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We consider the dynamics of the voter model and of the monomer-monomer catalytic process in the
presence of many “competing” inhomogeneities and show, through exact calculations and numerical simula-
tions, that their presence results in a nontrivial fluctuating steady state whose properties are studied and turn out
to specifically depend on the dimensionality of the system, the strength of the inhomogeneities, and their
separating distances. In fact, in arbitrary dimensions, we obtain an exactsyet formald expression of the order
parameterssmagnetization and concentration of adsorbed particlesd in the presence of an arbitrary numbern of
inhomogeneitiess“zealots” in the voter languaged and formal similarities withsuitable electrostatic systemsare
pointed out. In the nontrivial casesn=1,2, weexplicitly compute the static and long-time properties of the
order parameters and therefore capture the generic features of the systems. Whenn.2, the problems are
studied through numerical simulations. In one spatial dimension, we also compute the expressions of the
stationary order parameters in the completely disordered case, wheren is arbitrary large. Particular attention is
paid to the spatial dependence of the stationary order parameters and formal connections with electrostatics.
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I. INTRODUCTION

Recently, much attention has been devoted to the field of
nonequilibrium many-body stochastic processesf1g. In par-
ticular the study of exact solutions of prototypical models
such as thevoter modelf2g has proved to be fruitful for
understanding a broad class of nonequilibrium phenomena
f1g. In modeling nonequilibrium systems, it is often assumed
that the underlying spatial structure is homogeneous. How-
ever, in real situations stochastic processes take place in the
presence of imperfectionssdislocations, defects, etc.d that
modify locally the interactionsssee, e.g.,f1,3g and references
thereind. It is therefore highly desirable to take into account
the effects of disorder, inhomogeneities, and defects or other
spatial constraints within simple and mathematically ame-
nable models. Motivated by the above considerations, in a
recent Letterf4g, the properties of a paradigmatic nonequi-
librium statistical mechanics modelsthe voter modeld in the
presence of one single inhomogeneitysa “zealot”d have been
studied and it was shown that the presence of single zealot
has dramatic effects on the dynamics and the steady state.
For this model, in low dimensions, all of the agents eventu-
ally follow the zealot. Obviously, real systems are quite com-
plex and the case of a single defect cannot be considered as
being generic. To gain some insight into more realistic situ-
ations, we present here an approach allowing us to compute
exact properties, in arbitrary dimensions, of a class of sto-
chastic many-body systems in the presence ofn competing
inhomogeneities. This study is carried out in the context of
two physically relevant systems: the voter model and the
monomer-monomer catalytic reactionsin the reaction-
controlled limitd. We consider such a study as a further con-
tribution toward the understanding of a class of disordered

nonequilibrium many-body processesswhere inhomogene-
ities would not be spatially fixed but would be randomly
distributedd. We show that the presence of “competing inho-
mogeneities”sin the sense of locallyperturbing the other-
wise homogeneous dynamicsd generally results in a space-
dependent fluctuating steady state. The amenable case where
n=2 is analytically studied in detail and the static and long-
time properties of the order parameters are obtained and their
spatial dependence are computed. The situation wherenù2
is investigated by numerical simulations. Also, in one spatial
dimension, we are able to compute the stationary order pa-
rameters in the completely disordered casesi.e., whenn is
arbitrary larged. We therefore show how the stationary mag-
netization or concentration depends on the dimensionality of
the system, the strength of the inhomogeneities, and their
separating distances. In particular, we show that the local
perturbation of the dynamics may give rise to subtle coars-
ening phenomena. In one and two dimensionss1D and 2Dd,
when the density of the inhomogeneities is vanishing in the
thermodynamic limit there is still coarsening in the system.
Oppositely, when the density of the competing inhomogene-
ities is nonzero there is no coarsening, even in one and two
dimensions. We obtain an exact, yet formal, expression of
the order parameterssmagnetization and concentration of ad-
sorbed particlesd in arbitrary dimension. In dimensionsd
=2,3 we payspecial attention to the radial and polar depen-
dence of these quantities. Also, formal similarities withelec-
trostatic systemsare pointed out. The organization of this
work is the following: In the next section we introduce the
inhomogeneous voter model. In Sec. III, we present the gen-
eral mathematical setup and the formal solution of the prob-
lem. In Sec. IV, we study analytically the voter model in the
presence of two “competing zealots” in one, two, and three
dimensions and provide numerical results for the case where
nù2. In Sec. IV B, for the one-dimensional case, we also
derive the expression of the static magnetization in the com-
pletely disordered situation wheren is arbitrary large. Sec-*Electronic address: mmobilia@vt.edu, georgiev@vt.edu
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tion V is devoted to the study of the process of monomer-
monomer catalysis reaction on an inhomogeneous substrate,
whose mathematical formulation is very close to that of the
sinhomogeneousd voter model and in Sec. VI we summarize
and present our conclusions.

II. VOTER DYNAMICS IN THE PRESENCE OF
COMPETING ZEALOTS

The shomogeneousd voter model is an Ising-like model
where a spins“individual” d, associated with a lattice siter,
can have two different “opinions”sr = ±1 f2g. The dynamics
of such a system is implemented by randomly choosing one
spin and changing its state to the value of one of its ran-
domly chosen nearest neighbors. In theshomogeneousd voter
model, the global magnetization is conserved and the dynam-
ics is Z2 symmetricsinvariance under the global inversion
sr →−srd. The importance of the voter model stems from the
fact that it is one of a very few stochastic many-body sys-
tems that are solvable in any dimension. It is useful for de-
scribing the kinetics of catalytic reactionsf5,6g, for studying
coarsening phenomenaf7,8g, and also serves as a prototype
model for opinion dynamicsf4,9,10g.

Concepts inspired by statistical mechanics have already
been employed to some extent in the last two decades to
mimic social issuesf11g. Very recently variants of the voter
model and modern tools of nonequilibrium statistical phys-
ics, such as various mean-field-like approaches and exact
methodsf4,12,15g, numerical simulationsf9,13,14,16g, and
formulation on random networksf10,16g ssee also references
thereind, were used intensively to quantitatively study fur-
ther, both mathematically and numerically, collective phe-
nomena, such as the opinion formation, inspired by sociocul-
tural situations. In this context, the voter model and its
variants play a key rôle, as it is often used as a reference
model. Despite of all these efforts, voterlike models have
mainly be studied on homogeneous and/or translationally in-
variant spatial structures.

In contrast to most of the previous works, here we study,
using exact analytical methods and numerical simulations, a
spatially inhomogeneous voter model. It is defined on a hy-
percubic lattice of sizes2L+1dd, where individuals, labeled
by a vector r having components −Lø r i øL swith i
=1, . . . ,dd, may interact according to the usual voter dynam-
ics. In addition, we now consider that there aren zealots
slabeled j =1, . . . ,nd, occupying the siteshaj =sa1

j , . . . ,ad
j dj.

These agents interact with their neighboring spins in a biased
fashion. A zealot at siteaj favors one of the opinionse j
= ±1, i.e., it flips with an additional ratea j .0 sadditional to
the usual voter rated toward his favorite state. As the zealots
interact effectively with all of the spins on the lattice, there is
a competition between them aiming at “convincing” as many
spins as possible. Clearly, because the zealots perturb the
dynamics locally, the system is disordered, not translation-
ally invariant and the magnetization is not conserved.

According to the spin formulation of the model, the state
of the system is described by the collection of all spins:S
;hsrj. In this language, the dynamics of the model is gov-
erned by the usual voter model transition ratef2,5,6g supple-

mented by local terms involving the zealots’ reaction. The
spin-flip ratewrsSd;wssr →−srd therefore reads

wrsSd =
1

tS1 −
1

2d
sro

r8

sr8D + o
j=1

n
a j

2
s1 − e jsajddr,aj . s1d

Here the sum on right-hand sidesRHSd runs over the 2d
nearest neighborsr8 of siter andt;1/d.0 defines the time
scale. The probability distributionPsS,td satisfies the master
equation

d

dt
PsS,td = o

r
fwrsSrdPsSr,td − wrsSdPsS,tdg, s2d

where the stateSr differs from configurationS only by the
spin flip of sr. Using the master equations2d, in the thermo-
dynamic limit L→`, the equation of motion of the local
magnetization at siter, denoted bySrstd;oSsrPsS,td, reads

d

dt
Srstd = DrSrstd + o

j=1

n

a jfe j − Sajstdgdr,aj . s3d

Here Dr denotes the discrete Laplace operator:DrSrstd
;−2dSrstd+or8Sr8std. We can immediately notice from Eq.
s3d that the stationary magnetization obeys a discrete
Poisson-like equationDrSrs`d=o j=1

n a jfSajs`d−e jgdr,aj. There
is an obvious and striking resemblance between this equation
and the well-known equation for the electrostatic potential
generated byn classical point charges located athajj. There-
fore, one may be tempted to formally identifySrs`d with an
electrostatic potential and think that the problem could be
solved easily. In fact, the problem is much harder since the
quantities playing the role of charges depend themselves on
the magnetization.In other words, the problem of finding the
stationary magnetization is isomorphic to the problem of de-
termining the electrostatic potential in a discrete system
where the value of the charges depend on the potential itself.
Because of this fact, the calculation ofSrs`d cannot be in-
ferred directly from the results known from electrostatics and
the computations have to be carried out in a self-consistent
manner, as described hereafter.

