MEAN-FIELD THEORY

The conditions for the coexistence of two phaaesnd 3 at

A. General model .
a temperaturfy and pressur@, are given by

Consider a binary mixture in the molar volumeconsist-

ing of a van der Waals fluiéfluid 1) and an Ising fluidfluid P(Xar0.r Ma) = P(Xg,05,Mg) = Po, (8
2). The mole fraction of the second component shall be de-
noted asx and its magnetization per particle as The sys- H1(XayV o) = p1(Xg,v ), 9)
tem is described by a van der Waals one-fluid equation of
state, M2(XgsUgsMy) = pp(Xg,0 5,Mp) (10
D(T.0.x.m) = RT a(x,zm) , B M, =M(X,,0,), Mg=M(Xgvp). (11
v-b v By solving these equations numerically, one can find the

first-order phase transition surfacesxijT,p space.
whereR is the molar gas constant, the attraction parameter  |nstead of a Curie line, the three-dimensional phase dia-
is defined according to the quadratic mixing rule as gram of the mixture exhibits a surface of magnetic phase
transitions or Curie surface as it can be called. It is defined as
: o 1 5\ o the set of points where the magnetizatioras a solution of
a(x,m) = agy(1 =x)7+ 2a1X(1 —x) + | @p+ 2 &mMJX5, the magnetic equation of stat8) goes to zero, given by

(2 _ Xan
v= BT (12

and the size parametbris assumed constant. In E@), a;; ) o ) . )
and a,, denote the nonmagnetic interactions between parlnserting this into Eq(1) and settingn=0 gives the equation
ticles of the same kinda,, the nonmagnetic interaction be- Of the Curie surface ix,T,p space. -

tween unlike particles, anal, the magnetic interaction inthe ~ Lines of second-order phase transitidipait point and
Ising fluid. If a,=0, the model becomes identical to the consolute point lingsare calculated from the equations
mean-field description of binary van der Waals mixtures by P P

van Konynenburg and Scd#1]. For the magnetization, the (_g) 0, (_g) 0,
equation of state in the absence of a magnetic field reads T.p T.p

(13

X2 xe

where g=f-(df/dv)v is the molar Gibbs free energy. Ex-

axm ' iti i -
m(T,v,x) = tan X _ 3) pressing these conditions in terms of the Helmholtz free en
vRT ergy yields
—f2 =
The molar Helmholtz free energy of the system correspond- faofa=Tx= 0, (14
ing to Egs.(1) and (3) with respect to the reference state of 5 5
an ideal unmixed gas with molar volurs@=b is given by f3u o = Bfauxfunfox + 3fuaxf i = faxf2,fux =0, (15)
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faxf = 3fox Tuxfar + 3fxanfox = fanfaxfx =0,  (16)

where

ALl
fivix = ( )T- (17)

' Xt

In the case of a tricritical line the first of these conditions
taken in the limit ofm— 0 yields an analytic expression for
the tricritical temperature as a function of the mole fraction
X. It turns out that depending on the three mixture param-
eters, the tricritical line has either the character of a conso-
lute point line and goes to infinite pressutgpe-A behavioy
or it resembles a plait point line and eventually becomes
unstable in a ftricritical end pointtype-B). In the three-
dimensional parameter space, the boundary surface separat-

' 0.3
ing these two types of behavior is described by the equation gL
FIG. 1. x,T,p diagram of an ideal Ising mixture. Thick line,
A=- R—m(l +0). (18) liquid-vapor curve of the pure Ising fluid; thin lines, isobaric curves
4 on the first-order surface; dotted line, tricritical line; dark surface,
Curie surface; light surface, coexistence surface of para-ferro first-
If order transitions.
A+ R—m(l +0)>0 (19) bRT b%p
4 ' T =—, p=—"7, (21
am anm
the system is of type A; otherwise, it is of type B. since the previous definitiond) were based on the critical
temperature and pressure of component 2, which are now
B. Ideal Ising mixture zero. As one can see, there is no parameter left in the free

energy(20). In order to find the first-order phase transitions,

conditions(8)—(11) have to be applied, with the constraint

where bqth components have van der Waals mtgractlonﬁlat now one of the phases always has a finite magnetization
characterized by the parametes, ar, anda,, and particles ., and the magnetization of the other phase is zero.

%?gggl?ogntgftz'ﬁesﬁctond a%?l\(;é%zrsr;g\gr:gzdgg'r?:iﬁlszgir;jt'c Having no van der Waals interactions, the system lacks a
gty ’ P line of critical points. However, it exhibits a tricritical line

cases of the system with not all interactions present Wh.'d%tarting at the tricritical point of the ideal Ising fluid and
still show quite an interesting phase behavior. This sectlo%/

Equations(1)—(4) describe the general case of a mixture

will focus on the simplest possible case featuring magneti oing to infinite pressurétype-A behavioy, which complies
interaction. but no vaFr)l derpWaaIs nteraction at(aghl —ag ith condition (19) if A and{ are considered as indetermi-

: . \ 1~912  nate but finite quantities here. The equation of the tricritical
=a,,=0). It corresponds to the mixture of an ideal Ising fluid

) 4 line is rather simple for this mixture: namely,
(Ry==) and a hard-sphere fluid. Apart from excluding a
fraction of the volume, the nonmagnetic species in this case | 1 1 Y=
does not interact at all, such that the system can be consid- Te=x% i % 3" 3 x<1. (22)
ered a diluted ideal Ising fluid. On the other hand, it can also

be seen as the limiting case of an Ising mixture where thét lies on the surface of magnetic phase transitions which,
magnetic interparticle force is much stronger than any othefccording to Eq(12), is given by

interaction in the system. X
The reduced free energy of an Ising mixture vatf=0 is U= (23
given by '

or, inserting into(1) with m=0,

bf I1-m 1-m 1+m_ 1+m 5
f,=—=xT, In + In T;
am 2 2 2 2 Pr = - (24)
X=T,
1 x2m? _ i . w_1
~TiIn( =1 -7 For p,—, it reaches the limiting point; =x;'=3.
Ur Figure 1 shows the three-dimensional phase diagram of
+T,[(1=x)In(1 —x) +xInx]. (20)  the ideal Ising mixture and Fig. 2 sections at constant pres-
sures and temperatures.
The reduced temperatufie and pressur@, are now defined An interesting feature of this system is that in the limit of
as infinite pressure its mean-field description becomes equiva-
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ticles now interact with each other both via magnetic and

