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In this study we have analytically obtained the relaxation function in terms of rotational correlation functions
based on Brownian motion for complex disordered systems in a stochastic framework. We found out that the
rotational relaxation function has a fractional form for complex disordered systems, which indicates that
relaxation has nonexponential character and obeys the Kohlrausch-William-Watts law, following the Mittag-
Leffler decay.
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The relaxation for ordered systems is given by the
Maxwell-Debye lawf1,2g as

Fstd = F0 exps− t/td, t ù 0. s1d

On the other hand, relaxation in many complex disordered
systems such as metallic glasses, spin glass alloysf3–6g,
ferroelectric crystalsf7g, dielectrics f8g deviates from the
classical exponential Maxwell-Debye pattern and is often de-
scribed in terms of the Kohlrausch-William-WattssKWWd
si.e., stretched exponentiald law f8,9g,

Fstd = F0 exps− t/tda, s2d

for 0,a,1, or by an asymptotic power law

Fstd = F0s1 + t/td−n s3d

with n.0. The relaxation functions in Eqs.s1d and s2d are
commonly written in terms of the correlation functions
which correspond to decay of the fluctuation of a physical
quantity such as magnetization in magnetic materials or po-
larization in the dielectric materials.

Relaxation function has been derived using the rotational
relaxation method for some system. This method has been
used by Debye in the context of dielectric relaxation of polar
moleculesf2g. Debye theory is based on the Smoluchowski
equation for the noninertial rotational diffusion of the mol-
ecules. In his work on dielectric relaxation of an assembly of
noninteracting dipolar molecules Debye considered two
models of the process, namelysad an assembly of fixed axis
rotators each having a permanent dipole momentm and sub-
jected to Brownian motion torques having their origin in the
background or heat bath, andsbd the same assembly, how-
ever, the restriction to fixed axis rotation is removed. The
results in both instances are equivalently the same, if inertial
effects are disregardedf10g. The same picture has been ap-
plied to the rotational motion of the magnetization vector of
a superparamagnetic particlef11g, the polarization vector of
a polar molecule in a dielectricf10g, and heavy molecules
f12,13g in liquid and gases. However, Debye theory cannot
explain the experimental data on dielectric relaxation of
complex systems, since the interactions between dipoles are

ignored. Indeed, the relaxation process in disordered systems
is characterized by the temporal nonlocal behavior arising
from the energetic disorder which produces obstacles or traps
which delay the motion of the particles and introduce
memory effects into the motion. Therefore an important task
in relaxation of complex systems as well as dielectric relax-
ation is to extend the Debye theory of relaxation to fractional
dynamics, so that empirical decay functions, e.g., the
stretched exponential of Kohlrauschf9g and Williams and
Wattsf8g, may be justified. Such a generalization of the De-
bye theory was given in Refs.f14–16g. We must remark that
other generalizations of the Debye model in the context of
the fractional dynamics have been discussed in recent strik-
ing works f17–21g as well.

Our main aim, in this study, is obtain relaxation function
Eq. s2d for some complex disordered systems in terms of
rotational correlation functions based on rotational Brownian
motion in a stochastic framework.

The most common calculation in which the picture of
rotational Brownian motion finds relevance is that of the
rotational correlation functionFl

Rstd, which can be measured
by infraredsird and RamansRd spectroscopies as well as the
neutron and ultrasonic scattering techniquesf22g. Correlation
function Fl

Rstd measures the correlation in time between the
direction of the unit vectorssdefining the molecular symme-
try axisd us0d and ustd. ThereforeFl

Rstd as can be obtained
from the ir and Raman spectroscopies may be expressed in
the compact form,

Fl
Rstd = kPlfus0d ·ustdgl, s4d

whereu is the unit vector along the symmetry axis of the
molecule, andPl is the Legendre polynomial of orderl. Ar-
gument ofPl is expressed asus0d ·ustd=cosgstd, whereg is
the angle between two different points at the spherical coor-
dinate system. These points are given bysu0,f0d and su ,fd
which denote two different directions separated by an angle
g. These angles satisfy the trigonometric identity,

cosg = cosu0 cosu + sinu0sinu cossf0 − fd. s5d

The addition theorem asserts that*Electronic address: ekrem.aydiner@deu.edu.tr
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Plscosgd =
4p

2l + 1 o
m=−l

l

Yl
msu0,f0dYl

m*su,fd. s6d

If we inserted Eq.s6d into Eq. s4d the rotational correlation
function is expressed in general form using the spherical har-
monics addition theorem as

