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Anomalous rotational relaxation: A fractional Fokker-Planck equation approach
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In this study we have analytically obtained the relaxation function in terms of rotational correlation functions
based on Brownian motion for complex disordered systems in a stochastic framework. We found out that the
rotational relaxation function has a fractional form for complex disordered systems, which indicates that
relaxation has nonexponential character and obeys the Kohlrausch-William-Watts law, following the Mittag-
Leffler decay.
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The relaxation for ordered systems is given by theignored. Indeed, the relaxation process in disordered systems
Maxwell-Debye law{1,2] as is characterized by the temporal nonlocal behavior arising
from the energetic disorder which produces obstacles or traps

®() =Poexp-t/7), t=0. oy which delay the motion of the particles and introduce

On the other hand, relaxation in many complex disorderednemory effects into the motion. Therefore an important task
systems such as metallic glasses, spin glass a[l8ys], in relaxation of complex systems as well as dielectric relax-
ferroelectric crystal7], dielectrics[8] deviates from the ation is to extend the Debye theory of relaxation to fractional
classical exponential Maxwell-Debye pattern and is often dedynamics, so that empirical decay functions, e.g., the
scribed in terms of the Kohlrausch-William-Wattkww)  stretched exponential of Kohlraus¢B] and Williams and

(i.e., stretched exponentjdaw [8,9], Watts[8], may be justified. Such a generalization of the De-
bye theory was given in Refg14-16. We must remark that
(1) = Dy exp(-t/7)*, (2)  other generalizations of the Debye model in the context of

the fractional dynamics have been discussed in recent strik-
ing works[17-21] as well.

D) =Dy(L+t/7)™" ©)] Our main aim, in this study, is obtain relaxation function
Eq. (2) for some complex disordered systems in terms of

with n>0. The relaxation functions in Eqél) and(2) are  (4tational correlation functions based on rotational Brownian
commonly written in terms of the correlation functions .,otion in a stochastic framework.

which correspond to decay of the fluctuation of a physical The most common calculation in which the picture of

quantity such as magnetization in magnetic materials or Poggtational Brownian motion finds relevance is that of the

larization in the dielectric materials. _ ___rotational correlation functio®f(t), which can be measured
Relaxation function has been derived using the rotatlonatg

; . infrared(ir) and Ramar({R) spectroscopies as well as the
relaxation meth_od for some system. Th's methqd has beeﬁeutron and ultrasonic scattering technigl®4. Correlation
used by Debye in the context of dielectric relaxation of polar]c

. .function <I)|R(t) measures the correlation in time between the
moquuIes[Z]. Debye.theo_ry IS ba}sed on thg SmOIUChOV\/Sk'direction of the unit vectorgdefining the molecular symme-
equation for the noninertial rotational diffusion of the mol-

. i . ) ftry axis) u(0) anduf(t). ThereforedblR(t) as can be obtained
ecules. In his work on dielectric relaxation of an assembly Ok om the ir and Raman spectrosconies mav be expressed in
noninteracting dipolar molecules Debye considered tw P P Y P

models of the process, namdly) an assembly of fixed axis Othe compact form,

rotators each having a permanent dipole momeand sub-

jected to Brownian motion torques having their origin in the ®F(t) = (P[u(0) -u®)]), (4)
background or heat bath, artd) the same assembly, how-
ever, the restriction to fixed axis rotation is removed. Th
results in both instances are equivalently the same, if inerti
effects are disregarddd0]. The same picture has been ap-

plied to the rotatlongl mot|.0n of the magn.etlz'atlon vector Ofthe angle between two different points at the spherical coor-
a superparamagnetic partidlel], the polarization vector of dinate system. These points are given(By, ¢,) and (6, 4)

a polar molecule in a dielectril0], and heavy molecules . . L
Lo which denote two different directions separated by an angle
[12,13 in liquid and gases. However, Debye theory cannot% These angles satisfy the trigonometric identity,

explain the experimental data on dielectric relaxation of
complex systems, since the interactions between dipoles are

for 0O<a<1, or by an asymptotic power law

hereu is the unit vector along the symmetry axis of the
olecule, andP, is the Legendre polynomial of ordérAr-
gument ofP, is expressed as(0) -u(t)=cosy(t), wherey is

COSy=C0SH, COSH+ SinHySin 6 co pg— ). (5)

