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We consider the dynamics of the voter model and of the monomer-monomer catalytic process in the
presence of many “competing” inhomogeneities and show, through exact calculations and numerical simula-
tions, that their presence results in a nontrivial fluctuating steady state whose properties are studied and turn out
to specifically depend on the dimensionality of the system, the strength of the inhomogeneities, and their
separating distances. In fact, in arbitrary dimensions, we obtain an @eidbrma) expression of the order
parametergmagnetization and concentration of adsorbed panidatethe presence of an arbitrary numlmeof
inhomogeneitieg‘zealots” in the voter languag@nd formal similarities wittsuitable electrostatic systerase
pointed out. In the nontrivial cases=1,2, weexplicitly compute the static and long-time properties of the
order parameters and therefore capture the generic features of the systemsnWhgethe problems are
studied through numerical simulations. In one spatial dimension, we also compute the expressions of the
stationary order parameters in the completely disordered case, wigeegbitrary large. Particular attention is
paid to the spatial dependence of the stationary order parameters and formal connections with electrostatics.
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I. INTRODUCTION nonequilibrium many-body processéshere inhomogene-
) ] ities would not be spatially fixed but would be randomly
Recently, much attention has been devoted to the field ofistributed. We show that the presence of “competing inho-
nonequilibrium many-body stochastic procesgEs In par-  mogeneities’(in the sense of locallperturbing the other-
ticular the study of exact solutions of prototypical modelswise homogeneous dynamjcgenerally results in a space-
such as thevoter model[2] has proved to be fruitful for dependent fluctuating steady state. The amenable case where
understanding a broad class of nonequilibrium phenomena=2 is analytically studied in detail and the static and long-
[1]. In modeling nonequilibrium systems, it is often assumedime properties of the order parameters are obtained and their
that the underlying spatial structure is homogeneous. Howspatial dependence are computed. The situation wher2
ever, in real situations stochastic processes take place in thiginvestigated by numerical simulations. Also, in one spatial
presence of imperfection@islocations, defects, ejcthat ~ dimension, we are able to compute the stationary order pa-
modify locally the interactiongsee, e.g/[1,3] and references rameters in the completely disordered céise., whenn is
therein. It is therefore highly desirable to take into accountarbitrary large. We therefore show how the stationary mag-
the effects of disorder, inhomogeneities, and defects or othd}etization or concentration depends on the dimensionality of
spatial constraints within simple and mathematically amein€ system, the strength of the inhomogeneities, and their
nable models. Motivated by the above considerations, in geParating distances. In particular, we show that the local
recent Lette4], the properties of a paradigmatic nonequi- Perturbation of the dynamics may give rise to subtle coars-
librium statistical mechanics modéhe voter modelin the ening phenomena. In one and two dimensi@Is and 20,

. - L , when the density of the inhomogeneities is vanishing in the
presence of one single inhomogendy'zealot) have been thermodynamic limit there is still coarsening in the system.

studied and it was shown that the presence of single Zeal%ppositely, when the density of the competing inhomogene-
has dfama“c effects on the Qynamlcs and the steady Stalfes is nonzero there is no coarsening, even in one and two
For this model, in low dimensions, all of the agents eventu-jimensions. We obtain an exact yet formal, expression of
ally follow the zealot. Obviously, real systems are quite CoM+e o der parametetsnagnetization and concentration of ad-
plex and the case of a single defect cannot be considered 83rbed particlésin arbitrary dimension. In dimensions
bging generic. To gain some insight into more realistic situ-=2,3 we payspecial attention to the radial and polar depen-
ations, we present here an approach allowing us to compuig, . of these quantities. Also, formal similarities vétac-

exact' properties, in arbitrary'dimensions, of a class .Of SOfrostatic systemare pointed out. The organization of this
chastic many-body systems in the presence @bmpeting o s the following: In the next section we introduce the
inhomogeneitiesThis study is carried out in the context of inhomogeneous voter model. In Sec. Ill, we present the gen-
two physically relevant systems: the voter model and the, 5 mathematical setup and the formal solution of the prob-

monomer-monomer Cat?"y“c reactiofin the reaction- lem. In Sec. IV, we study analytically the voter model in the
controlled limif. We consider such a study as a further con- resence of two “competing zealots” in one, two, and three

tribution toward the understanding of a class of disordere imensions and provide numerical results for the case where
n=2. In Sec. IV B, for the one-dimensional case, we also
derive the expression of the static magnetization in the com-
*Electronic address: mmobilia@vt.edu, georgiev@vt.edu pletely disordered situation whereis arbitrary large. Sec-
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tion V is devoted to the study of the process of monomermented by local terms involving the zealots’ reaction. The
monomer catalysis reaction on an inhomogeneous substratgpin-flip ratew,(S)=w(o, — —a,) therefore reads
whose mathematical formulation is very close to that of the . . n
(inhomogeneoysvoter model and in Sec. VI we summarize _ @ _ )