III. GENERAL SETUP AND FORMAL SOLUTION

In this section, we show how to compute the magnetiza-
tion of the voter model in the presence of an arbitrary num-
ber of inhomogeneitiesscompeting zealotsd and provide a
“formal” solution of Eq.s3d.

For further use, we introduce the following quantity:

Î rssd;e0
`dte−stfe−2dtIr1

s2td¯ Ird
s2tdg= Î−rssd, where Ins2td

= I−ns2td=e0
psdq/pdcossqnde2t cosq is the usual modified

Bessel function of the first kindf20g. The quantityÎ rssd can
be rewritten in terms of Watson integrals or “lattice Green
functions”:

Î rssd = Î−rssd =E
−p

p ddq

s2pdd

e−iq·r

s+ 2fd − oi=1

d
cosqig

, s4d

whereq=sq1, . . . ,qdd is a d-dimensional vector. We also in-
troduce the Fourier transform of the magnetization
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Sqstd = o
r

eiq·rSrstd. s5d

Fourier transforming Eq.s3d, we obtain the following equa-
tion:

d

dt
Sqstd = − 2dS1 −

1

d
o
i=1

d

cosqiDSqstd + o
j=1

n

eiq·aj
Ajstd,

s6d

where Ajstd;a jfe j −Sajstdg. Laplace-transforming Eq.s6d,
we obtain the following expression for the Laplace-Fourier
transform of the magnetization:

Ŝqssd =

o j
eiq·aj

Âjssd

s+ 2dH1 −
1

d
oi=1

d
cosqiJ , s7d

whereÂjssd;e0
`dte−stAjstd. For technical simplicity, we have

considered that the system is initially in a state with zero
magnetization:Srs0d=0. Inverse-Fourier-transforming Eq.

s7d, we get the Laplace transformŜrssd of the magnetization:

Ŝrssd = o
,
E

−p

p ddq

s2pdd

Â,ssdeisa,−rd·q

s+ 2dH1 −
1

d
oi=1

d
cosqiJ . s8d

As both right- and left-hand sides still depend on the Laplace

transform of the magnetizationfthroughÂjssd on the RHSg,
to obtain an explicit expression forŜajssd, we have to find a
self-consistent solution of Eq.s8d for all of the aj’s by plug-
ging r =aj into Eq.s8d. Solving the resulting linear system, in
thermodynamic limitsL→`d we obtain

Ŝajssd = o
,
E

−p

p ddq

s2pdd

Â,ssdeisa,−ajd·q

s+ 2dH1 −
1

d
oi=1

d
cosqiJ , s9d

which can be rewritteno,sM j ,,+d j ,, /a jdÂ,ssd=e j /s, where
the symmetricn3n matrix M is defined as follows:

M j ,,ssd =E
−p

p ddq

s2pdd

eisa,−ajd·q

s+ 2dH1 −
1

d
oi=1

d
cosqiJ

= Îaj−a,ssd = Îa,−ajssd. s10d

To obtain the two last equalities, we used the integral repre-
sentations4d. We now introduce another symmetricn3n
matrix N defined by

N j ,,ss,hajd ; M j ,,ssd +
d j ,,

a j
, s11d

and from it, using Eq.s9d, one obtainsÂj and Ŝaj:

Âjssd =
1

s
o

,

e,fN−1ss,hajdg j ,,, s12d

Ŝajssd =
1

sSe j −
1

a j
o

,

e,fN−1ss,hajdg j ,,D . s13d

At this point, we can get an explicit expression for the
Laplace transform of the magnetization by plugging back Eq.
s12d into Eq. s8d. In the thermodynamic limitsL→`d, we
have

Ŝrssd =
1

s
o
j ,,

e,Îaj−rssdfN−1ss,hajdg j ,,, s14d

and therefore, formally the magnetization is obtained by
Laplace-inverting Eq.s14d:

Srstd =
1

2pi
E

c−i`

c+i` ds

s
esto

j ,,
e,Îaj−rssdfN−1ss,hajdg j ,,.

s15d

This expression means that we have recast the problem of
solving the inhomogeneous voter model in the presence of
arbitrary many inhomogeneities into a well-defined linear al-
gebra problem whose main, but nontrivial, analytic difficulty
resides in the inversion of the matrixN. The steady state of
the magnetization forL→` can be directly inferred from
Eq. s14d as follows:

Srs`d = lim
s→0

o
j ,,

e,Îaj−rssdfN−1ss,hajdg j ,,. s16d

The exact expression for the long-time magnetization is ob-
tained by Laplace-inverting thes→0 expansion of Eq.s14d,
after having subtracted the static contributionSrs`d /s, and
by paying due attention to the situations where the integrals
s4d are divergent. It is also worth mentioning that the prop-
erties of the modified Bessel functions of the first kind,Irstd
f20g, allow us to write a formal and implicit solution of Eq.
s3d for L→`, which reads

Srstd = o
k

Sks0dp
i=1

d

fe−2tIki−ri
s2tdg

+ o
j

a jE
0

t

dt8Ajst − t8dp
i=1

d

fe−2t8Iri−ai
js2t8dg. s17d

To solve it explicitly forSrstd, one has to Laplace-transform
Eq. s17d and then solve the resulting linear systemf4g, which
is equivalent to the procedure described above. Expression
s17d is advantageous if one is interested in the global mag-
netization of the system. In fact, as we consider an initially
homogeneous and “neutral” systemfSks0d=0g, using Eq.
s17d, the global magnetization of the system can be written
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Mstd ; o
k

Skstd = o
j=1

n E
0

t

dtAjstd = o
j=1

n

a jE
0

t

dtfe j − Sajstdg,

s18d

where we use the identityok=−`
` Ikstd=et f20g.

The situation considered here is particularly interesting
when the zealots favor different opinions and there is an
effective competition occurring in the system. In this case we
expect nontrivial nonequilibrium space-dependent steady
states. Of course, we can easily check that in the presence of
one single zealotsn=1d located at site0, with strengtha1

=a ande1=1, we recover the results reported in Ref.f4g. In

this case we simply haveN−1=afaÎ0ssd+1g−1 and, together

with Eq. s8d, we recoverŜrssd=aÎ rssd /sfaÎ0ssd+1g. In Ref.
f4g, one of us has shown that in low dimensions the voter

model with only one zealot evolves toward the unanimous
state favored by the inhomogeneity.

IV. VOTER MODEL IN THE PRESENCE OF TWO
COMPETING ZEALOTS

In this section we specifically consider the case where two
competing zealots are presents j =1,2d: One, with strength
a1=a, located at sitea1=0 and the other located at sitea2

=x with a strengtha2=b. This case is explicitly tractable and
displays interesting features, which turns out to be generic
for the casen.1 as illustrated by numerical simulations. For
this case, we have

N = S Î0ssd + a−1 Îxssd

Îxssd Î0ssd + b−1
D

for L→`, and therefore, using Eq.s14d, we infer the expres-
sion of the Laplace transform of the magnetization at siter:

Ŝrssd =
1

s
o
j ,,

Îaj−rssde,ssdfN−1ss,hajdg j ,, =
ae1Î rssd + be2Î r−xssd + abhÎ rssdfe1Î0ssd − e2Îxssdg + Î r−xssdfe2Î0ssd − e1Îxssdgj

sh1 + sa + bdÎ0ssd + abfÎ0
2ssd − Îx

2ssdgj
,

s19d

wheree1,2= ±1. Obviously, the inhomogeneous system with
two zealots is interesting in the case whene1=−e2. In fact, it
is clear from Ref.f4g that in 1D and 2D the conditione1
=e2 implies thatSrs`d=e1. In this situation, the long-time
approach toward the unanimous steady state isSrstd−Srs`d
.At−1/2 in one dimension andSrstd−Srs`d.B / ln t in two
dimensions. Thus, in low dimensions, whene1=e2, only the
long-time amplitudesA and B change with respect to the
case wheren=1 ande=e1 f4g.

From now on, without loss of generality, we consider the
more interesting situation when there is a competition be-
tween the zealots:e1=−e2=1. Namely, the zealot at the ori-
gin favors the +1 opinion, whereas the zealot at sitex favors
the opposite −1 state. In this case, Eq.s19d simplifies as
follows:

Ŝrssd =
aÎ rssd − bÎ r−xssd + abfÎ rssd − Î r−xssdgfÎ0ssd + Îxssdg

sh1 + sa + bdÎ0ssd + abfÎ0
2ssd − Îx

2ssdgj
.

s20d

Different questions can be asked here: What is the range
of influence of each zealot? How “efficient” are the zealots?
How does the opinion of a randomly picked spin evolve with
the time, and what will be its final opinion? These questions
will be answered in the next sections by explicit calculation
of the stationary magnetization and its long-time behavior.