// nonmagnetic forces and they also interact with particles of
0.3 0.3 y, the other component.
/ Contrary to the special case of the mixture with an ideal
0.2 02 / Ising fluid, in the general case the coexistence of two phases
« 0 B a and g with nonzero magnetizations), and mg is also
= = possible. The system exhibits a tricritical as well as a critical
0.15 0.15 line. The latter one can in general show one of five different
topologies, depending on the values of the paramétairsd
Bl 0.1 A. These are the types I-V described by van Konynenburg
5 B8 and Scott if41]. For the sake of simplicity, only cases with
a continuous critical line connecting the critical points of the
, two pure components are considered here, restricting the val-
(a) 0.2 04 06 08 1 ) 02 D& 06 08 1 ues of{ and A to the region of type | in the global phase
T,=0.13 T,=0.2 diagram. However, this only applies to nonmagnetic critical
614 0.l lines. The inclusion of _the magnet_ic equz_;ltion of state in Eqs.
' ' (14)—(16) leads to additional solutions with respect to those
0.12 0.12 in [41]: namely, critical lines with a finite magnetizati¢see
the Appendix of[37]). These lines occur especially at high
ol ol A\ pressures in the form of consolute point lines where demix-
< 0.08 0.08 \\ ing into two magnetic liquid phases sets in.
< S As to the tricritical line, it can appear in the two topolo-
.06 0.06 R gies described in Sec. Il A. In the case of type A, the line
0.04 0.04 approaches infinite pressure at a concentration
0.02 2
0.02 x§° _ AN +R(1+9) (25)
4A +3R(1+9)
© 02 04 X 06 08 1 () 02 04 X0.6 08 1

FIG. 2. Constanp and T sections of the phase diagram in Fig.

and temperatur@; =(27R,/4)x; .
As examples illustrating the occurring topologies one rep-

1. Thick line, para-ferro phase coexistence curve; dashed line, Curigesentative of each type, A and B, was chosen, whose com-
line; gray dot, tricritical point. plete three-dimensional phase diagrams are shown in Fig. 3,
whereas in Figs. 4 and 5 sections through these diagrams at
lent to that of the well-known BEG mod¢8], or rather a  constant values of pressure or temperature are displayed.
special case of it, known as the Blume-Capel model For the type-A system, Fig.(8), R, was chosen corre-
[8,42,43 (see Appendix A for a detailed derivatiorit can ~ sponding to an Ising fluid of type Ill in the nomenclature
also be shown that the general version of the BEG model igtroduced in[33]. Accordingly, the pure magnetic compo-
obtained by applying the same limit to the mixture of annent shows a critical, but no tricritical point. Still, a tricritical
ideal Ising fluid and a van der Waals fluid. line shows up in the mixture which has the character of a
pure demixing line, starting at infinite pressure i
=0.0526,T;"=0.0533 and ending in a tricritical end point on
the gas-liquid coexistence surface. Below the tricritical tem-
Consider now the case that both species also exhibit perature, the system demixes into a ferromagnetic, 2-rich lig-
nonmagnetic van der Waals interaction. Thus, the spin pauid and a paramagnetic, 1-rich liquid. An examination of the

C. Nonideal Ising mixtures

FIG. 3. x,T,p diagrams of Ising mixtures
with (&) ¢=0.5, A=-0.05, R,;=0.15 and(b) ¢
=0.5,A=-0.25,R,=0.4. Systenta) is of type A,
whereas systentb) is of type B. Thick line,
liquid-vapor curve of the pure Ising fluid compo-
nent; thin lines, isobaric curves on the first-order
surface; dotted line, tricritical line; dashed line,
critical line; hatched surface ifa) and dark sur-
face in(b), surface of magnetic phase transitions;
light surface, surface of first-order phase
transitions.

02 04 06 08 1° - 19
(a) T, (b) T,
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i p:=0.30 | pe=0.6 pr=1.3 Pr=2.5
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FIG. 4. Constanp and T sections of the phase diagram in Fig. FIG. 5. Constanp and T sections of the phase diagram in Fig.
3(a). Thick line, para-ferro phase coexistence curve; thin line, para3(b). Thick line, para-ferro phase coexistence curve; thin line, ferro-
para phase coexistence curve; dashed line, Curie line; gray doferro phase coexistence curve; dashed line, Curie line; gray dot,
tricritical point; black dot, critical point. tricritical point; black dot, magnetic critical point.

phase behavior fop— oo reveals that the tricritical line be- ) oo o ) ) .
comes metastable at high pressures and instead a line figid Curie line, the tricritical line, and a line of critical end
magnetic consolute points appears, accompanied with a d@_0|nts along which it intersects the first-order demIXIng Sur-
mixing transition into two ferromagnetic liquid phases, face. Since the type-I Ising fluid has no stable critical point,
which persists up to infinite pressure. The Curie surface seelfi€ critical line extending from the plait point of the van der
in Fig. 3@ is bounded by the Curie line of the pure Ising Waals fluid also becomes metastable when it hits the surface
fluid at x=1, the tricritical line, and a line of critical end of first-order para-ferro phase transitidfhis is not visible
points that connects the critical end point of the Ising fluidin Fig. 3(b)].
and the tricritical end point.