*Electronic address: ekrem.aydiner@deu.edu.tr The addition theorem asserts that
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[
_ 4 m m* Dptq = Mtq—p (12)
Piicosy) = 577 2 Wl Y[ (0:4).  (6) Ot = T ra-p)

. . , ) for any realp, g. Thus the fractional derivative of a constant,
If we inserted Eq(6) into Eq. (4) the rotational correlation

function is expressed in general form using the spherical har-

monics addition theorem as oD = r'(1-q t% 9>0, (13
- ! X reproduces an inverse power law. The special cases of inte-

O((t) = I+l > (Y60, Y™ (6,0)). (7)  ger order integrodifferentiation of a constadt]1 /dt"=0, are

me included through the poles of the Gamma functionderl,

. 2,3, ...
Such a theoretical approach allows us to calculate for arbi- In the case of'(x)=0, which means that there is no

trary I. The average in Ed7) is calculated using the prob- . . .
ability density functions of a Brownian particle which refers e?“e”.‘a' field, the or)e-(?llmensmnal FFPE can be reduced to a
to the end of point polarization vector or a real particle. Thedlffuswe—type equation:
Brownian motion in disordered space in the presence of an 9 . P
external fieldF(x)=-V'(x) leads to the fractional Fokker- EW(X0,0|XJ) =oD; “KaﬁW(Xo,qX,t)- (14
Planck equatiofFFPE [23-27:

This equation is called the fractional diffusion equation

. _ l-a [37-39 which is a particular form of the FFPE, which can
&tW(X0’0|X’t) = oDt “LepWlxo, 0, 1), ®) represent the spherical coordinates as a function of the angles
0 and ¢ as
| AV E ) 2 \W( B, 0,016, 1) = gD~ VAN o, 6,016,
FP IX m77a, aaxz . at ( Oy¢0; | !¢l )_0 t a ( OI¢O| | 1¢1 )1

This equation then characterizes the subdiffusion process. (15

The FFPEs are closely related generalized Lévy-type statisyhered, is referred to as the rotational diffusion constant
tics [28] and can be derived from continuous time randomhat is related to the translational diffusion constéptand
walk (CTRW) models[29—34],_ or from a Langevin equation  the radiusa by d,=K,/a%(@=unit),
[35]. In Eq. (8), W(Xg,0|x,t) implies the conditional prob-
ability for Brownian motionm denotes the mass of the par- ,_ 1 0. 2
. e s . Vé=——|sing—|sing— | +—|. (16)
ticle, K, the diffusion constants associated with the transport sine EY:) 90)  9d?

ne > 4SS0C ! ¢
process, and the friction coefficient, is a measure for in- ] ]
teraction of the particle with its environment,, is a gener- The standard method of solution of Hd.5) is the sepa-
alization of the Einstein-Stokes-Smoluchowski relation"@tion vanitbles[ZS—Zﬂ. If we consider the separation an-
[23-27 which holds for the generalized coefficient,,  S&Z, @W=TQ, whereT and Q are temporal and spatial
which is defined a& ,=kgT/my, whereks is the Boltzmann cpmponent; of thg condltlpnal probablllty function, respec-
constant, andr is the temperature. In Eq8) the operator tively, we will obtain two eigenequations as
oDi ™ is the known fractional Riemann-Liouville integrodif- dT(olt)

ferential operatof36]. - \%d,oDi *T(0]t), 17

The fractional Riemann-Liouville operator,D; ™ dt
=(d/dt),D;“ is defined through 5 5
\Y Q(001 ¢0 01 (,25) ==A Q(007 ¢O| 0! ¢) (18)
t
oD W( 6, b5, 0] 6, ¢,t):iﬁ dt,V\/(ﬂo,qﬁo—,/Olf,dat). The temporal eigenequation E@L7) is but the fractional
I'(a) dtJq (t-t') relaxation equation, the solution of which is given in terms
(10) of the Mittag-Leffler function40],
The fractional integrodifferentiation operat@[b%‘“ contains T =E,[-d I+ D] = S [-ddl(I+ 1.)t”‘]J (19
a convolution integral with a slowly decaying power-law 0 T'l+aqj)