: w(9=—-(1-— o]+ 1-€04)6 .. (1
and present our conclusions. (S ZdUr?,: It gl 5 (17 €a)oral- (1

Here the sum on right-hand sid®HS) runs over the &
nearest neighbors of siter andr=1/d> 0 defines the time
scale. The probability distributioR(S,t) satisfies the master
The (homogeneoysvoter model is an Ising-like model equation
where a spin“individual”), associated with a lattice site d
can have two different “opinionss, = =1 [2]. The dynamics =P(St) =2, [w(S)P(S,t) —-w,(9P(S )], (2)
of such a system is implemented by randomly choosing one dt r
spin and changing its state to the value of one of its ran
domly chosen nearest neighbors. In themogeneouysvoter
model, the global magnetization is conserved and the dyna
ics is Z, symmetric(invariance under the global inversion
o, ——0;). The importance of the voter model stems from the
fact that it is one of a very few stochastic many-body sys- d i
tems that are solvable in any dimension. It is useful for de- g0 =AS0+ > ajlg-Si(0]8 4. 3
scribing the kinetics of catalytic reactiofis,6], for studying =1
coarsening phenomend,8], and also serves as a prototype  Here A, denotes the discrete Laplace operatdfSi(t)
model for opinion dynamicf4,9,10. =-2dS(1)+3,,S(t). We can immediately notice from Eq.
Concepts inspired by statistical mechanics have alreadys) that the stationary magnetization obeys a discrete
been employed to some extent in the last two decades tgyjisgon-like equation, S() =31, aj[ S, (=) - 18, . There
mimic social issue¢l1]. Very recently variants of the voter g an ohvious and striking resemblance between this equation
model and modern tools of nonequilibrium statistical phys-png the well-known equation for the electrostatic potential
ics, such as various mean-field-like approaches and exagbnerated by classical point charges located{at}. There-
methods[4,12,13, numerical simulation$9,13,14,16, and {510 "one may be tempted to formally identi/(e) with an
formu_la'uon on rando.m netyvorl{ao,lq (se_e a]so references electrostatic potential and think that the problem could be
therein, were used intensively to quantitatively study fur- solved easily. In fact, the problem is much harder since the

ther, both mathematlcal_ly_ and num_enc_ally, _coIIectlve .phe'quantities playing the role of charges depend themselves on
nomena, Sth as the opinion formation, inspired by SOCIO(?UIt'he magnetizatiorin other words, the problem of finding the
tur:;_xl situations. In thA'S context, the voter model and Its’stationary magnetization is isomorphic to the problem of de-
variants play a key role, as it is often used as a referencf‘Ermining the electrostatic potential in a discrete system

quel. Desp't‘? of all these efforts, voterlike mod'els ha\.lewhere the value of the charges depend on the potential.itself
mainly be studied on homogeneous and/or translationally iNgecause of this fact the calculation §f() cannot be in-

variant spatial structures. ferred directly from the results known from electrostatics and

In contrast to most of the previous works, here we .StUdythe computations have to be carried out in a self-consistent
using exact analytical methods and numerical simulations, Rianner. as described hereafter

spatially inhomogeneous voter model. It is defined on a hy-

percubic lattice of sizé2L+1)Y, where individuals, labeled IIl. GENERAL SETUP AND FORMAL SOLUTION

by a vector r having components l=<r;<L (with i

=1, ... d), may interact according to the usual voter dynam-

ics. In addition, we now consider that there arezealots

(labeledj=1, ... n), occupying the sitegal=(al, ... ,a)}.

Theg,e agents interact With their neighbaring spins_ i_n a biase For further use, we introduce the following quantity:

fashion. A zealot at site@/ favors one of the opiniong; N st ot e

=1, i.e, it flips with an additional rate; >0 (additional to li(s)= [odte{e 'rl(zt)'"Ird(Zt)]_‘l—r(s)’ where In(_zt)

the usual voter rajeoward his favorite state. As the zealots =!-n(20)=/g(da/ m)codan)e” ©*4 is the usual modified

interact effectively with all of the spins on the lattice, there isBessel function of the first kinf20]. The quantityl,(s) can

a competition between them aiming at “convincing” as manybe rewritten in terms of Watson integrals or “lattice Green

spins as possible. Clearly, because the zealots perturb thgnctions”:

dynamics locally, the system is disordered, not translation- g g

ally invariant and the magnetization is not conserved. 1(9)=1.(s) = q € ,
According to the spin formulation of the model, the state ' ' a(2m)iss Z[d— > COSQi]

of the system is described by the collection of all spigs: =t

={a;}. In this language, the dynamics of the model is gov-whereq=(qy, ...,qq) is ad-dimensional vector. We also in-

erned by the usual voter model transition rigte5,6] supple-  troduce the Fourier transform of the magnetization

II. VOTER DYNAMICS IN THE PRESENCE OF
COMPETING ZEALOTS

where the stat& differs from configurationS only by the

spin flip of o;. Using the master equatidg), in the thermo-
ynamic limit L—oo, the equation of motion of the local

magnetization at site, denoted by§(t) =0, P(S,t), reads

In this section, we show how to compute the magnetiza-
tion of the voter model in the presence of an arbitrary num-
ber of inhomogeneitiescompeting zealojsand provide a
‘Jormal" solution of Eq.(3).