A. Results in 1D

First we focus on the one-dimensional situation and con-
sider the case when both competing zealots are separated by

a finite distancex fsee Fig. 1sadg. It is worth studying the
properties of the one-dimensional version of the inhomoge-
neous voter model because of its physical implication for the
catalysisssee Sec. Vd and its close relationship with the Ising
model with Glauber dynamics, which is an important theo-
retical model, known to have many physical applications
f1,4g. In fact, in the absence of zealots the one-dimensional
voter model coincides with the Glauber-Ising model with
zero temperature dynamicsf17,18g.

In 1D, one computes explicitlyÎ rssd in Eq. s4d as follows
f20,21g:

Î rssd ; Î rssd =
hfÎs+ 4 −Îsg/2j2r

Îsss+ 4d
, s21d

wherer = ur u. We see that, in 1D,Î rssd diverges for smalls as
s−1/2.

Without loss of generality we consider the situation illus-
trated in Fig. 1 and thus, from Eqs.s20d and s21d, the long-
time expression forSrstd in the case wherer P f0,xg is

Srstd = Sa − b − abs2r − xd
a + b + abx

D −
1

sa + b + abxdÎpt

3F2ha − b − abs2r − xdj + abxhbsx − rd − raj
a + b + abx

+ ar + bsr − xdG . s22d
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For the spins on the right of the origin, withx, r ,`, we
find

Srstd = Sa − b − abx

a + b + abx
D −

1

sa + b + abxdÎpt

3F2sa − b − abxd − a2bx2

a + b + abx
+ ar + bsx − rdG ,

s23d

whereas for the spins on the left of the origin, with 0, r
,`, we find

S−rstd = Sa − b + abx

a + b + abx
D −

1

sa + b + abxdÎpt

3F2sa − b + abxd + ab2x2

a + b + abx
+ ar − bsr + xdG .

s24d

Finally, when bothr →` and t→`, Î rssd→e−rÎs/ s2Îsd.
Using this expression in Eq.s20d, as in Ref.f4g, we obtain a
scaling expression for the magnetization:

S±rstd . Sa − b 7 abx

a + b + abx
DerfcS r

2Ît
D , s25d

where erfcsxd=2ex
`sdy/Îpde−y2

is the usual complementary
error function. We infer from Eq.s22d that in the finite inter-
val separating the two zealots, the stationary magnetization

profile decays linearly with a slope −2ab / sa+b+abxd.
Outside from this interval, the final magnetization is uniform
on the right and left hand side from both inhomogeneities. In
fact, Eqs.s23d ands24d show that the static magnetization of
the spins isS±rs`d=sa−b7abxd / sa+b+abxd fsee Figs.
1sbd and 2g. These plateaus differ significantly from the val-
ues 71 only when the productab is comparable tox−1.
Therefore, in 1D, the final stationary solution, which is sum-
marized on Fig. 1sbd, is polarizedand can be understood as
being the solution of a discrete one-dimensional electrostatic
Poisson equation with peculiar boundary conditions. In fact,
it is well known that in 1D the electrostatic potential varies
linearly with the distance to the charges. Here, the nontrivial
part of the analysis is to compute in a self-consistent manner
the heights of the plateaus. All these profiles are approached
algebraically in time—i.e.,Srstd−Srs`d.At−1/2 sas in the
case with only one zealotf4gd, with the amplitude depending

nontrivially of all parameters of the systemA=Ãsa ,b ,xdr.
Obviously, because there is a distancex separating the zealot
at the origin from the other, the expression forSrstd is not
symmetric with respect to the site 0. We can notice that the
expressionss22d–s24d simplify when the strength of the
zealot is infinitesa=b=`d. In this case, the zealots have a
final magnetizationS0s`d=−Sxs`d=1.

Results25d tells us that for spinsinfinitely far away from
the zealots, the magnetization evolves as a smooth scaling
function of the variableu; r /2Ît. This scaling function dif-
fers from zerosthe initial conditiond after a long timesi.e.,
t, r2→`d, when the variableu has a finite value. It follows
from Eqs.s23d–s25d that in 1D the effect of the zealots is felt
and propagates ast1/2→`. For large time and distance, when
1! t! r2, we see from Eq.s25d that Srstd is still close to its
initial value. Whent, r2, all the agents approach ast−1/2 the
active and fluctuating stationary magnetizations23d. From
Eqs. s22d and s18d, we can infer the long-time behavior of
the global magnetization in the system. As

FIG. 1. sad Graphical representation of a microscopic configu-
ration of the spins on a one-dimensional chain. The zealot favoring
the +1 opinion with a strengtha, indicated by a dot and a larger up
spin, is at the origin. On the right of the origin, at a distancex, the
other zealot, indicated by a square and a larger down spin, favors
the −1 state with a strengthb. sbd Typical 1D stationary magneti-
zation profileSrs`d sdenoted simplySr in the figured versusr in the
thermodynamic limit. On the left of the origin and the right of the
other zealot, the static magnetization reaches two plateaus with
heights given by Eqs.s23d and s24d. Between the zealots, the sta-
tionary magnetization varies linearly according to Eq.s22d.

FIG. 2. The stationary distributionSrs`d on a L=1024 lattice
with two competing zealots. The zealot favoring the positive opin-
ion sdotd is located at the origin witha=0.02 and the other one
favoring the negative opinionssquared is at r =430 with b=0.01.
The agreement with the theoretical results for an infinite system is
excellent.
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af1 − S0stdg − bf1 + Sxstdg .
2sa − bd

a + b + abx

1
Îpt

,

when aÞb, the average number of voters following the
strongest zealot evolvessat long-timed as the square root of
time:

Mstd .
4sa − bd

a + b + abx
Î t

p
.

This result implies that the timeT necessary for the strongest
zealot to dominateson averaged the whole 1D system scales
as T,L2, whereL→`. When a=b, the system is exactly
symmetric with respect tox/2, and on average there are as
many +1 spins than −1 ones in the whole system.

In Fig. 2 we show the stationary magnetizationSrs`d on a
finite lattice with L=1024 for two competing zealots ob-
tained from Monte Carlo simulations. For simulating the
model we use random sequential dynamics by picking ran-
domly an “active” siteseither one of the zealots or a site that
has at least one nearest neighbor in a different stated and
flipping it with a rate given by Eq.s1d. The time after an
attempt for a flip is updated with the amount 1/Na, whereNa
is the number of active sites before the current update. To
account for the fact that the simulations are on a finite lattice,
where the spin at the leftsrightd boundary site has only one
nearest neighbor on the rightsleftd, the spin-flip rate at the
boundaries is modified such that it depends only on the state
of a single neighbor. The first 23108 Monte Carlo steps
sMCSd are discarded and typically we sample the configura-
tions on the lattice every 5000 MCS for the next 53109

MCS. The stationary distribution forSrs`d obtained from the
simulations is in an excellent agreement with the theoretical
values obtained for a infinite lattice and sketched on Fig.
1sbd.

Figure 3 shows the result from Monte Carlo simulations
on a relatively smallsL=8192d lattice for various average
quantities. The long-time behavior of the local magnetization
dS0std;S0s`d−S0std anddSxstd;Sxs`d−Sxstd clearly shows
the t−1/2 long-time behavior, in agreement with Eq.s22d. In
Fig. 3 we also report numerical results for the average num-
ber of interfacessi.e., two neighboring sites with different
spinsd versus time. This quantity gives us a good qualitative
and quantitative picture of the coarsening of the system. Fig-
ure 3 shows that the average value of the interfaces, which
equals to the number of the clusters of +1 and −1 spins,
evolves ast−1/2 before saturating at a small nonzero value.
One can notice that for a long time the system evolves and
coarsensas in the homogeneous voter modelf6g, but due to
the presence of the two competing zealots, subtleties appear
at long times. In fact, one has to distinguish between the
three possible situations for the coarsening:sid when we have
n,2 si.e., none or only one zealot on the latticed, there is the
usual coarseningsan infinite domain spans the entire systemd
f6g; sii d when 2øn and the densitysn/Ld of the competing
inhomogeneities is zero forL→`, there is still coarsening in
the sense that the size of the different domains formed in-
creases with the size of the lattice but never spans the entire
lattice; siii d when the density of the competing zealots has a

nonzero value in the thermodynamic limit, there is no longer
coarsening as the formation of large domains is prevented by
the interaction with the numerousscompetingd inhomogene-
ities.