In the type-B case shown in Fig(l8, R,, was chosen to
be in the type-I region of the Ising fluid parameter space, and
thus there is only a tricritical point present in the pure mag- Besides simulations in the well-known Gibbs ensemble
netic component. From there, the tricritical line emerges, but38,44 we have also carried out calculations within the
contrary to the type-A topology, it reaches a maximum pressemigrand ensemb|d5]. In combination with the histogram
sure value and then drops down again, ending in a tricriticateweighting techniqu¢39,40, it provides better efficiency
end point. It has the character of a plait point line, belowespecially near the critical regions, and it avoids the disad-
which a phase transition from paramagnetic gas to ferromagrantage of particle insertion and deletion moves that restrict
netic liquid occurs. However, similar to the type-A mixtures the accessible density and temperature range for the simula-
at high pressure, the system also exhibits a demixing transtions considerably. Since the application of histogram re-
tion, where the mixture resolves into two ferromagnetic lig-weighting to the semigrand ensemble needs some consider-
uid phases with different concentrations and magnetizationsition, we will explain this point in detail.
These phases become identical in a magnetic critical point. A In the case of a grand-canonical simulation, one can com-
line of such points starts in a magnetic critical end point onpile a two-dimensional histogram of the observed total po-
the first-order coexistence surface and continues up to infitential energy and particle numbét(U,N) at a certain sys-
nite pressure. The Curie surface is now bounded by the Isintem inverse temperatu@=1/ksT and chemical potentiak.

Ill. SIMULATION DETAILS

046104-5



W. FENZ AND R. FOLK PHYSICAL REVIEW E71, 046104(2005

Then the(normalized histogram will provide an estimate of Y(B,p,A) =2 S S (U, V,N,)e AU-BV+EN, - (30)
the grand-canonical probability distributioRy,(U,N) ac- " UV N e '
cording to

it can be seen that the reweighting scheme for(Bd). yields

Q(U,N)e PUAeN
( ) I (26) PB’p’A’(U,V, NZ)

Hgu(U,N) = Pg,(U,N) =

E(B:w)
~(B'-B)U—(B'p’'-Bp)V+(B'A'-BAIN,
o e H U,V,N

whereQ(U,N) is the microcanonical ang (8, u) the grand- USE a0 N o 2
canonical partition function, given by =g VB VaHNA L (U,V,Nyp), (33

— _ with Sp,=p/ —p;, pr=8p, SA,=A/-A,, andA, = BA. Thus,

= — BU+BuN r = PBr = Pr: Pr r r T B¢ r

E(B.w) '% EN: QU,Ne . (27 instead of just replacing the facterV?#*N% occurring in

Eq. (28) with eY%#*N2%A one needs an additional factor
Using Eq.(26), one can obtain an estimate for the distri- V% and, more importantly, one has to store a three-

bution functionP ,,(U,N) by “reweighting”Hg,(U,N): dimensional histogranH(U,V,N,). It turns out, however,
_ that in the special cases when eithd8 or dp=p’'—p is
Py (UN) = f(ﬁ, M) e—(ﬁ’—ﬁ)u+(,8’,u’—,B,U.)NHﬁM(U,N) c_hosen as zero, it is again sufficient to use a two-dimensional
(B ,u) histogram.
o e_U6ﬁ+N§MrHBM(U,N), (28) Most evidently, reweighting at constant temperat($g

=0) eliminates the total energy from Eq.(33), yielding

where 8= ' - B, wu, = Bu, and du, = u/ — ;. V3P +N0A,
The idea behind the multihistogram method is now to Paprar(ViNp) = € *Hgpa(ViNo), (34)

perform a number ofi simulations at different parameters such that only the histogratd(V,N,) needs to be recorded

Bi, wi whose histograms cover the whole region of interest ingyring the simulation. The constant pressure da#e=0) is

the U,N plane. Provided there is enough overlap betweery pit more subtle, however, sind®=0 does not implydp,
neighboring histograms, it is then possible to interpolate his=( |nstead, one obtains

tograms at intermediate thermodynamic sta@eg that were
not simulated beforehand. If the simulations have a length of Pgipar(U,V,Ny) o e—Uf?B—WB’p—Bp>+N25ArHﬁpA(U,V, N,)
K; observations, the histogramsH;(U,N) can be combined

- A
into an estimated distribution functiddg,(U,N) in the fol- =g (UPVIBMNAH o (U V,Ny),  (35)
lowing way [40]: which indicates that the proper quantity to be stored is in this
n case the enthalpfg=U+pV. Hence, one can write
-BU+BuN
2 Hi(U NP Pyrpa (ENp) o €FP NS HL (ENy),  (36)
Ppu(U,N) = : (29) -
" n for the reweighting procedure at constant pressure. Compar-
> Ke AUBiniN-G ing Egs.(34) and(36) with Eq. (28) shows that the reweight-
i=1 ing scheme for a binary mixture in the semigrand ensemble

at constant temperature or pressure takes the same form as
that of a pure fluid in a grand-canonical ensemble, making its
application not more computationally extensive. One can
even use the same program to reweight the binary mixture
and the pure fluid histograms.

Following the same arguments as in the pure fluid case,
for example, by doing a simple iteration. one can also perform multiple-histogram reweighting in the
Now contrary to pure fluids, the phase behavior of a bi-semigrand ensemble. If ail simulations were done at the
nary mixture is fully covered only in a three-dimensional same temperaturg but at different pressurgs and chemi-

phase diagram—for example, in concentration-temperaturesal potential differenced;, the formulas
pressure space. Accordingly, reweighting to another state

The reweighting factor€; occurring in Eq.(29) have to be
calculated self-consistently via the condition

=2 > Py, (UN), (30
N U

point in general requires to specify a three-dimensional dif- Erlei(V,Nz)e_BpWBANZ
ference vector to the new state point. If one looks at the Papa(ViNp) = ——, VAN G, (37)
probability distribution in the semigrand ensemble, which 2L, KigPPVHpANG
can be written as
and
Q(U,V, Nz)e—BU—BpV+ﬁAN2 .
Pgon(U,V,Np) = YEPD) . (3D eCi = 2\/) % Papa,(V.No) (39

where A=pu,—uq, Q(U,V,N,) is the density of states, and apply, whereas for combining histograms obtained at the
Y(B,p,A) the semigrand-canonical partition function, given same pressurp but different temperature8, and chemical
by potential differenceq;, one has to use