Flstd =
4p

2l + 1 o
m=−l

l

kYl
msu0,f0dYl

m*su,fdl. s7d

Such a theoretical approach allows us to calculate for arbi-
trary l. The average in Eq.s7d is calculated using the prob-
ability density functions of a Brownian particle which refers
to the end of point polarization vector or a real particle. The
Brownian motion in disordered space in the presence of an
external fieldFsxd=−V8sxd leads to the fractional Fokker-
Planck equationsFFPEd f23–27g:

]

]t
Wsx0,0ux,td = 0Dt

1−aLFPWsx0,0ux,td, s8d

LFP = F ]

]x

V8sxd
mha

+ Ka

]2

]x2G . s9d

This equation then characterizes the subdiffusion process.
The FFPEs are closely related generalized Lévy-type statis-
tics f28g and can be derived from continuous time random
walk sCTRWd modelsf29–34g, or from a Langevin equation
f35g. In Eq. s8d, Wsx0,0ux,td implies the conditional prob-
ability for Brownian motion,m denotes the mass of the par-
ticle, Ka the diffusion constants associated with the transport
process, and the friction coefficientha is a measure for in-
teraction of the particle with its environment.Ka is a gener-
alization of the Einstein-Stokes-Smoluchowski relation
f23–27g which holds for the generalized coefficientha,
which is defined asKa=kBT/mha wherekB is the Boltzmann
constant, andT is the temperature. In Eq.s8d the operator

0Dt
1−a is the known fractional Riemann-Liouville integrodif-

ferential operatorf36g.
The fractional Riemann-Liouville operator0Dt

1−a

=sd/dtd0Dt
−a is defined through

0Dt
1−aWsu0,f0,0uu,f,td =

1

Gsad
]

]t
E

0

t

dt8
Wsu0,f0,0uu,f,td

st − t8d1−a .

s10d

The fractional integrodifferentiation operator0Dt
1−a contains

a convolution integral with a slowly decaying power-law
Kernel Mstd= ta−1/Gsad, ensures the non-Markovian nature
of the subdiffusion process defined by the fractional diffu-
sion process. Its fundamental property is the fractional inte-
grodifferentiation of a power,

0Dt
1−atp =

Gs1 + pd
Gsp + ad

tp+a−1. s11d

In fact, it can be shown that the more general relation

0Dt
ptq =

Gs1 + qd
Gs1 + q − pd

tq−p s12d

for any realp, q. Thus the fractional derivative of a constant,

0Dt
q1 =

1

Gs1 − qd
t−q, q . 0, s13d

reproduces an inverse power law. The special cases of inte-
ger order integrodifferentiation of a constant,dn1/dtn=0, are
included through the poles of the Gamma function forq=1,
2, 3, … .

In the case ofV8sxd=0, which means that there is no
external field, the one-dimensional FFPE can be reduced to a
diffusive-type equation:

]

]t
Wsx0,0ux,td = 0Dt

1−aKa

]2

]x2Wsx0,0ux,td. s14d

This equation is called the fractional diffusion equation
f37–39g which is a particular form of the FFPE, which can
represent the spherical coordinates as a function of the angles
u andf as

]

]t
Wsu0,f0,0uu,f,td = 0Dt

1−ada¹2Wsu0,f0,0uu,f,td,

s15d

whereda is referred to as the rotational diffusion constant
that is related to the translational diffusion constantKa and
the radiusa by da=Ka /a2sa=unitd,

¹2 =
1

sin2u
Fsinu

]

]u
Ssinu

]

]u
D +

]2

]f2G . s16d

The standard method of solution of Eq.s15d is the sepa-
ration variablesf23–27g. If we consider the separation an-
satz, asW=TQ, where T and Q are temporal and spatial
components of the conditional probability function, respec-
tively, we will obtain two eigenequations as

dTs0utd
dt

= − l2da0Dt
1−aTs0utd, s17d

¹2Qsu0,f0uu,fd = − l2Qsu0,f0uu,fd. s18d

The temporal eigenequation Eq.s17d is but the fractional
relaxation equation, the solution of which is given in terms
of the Mittag-Leffler functionf40g,

Ts0utd = Eaf− dalsl + 1dtag ; o
j=0

`
f− dalsl + 1dtag j

Gs1 + a jd
. s19d

As can be seen from the series expansion, the exponential
form can be recovered in the Brownian limita=1,