(4)
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- igr o
Sq(H) Er: €S (1). (5) N (s fad) = M () + 7.11’._8’ (11)
i
Fourier transforming Eq(3), we obtain the following equa-

fion: and from it, using Eq(9), one obtainsAi and AS,IJ:

d

gSa®=- Zd(l - —E cosq.) Syt + > €9¥A (),
j=1

| 1

A©= 3 el Hslal 12

(6)

where Aj(t)Ea’j[Gj—Saj(t)]. Laplace-transforming Eq(6),
we obtain the following expression for the Laplace-Fourier
transform of the magnetization:

>, €1¥A(9)
Sq(9)= : @)

1 S () = 1 1. ~1 ,
s+2d{ 1--3° cosq S(s) 3% eclai-(SIN (s {ah) ], (14
d

Si(s)= (q - _E eN s {a))];, €> (13

At this point, we can get an explicit expression for the
Laplace transform of the magnetization by plugging back Eq.
(12) into Eq. (8). In the thermodynamic limifL — ), we
have

and therefore, formally the magnetization is obtained by
whereAl(s) = [5dteS!Al(t). For technical simplicity, we have Laplace-inverting Eq(14):
considered that the system is initially in a state with zero 1 [ gs
magnetization: §.(0)=0. Inverse-Fourier-transforming Eq. S(t)=— eStE €l s (SIN(s, {aD)]je.

(7), we get the Laplace transfor&:(s) of the magnetization: 21 Joioe S
(15
- dig Al(s)g@-na . .
~ ©=S ) This expression means that we have recast the problem of
S —r (277)0 1 solving the inhomogeneous voter model in the presence of
(2m) 2 arbitrary many inhomogeneities into a well-defined linear al-
s+2d) 1 _; i=1 COSGi gebra problem whose main, but nontrivial, analytic difficulty

resides in the inversion of the matti¥. The steady state of
As both right- and left-hand sides still depend on the LaplacéEhe ngnet]:zitlon fot. —oo can be directly inferred from
transform of the magnetlzatm{mhroughAJ(s) on the RHS, a- (14) as follows:

to obtain an explicit expression f&(s), we have to find a S(») = I|m2 €l s (SN (s, {a})]; e (16)
self-consistent solution of E¢8) for all of the a'’s by plug- s=0j,¢
gingr=al into Eq.(8). Solving the resulting linear system, in

thermodynamic limifL — ) we obtain The exact expression for the long-time magnetization is ob-

tained by Laplace-inverting the— 0 expansion of Eq(14),
Al (s)e‘<a€‘aj)'q after having subtracted the static contributiSito)/s, and
by paying due attention to the situations where the integrals
Sa,(s) 2 f d (9 (4) are divergent. It is also worth mentioning that the prop-
(2m) 1 d erties of the modified Bessel functions of the first kihdt)
s+2d) 1--2_, cosq [20], allow us to write a formal and implicit solution of Eq.
d (3) for L— oo, which reads

which can be rewritteE((Mj,ﬁéij,e/aj)A‘(s)=ej/s, where

the symmetrion X n matrix M is defined as follows: S(t) = E Sk(O)H [y (20]
i=1
- dg ga-aa d
M o(s) = . +2 g dt A=) [l 2], (17)
- (277) 1 i i=1

To solve it explicitly for S(t), one has to Laplace-transform
Eq. (17) and then solve the resulting linear systefh which
=Tai-at(9) = lat-ai(9). (100  is equivalent to the procedure described above. Expression
(17) is advantageous if one is interested in the global mag-
To obtain the two last equalities, we used the integral reprenetization of the system. In fact, as we consider an initially
sentation(4). We now introduce another symmetncx n homogeneous and “neutral” syste[f,(0)=0], using Eq.
matrix A/ defined by (17), the global magnetization of the system can be written

s+2dy 1- —Eid:l €Oosq;
d
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nooet _ n t model with only one zealot evolves toward the unanimous
M(t) =X S =2 | drAl(n =2 a;| die-Si(n],  state favored by the inhomogeneity.
k ji=1J0 =1 0
18 IV. VOTER MODEL IN THE PRESENCE OF TWO
(18) COMPETING ZEALOTS