046104-6



PHASE BEHAVIOR OF ISING MIXTURES

D HI(EN)e PEAAN,

Pgoa(E,N,) =
ans(EN) Ein:l Ke BEAiANC

and

=2 2 Pppa(ENy).
E Ny

Finding the coexistence curve at constandr 8 is now

(39

(40)

PHYSICAL REVIEW E1, 046104(2005

€5=2 > Py (V,M). (48)
vV M

IV. MC SIMULATIONS

A. ldeal Ising mixture

As a model for the interaction in an ideal Ising mixture—
i.e., a mixture of an ideal Ising fluid and a hard-sphere

analogous to the pure fluid case. One calculates the ondid—the potentialu;(r) was chosen as

dimensional concentration distribution P oA (Ny) +ss] _
=3P goa(V,Np) 0 Pyos(Ny) =SePpon(E,Ny). By tuning A U () = 4 UsdD) +S8I0), T <Te, 49
: BpA : ij(r) (49)
and applying the equal-area criterion for the peaks in the 0, r>r,
distribution of the mole fractiorx=N,/N, the equilibrium ; . .
concentrations are found, and thudax or p, X phase dia- with J(r) being a Yukawa potential,
gram can be built up. g (r-o)le
If one is interested in the distribution of the magnetization Jr)=-e o (50)

rather than the concentration, as is the case if one wants to

determine the locus of second-order magnetic phase transindus{r) having the form of a Lennard-Jones potential trun-
tions in an Ising mixture, a similar procedure can be appliedcated at the minimum and shifted up by the well depth to
The partition function of a magnetic fluid simulated in the give a repulsive potential smoothly decaying to zero:

isobaric-isothermal ensemble at constant temperature, pres- 1 6
sure, and magnetic field is given by 46[(2> _ (E) } te 1< 6\3,50

Ugdr) = r r . (51
0, r= %‘EU.

Z(B,pH) =2 X X U,V M)e AUV (47)
u v M
with M being the total magnetization ard(U,V,M) the ~ Such a soft-core potential is often referred to as a Weeks-

density of states, and the corresponding probability distribuhandler-AndersefWCA) potential. The spins; are de-
fined in such a way that they are either +1 or -1 if the

tion b
Y U= BoVs BHM particle is of species ghe ideal Ising fluigl and zero if it is
P, (UN.M)= Q(U,V,M)e PUApves (42  Of species ithe hard-sphere flujd Thus, only the magnetic
pprt= Z(B,p,H) : particles feel an attractive interaction between each other,

) . o . whereas the nonmagnetic ones just repell each other at short
Since the phase transition one is interested in occurs only fistances.
H=0, the term including the magnetization vanishes. AS in " Tg gize of the particles is assumed equal for both species
the sem|grar_1d ensemble,_lt is again convenient to performnq4 genoted by, andr=|ri—rj| is the interparticle distance.
the reweighting method either at constant pressure or Cofpgrigdic houndary conditions were applied, and the potential
stant temperature. In the first case one has u;;(r) was truncated at a cutoff distancgequal to half the
Pgp(E,M) = e‘EﬁBHﬂp(E,M) (43) length of thg simulation bo>_<. This truncation was agcounted
for by adding an appropriate long-range correction. The
or strengthe of the WCA potential was set equal to the strength
S W (EM)eE ¢ of the Yukawa potential.
=1 To locate the phase equilibria and construct the three-
Pgp(E,M) o En K e BEC, (44) dimensional phase diagram of the ideal Ising mixture, the
i=1 following simulation methods were applied: the constant-
pressure Gibbs ensemble, the semigrand ensemble combined
with multihistogram reweighting, and the isobaric-isothermal
ensemble together with the cumulant intersection method to
locate the surface of second-order magnetic phase transi-
tions.
The Gibbs ensemble simulations were performed with a
total number of particledl of 500 or 1000 for runs close to
the critical region. They were arranged in cycles consisting

and

e%i=2 2 P o(EM). (45)
E M

On the other hand, iB’ =4, one can write
Py (V,M) o € VOPrH 5 (V, M) (46)

and, for multiple histograms,
2 Hi(V,M)e PRV

Ein:l K e BPV-Ci

PV, M)

with

(47)

of N trial particle displacementd\, spin-flip attempts, one
volume change attempt, and a number of particle swap at-
tempts which was chosen to yield about 1%—3% of the par-
ticles being swapped in one cycle. Typically, the number of
performed cycles was about ®0n all the Gibbs ensemble
simulations, the excluded volume map samplifiyMS)
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06 histograms, respectively, were obtained and afterwards ex-
) trapolated to other temperatures or pressures via the multi-
0.5 histogram reweighting technique. Thus, the fourth-order cu-
04 mulant ratio U, of the magnetization distributioriP(m),
. defined as
203
A
0.2 (m")
U4 = 1 - (52)
0.1 3(m?)?
36 37 38 30 4 with the kth moment ofm given by
T*
FIG. 6. The fourth-order cumulant ratid, as a function of <mk>:fmkP(m)dm, (53)
temperature and system sigd=150, 300, and 500for the ideal

Ising mixture at a concentration &&=0.4 and a pressure @f =3.