E1fd1lsl + 1dt1g = expfd1lsl + 1dtg. s20d

This result indicates that fora=1 Mittag-Leffler relaxation
modes lead to the Maxwell-Debye pattern, on the other hand,
for the interval 0,a,1 the Mittag-Leffler function indi-
cates non-Markovian Brownian motion.
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On the other hand, a convenient way of expressing the
solution of the spatial eigenequation Eq.s18d is by means of
spherical harmonics,

Qsu0,f0uu,fd = o
l=0

`

o
m=−l

l
4p

2l + 1
Yl

msu0,f0dYl
m*su,fd.

s21d

As a result, if solutions Eqs.s19d ands21d are combined,
the conditional probability function of a Brownian particle is
obtained in terms of the Mittag-Leffler function as

Wsu0,f0,0uu,f,td = o
l=0

`

o
m=−l

l
4p

2l + 1
Yl

msu0,f0dYl
m*su,fd

3Eaf− dalsl + 1dtag. s22d

Equations22d can be written as a compact in terms of the
Euler anglesV0su0,f0d andVsu ,fd, hence

WsV0,0uV,td = o
l=0

`

o
m=−l

l
4p

2l + 1
Yl

msV0dYl
m*sVdEaf− dalsl

+ 1dtag. s23d

Also, Eqs.s22d and s23d should be satisfied,

WsV0,0uV,0d = dsV0 − Vd, s24d

for t=0.
It is easy to give the correlation function Eq.s7d by what

is by now a familiar interpretation as

Flstd =
4p

2l + 1 o
m=−l

l E wsV0dYl
msV0dWsV0,0uV,td

3Yl
m*sVddV0dV. s25d

In the above equationwsV0d is ana priori probability that
the initial orientation is given byV0, while WsV0,0uV ,td is
the conditional probability that the final orientation is deter-
mined V. Assuming that the reorientations of the spinsor
moleculard symmetry axis may be modeled as an isotropic
rotational Brownian motion, we may write

wsV0d = 1/4p s26d

and adopt Eq.s22d as the solution for the conditional prob-
ability. Hence Eq.s25d yields

Flstd =
4p

2l + 1 o
m=−l

l

o
l8m8

S 1

2l8 + 1
DEaf− dal8sl8 + 1dtag

3E YsV0dYl8
m8*sV0ddV0E Yl

msVdYl8
m8*sVddV.

s27d

Using the orthogonal property,

E Yl
msVdYl8

m8*sVddV = dll8dmm8. s28d

Hence rotational correlation functions27d is written in terms
of the Mittag-Leffler functionf40g,

Flstd = Fls0dEaf− dalsl + 1dtag, s29d

where the normalized factor of Eq.s29d is given asFls0d
=4p / s2l +1d2. Equations29d states simply that the rotational
correlation function, starting from the value unity att=0,
decays nonexponentially in time with a relaxation timetl
that is inversely proportional to rotational diffusion constant
da:

ta,l = fdalsl + 1dg−1. s30d

The rotational correlation functions29d is valid for an
arbitrary numberl, and its interesting property due to the
behavior of the Mittag-Leffler functions lies in the observa-
tion that it interpolates between an initial stretched exponen-
tial si.e., KWWd behavior,

Flstd < expF−
ta

ta,lGs1 + adG , s31d

and a long-time inverse power-law pattern,

Flstd < F ta,lt
−a

Gs1 − adG . s32d

In conclusion, it is seen that relaxation functions Eqs.s31d
and s32d are compatible with Eqs.s2d and s3d for complex
disordered systems, respectively.

While formulating the problem we have disregarded the
inertial free motion governed by the rotational kinetic energy
among the successive collision. Indeed, the rotational
Brownian motion model for complex systems make sense
only when friction ha is large, i.e., the collisions are very
rapid. There the rotational jumps were imagined to occur by
large and arbitrary angles as opposed to the present instance
in which only small-angle jumps are considered.

In this study, we have analytically carried out the rota-
tional relaxation function in terms of the rotational correla-
tion function for complex disordered systems based on rota-
tional Brownian motion. To obtain the rotational correlation
function we have introduced generalized Fokker-Planck
equations of fractional order, which generalizes the Stokes-
Einstein-Smoluchowski relation, in consistency with the
fluctuation-dissipation theorem. The introduction of the
Riemann-Liouville operator includes long-range memory ef-
fects which are typically found in complex systems, and con-
sequently a single mode relaxes slowly in time, following the
Mittag-Leffler decay.

In conclusion, we have shown that rotational Brownian
motion in complex systems such as spin glasses or dielectric
materials leads to KWW decays which indicates nonexpo-
nential relaxation.
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