After having discussed in detail the casen=2, we would
like to point out that in one spatial dimension it is possible to
compute the stationary magnetization for an arbitrary num-
ber n of zealots in a more direct and intuitive fashion than
relying on Eq.s16d. In fact, let us consider that the zealots,
labeled by j =1, . . . ,n are at sites −̀ ,a1,a2, ¯ ,an
,`. By plugging the ansatz that the stationary magnetiza-
tion between the sitesaj and aj+1 readsSrs`d=Sajs`d+g jsr
−ajd into DrSrs`d=−o j=1

n a jfe j −Sajs`dgdr,aj, where we have
introduced g j ;fSaj+1s`d−Sajs`dg /xj and xj ;aj+1−aj, we
obtain

g1dr,a1
+ sg2 − g1ddr,a2

+ ¯ + sgn−1 − gn−2ddr,an−1
− gndr,an

= o
j=1

n

a jfSajs`d − e jgdr,aj . s26d

Solving these equations, we obtain the stationary magnetiza-
tion at each sitesa1øaj øan:

Sa1s`d = e1 +
g1

a1
,

Sa2s`d = e2 +
g2 − g1

a2
,

A A A

San−1s`d = en−1 +
gn−1 − gn−2

an−1
,

FIG. 3. Coarsening on the one-dimensional model with two
competing zealots. The figure shows the average number of inter-
faces vs time, the average magnetization of the two zealotsssee the
textd S0std and Sxstd, and alsodS0std;S0s`d−S0std and dSxstd
;Sxs`d−Sxstd. The simulation is onL=8192 lattice fora=0.5, b
=0.2, andx=3000 and the solid lines shown have a slope −0.5, as
predicted by Eq.s22d. For this choice of the parameters, the average
number of interfaces decays algebraically toward a small but finite
value shere,<2.0310−4d.
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Sans`d = en −
gn−1

an
. s27d

Of course, in each of these equations forSajs`d, the right-
hand side depends onSajs`d andSaj+1s`d throughg j. Equa-
tions s27d are therefore a set of coupled linear equations that
can be rewritten asPS=v, whereP is a n3n band matrix,
which only nonvanishing entries are

Pj ,j = − sxj−1 + xj + a jxj−1xjd, 1 , j , n,

Pj ,j−1 = xj, 1 , j , n,

Pj ,j+1 = xj−1, 1 , j , n,

P1,1= − s1 + a1x1d,

Pn,n = − s1 + anxn−1d,

P1,2= Pn,n−1 = 1, s28d

andS andv are column vectors which components are, re-
spectively,

Sj = Sajs`d, 1 ø j ø n,

v1 = − e1a1x1,

v j = − e ja jxj−1xj, 1 , j , n,

vn = − enanxn. s29d

Therefore, the solution of Eqs.s27d is obtained by invert-
ing the band matrixP and reads

Sajs`d = o
k=1

n

fP−1g j ,kvk. s30d

Having solvedsat least formallyd the set of equationss27d
giving the stationary magnetization at each siteaj, the gen-
eral one-dimensional stationary magnetization in the pres-
ence ofn zealots simply reads.
sid If r ,a1,

Srs`d = Sa1s`d. s31d

sii d If aj ø r øaj+1 s1ø j ,nd,

Srs`d = Sajs`d +
Saj+1s`d − Sajs`d

aj+1 − aj sr − ajd. s32d

siii d If r .an,

Srs`d = Sans`d. s33d

As an example, let us consider the case where there are
four zealots on the chain, as illustrated in Fig. 4. This figure
shows that the one-dimensional stationary magnetization
profile is a piecewise function, as predicted by Eqs.
s31d–s33d. Whenn=4, as in Fig. 4, Eqs.s27d explicitly read

Sa2s`d − s1 + a1x1dSa1s`d = − e1a1x1,

x1Sa3s`d − sx1 + x2 + a2x1x2dSa2s`d + x2Sa1s`d = − e2a2x1x2,

x2Sa4s`d − sx2 + x3 + a3x2x3dSa3s`d + x3Sa2s`d = − e3a3x2x3,

Sa3s`d − s1 + a4x3dSa4s`d = − e4a4x3. s34d

The set of equationss34d can be solved explicitly and
gives rise to very cumbersome expressions. Plugging into the
latter the values corresponding to the system simulated in
Fig. 4—i.e.,a1=0.01,e1=−1, a2=0.02,e2= +1, a3=0.013,
e3=−1, anda4=0.003, e4= +1, andx1=230, x2=240, and
x3=130—we obtain Sa1s`d=−0.529, Sa2s`d= +0.556,
Sa3s`d=−0.441, andSa4s`d=−0.0367. These values can be
compared to the results of the simulations, reported in
Fig. 4, where we obtained Sa1s`d=−0.53±0.01,
Sa2s`d= +0.55±0.01, Sa3s`d=−0.45±0.01, and Sa4s`d
=−0.04±0.005. These comparisons show that there is excel-
lent agreement between the theoretical values predicted by
the solutions30d of the systems34d and the numerical re-
sults. This agreement is somewhat surprising as the simula-
tions reported in Fig. 4 have been carried on a relatively
small systemsL=1024d, whereas all the theoretical results
s27d–s34d have been derived in the thermodynamic limit.
This fact indicates that our analytic results may be quantita-
tively accurate even for large, but noninfinite, systems. In the
limit where the strength of the zealots isa1= . . . =an=`, all
the expressions simplify and it follows from Eqs.s27d that
Sajs`d=e j, while, for aj ø r øaj+1,

Srs`d = e j + S e j+1 − e j

aj+1 − ajDsr − ajd.

When a1= . . . =an=`, this 1D system can be related to the
one-dimensional spin model with Glauber dynamicssat zero
temperatured in the presence of quenched random fields of
infinite strengthf18g: in the voter language, the situation
considered by the authors of Ref.f18g would correspond to
the case where at each sitej a “voter” would have a prob-
ability p to be a zealot favoring the opinione j = ±1 with

FIG. 4. An example for numerical simulation of the case with
four zealots on aL=1024 latticessee the textd. The bias of the
zealots from left to right is 0.01snegatived, 0.02 spositived, 0.013
snegatived, and 0.003spositived.
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strengtha j =` and would have a probability 1−2p to be an
ordinary agent. Thesslightd difference between such a model
and the one studied in Ref.f18g is the fact that each zealot
seven when he is endowed with an infinite strengthd can be
“forced” to flip by his two neighbors, while in Ref.f18g the
srandomd magnetic fields pin the spins along their direction.
However, asa j =`, each zealotj rapidly flips back to his
preferable opinione j and thus both models are very close
and display the same stationary magnetization.

We also would like to emphasize that the resultss27d and
s30d provide the exact magnetization of the completely dis-
ordered one-dimensional voter-model, where each site is en-
dowed with a specific spin-flip rate. In this case, one would
haven=L→` zealots in the system withxj =aj+1−aj =1, and
the structure of the matrixP is rather simplefsee Eq.s28dg.

B. Results in 2D

In two dimensions, the integral of Eq.s4d is also divergent
in the long-time regimes→0 and therefore its main contri-
bution arises fromq2;q1

2+q2
2→0. In this sense, we first

expand Eq.s4d for small s in the case whenr =0:

Î0ssd ——→
s→0

−
1

4p
ln s. s35d

More generally, forr @1, we havessee Ref.f4gd

Î rssd ——→
s→0

1

2p
K0srÎsd,

where K0sxd is the usual modified Bessel function of the
third kind f20,21g. Using the small argument expansion of
such a Bessel function we find that the long-time behavior
for t@ r2@1 is given by

Î rssd ——→
rÎs→0

−
1

4p
flnsr2sd + 2hg − ln 2jg, s36d

where g=0.5772156649. . . denotes the usual Euler-
Mascheroni’s constant. From expressions20d, whenx is suf-
ficiently large to use Eq.s36d, we obtain the stationary mag-
netization of the zealots:

S0s`d .
a − b +

ab

p
ln x

a + b +
ab

p
ln x

and

Sxs`d .
a − b −

ab

p
ln x

a + b +
ab

p
ln x

.