The lines result from multihistogram reweighting. The critical tem- could be calculated as a function Dbr p. This was done for

peratureT =3.83 obtained from the intersection point is indicated three different system size=150, N=300, andN=500,

as a vertical line. and the intersection point of the resulting curves was deter-
mined as an estimate for the critical temperature or pressure

method[46] was utilized in order to facilitate runs at higher of the infinite system. Figure 6 shows a typical plot for

densities. =0.4 andp"=3. For the interaction potenti&#9) with long-
The simulations in the semigrand ensemble were conrange correction we find a critical cumulant ratio Ofy
ducted with a particle number &=300. Typical runs con- =0.38, just as in the pure Ising fluid case with1 (using a

sisted of 4x10° MC steps, where one step was either antruncated potential as {i29] for the pure fluid, we reproduce
attempted identity change, a trial particle displacement, #heir value ofU,.~0.46). In the case of the mixture a weak
spin-flip attempt, or a volume rearrangement attempt. Deeoncentration dependence 0f,. was observed, similar to
pending on whether reweighting at constant pressure or dhe density dependence in the pure fluid.
constant temperature was to be performed, either the ob- The results of the simulations are presented in Figs. 7 and
served values of the volume or those of the enthalpy wer8. Figure 7a) showsT, x phase diagrams obtained at several
stored together with the number of particles of species 2 in aonstant pressures, including Curie lines, and Fig) B, x
histogram with 300 bins in both dimensions. From the com-coexistence curves and Curie lines calculated at constant
bined histograms of all simulations at a certain pressure otemperature. These curves at consfamr T are cross sec-
temperature, the coexistence concentrations in the phase di#sns of the complete three-dimensional phase diagram of the
gram were then obtained via multi-histogram reweighting. studied system and can be qualitatively compared with
Points on the Curie surface were found via the cumulanthe corresponding sections calculated in mean-field theory
intersection techniquf47,48. Simulations in the constant- (Fig. 2). As one can see, the phase behavior is quite similar,
NpT ensemble were carried out, consisting of abou? 10with demixing into a paramagnetic and a ferromagnetic
Monte Carlo steps, each of which was either a trial particlegphase. Since the critical regions were not investigated thor-
displacement, a trial spin-flip or a volume rearrangement ateughly within this study, the question whether the ideal Ising
tempt. During these runs, two-dimensiongl M or E, M mixture exhibits a line of tricritical points as predicted by

T T T T T T

3 T O—d . . r P
—m—p =05
—A—p =]
61 “&p =2 v ,i FIG. 7. (@ T, x phase diagrams of the ideal
v =3 ) g Ising mixture at different pressurég’=0.5, 1, 2,
5 v . i 9] and 3 from MC calculations(b) p, x phase dia-
. grams of the ideal Ising mixture at different tem-

peratures(T"=2.5, 3, 3.5, and ¥obtained from
MC calculations. Large symbols, Gibbs ensemble

A~ simulations; small symbols, semigrand ensemble
L simulations and multihistogram reweighting;
i symbols connected with dashed lines, para-ferro
magnetic critical points at fixed concentrations
—-T =25 obtained from the cumulant intersection method.
AT =3 All lines are only guides to the eye.
—&—T =35
——T =4
0 T T T T
(b) 0.0 0.2 0.4X06 08 1.0
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W|th €11, €12 and €22 inStead Ofall, a12, and a22.

Again, all simulations were performed with periodic
boundary conditions, the cutoff radiug was half the box
length, and tail correction terms were added to the potential
energy to compensate for the truncation of the potential.

Phase diagrams of the nonideal Ising mixture were inves-
tigated with Gibbs ensemble simulations at constant pressure
in the case of first-order phase transitions, as well as simu-
lations in the constaripT ensemble and the cumulant
crossing technique for the second-order para-ferro phase
transitions. Moreover, the first-order transitions were also in-
vestigated with the semigrand ensemble and multihistogram
reweighting.

The simulations in the Gibbs ensemble were performed
with a total number of particledl of 500 or 1000 for runs
near the critical region. They were arranged in cycles con-
sisting of N trial particle displacementsN, spin-flip at-
tempts, one volume change attempt, and a number of particle
interchange attempts chosen to yield about 1%—-3% of the

1 ) X particles being swapped in one cycle. Typically, about
10° cycles were performed per simulation run. The EVMS

FIG. 8.x, T, p phase diagram of the ideal Ising mixture obtained method was applied in order to facilitate runs at higher den-
from MC calculations. Circles, data from Gibbs ensemble and semisities.
grand ensemble simulations; triangles, para-ferro magnetic critical Simulations in the semigrand ensemble were conducted
points obtained with the cumulant intersection method. All lines andwith a particle number oN=300 and a typical length of 4
surfaces are only guides to the eye. x 10° MC steps, where one step was either an attempted

identity change, a trial particle displacement, a spin-flip at-
mean-field theory remains unanswered. However, as far d6émpt, or a volume rearrangement attempt. Depending on
the simulations go, they do not rule out the existence of suchether reweighting at constant pressure or at constant tem-
a tricritical line. perature was to be performed, either the observed values of

An even better impression of the overall topology of thethe volume or those of the enthalpy were stored together
whole phase diagram is given in Fig. 8, where the isothermaVith the number of particles of species 2 in a histogram with
and isobaric cross sections are assembled into a thre800 bins in both dimensions. From the combined histogram
dimensionak, T, p diagram. Comparison with Fig. 1 shows of all simulations at a certain pressure or temperature, the
the agreement with the mean-field topology. coexistence concentrations of the phase diagram were then

obtained via multihistogram reweighting.

Points on the Curie surface were found via the cumulant
B. Nonideal Ising mixtures intersection technique. During simulations in the constant-

4\IpT ensemble, consisting of about®1MC steps, the two-
dimensionaE, M histograms were obtained and extrapolated
to other temperatures via the multihistogram reweighting
b(r) = {ULJ(r) +55J(r), r<rg, technique. Thus, the fourth-order cumulant ratio of the mag-

ij -

For the general mixture of an Ising and a van der Waal
fluid, the interaction potential used is

0, r>r, (54 netization distributiorP(m) could be calculated as a function
of temperature. This was done for three different system
where the spin-dependent interaction part only enters if botRizesN=150,N=300, andN=500, and the intersection point
particles belong to the magnetic componégt0 for par-  of the resulting curves was determined as an estimate for the
ticles of species 1, the van der Waals fluid, aw+1 oth-  critical temperature of the infinite system.