In this section we specifically consider the case where two
where we use the identity;__.|,(t) =€' [20]. competing zealots are presefjt1,2): One, with strength
The situation considered here is particularly interestingr1=a, located at sitea"=0 and the other located at sité
when the zealots favor different opinions and there is ar=X With a strengthw,= . This case is explicitly tractable and
effective competition occurring in the system. In this case wedisplays interesting features, which turns out to be generic
expect nontrivial nonequ”ibrium Space-dependent Stead{p.r the casen>1 as illustrated by numerical simulations. For
states. Of course, we can easily check that in the presence Bfis case, we have

one single zealotn=1) located at sited, with strengtha; i () + ot 7 9
=a ande; =1, we recover the results reported in Réf]. In N= ( 0 X @ o )
this case we simply hav&™ = aly(s)+ 1]t and, together I(s) () + 87

with Eq. (8), we recoverS(s)=al (s)/dalo(9)+1]. In Ref.  for Lo, and therefore, using E@L4), we infer the expres-
[4], one of us has shown that in low dimensions the votesion of the Laplace transform of the magnetization at isite

§9= 13 T (e SAHs {a = 22O Pedlin(® £ @Bl SLalol®) ~ (9] 1on(Oefol®) ~ eI}
Sk s{1+(a+ B)ly(s) + aBl1§(s) = 159}

(19

wheree; ,=+1. Obviously, the inhomogeneous system witha finite distancex [see Fig. 1a)]. It is worth studying the
two zealots is interesting in the case whgr —e¢,. In fact, it  properties of the one-dimensional version of the inhomoge-
is clear from Ref[4] that in 1D and 2D the conditios;  neous voter model because of its physical implication for the
=€, implies that§(«)=¢;. In this situation, the long-time catalysis(see Sec. Yand its close relationship with the Ising
approach toward the unanimous steady stat(i8-S()  model with Glauber dynamics, which is an important theo-
=At""2 in one dimension an&(t)-S()=B/Int in two  retical model, known to have many physical applications
dimensions. Thus, in low dimensions, wheiF e, only the  [1,4]. In fact, in the absence of zealots the one-dimensional
long-time amplitudesA and B change with respect to the yvoter model coincides with the Glauber-Ising model with
case where=1 ande=e¢; [4]. zero temperature dynami€$7,18.

From now on, without loss of generality, we consider the L
more interesting situation when there is a competition be- In 1D, one computes explicitil(s) in Eq. (4) as follows

tween the zealots;=-¢,=1. Namely, the zealot at the ori- [20,21:
gin favors the +1 opinion, whereas the zealot at sifavors

the opposite -1 state. In this case, E§9) simplifies as {[Vs+4-\s)/2}*

follows: lH(s) = 1,(s) = Sora (21)
. 1,(5) = Blyy 1,(9) = 1, (9[To(S) + 1y .
S(s= 2el9) = Blry(9) + Cfﬂ[ © - (S)][As(s) * (S)]- wherer =|r|. We see that, in 1D,(s) diverges for smalk as
s{1+(a+B)lo(s) + aplly(s) — 15(9) ]} g2
(20 Without loss of generality we consider the situation illus-

trated in Fig. 1 and thus, from Eq&0) and(21), the long-
Different questions can be asked here: What is the rangg e expregsion fos(t) in the cas?e@vv)hereé [0) x] is g
of influence of each zealot? How “efficient” are the zealots? '

How does the opinion of a randomly picked spin evolve with B aB2r -x) 1
the time, and what will be its final opinion? These questions  g(t) = (a p-ap ) - —
will be answered in the next sections by explicit calculation a+t B+ apx (a+ B+ apx)\mt
of the stationary magnetization and its long-time behavior. y 2a- B-aB2r - X+ aBX{Bx-1) - ra}
A. Results in 1D a+ B+ afX
First we focus on the one-dimensional situation and con-
sider the case when both competing zealots are separated by +ar+B(r-x |. (22)
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FIG. 2. The stationary distributio () on aL=1024 lattice
with two competing zealots. The zealot favoring the positive opin-

FIG. 1. (a) Graphical representation of a microscopic configu-ion (doY is located at the origin wittw=0.02 and the other one
ration of the spins on a one-dimensional chain. The zealot favoringavoring the negative opiniofsquarg is atr=430 with 5=0.01.
the +1 opinion with a strength, indicated by a dot and a larger up The agreement with the theoretical results for an infinite system is

spin, is at the origin. On the right of the origin, at a distarcéhe

excellent.

other zealot, indicated by a square and a larger down spin, favors

the —1 state with a strengtB. (b) Typical 1D stationary magneti-

zation profileS () (denoted simph& in the figure versusr in the

profile decays linearly with a slope =8/(a+B+aBX).
Outside from this interval, the final magnetization is uniform

thermodynamic limit. On the left of the origin and the right of the on the right and left hand side from both inhomogeneities. In
other zealot, the static magnetization reaches two plateaus witfact, Eqs.(23) and(24) show that the static magnetization of
heights given by Eqs23) and (24). Between the zealots, the sta- the spins iSS,,(%)=(a—- B+ aBX)/(a+B+aBX) [see Figs.

tionary magnetization varies linearly according to E2p).