Interestingly these expressions resemble the ones obtained in
1D fsee Eqss23d ands24dg. The only change is in the depen-
dence on separating distance: With respect to the 1D case,
one hasx→ s1/pdln x. When r @1 and ur −xu@1, from Eq.
s20d, using Eqs.s35d and s36d, the stationary magnetization
readsssee Fig. 5d

Srs`d ——→
r@1,ur−xu@1

a − b −
ab

p
ln

r

ur − xu

a + b +
ab

p
fln x + psg − ln 2dg

. s37d

Far away from both zealots and in the case of sufficiently
separated zealots—i.e.,r @x@1—this expression simplifies:

Srs`d ——→
r@x@1

a − b −
ab

p

x

r
cosu

a + b +
ab

p
fln x + psg − ln 2dg

, s38d

where cosu;sr ·xd / rx. Here we used the fact that lnsr / ur
−xud=x cosu / r +O(sx/ rd2), when r @x@1. These results
show that, because of the competition between the two zeal-
ots, the stationary magnetization is a fluctuating steady state
exhibiting nontrivial radial and polar dependence. Also,
whena=b=`, Eq. s37d reduces to

Srs`d ——→
r@1,ur−xu@1

ln
ur − xu

r

ln x + psg − ln 2d

andS0s`d=−Sxs`d=1.
Regarding the dynamical behavior, in the regime where

t@maxsur −xu2,r2d, the long-time behavior of the magnetiza-
tion is the following:

FIG. 5. Sketch of the typical 2D spatial dependence of the sta-
tionary magnetization whenL→`. At the origin, indicated by a dot,
is the zealot favoring the state +1 with a strengtha=1. At a distance
x@1, indicated by a square, is the zealot favoring the state −1 with
a strengthb.0.9. According to Eq.s37d, the agents within the disk
of centerc.2x and of radiusR.1.4x have a negative final mag-
netizationsdenoted simplySr in the figured. Outside the disk, the
final magnetization of the agents is positivessee the textd, while on
the circle the agents are in a “neutral” final state. The static mag-
netizationSrs`d exhibits both radial and polar dependence.
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Srstd − Srs`d . −
1

ln t3 ln
r2a

ur − xu2b −
ab

p
ln

r

ur − xu
hlnsx/2d + gj + 2sa − bdsg − ln 2d

a + b +
ab

p
hln x + psg − ln 2dj 4 . s39d

In the situation wherer @x@1, the above expression simplifies and the approach toward the steady state, Eq.s38d, is

Srstd − Srs`d . −
1

ln t32Fsa − bdln r +
x

r
b cosuG −

ab

p
Hx

r
cosu ln xJ

a + b +
ab

p
hln x + psg − ln 2dj 4 .

For t@ r2, these results tell us that the 2D system evolves
logarithmically slowly toward a space-dependent fluctuating
steady state. As in the presence of only one zealot, we can
see that in 2D the magnetization does not exhibit a scaling
expression betweenr andt whenr2, t@1 f4g. This is due to
the logarithmic terms, specific to the two-dimensional situa-
tion, appearing in Eqs.s35d ands36d. Natural questions arise
regarding the spatial distribution of “opinions:”What is the
spatial voting distribution in the steady state? Which region
is characterized by a majority of positive and negative opin-
ion? How does the strength ofa andb affect the final spatial
opinion distribution?

To answer these questions, we use Eq.s37d and notice that
in the limit r @1 and ur −xu@1, the spatial region where
Srs`d=0 obeys the equation

r

ur − xu
= x−1 with x ; expSpfb − ag

ab
D . s40d

WhenaÞb—i.e., for xÞ1—such an equation can be recast
into the following form

r2 +
2rx

x2 − 1
cosu −

x2

x2 − 1
= 0,

i.e., the polar equation of a circleCsc,Rd centered atc
=f1/s1−x2dgx and of radiusR=xx/ u1−x2u=x/2sinhsua−1

−b−1ud. This result, together with Eqs.s37d ands40d, implies
that in 2D, foraÞb, the agents located on the circleCsc,Rd
are “neutral” and they have zero final magnetization as illus-
trated in Fig. 5. From Eqs.s37d and s40d we can also con-
clude the following.

sid If x.1—i.e., b.a—the agents that are withinsout-
sided the disk IntCsc,Rd have a positivesnegatived magneti-
zation.

sii d If x,1—i.e.,b,a—the agents that are withinsout-
sided the disk IntCsc,Rd have a negativespositived magneti-
zation. This case is sketched in Fig. 5.

These results show that the majority of the voters, except
the ones enclosed in the disk, tend to follow the opinion
favored by the strongest zealot. The details of the neutral
region Csc,Rd depends nontrivially on all the parameters
a ,b, andx and, interestingly, the radius grows with the dif-
ference of the strength of the zealots asR~1/sinhu, where

u;b−1−a−1. Also, R increases linearly with the separating
distancex.

siii d The casea=b sincluding a=b=`d—i.e., x=1—is
special. In this situation, it follows from Eq.s40d that the
region with zero final magnetization is no longer a closed
curve but an infinite line given by the equationr
=x/2 cosu which separates the two-dimensional space into
two semi-infinite half-planes.

For the number of zealotsn.2 the analytical calculations
become very tedious and we illustrate the results of a Monte
Carlo simulation of the case with six zealots in Fig. 6. The
simulation is carried on as1283128d lattice, and due to the
1/ lnstd approach to the steady state, enormous sampling
times are required. Again when simulating the system one
has to be careful with the sites on the boundaries: if the site
lies on the edges, then it has only three nearest neighbors,
and if it is at the corners, then it has only two nearest neigh-
bors. The stochastic rules have to be slightly modified to
account for the boundary sites. The geometry of the zealots
can be seen from contour plot in Fig. 6 where three of the
zealots are positively biased and three are biased negatively.
The left picture in Fig. 6 shows the average magnetization
Srs`d on the different sites of the lattice. For these particular
values of the bias of the zealots and their position on the
lattice, in the stationary state, we observe one large region of
positive on average opinionsa curved central “stripe” in Fig.
6d and two smaller disconnected regions of a negative opin-
ion snear the left boundary and top right edge of Fig. 6d.

Regarding the coarsening of the 2D system, we again dis-
tinguish three situations:sid whenn,2, there is usual coars-
ening and an infinite domain eventually spans the entire sys-
tem; sii d when there is a finite number of competing zealots,
large domains still develop but their size is limited by the
zealots;siii d when the density of the competing zealots is
finite in the thermodynamic limit, there is no longer coars-
ening as the formation of large domains is prevented by the
interaction with the numerous inhomogeneities.

To conclude this section, as in 1D, we notice that
af1−S0s`dg=bf1+Sxs`dg which implies, with Eq.s18d, that
the global magnetization evolves, following the strongest
zealotsaÞbd, asMstd, t / ln t. As a consequence, the timeT
necessary for the strongest zealot to dominateson averaged
the whole 2D system isT,L2 ln L swhere L→`d. In the
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symmetric casesa=bd, as explained above, the 2D space is
exactly separated in two semi-infinite half-planes with oppo-
site total magnetization.

C. Results in 3D

Above two dimensions, the integrals in Eq.s4d are well
defined for all values ofs and in particular whens→0.
Therefore, in contrast to what happens in 1D and 2D, to
determine the long-time behavior of the magnetization we
cannot simply focus on theq→0 expansion of Eq.s4d. This
also means that in dimensionsdù3 in the presence ofn
zealots the static magnetization readily follows from Eq.
s16d:

Srs`d = o
j=1

n

o
,=1

n

e,Îaj−rs0dfN−1s0,hajdg j ,,. s41d

The three-dimensional lattice Green functionÎ rs0d has been
computed very recently by Glasser and Boersmaf22g. Using
the triplet sar ,br ,crd of rational numbers depending onr,
given in Table 2 of Ref.f22g, and the quantityg0; (sÎ3
−1d /96p3)G2s1/24dG2s11/24d=0.505462. . .fGszd is Euler’s
gamma functiong, it has been established that

Î rs0d =
1

2
Farg0 + cr +

br

p2g0
G . s42d

With Eqs. s20d and s42d the exact expression of the three-
dimensional magnetization in the presence of two zealots is
explicitly given by

Srs`d =
ae1Î rs0d + be2Î r−xs0d + abhÎ rs0dfe1Î0s0d − e2Îxs0dg + Î r−xs0dfe2Î0s0d − e1Îxs0dgj

1 + sa + bdÎ0s0d + abfÎ0
2s0d − Îx

2s0dg
. s43d

From now on, for the sake of concreteness, we focus on the case where we have two competing zealots,e1=−e2=1, and
thus expressions43d becomes

Srs`d =
aÎ rs0d − bÎ r−xs0d + abfÎ rs0d − Î r−xs0dgfÎ0s0d + Îxs0dg

1 + sa + bdÎ0s0d + abfÎ0
2s0d − Îx

2s0dg
.