erwise. Also, the Lennard-Jones interaction strengthow In order to find out whether the two phase diagram to-
depends on the speciasandb of the two particles, pologies found in mean-field theory are also observed in
12 6 Monte Carlo simulations, two systems were studied, whose
uLs(r) :48ab[<2> - <5> } (55) parameter values correspond to the examples given in Sec.
r r Il C—namely, {=0.5, A=-0.05,R=0.05 for a type-A mix-

ture and{=0.5, A=-0.25,R=0.1333 for a type-B mixture.

and the Yukawa potential is accordingly given by .
The values ofR were chosen as representatives of type-I

_ g (oo and -lll Ising fluids according to the results of the simula-
Jr) =~ Rez rloe (56 tions of the pure nonideal Ising flui@3].
such thatR corresponds to the ratio of magnetic and non- 1. Type A

magnetic interaction strengths of the Ising fluid component. Figures 9 and 10 show,x diagrams of the type-A mix-
One can then define parametérandA in analogy to Eq(6)  ture atp” =po®/&,,=0.08 andp’=0.15 andp,x diagrams at
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p'=0.08 p'=0.15
1.24 1.2 4 B
FIG. 9. T,x phase diagrams of the Ising mix-
ture with {=0.5,A=-0.05, andR=0.05 at differ-
1.0 1.0 » ent pressuregp’ =0.08 and 0.15obtained from
MC calculations. Large squares, Gibbs ensemble
simulations; small squares, semigrand ensemble
. . simulations and multihistogram reweighting;
0.8 = 0.8 - . . . .
circles, para-ferro magnetic critical points at cer-
tain concentrations obtained with the cumulant
intersection method. Solid symbols indicate para-
0.6 0.6 g ferro phase coexistence, open symbols para-para
coexistence. All lines are only guides to the eye.
0.4 T T T T 0.4 T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
(a) X (b) X

T =kgT/e,,=0.6 andT =0.9. Atp"=0.08, the system exhib- =0.9, Fig. 1Qb)], the liquid-liquid transition has vanished
its a critical end point where the Curie line intersects theand, instead, there is a para-para and a para-ferro gas-liquid
phase coexistence curve, separating first-order para-patansition, separated by a critical end point, the same way as
phase transitions occurring at temperatures above from para: the mean-field calculatior[$ig. 4(d)].

ferro phase transitions below the critical end point tempera- To get an idea of the topology of the whole phase diagram
ture. A similar phase behavior is seen in mean-field theoryn x,T,p space, the two-dimensiona| T andx,p diagrams
[Fig. 4@]. The features predicted for low temperatures atshown in Figs. 9 and 10, together with some additional ones,
this pressure were not found in the simulations, however, duare assembled in a three-dimensional [ff6g. 11). The ex-

to the limitation of the accessible temperature range, resultrapolated loci of the tricritical demixing points are also in-
ing from low acceptance probabilities in the particle inter-cluded, connected by a line as an estimate for the tricritical
change steps. At a higher pressure vahie;0.15, the Curie  line. Comparison with the type-A mean-field diagréRig.

line does not connect to the para-para gas-liquid two-phas&@a)] leads to the conclusion that the mean-field topology is
region, which has now become a separate area. Instead,atso found in the Monte Carlo simulations, at least in the
obviously passes into a para-ferro first-order demixing tranaccessible temperature range.

sition via a tricritical point, just as in the mean-field picture
[Fig. 4(b)]. This behavior also shows nicely in the constant-
T diagram in Fig. 10(a). Clearly, a triple point can be ob- T,x and p,x sections of the type-B Ising mixture phase
served, above which para-para gas-liquid and para-ferrdiagram can be seen in Figs. 12 and 13. Both constant-
liquid-liquid transitions coexist separately, whereas belowpressure diagrams, obtainedpat0.175 ando”=0.24, show
only a transition from paramagnetic gas to ferromagnetic ligpara-ferro gas-liquid phase transitions in the whole tempera-
uid is present, which is exactly the topology predicted byture range, and all calculated points of the Curie surface lie
mean-field theonyfFig. 4(c)]. At a higher temperaturgT” inside the two-phase region. This is in agreement with the

2. Type B

T'=0.60 T'=0.90
0.20 . . : . 0.20 . : . .

FIG. 10. p,x phase diagrams of the Ising mix-
ture with £=0.5,A=-0.05, andRr=0.05 at differ-
ent temperature§T” =0.6 and 0.9 obtained from
MC calculations. Large squares, Gibbs ensemble
simulations; small squares, semigrand ensemble
simulations and multihistogram reweighting;
circles, para-ferro magnetic critical points ob-
tained via linear interpolation of the Curie lines at
p"=0.08 and 0.1%Fig. 9) to T"=0.9. Solid sym-
bols indicate para-ferro phase coexistence, open
symbols para-para coexistence. All lines are only
guides to the eye.

0.15 1 k 0.154

o 0.101 %i R ‘2. 0.104
0.0SI E 0.05 4

0.00 T T T T 0.00
060 02 04 06 08 10 0.0
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obtained aff"=0.8 andT" =1.2, exhibit para-ferro gas-liquid
transitions in the whole pressure range. While the gas branch
of the binodal is curved at lower temperatures, a crossover
can be observed when going to higher temperatures, where
both branches show a pronounced linear shape, quite the
same as in the mean-field diagrams in Fige) &nd 5d),
strongly suggesting tricritical behavior. The positions of the
supposed tricritical points were determined by linear ex-
trapolation of the liquid and gas branches of the binodals and
are indicated in Fig. 13.