For the spins on the right of the origin, with<r <o, we
find

S(t)z(“_ﬂ_“ﬁx)— L
a+ B+ afX (a+ B+ aBx)Vmt
X{Z(a-ﬁ—aﬁX)-azﬂxz

a+ B+ afX

+ar+ B(x-r) |,

(23)

whereas for the spins on the left of the origin, with<®
< oo, we find

a—,6’+a,8x>_ 1
a+ B+ apfx (a+,3+a,3x)\s"§
X[Z(a—b’+ aPX) + afox?

a+ B+ afX

+ar — B(r +x)].
(24)

Finally, when bothr — o andt— o, I,(s)—e™5/(2\5).
Using this expression in E@20), as in Ref[4], we obtain a
scaling expression for the magnetization:

S, (1) = (M)erf(:(L) ,

25
a+ B+ aBx 2\E (25

where erf¢x) =2/ (dy/ \5'7_r)e‘y2 is the usual complementary

error function. We infer from Eq(22) that in the finite inter-

1(b) and 2. These plateaus differ significantly from the val-
ues ¥1 only when the product8 is comparable ta?.
Therefore, in 1D, the final stationary solution, which is sum-
marized on Fig. (b), is polarizedand can be understood as
being the solution of a discrete one-dimensional electrostatic
Poisson equation with peculiar boundary conditions. In fact,
it is well known that in 1D the electrostatic potential varies
linearly with the distance to the charges. Here, the nontrivial
part of the analysis is to compute in a self-consistent manner
the heights of the plateaus. All these profiles are approached
algebraically in time—i.e.S(t)-S()=At"*? (as in the
case with only one zeal§4]), with the amplitude depending
nontrivially of all parameters of the systeA=A(a, B8,X)r.
Obviously, because there is a distamcgeparating the zealot
at the origin from the other, the expression ®(t) is not
symmetric with respect to the site 0. We can notice that the
expressions(22—24) simplify when the strength of the
zealot is infinite(a=B=). In this case, the zealots have a
final magnetizatior§y(ec) =—S () =1.

Result(25) tells us that for spinnfinitely far away from
the zealots, the magnetization evolves as a smooth scaling
function of the variablei=r/2yt. This scaling function dif-
fers from zero(the initial condition after a long time(i.e.,
t~r2— ), when the variable has a finite value. It follows
from Egs.(23)—(25) that in 1D the effect of the zealots is felt
and propagates a¥°— . For large time and distance, when
1<t<r? we see from Eq(25) that S(t) is still close to its
initial value. Whent~r?, all the agents approach 832 the
active and fluctuating stationary magnetizati@8). From
Egs.(22) and(18), we can infer the long-time behavior of

val separating the two zealots, the stationary magnetizatiothe global magnetization in the system. As
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20a-B) 1

a+,8+ aBX \!”E, 10 e ﬂ,ﬁ;;iiﬁ:sss aaa

al1-S(t)]-B1+S(b)] =

when a# B, the average number of voters following the

strongest zealot evolvdat long-timeg as the square root of 10 ¢
time: i
2
my =2 B \ﬁ e
a+ B+ afX T Fo* 85,0 R
10°F @ 5,0
This result implies that the tim€ necessary for the strongest Eox 98,0
zealot to dominatéon averaggthe whole 1D system scales Al L Lo L
as T~L?, whereL —o. When a=p, the system is exactly 10 1o 10° 10" 10°
symmetric with respect ta/2, and on average there are as t
many +1 spins than -1 ones in the whole system.
In Fig. 2 we show the stationary magnetizat®(r) on a FIG. 3. Coarsening on the one-dimensional model with two

finite lattice with L=1024 for two competing zealots ob- competing zealots. The figure shoyvs _the average number of inter-
tained from Monte Carlo simulations. For simulating the faces vs time, the average magnetization of the two ze@etsthe
model we use random sequential dynamics by picking rant®? So(t) and S(t), and also 55,(t)=Sy()-S(1) and 55(1)
domly an “active” site(either one of the zealots or a site that — ") ~S(t). The simulation is orl =8192 lattice fora=0.5, 5

has at least one nearest neighbor in a different jstatel :0.2_, andx=3000 and the _solld I_|nes shown have a slope -0.5, as
flipping it with a rate given by Eq(1). The time after an predicted by Eq(22). For this choice of the parameters, the average

attempt for a flip is updated with the amount\,/ whereN number of interfaces decays algebraically toward a small but finite
~ 4

is the number of active sites before the current upda?e. T(\)/alue(here,~2.0>< 1079.

account for the fact that the simulations are on a finite lattice, _ o .

where the spin at the leftight) boundary site has only one nonzero value in the thermodynamic limit, there is no longer

nearest neighbor on the rigtieft), the spin-flip rate at the Coarsening as thg formation of large dor’r.]aln.s is prevented by

boundaries is modified such that it depends only on the stafif® interaction with the numerodsompeting inhomogene-

of a single neighbor. The first 2108 Monte Carlo steps 'l€S- o _ .