FIG. 6. The stationary site magnetizationSrs`d on as1283128d lattice in the presence of six zealots. Three of the zealots favor the +1
state and other three the −1 opinion. The picture on the left shows a 3D plot ofSrs`d salong the vertical axisd and the picture on the right
is the corresponding contour plot. The strengths of the positive zealots are 2.0, 1.2, 0.8 and the strengths of the negative ones are 1.6, 1.4,
1.0.
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As we are mainly interested in the large-r limit, one can

observe thatÎ rs0d is just the static solution of the Poisson

equation Dr Î rs0d=−dr,0, which solution in the continuum

limit is Î rs0d. Îsrd=1/4pr sr .0d. This result, obtained
from an “electrostatic reformulation,” is valid on the discrete
lattice for r @1.1 With the help of Eq.s43d, this result allows
us to compute the 3D stationary local magnetization forr
@1 andur −xu@1:

Srs`d = −
1

4p
FC1

r
+

C2

ur − xuG , s44d

where C1=−2a / s2+ag0d and C2=2b / s2+bg0d. Again, the
resemblance with electrostatics is striking: the static magne-
tization is formally the electrostatic potential generated by
the “charges”C1 at site0 andC2 at x. As already noticed, the
difficulty resides in the fact that the chargesC1 andC2 area
priori unknown and have been computed in aself-consistent
way sassuming a large enough separating distancexd, with
the help of the exact and discrete resultss42d ands43d.2 Even
though the results44d is formally valid for r @x@1, as ex-
plained above, it gives already accurate predictions whenr
@1 and x is finite but large enoughse.g., already whenx
ù6d. It is suggestive that in the limit wherea=b=`, the
“charges”C2=−C1=2/g0. In this case the magnetization in
Eq. s44d can be viewed as the potential of the electric dipole
of charges ±2/g0. To make the connection with electrostatics
even more transparent, it is worthwhile to notice that the
expressions44d can be rewritten using amultipole expansion.
Also, whenb=0, we recoverSrs`d~1/r, as reported in Ref.
f4g. In fact, one has ur −xu−1=sr2+x2−2r ·xd−1/2

=s1/rdom=0
` sx/ rdmPmscosud, where cosu;sx·rd /xr and the

Pmscosud are the Legendre polynomials. Thus expression
s44d can be recast into

Srs`d = −
1

4prFC1 + C2o
m=0

` Sx

r
Dm

PmscosudG . s45d

At this point it is important to mention a major difference
with the case where only a single zealot is present. In the
latter situation, as showed in Ref.f4g, just by taking the
continuum limit of the equation for the magnetization, one
could anticipate thatSrs`d~ r−1 si.e., it has only radial de-
pendenced in three dimensions, which is the main desired

information. In the two-zealot case, as there is a competition
between the effects of the “charges”C1 and C2, we really
need to determineSrs`d through Eqs.s42d ands43d, to obtain
the nontrivial spatial dependence of the stationary magneti-
zation through Eqs.s44d and s45d.

Regarding the dynamical approach toward the steady

state, it is difficult to study the smalls behavior ofÎ rssd and
to rigorously obtain the long-time approach toward the sta-
tionary magnetization. However, it follows from Eq.s17d
that

Srstd − Srs`d <
1

2ps4ptd1/2fC1e
−r2/4t + C2e

−ur − xu2/4tg.

s46d

This result is expected to be accurate in the regime wheret
→`, r @1, andur −xu@1. As previously mentioned, we can
discuss about the regions with positive or negative stationary
magnetization. To determine the “neutral” regionfwhere
Srs`d=0g it follows from Eq. s44d that, in the limit wherer
@1 andur −xu@1, one has to solve

r

ur − xu
= d −1 with d ; UC2

C1
U =

bs2 + ag0d
as2 + bg0d

. s47d

When aÞb—i.e., for dÞ1—the equation can again be re-
cast into the following form:

r2 +
2rx

d 2 − 1
cosu −

x2

d 2 − 1
= 0.

Such an expression is the polar equation of a sphereSsC,Rd
centered atC=f1/s1−d 2dgx with a radiusR=dx/ u1−d 2u.
From Eq.s44d, we can also infer the following.

sid If d.1—i.e., b.a—the agents that are withinsout-
sided the sphereSsc,Rd have a positivesnegatived magneti-
zation.

sii d If d,1—i.e., b,a—the agents that are withinsout-
sided the sphereSsC,Rd have a negativespositived magne-
tization.

These results show that majority of the voters, except the
ones enclosed in the sphereSsC,Rd, tends to follow the
opinion favored by the strongest zealot. The details of the
neutral regionSsC,Rd depend nontrivially on all the param-
etersa, b, andx. In particular, we notice thatR increases
linearly with the separating distancex.

siii d The case wherea=b—i.e., d=1—is special because
thus the “effective charges” are such thatuC1u=C2. In particu-
lar, this is the case whena=b=`. It thus follows from Eq.
s47d that the region with zero final magnetization is no
longer a surface but an infinite plane, given byr =x/2 cosu,
that separates the 3D space into two regions.

In 3D, af1−S0s`dgÞbf1+Sxs`dg when aÞb, and thus
the global magnetization of the above inhomogeneous voter
model evolves linearly with the time:Mstd, t. This implies
that the timeT necessary for the strongest zealot to dominate
son averaged the whole 3D system scales asT,L3, where
L→`. On the other hand, whena=b, the space is divided in
two symmetric regions with opposite total magnetization.

1We have compared the continuum result to the exact expression
s42d and have noticed that the discrete and continuum expressions
are very close, even for finite values ofr: for instance, at siter

=s5,3,1d, we have exactlyÎ rs0d=0.01344. . ., whereas the “electro-

static” reformulation givesÎsrd=1/4pÎ35=0.01345. . .. This shows
that, already forr finite, the latter reformulation is an excellent
approximation of Eq.s42d.

2In three dimensions, in the presence ofn zealots at sites
ha1, . . . ,anj, using a continuum electrostatic reformulationswhich is
valid if ur −a1u@1, . . . ,ur −anu@1d, we can infer in the same man-
ner:Srs`d=−s1/4pdfC1/ ur −a1u+¯ +Cn/ ur −anug, which can be de-
veloped in multipolar expansion. In general, to compute the
“charges”C1, . . . ,Cn one needs to explicitly invert the matrixN.
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Finally, in the case where both zealots favor the same
opinion e= ±1—i.e., e1=e2=e—one has just to modify the
expressions of “charges” in Eqs.s44d–s46d. In fact, these
results are still valid with C1=−2ea / s2+ag0d and
C2=−2eb / s2+bg0d.

V. MONOMER-MONOMER CATALYTIC REACTION ON
AN INHOMOGENEOUS SUBSTRATE

The other model that we specifically consider in this work
is the monomer-monomer catalytic reaction. Such a process
is of considerable interest in many fields of science and the
technology. In the catalysis the rate of a chemical reaction is
enhanced by the presence of a suitable catalytic material,
such as the platinum used to catalyze the oxidation of carbon
monoxide s2CO+O2→2CO2d f19,23g. Because of the nu-
merous and practical implications of the catalytic reaction, it
is of prime interest to be able to model its quantitative and
qualitative behavior. In general, these processes are de-
scribed within mean-field like approaches where it is as-
sumed that molecules are randomly distributed on the sub-
strate f19,23g. Spatial fluctuations and excluded volume
constraints are thus ignored, despite of the fact that these
effects are shown to play often a crucial rolef24g.

In the modeling of catalysisf23g, the monomer-monomer
surface reaction model plays an important part at least from a
theoretical point of view because the simplicity of the model
allows to address several issues analytically, such as the role
of the fluctuationsf5,24g, the interfacial rougheningf25g, and
the diffusion of the adsorbentsf26g.

The monomer-monomer catalytic process on a homoge-
neous substrate is by now well understood and it comprises
the following reactionsf5,6g:

A + x ——→
kA

AS,

B + x ——→
kB

BS,

AS+ BS ——→
kr

AB↑ + 2 x .

TheA andB particles impinge upon a substrate with rateskA
andkB, respectively, adsorb onto vacant sitessxd and form
monolayers of adsorbed particles,AS and BS. Nearest-
neighbor pairs of different adsorbed particles,ASBS, react
and desorb with ratekr, leaving two vacant sitess2x d on the
substrate. The dynamics on a spatially homogeneous sub-
strate is most interesting in dimensionsdø2, whenkA=kB
sotherwise the species with the bigger rate will rapidly satu-
rate the substrated. In this case there is coarsening on the
substrate induced by fluctuations and islands ofAS and BS
particles grow. As in Refs.f5,6g, we will consider the
reaction-controlledlimit, where kr !kA=kB. This limit turns
out to be useful from a technical point of view and, most
importantly, provides qualitatively the same kind of behavior
as the general casef5,6,24g. In the reaction-controlled limit,
the substrate quickly becomes fully occupied and stays cov-
ered withAS’s andBS’s for ever svacancies are immediately

refilledd. The kinetics of monomer-monomer substrate reac-
tion model is therefore atwo-state system that can be
mapped onto the voter model supplemented by an infinite-
temperature Kawasaki exchange processf5,6g. In fact, in the
monomer-monomer catalytic reaction under consideration,
AS andBS desorb and the resulting empty sites are instanta-
neously refilled either byASBS sno reactiond, ASAS,BSBS
svoter dynamicsd, or BSAS sKawasaki exchange dynamics at
infinite temperatured.

Clearly, more realistic situations should include the pres-
ence of inhomogeneities which could deeply affect the prop-
erties of the system. In fact, real substratessin 1D and 2Dd
display generally some degrees of spatial heterogeneity
which are attributed to imperfections, such as dislocations
and defectsf27g that modify locally the interactions on the
substrate. In some previous works translationally invariant
disordered models catalysis have been considered within
mean-field-like approaches—i.e., rate equations and pair ap-
proximation f28g. In these works, it was shown that
quenched substrate imperfections dramatically affect the dy-
namics, resulting in a reactive steady state. One should em-
phasize that both the physical systemssin this work, the in-
homogeneities are not randomly distributed but fixedd and
analytic methodsswe obtain exact results in arbitrary dimen-
sions, while the authors off28g employed mean-field-like
approachesd considered here differ from, and are thus
complementary to, those of Ref.f28g. Also, very recently, an
equilibriummodel for monomer-monomer catalysis on a dis-
ordered substrate was solvedf29g.