Kernel M(t)=t*"1/T'(«), ensures the non-Markovian nature _ ) _
of the subdiffusion process defined by the fractional diffu-AS ¢an be seen from the series expansion, the exponential
sion process. Its fundamental property is the fractional intef0rm can be recovered in the Brownian linait=1,

grodifferentiation of a power, Ey[dyl (1 + 1)tY] = exp dyl (1 + Dt]. (20)
Dl-ap I'(1+p) (pra-1 11 This result indicates that for=1 Mittag-Leffler relaxation
0=t - I'(p+a) ' (11) modes lead to the Maxwell-Debye pattern, on the other hand,
for the interval 0<a<1 the Mittag-Leffler function indi-
In fact, it can be shown that the more general relation cates non-Markovian Brownian motion.
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On the other hand, a convenient way of expressing the .
solution of the spatial eigenequation E#j8) is by means of J Y)Y (Q)dQ = 8/ Sy - (28)
spherical harmonics,
o | Hence rotational correlation functid@7) is written in terms

Q6o b6, &) = DS o~ ™ Y|m(00,¢0)Y (6, 4). of the Mittag-Leffler function40],
=0 m= (1) = PO)E,[- d I (I + Dt], (29
(21) where the normalized factor of EqR9) is given as®,(0)

As a result, if solutions Eq$19) and(21) are combined, =4/(21+1)%. Equation(29) states simply that the rotational
the conditional probability function of a Brownian particle is correlation function, starting from the value unity 0,

obtained in terms of the l\/Iittag—Leferr function as decays nonexponentially in time with a relaxation time
that is inversely proportional to rotational diffusion constant
. dg:
W( 6o, 0,016, 1) = E E 1Y{“<eo,¢o)v.’“ (6,¢) o
1=0 m—1 2 T =[d (1 + D] (30

XEq[~dal (I + 1)t°]. (22 The rotational correlation functiof29) is valid for an
Equation(22) can be written as a compact in terms of thearbitrary number, and its interesting property due to the
Euler anglesq(6y, o) and€2(8, ¢), hence behavior of the Mittag-Leffler functions lies in the observa-
tion that it interpolates between an initial stretched exponen-
tial (i.e., KWW) behavior,

|

W(Q,002,H)=2 X z—Y'“(ﬂo)Ym*(Q)E [-dl(
1=0 m=-1 t*
di(t) = exp[— —] , (32)
+ Dt 23 ! T (1 +a)
Also, Egs.(22) and(23) should be satisfied, and a long-time inverse power-law pattern,
= - Tt
W(£,0/Q,0) = 8(Q0 - Q), (24) () = [—F (1"_ a)} (32
for t=0.
It is easy to give the correlation function E) by what In conclusion, it is seen that relaxation functions E§4)
is by now a familiar interpretation as and (32) are compatible with Eqg2) and (3) for complex
disordered systems, respectively.
m While formulating the problem we have disregarded the
v = m;_ | W(Q20) Y €0) WI({20, 0}€2,) inertial free motion governed by the rotational kinetic energy

- among the successive collision. Indeed, the rotational
YT (Q)dQedQ). (25  Brownian motion model for complex systems make sense

In the above equatiow({),) is ana priori probability that °”'Y when friction ”a.is Iarge, l.e., the 'coIIis'ions are very
the initial orientation is given by, while W(Q,,0[Q). 1) is  '@Pid- There the rotational jumps were imagined to occur by

the conditional probability that the final orientation is deter-Iargle and arbitrary angles as opposed to the present instance

mined ). Assuming that the reorientations of the sgor in which only small-angle jumps are considered.

: ; . In this study, we have analytically carried out the rota-
moleculay symmetry axis may be modeled as an ISOtrOpICtional relaxation function in terms of the rotational correla-
rotational Brownian motion, we may write

tion function for complex disordered systems based on rota-
w(Qg) = 1/4r (26) tional Brownian motion. To obtain the rotational correlation

function we have introduced generalized Fokker-Planck
equations of fractional order, which generalizes the Stokes-

and adopt Eq(22) as the solution for the conditional prob-

ability. Hence Eq(25) yields Einstein-Smoluchowski relation, in consistency with the
[ fluctuation-dissipation theorem. The introduction of the

y(t) = E > ( )E [-d,)'(I" + 1)t*] Riemann-Liouville operator includes long-range memory ef-

S 2+ 1m_ gy V21T fects which are typically found in complex systems, and con-

sequently a single mode relaxes slowly in time, following the
< | vo Yn/w’* ado. | ymo Y","/* 0)dQ. Mittag-Leffler decay.
J @)Yy (Q0) OJ Yy () In conclusion, we have shown that rotational Brownian
(27) motion in complex systems such as spin glasses or dielectric
materials leads to KWW decays which indicates nonexpo-
Using the orthogonal property, nential relaxation.
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