(MCS) are discarded and typically we sample the configura- After having discussed in detail the case2, we would

tions on the lattice every 5000 MCS for the nexx 50° like to point out that in one spatial dimension it is possible to

MCS. The stationary distribution fc (c) obtained from the ~COMPute the stationary magnetization for an arbitrary num-

simulations is in an excellent agreement with the theoreticah)er_n of zealots in a more direct and Intuitive fashion than

values obtained for a infinite lattice and sketched on Figrelylng on Eq.(16). In fact, let us consider that the zealots,

1(b). labeled byj=1,...n are at sites «<a;<a,<---<a,

Figure 3 shows the result from Monte Carlo simulations = > By plugging the ansatz that the stationary magnetiza-
tion between the sitea andal*! readsS («)=S;j(%) +y(r

on a relatively smal(L=8192 lattice for various average o e _ _

quantities. The long-time behavior of the local magnetizatior” &) INt© Arsfioo)__z‘jzlaj[ej_Sal(oc)]ér,ah VV_hle+el Wij? have
8S(1) = Sy(00) - Sy(t) and 8S,(t) = S (=) - S(t) clearly shows mtrogluced ¥ =[Sin(*) - S,i(=)]/x and x;=a**-a, we
the t2/2 long-time behavior, in agreement with E@2). In ~ OPtain

Fig. 3 we also report numerical results for the average num-,, s (. _ .5 4+ ... 4+ - S. —v&

ber of interfacesi.e., two neighboring sites with different - " (%27 7)a, 1= 9020,y = e,

sping versus time. This quantity gives us a good qualitative n
and quantitative picture of the coarsening of the system. Fig- = 2 &[Si(*) — €16} ai- (26)
ure 3 shows that the average value of the interfaces, which =1

equals to the number of the clusters of +1 and -1 spinsgo|ving these equations, we obtain the stationary magnetiza-
evolves ag 2 before saturating at a small nonzero value.tion at each sitegl<al <a™

One can notice that for a long time the system evolves and
coarsensas in the homogeneous voter mogig], but due to

the presence of the two competing zealots, subtleties appear
at long times. In fact, one has to distinguish between the
three possible situations for the coarsenifigwhen we have —_—
n<2 (i.e., none or only one zealot on the latbicéere is the Sa(*) =€+ ,
usual coarseningan infinite domain spans the entire sysiem @2

[6]; (i) when 2<n and the densityn/L) of the competing

inhomogeneities is zero fdr— o, there is still coarsening in

the sense that the size of the different domains formed in-

creases with the size of the lattice but never spans the entire Spi(®) = e, 4 + Yn-17 Yh-2
lattice; (iii ) when the density of the competing zealots has a : -1 Ay

Su(®) = e+ 2,

1
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Yn-1

Qanp

Sin() = €, - (27)
Of course, in each of these equations &j(«), the right-
hand side depends d;(«) and S,j+1(») throughy;. Equa-
tions (27) are therefore a set of coupled linear equations that
can be rewritten aPS=v, whereP is anXxn band matrix,

0.8
0.6
0.4

0.2

PHYSICAL REVIEW E 71, 046102(2005

| ( L |
which only nonvanishing entries are w0 (')0. "400
-0.2 i
Pj,j=_(Xj—l+xj+ajxj—lxj)v 1<J <n, _0'47 i
Pj,j—l:Xj! 1<J <n, 0.6 7
0.8 .
Pj,j+l:Xj—l! 1<J <n, 1 -
Pi1=- (1+a4xy), FIG. 4. An example for numerical simulation of the case with
four zealots on d.=1024 lattice(see the text The bias of the
Pon=—(1+anX,-1), zealots from left to right is 0.01negative, 0.02 (positive), 0.013
(negative, and 0.003(positive).
P12=Pnp-1=1, (298

andS andv are column vectors which components are, re- X1Ss3(2) = (X1 + %o + aX1Xp) S;2(%0) +X,851(%0) = = %1%,
spectively,
X5S4(%) = (Xo + X5 + gXoX3) S3() + X3S,2(°) = — €3a13%o%3,

S = Sii(),

l<j=n,
Sa3(%0) = (1 + agX3) Su(°) = = €a%3. (34)