Hereafter we study the static and dynamical effects of
local inhomogeneities in the monomer-monomer catalytic
reaction-controlled process and show how to take advantage
of the results obtained for the inhomogeneous voter model to
infer some exact properties. In fact, we consider thegenuine
nonequilibriumsituation where the substrate isspatially in-
homogeneous, because of the presence of a collection ofn
inhomogeneities located at siteshajj , j =1, . . . ,n, favoring the
local adsorption ofA’s or B’s. We show that the inhomoge-
neities induce spatially dependent reactive steady state when
n.1. As a substrate, as described in Sec. II, we consider a
hypercubic lattice withs2L+1dd sites and introduce a set of
parameterse j8

8 , taking the values 0 or 1, and consider, in
addition to the usual homogeneous catalytic reaction de-
scribed above, that some inhomogeneitieslocally favor the
presence ofA via desorption ofB’s sand vice versad through
the additional reactions

BS ——→
a j

AS,

wheree j8=1, and

AS ——→
a j8

BS,

wheree j8
8 =0. We therefore consider the following homoge-

neous processessvoter+ infinite-temperature Kawasaki dy-
namicsd, all occurring with the same rates 1/2, and local
sinhomogeneousd reactions at sitesaj and aj8Þ j, occurring,
respectively, with ratesa j anda j8:
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ASBS ——→
1/2

ASAS, ASBS ——→
1/2

BSBS,

ASBS ——→
1/2

BSAS,

AS ——→
a j;e j8=0

BS, BS ——→
a j8;e j8=1

AS.

Here, the bimolecular reactions correspond to the voter dy-
namics supplemented by Kawasaki infinite-temperature ex-
change process, whereas monomolecular processes corre-
spond to reactions induced by local inhomogeneities
favoring the adsorption of one species. Following the same
steps as in Refs.f5,6g, for this spatially inhomogeneous
monomer-monomer catalytic process, in the thermodynamic
limit we obtain the following equation of motion for the
concentrationcrstd of AS at siter of the substrate:

d

dt
crstd = Drcrstd + o

j=1

n

a jfe j8 − cajstdgdr,aj . s48d

Of course, the concentration ofBS at siter is simply given by
1−crstd. The resemblance of Eq.s48d with Eq. s3d is striking
sthe only difference is that heree j8=0,1d and one can imme-
diately infer the solution of Eq.s48d from Eqs.s15d ands20d.
In particular, in the thermodynamic limit, starting from a
system initially completely occupied byBS particles, the
Laplace transform of the concentration ofAs reads

ĉrssd =
1

s
o
j ,,

e,8Îaj−rssdfN−1ss,hajdg j ,,, s49d

and we get, for the time-dependent concentrationfinitially
crs0d=0dg,

crstd =
1

2pi
E

c−i`

c+i` ds

s
esto

j ,,
e,8Îaj−rssdfN−1g j ,,. s50d

In this language, the quantity

M8std ; o
k

ckstd = o
j=1

n

a jE
0

t

dtfe j8 − cajstdg s51d

provides the average total number of theAS particles on the
substrate at timet.

Next, we restrain ourself to physical situations and con-
sider in detail the monomer-monomer catalytic reaction in
the presence of one and two inhomogeneities in one and two
dimensions.

A. Inhomogeneous monomer-monomer catalytic reaction in
the presence of one single “defect”

Here, we consider the case where there is a single inho-
mogeneity at sitea1=0, with strengtha1=a and e1=1. In

this case, we simply haveN−1=a / f1+aÎ0ssdg. Therefore,
starting from a system initially full ofBS particle fi.e.,
crs0d=0g we obtain

ĉrssd =
1

s

aÎ r

1 + aÎ0ssd
. s52d

On the right-hand side of this equation, one recognizes im-
mediately the same expression as the Laplace transform of
the magnetization obtained in Ref.f4g. From previous re-
sults, we can immediately infer the long-time behavior of the
concentration ofAs particles.

1. Results in 1D

Following the same steps as in Ref.f4g, on a one-
dimensional substrate we find from Eq.s52d that the long-
time behavior of the concentration ofAS reads

crstd . 1 −
r + 2/a
Îpt

. s53d

This result is valid for any 0ø r ,`.
When both r →` and t→`, we obtain the following

simple scaling expressionf4g:

crstd . erfcS r

2Ît
D . s54d

2. Results in 2D

In two dimensions, following results from Ref.f4g we
obtain a nonscaling expression for the concentration, with
very slow time dependence:

c0std − c0s`d . − S4p

a
D 1

ln t
, s55d

wherec0s`d=1. For the other sites, we find that the long-
time behavior in the regimet@ r2@1 is given by

crstd − crs`d . −
ln r2

ln t
, crs`d = 1. s56d

As in the one-dimensional case, the stationary concentration
of AS corresponds again to a substrate fully covered withAS
particles—i.e.,crs`d=1. Therefore, the presence of a single
inhomogeneity favoring locally the adsorption ofAS is
enough to completely cover the substrate withAS in spite of
the fact that initially onlyBS particles were present. From
expressionss53d, s55d, and s51d, we can also compute the
total number ofAS particles on the substrate at timet@1. In
so doing, one obtainsM8std,Ît in the one-dimensional case
andM8std, t / ln t in 2D.

B. Inhomogeneous monomer-monomer catalytic reaction in
the presence of two defects

Here, we consider the case where two “competing” inho-
mogeneities are present: one is at sitea1=0, with strength
a1=a and e1=1 and the other at sitea2=x, with strength
a2=b ande2=0.

In this case, using Eqs.s49d and s11d, we obtain the fol-
lowing expression for the Laplace transform of the concen-
tration of As at siter, starting fromcrs0d=0:
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ĉrssd =
1

s
o
j ,,

Îaj−rssde,8fN−1ss,hajdg j ,,

=
aÎ rssd + abfÎ rssdÎ0ssd − Î r−xssdÎxssdg

sh1 + sa + bdÎ0ssd + abfÎ0
2ssd − Îx

2ssdgj
. s57d

1. Results in 1D

In one dimension, without loss of generality, we assume
that the inhomogeneity at sitea2=x, x= uxu is on the right side
of the origin.

Proceeding as in Sec. IV A, we study the static and long-
time behavior of the concentration ofAS with crs0d=0, and
distinguish various situations.

sid For sites between the two inhomogeneities—i.e., 0
ø r øx—we get

crstd .
af1 + bsx − rdg

a + b + abx
− S a

a + b + abx
D

3
1

Îpt
Hr +

f1 + bsx − rdgs2 − abx2/2d
a + b + abx

J . s58d

sii d At the right of the origin, whenx, r ,`, we obtain

crstd .
a

a + b + abxF1 −
1

Îpt
Hr +

2 − abx2/2

a + b + abx
JG .

s59d

siii d At the left of the origin, when 0, r ,`, we find

c−rstd .
a

a + b + abxF1 + bx −
1

Îpt

3Hr +
s1 + bxds2 − abx2/2d

a + b + abx
JG . s60d

sivd When botht→` and r →`, we have

crstd .
a

a + b + abx
erfcS r

2Ît
D , s61d

c−rstd .
as1 + bxd

a + b + abx
erfcS r

2Ît
D . s62d

These results show that in the interval between the inhomo-
geneities, the static concentration profiles varies linearly
from the origin with a slope −ab / sa+b+abxd. Outside
from this interval, the static concentration is uniform on the
right and left side of the origin: on the right,crs`d=as1
+bxd / sa+b+abxd, whereas on the leftcrs`d=a / sa+b
+abxd. Such a static profile can again be interpreted as the
solution of a discrete 1D electrostatic Poisson equation with
peculiar and suitable boundary conditions. Again, the static
concentration is reached according to a power lawfcrstd
, t−1/2g and with amplitudes depending nontrivially on all
parameters of the system. At very large distances and long
time, the concentration displays a scaling form which ampli-
tude depends on which inhomogeneity is the closest. Of

course, it is easy to check that in the limita→0, as the
system is initially full ofBS, thencrstd=0. Also, whenb=0,
we recover expressionss53d and s54d. From Eqs.s51d and
s58d we obtain the average number of adsorbed particles
which evolvessat long timed asM8std,Ît.

Again, in one dimension we can obtain the stationary con-
centration of adsorbedAS particle in the completely disor-
dered case—i.e., whenn is arbitrary large—just by replac-
ing, respectively, Sajs`d ,Srs`d ,e j by cajs`d ,crs`d ,e j8 in
expressionss27d–s33d. As illustrated in Fig. 4, in this case the
stationary concentration profile is piecewise. Also, when the
number of competing inhomogeneities is finite the system
coarsens as described in Sec. IV A.