All isobaric and isothermal sections were subsequently
0 compiled to build up the three-dimensionall’, p phase dia-
0.25 gram of the type-B Ising mixture, shown in Fig. 14. The line
0.5 x connecting the extrapolated tricritical points can be seen to
075 hit a pressure maximum and then bend down again at lower
temperature, the same way the tricritical line does in the
T |1 1 1 mean-field diagraniFig. 3(b)]. Thus one can say that it has
r . . . . . .

the character of a gas-liquid plait point line, and therefore the

FIG. 11.x,T,p phase diagram of the Ising mixture witr0.5, ~Mean-field topology is also present in the regions of the
A=-0.05, andR=0.05 from MC calculations. Small circles, data Phase diagram that were covered by the Monte Carlo calcu-
from Gibbs ensemble and semigrand ensemble simulations Lard@tions. The magnetic critical line showing up at low tem-
circles, tricritical points obtained via linear extrapolation of the de-peratures in the mean-field diagram, however, does not ap-
mixing binodals; triangles, para-ferro magnetic critical points ob-pear in the Monte Carlo diagram, as it is oppressed by the
tained with the cumulant intersection method. The squares corrgpresence of the solid phase in the simulated system.
spond to the liquid-vapor curve of the pure Ising fluid. All lines and
surfaces are only guides to the eye. V. CONCLUSION

0.2

0.15

P:

0.1

0.05

0.8

mean field diagrams in Figs(& and §b). The features oc- In this paper we have presented the results of Monte Carlo
curring at low temperatures in the mean-field diagram withsimulations investigating first- and second-order phase tran-
p,=2.5—namely, the tricritical point and the demixing tran- sitions in mixtures of an Ising fluid and a nonmagnetic fluid.
sition into two ferromagnetic phases—could not be found bySince for Ising mixtures there are at the moment only phase
the simulations, however. The reason was not so much théiagrams available which were obtained within mean-field
failure of the Monte Carlo methods due to the small acceptheory, the investigations of these systems were restricted to
tance probabilities at such low temperatures, but the occuma topological comparison with the phase diagrams from
rence of a liquid-solid transition before these temperaturedonte Carlo calculations. Nevertheless, it turned out that the
are reached. Since the applied mean-field theory does notean-field theory provides quite a good prediction of the
allow for solid phases priori, this transition does not show qualitative phase behavior. The two types of tricritical lines
up in the corresponding mean-field phase diagrams. that occur in the mean-field diagrams, one having plait point
The p,x diagrams displayed in Fig. 13 show very nice character and one behaving like a consolute point line, could
compliance with mean-field theory. Both isothermal sectionsboth be verified in the computer simulations. Of course, the

y | Pl‘=0-17;5 | 6 . p =0.24
1.4 1 144
FIG. 12.T,x phase diagrams of the Ising mix-
ture with {=0.5,A=-0.25, andR=0.1333 at dif-
1.24 7 121 ferent pressuregp’=0.175 and 0.24 obtained
from MC calculations. Large squares, Gibbs en-
1.0 ] 1.0 1 ) semble simulations; small squares, semigrand en-
. = ..-‘ semble simulations and multihistogram reweight-
& : ing; circles, para-ferro magnetic critical points at
087 i 081 certain concentrations obtained with the cumulant
1 intersection method. Solid symbols indicate para-
0.6 _ 0.6 ferro phase coexistence. All lines are only guides
/‘ / ] to the eye.
0.4 1 . 0.4+ T
00 02 04 06 08 10 ,, 00 02 04 06 08 L0
(a) x (b) X
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T'=0.80 T'=1.20
0.9 T T T T 0.8 T T T T
084 1 0.7
0.71 1 0.64 FIG. 13. p,x phase diagrams of the Ising mix-
ture with£=0.5,A=-0.25, andR=0.1333, at dif-
0.6 | 054 ferent temperature$T"=0.8 and 1.2 obtained
0.5 | from MC calculations. Large squares, Gibbs en-
e, 0.4 semble simulations; small squares, semigrand en-
0.4 1 = semble simulations and multihistogram reweight-
0.3 ing; stars, tricritical points obtained from linear
0.3 4 1 extrapolation of the binodals. Solid symbols indi-
0.2 cate para-ferro phase coexistence. All lines are
0.2 ] only guides to the eye.
0.1 . 0.14
0.0 T T T T 0.0 T

(@) 00 02 O.4X0.6 08 1.0 (b) 0.0 02

MC calculations were restricted to a limited temperaturesimulations. First, however, the theory has to be adapted to
range and therefore could not probe the whole thermodythe nonideal Ising fluid itself, using a Yukawa potential for
namic space covered by the mean-field diagrams. Furthethe magnetic and a Lennard-Jones potential for the nonmag-
more, it was found that the existence of a solid phase cannatetic interaction. Both these undertakings are planned for the
be ignored because it prohibits the formation of certain feanear future.

tures predicted by the mean-field theory, such as the demix-
ing transition into two magnetic liquid phases at very low
temperatures. Therefore, the inclusion of solid phases into
the mean-field description of the Ising mixtupesing, e.g.,

the theory in[49]) would be a possible improvement. An-
other task to be undertaken in the future is the application
an integral equation theory such as the soft mean spherical

approximation(SMSA) used in[14] to mixtures of an Ising

and a Lennard-Jones fluid, thus allowing a quantitative com- APPENDIX: IDEAL ISING MIXTURE IN THE LIMIT  p
parison with the phase diagrams obtained in the computer —o
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X 04020 From Eg.(20) one can derive the pressure, the relative
1 0.8 0.60:4-

activities\; and\, and the magnetization of the ideal Ising
mixture as
T, 1xn?
= -, Al
L (A1)
.y 1-x v
In\, = =In + , (A2)
RT v,—-1 v -1
0
. - xm 1-m_ 1-m
In\, EM:——+—In—
RT v,/ T, 2 2
1+m 1+m X
+ In +1In P . (A3)
2 2 v,—-1 v, -1
FIG. 14.x,T,p phase diagram of the Ising mixture wittx0.5,
A=-0.25, andR=0.1333 from MC calculations. Small circles, data xm
from Gibbs ensemble and semigrand ensemble simulations; large m:tanl‘( ) (A4)
circles, tricritical points obtained via linear extrapolation of the bin- v Ty
odals. The squares correspond to the liquid-vapor curve of the pure
Ising fluid. All lines and surfaces are only guides to the eye. Now Eg.(A3) can be simplified using EqA4), since
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l—mnl—m 1+mn1+m
2 2 2 2
1+m) m