The set of equation$34) can be solved explicitly and
gives rise to very cumbersome expressions. Plugging into the
latter the values corresponding to the system simulated in
Fig. 4—i.e.,;=0.01, e,=-1, @,=0.02, &,=+1, a3=0.013,
e3=-1, and a4,=0.003, ¢,=+1, andx;=230, x,=240, and
X3=130—we obtain S(%)=-0.529, Sp(»)=+0.556,
S;3(0)=-0.441, andS.s(0)=-0.0367. These values can be
n compared to the results of the simulations, reported in

(o0 = -11. Fig. 4, where we obtained S;()=-0.53+0.01,
Si(=) E[P lwwe (30 S.2(0)=+0.55+£0.01, S;a(0)=-0.45+0.01, and Su()

) . =-0.04+0.005. These comparisons show that there is excel-
Having solved(at least formally the set of equation&7) gt agreement between the theoretical values predicted by
giving the stationary magnetization at each sitethe gen-  ho sojution(30) of the system(34) and the numerical re-
eral one-dimensional stationary magnetization in the presgts This agreement is somewhat surprising as the simula-
ence ofn Eealots simply reads. tions reported in Fig. 4 have been carried on a relatively
(i) If r<a, small system(L=1024, whereas all the theoretical results
(27)<(34) have been derived in the thermodynamic limit.
This fact indicates that our analytic results may be quantita-
tively accurate even for large, but noninfinite, systems. In the
limit where the strength of the zealotsdg=...=a,=», all

V1=~ €a1Xq,

Uj:_GjCl’ij_lXj, 1<J<n,

Un =~ €nanXn- (29

Therefore, the solution of Eq827) is obtained by invert-
ing the band matriP and reads

S(®) = Su(»). (31
(i) If d<r=a*! (1=<j<n),

Si+(*) — S5i()

(0) = S,(0) + —  (r-al). (32)  the expressions simplify and it follows from Eq27) that
S S atl-al Si(®)=¢;, while, foral <r<al*?,
(i) If r>an, -
§() =g+ T -a.
Si(20) = Syn(). (33 a*l-a
As an example, let us consider the case where there a¥hena;=...=a,==, this 1D system can be related to the

four zealots on the chain, as illustrated in Fig. 4. This figure®ne-dimensional spin model with Glauber dynanfaszero
shows that the one-dimensional stationary magnetizatioffmperaturgin the presence of quenched random fields of

(3)—(33). Whenn=4, as in Fig. 4, Eqs27) explicitly read ~ considered by the authors of R¢18] would correspond to
the case where at each sjta “voter” would have a prob-
Spa(0) = (1 + agXq) Spu() = — €y X,

ability p to be a zealot favoring the opiniog=+1 with
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strengtha;=c and would have a probability 1-p2to be an
ordinary agent. Théslight) difference between such a model
and the one studied in Rdf18] is the fact that each zealot 1 ‘
(even when he is endowed with an infinite strengtan be § ‘ |
“forced” to flip by his two neighbors, while in Ref18] the ‘ ; i
(random magnetic fields pin the spins along their direction. i Sr>0 '
However, asa;=, each zealof rapidly flips back to his
preferable opinione; and thus both models are very close
and display the same stationary magnetization.

We also would like to emphasize that the res(®% and 3
(30) provide the exact magnetization of the completely dis- |
ordered one-dimensional voter-model, where each site is en-
dowed with a specific spin-flip rate. In this case, one would Sro0
haven=L — « zealots in the system wibk]:a“l—alzl, and ? w
the structure of the matriR is rather simpldsee Eq(29)]. | ; Sr>0

Ar,

| |
B. Results in 2D 1

In two dimensions, the integral of E@}) is also divergent
in the long-time regimes— 0 and therefore its main contri-
bution arises froquzq§+qgﬂo. In this sense, we first

. FIG. 5. Sketch of the typical 2D spatial dependence of the sta-
expand Eq(4) for small s in the case when=0: P P P

tionary magnetization wheln— . At the origin, indicated by a dot,

R 1 is the zealot favoring the state +1 with a strengthl. At a distance
lo(§) —— - . Ins. (35 x> 1, indicated by a square, is the zealot favoring the state —1 with
s-0 m a strength3=0.9. According to Eq(37), the agents within the disk
More generally, for > 1, we have(see Ref[4]) of centerc=2x and of radiusR=1.4x have a negative final mag-

netization(denoted simplyS in the figurg. Outside the disk, the

final magnetization of the agents is positiigee the tejt while on

the circle the agents are in a “neutral” final state. The static mag-

netizationS.() exhibits both radial and polar dependence.