2. Results in 2D

In two dimensions and at large distance from both
inhomogeneities—i.e., forr @1 and ur −xu@1—we find a
nonscaling expression for both static and time-dependent
concentrations of theAS particles,

crs`d .
a −

ab

2p
FlnS r

xur − xuD − psg − ln 2dG
a + b +

ab

p
fln x + psg − ln 2dg

, s63d

and, whenx is large enough:

c0s`d .
aS1 +

b

p
ln xD

a + b +
ab

p
ln x

and cxs`d .
a

a + b +
ab

p
ln x

.

We can notice that in 2D the stationary concentration of
theAS particles is a fluctuating reactive state exhibiting non-
trivial radial and polar dependence. Regarding the approach
toward the steady state, proceeding as in Sec. IV B, we ob-
tain

crstd − crs`d . −
B8sr,xd

ln t
, s64d

where the amplitude

B8 =

ab

p
ln xhlnur − xu + g − ln 2j + 2a ln r

a + b +
ab

p
fln x + psg − ln 2dg

exhibits a nontrivial spatial dependence. Again, the result
s64d shows that the stationary concentration profiles63d is
reached logarithmically slowly. Using Eq.s51d we can also
notice that the average number of particlesAS adsorbed on
the substrate evolvessat long timed asM8std, t / ln t.

There is a practical interest in understanding the spatial
distribution of adsorbed particles in the steady statef30g and
one can thus ask,what is the region of the 2D substrate
where one can find more AS particles?

To answer this question, from Eq.s63d, we proceed as in
Sec. IV B and, according to Eq.s40d, we see that whena
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.bsb.ad, the region richer inAS particles is outside
swithind the disk IntCsc,Rd fdefined in Sec. IV Bg, where the
concentration ofAS is crs`dù

1
2
fcrs`dø

1
2
g. Whena=b, the

2D substrate is separated into two half-planes with concen-
tration of AS.1/2 in the region including the origin.

VI. SUMMARY AND CONCLUSION

In this work we have shown how to compute some exact
properties of a class of many-body stochastic systems in the
presence of an arbitrary number of inhomogeneitiesn and
have specifically focused on the voter model and monomer-
monomer catalytic reactionsin the reaction-controlled limitd.
We have studied the effects of local perturbations of the dy-
namical rules on the static and time-dependent properties of
these models by obtaining both generalsyet formald and
many explicit results in the presence of one and two inho-
mogeneities. In fact, the latter situation already displays and
covers most of the generic features of the models. Namely,
when there is only one inhomogeneity present, it is respon-
sible for a uniform and “unanimous” steady state in low di-
mensionsf4g, while in the presence of competing inhomoge-
neitiessn.1d the steady state is fluctuating and reactive. For
the sake of concreteness we have mainly focused on the ame-
nable case with two inhomogeneities and have shown quan-
titatively how the local interactions deeply affect the proper-
ties of these systems. Neither the stationary nor the time-
dependent expression of the order parameters are
translationally invariant but exhibit nontrivial radial and po-
lar dependenceswhend.1d.

From a sociophysical perspective, in voter model lan-
guage, this means that a system which tolerates the presence
of “competing zealots”—i.e., which accepts the competition
between opposite points of view—will never reach a unani-
mous state but always end in a final configuration where both
opinions coexist and fluctuate. Of course, such a conclusion
seems to be consistent with the results of electoral competi-
tions in modern democracies.

In the presence of competing inhomogeneitiessn.1d in
low dimensions, subtle coarsening phenomena take place in
1D and 2D. In fact, the local and competing perturbations of
the dynamics lead us to distinguish the case where the num-
ber of inhomogeneities is finite and the case where their
number is comparable to the size of the system. In the former
case the system coarsens and large domains develop, but
their size are typically limited by the number of competing
inhomogeneities, while in the latter case coarsening is pre-
vented by the interaction with all the numerous inhomogene-
ities.

More specifically, in this work we have obtained exact,
yet formal, expressions of the static and time-dependent or-
der parametersfsee Eqs.s15d and s50dg. The main technical
problem to carry out detailed calculation resides in the inver-
sion of then3n matrix N. The case with one single inho-
mogeneity in the voter model was already considered inf4g
and here we show that such results can be translated in the
language of the catalysis reaction. In particular we have
shown that on 1D and 2D substrates, the presence of a single
spatial inhomogeneity favoring the adsorption of one

species—say,AS—with respect to the other is sufficient to
ensure that eventually the substrate will be completely filled
with AS particles. When we have two competing inhomoge-
neities, favoring locally opposite states or the adsorption of
particles of different species, we have obtained rich behavior.
In 1D, between the two inhomogeneities, the stationary pro-
files of the order parameters vary linearly with the distance
from the origins22d and s58d and then reaches two plateaus
s23d, s24d, s59d, and s60d. These static profiles are always
reached algebraically in 1D:Srstd−Srs`d.At−1/2 and crstd
−crs`d.A8t−1/2, where the amplitudesA andA8 depend non-
trivially on all parameters of the problem and in particular on
the separating distance between the inhomogeneitiesfsee
Eqs.s23d, s24d, s59d, ands60dg. Far away from the inhomo-
geneities, the order parameters display scaling expression of
the variabler /Ît fsee Eqs.s25d, s61d, and s62dg. In one di-
mension, we have also been able to compute the expression
of the stationary magnetization in the completely disordered
situation where the number of zealots is arbitrary largefsee
Eqs.s27d–s33dg. In two dimensions, forn=2, in the presence
of two competing inhomogeneities, we have obtained non-
uniform and nontrivial stationary profiles for the order pa-
rameters, in agreement with an electrostaticlike reformula-
tion, the latter display logarithmic spatial dependencesradial
and polard fEqs. s37d and s63dg. The approach toward the
reactive steady state is very slow:Srstd−Srs`d.B/ ln t and
crstd−crs`d.B8 / ln t, with amplitudesB and B8 depending
again nontrivially on all parameters of the problemfsee Eqs.
s39d and s64dg. In 2D, for the inhomogeneous voter model,
we have also studied the spatial regions with positive and
negative static magnetization and have shown that only
within a circle, whose center and radius depend on the
strength of the “zealots” and on the distance between the
latter, the sign of the magnetization is the one favorite by the
“weakest” zealot. When both zealots have the same strength,
there is positive and negative magnetization in half-space. In
three dimensions, forn=2 and in the continuum limit, we
have shown that the stationary magnetization of the inhomo-
geneous voter model displays a radial and polar dependence
that can be recast into a multipole expansions44d, corre-
sponding formally to the electrostatic potential generated by
two “charges” that are determined self-consistently using ex-
act results from the discrete lattice system. The connection
with electrostatics is particularly striking in the limit where
both zealots have an infinite strength; thus, the stationary
magnetization corresponds to the potential of an electric di-
pole. The approach toward the static magnetization follows a
power lawSrstd−Srs`d.Ct−1/2 fsee Eq.s46dg. Also, in 3D
we have studied the spatial regions with positive and nega-
tive magnetization and have shown that outside from a
sphere whose center and radius depend on the parameters of
the system and varies linearly with the distance separating
the zealots, the sign of the final magnetization is the one
favored by the strongest zealot.

The results obtained from Monte Carlo simulations of
one- and two-dimensional lattices show excellent agreement
with the theoretical results obtained for an infinite system. In
the presence of multiplesn.2d competing inhomogeneities
the calculations in two dimensions become very tedious and
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we consider this case by numerical simulations which con-
firm the extremely slow dynamics and the existence of non-
trivial spatial dependence of the order parameters. We also
would like to point out one intriguing and interesting fact
about the small-time behavior of the magnetization of the
zealots in the one-dimensional case. As it can be extracted
from Fig. 3, S0std and Sxstd, for small t, evolve as a power
law with an exponent numerically smaller than 0.50. The
small-time behavior of the site magnetization of the usual
one-dimensional voter modelsno inhomogeneitiesd is
linear—i.e.,Srstd−Srs0d~ t for any siter on the lattice. We
think it would be interesting to investigate further this
“anomalous” small-t behavior of the magnetizations of the
zealots in the one- and two-dimensional cases and we plan to
do it in our future work. Various generalizations of this work
could also be investigated. For instance, it would be worth-
while to consider that the inhomogeneities would not be
fixed but spatially distributed according to some function
Pshajjd. In this case, one should also average on the
quenched disorderson the samplesd and one would have to

compute:S̄rstd~ohajjPshajjdSrshajj ,td, whereSrshajj ,td is the
quantity studied in this work for a given set of inhomogene-

ities at siteshajj. In the same manner, it would be quite
interesting to consider the disordered case where the strength
of the inhomogeneities would follow a distribution function

such asP̃sha jjd~p j=1
n e−sa j − ād2/2s. In this case, one would be

interested in the quantity:

S̃rstd =E p j
da jP̃sha jjdSrshajj,ha jj,td,

whereSrshajj ,ha jj ,td is the magnetization computed in this
work for a given set of inhomogeneities at siteshajj, with
strengthha jj.
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