1+m
+—1n
2 1-m

+mtanim

V1-n? .\ xn?
2 o, T,
Then, Eq.(A3) becomes

=In (A5)

* \r 1 - m2 X UI'
In\,=1In +1n + .
2 vr—1 v -1
Using Egs(Al), (A2), and(A6), the conditions for phase
equilibrium, Egs.(8)—(10), become

T, 10

(A6)

= Po, A7
va-1 2 o2 Po (AT)
T
‘ = Pos (A8)
Uﬁ_l
1-x 1-x
In ay oy B U8 , (A9)
v,—-1 v,-1 vg—1 wvp-1
— X X
InV1i-m2+In—%+ Vo _jp 284 Y8
Ua_l Ua_l Uﬁ_l Uﬁ_l
(A10)

PHYSICAL REVIEW E1, 046104(2005

X2m?

1-x, 1 a
In + = 5=In—. (A15)
1-x; 2T,(1+a) B
Finally, Eqg. (A10) yields
X —
n%e 4 in1-me=in %+ 28 (A16)
or, with Eq. (A13),
x, 1 xn? —
N2+ >—C — 4inVI-mP=In>. (A17)

In Egs. (A15) and (A17) one can now take the limi&, 8
—0, where

. o
lim In—=In1=0.
a,B—0"

Together with the magnetic equation of stéfel1) with v,
=1, one then obtains

1-x, 1x2m?
In——+-——=0, (A18)
1-x; 2 T,
X 1X2 =
In=2+="%“—+|ny1-m?=0, (A19)
Xg 2 T,
X,M
m:tan)—( ), (A20)
T

as conditions for a first-order phase equilibrium pat .
These are only three equations instead of five, as in Egs.
(A7)~(A11), but since bothv,=1 andvz=1, there are only

These equations have to be solved in combination with théhe three variableg,, x5 andm left to determine.

magnetic equation of state for phasge

()
m=tan .
v Ty

According to Eq.(Al), taking the limit p,— corre-
sponds tov,—1. Since Eqs.(A7)—«(A10) have diverging

(A11)

As was already pointed out in Sec. Il B, pt=2 a tric-
ritical point is present aT‘t”:xf:%. With Eq. (23), the Curie
line atp,= is given by

T, =x. (A21)

Consider now the Blume-CapéBC) model. Its Hamil-

terms when applying this limit directly, one has to be moretonian is given by

careful. The pressung, itself can be eliminated by equating

Egs. (A7) and (A8),
T, 1¢8m?_ T,
va—1l 2 02 vp-1

(A12)

We will now switch to the variables and 3 instead ofv,,
andvg, defined viav,=1+a andvg=1+pg, and apply the
limits «— 0 andB—0 in the end. EquatiofA12) then be-
comes

1 x2n? -
s O B (A13)
2T,(1+a) af
Similarly, Eq.(A9) can be written as
1-x -
N> o 24 28 (A14)
1 _XB IB CYB

which can be combined with EGA13) to give

H=-JX SS+AY &,
(B}, i
whereA is the crystal field and the coupling constant. Each
lattice site is associated with a spin variaBlehat can take
the values 0 and +1. AHe atom at sité corresponds t&
=0 and a*He atom toS=+1. As order parameters one has a
“magnetization”M,

(A22)

M=(S), (A23)

corresponding to the superfluid ordering, and the concentra-
tion x of “He atoms,

x=(S). (A24)
The mean-field equations fdd andx read
2 coshBJM
i (A25)

= e#2 + 2 coshBIM’
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_ 2sinhgJM
"~ &P+ 2 coshggM’

where B=1/kgT is now the inverse temperature aptezJ ~ Eliminating A from Egs.(A29) and (A30) gives
with z being the number of nearest neighbors. As the mean-

(A26) %,BJMZ =In zi +1n coshBIM. (A33)

field expression for the free energy per particle one obtains ia&_:zﬁ_; = coshBJ/M (A34)
F 1 ., 1 P T
e - = ~BA .
N ZJM F; In[2e772 coshBJM +1].  (A27) or, with Eq. (A33),
Regarding phase coexistence, there is always one phase 1-x, 1 -
with M=0 and one phase witM #0. If M+0, one can In 1-x, *5BIM7=0. (A35)

divide Eq.(A26) by Eq.(A25) and get
Equations(A28), (A33), and (A35) together constitute the

M =x, tanhBIM, (A28) conditions for the coexistence of two phases at a temperature
wherex,, is the concentration of the magnetic phase, which ig8- With
found from 1 1 m
= =cosh — |, (A36
. 2 coshBgM (A29) L-n? \/ e |‘< T ) (A36)
“ &P+ 2coshBIM’ 1-tan r

The value ofx; corresponding to the nonmagnetic phase isggs. (A18)—(A20) are identical to Egs(A35), (A33), and

according to Eq(A25) given by (A28), sincem is defined as
2 N
Xg= —F——. A30 1
5= P2 (A30 m=—3s, (A37)
2i=1

Now two phases characterized by,,M) and(x,0) are in
equilibrium if they have the same free energy, yielding anwith N, being the number of particles with spin, and there-
additional condition for phase coexistence, fore

1 5 N
= - ~BA - -BA N, 1
2,L%JM In[2e77% coshBJM + 1] = - In[2e 7> + 1] XM= _2_2 S=M. (A38)
N Npis;
(A31)
The reduced temperature in the BC model corresponding to

or T, is obviouslyT®E®=1/8.7. Thus, the coexistence curves of
1 ) e + 2 coshBIM the mean-field phase diagram are the same for the BC model
EEJM =In ISP : (A32)  and the ideal Ising mixture gt=c. Consequently, the locus
of the tricritical point, T; =x;=1/3, and thdine of second-
Using Eqgs.(A29) and (A30), this becomes order phase transition3,=x, are also identical8].
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