where Ky(x) is the usual modified Bessel function of the

third kind [20,21]. Using the small argument expansion of

such aZBesseI function we find that the long-time behavior a-B-—In | |

is i T r—x

for t>r<>1 is given by S () . (37)

r>1|r-x|>1

- 1 -
I(s) —— - —Ko(rvs),
s-0 2

B
O p— ﬁ[ln(rzs» +2y-n2], (36 atp+linx+aly=In2)]

rys—0
3 Far away from both zealots and in the case of sufficiently
where y=0.5772156649... denotes the usual Eulergenarated zealots—i.e3 x> 1—this expression simplifies:
Mascheroni’s constant. From expressi@g), whenx is suf-

ficiently large to use Eq.36), we obtain the stationary mag-

netization of the zealots: a=p-- . cosb
ap S(=) — B , (39
a-B+—Inx a+ B+ —[Inx+m(y—-In2)]
So(e0) = "
a+ B+ ap In x where co9=(r-x)/rx. Here we used the fact that(id|r
™ -x|)=xcosé/r+0O((x/r)?), when r>x>1. These results
and show that, because of the competition between the two zeal-
ots, the stationary magnetization is a fluctuating steady state
a-pB- aB In x exhibiting nontrivial radial and polar dependence. Also,
T when a=8=, Eq.(37) reduces to
Si() = :
a+ B+ Zinx |n|r—x|
77 r
Interestingly these expressions resemble the ones obtained in (=) i>1fr—x>1 INX+ 7(y=1In2)

1D [see Eqg23) and(24)]. The only change is in the depen-
dence on separating distance: With respect to the 1D cas@d Sy(*)=-S(*)=1.

one hasx— (1/m)In x. Whenr>1 and|r-x|>1, from Eq. Regarding the dynamical behavior, in the regime where
(20), using Egs(35) and (36), the stationary magnetization t=>max(r-x|?,r?), the long-time behavior of the magnetiza-
reads(see Fig. % tion is the following:
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r2« af r
INn———-—1n
1 r-x* 7 |r-x|

Int

{In(x/2) + v} + 2(a - B)(y—In2)

S() - S() = - (39)

a+ B+ %{In x+m(y=1In2)}

In the situation where> x> 1, the above expression simplifies and the approach toward the steady std&8)Eig.

2 (a—,B)Inr+)—(ﬂcos(9} —ﬂg{)—(coseln x}
1 r T |r
S(t) = S(=) =~ nt

a+,8+%3{|n X+ m(y=1In2)}
T

For t>r?, these results tell us that the 2D system evolvesi= g *-a . Also, R increases linearly with the separating

logarithmically slowly toward a space-dependent fluctuatingdistancex.

steady state. As in the presence of only one zealot, we can (i) The casea=p (including a=pg=%)—i.e., y=1—is

see that in 2D the magnetization does not exhibit a scalingpecial. In this situation, it follows from Eq40) that the

expression betweenandt whenr2~t>1[4]. Thisis due to ~ region with zero final magnetization is no longer a closed

the logarithmic terms, specific to the two-dimensional situa-curve but an infinite line given by the equation

tion, appearing in Eq¢35) and(36). Natural questions arise =X/2 cos6 which separates the two-dimensional space into

regarding the spatial distribution of “opinionsWhat is the  two semi-infinite half-planes.

spatial voting distribution in the steady state? Which region For the number of zealots> 2 the analytical calculations

is characterized by a majority of positive and negative opin_become very tedious and we illustrate the results of a Monte

ion? How does the strength efand B affect the final spatial ~ Carlo simulation of the case with six zealots in Fig. 6. The

opinion distribution? simulation is carried on é128X 128) lattice, and due to the
To answer these questions, we use [B) and notice that  1/In(t) approach to the steady state, enormous sampling

in the limit r>1 and |r—x|>1, the spatial region where times are required. Again when simulating the system one

S()=0 obeys the equation has to be careful with the sites on the boundaries: if the site
lies on the edges, then it has only three nearest neighbors,

=yt with y = exp(M). (40) and if it is at the corners, then it has only two nearest neigh-

[r—x] ap bors. The stochastic rules have to be slightly modified to

account for the boundary sites. The geometry of the zealots
can be seen from contour plot in Fig. 6 where three of the
zealots are positively biased and three are biased negatively.
The left picture in Fig. 6 shows the average magnetization
S() on the different sites of the lattice. For these particular
] ) ) values of the bias of the zealots and their position on the
i.e., the polar equation of a circlé(c,R) centered atc |attice, in the stationary state, we observe one large region of
=[1/(1-x*)]x and of radiusR=xx/|1-x?=x/2sini|a™*  positive on average opiniot curved central “stripe” in Fig.
-B7Y). This result, together with Eq$37) and(40), implies  6) and two smaller disconnected regions of a negative opin-
that in 2D, fora# B, the agents located on the cirddéc,R)  ion (near the left boundary and top right edge of Fiy. 6

are “neutral” and they have zero final magnetization as illus- Regarding the coarsening of the 2D system, we again dis-
trated in Fig. 5. From Eq937) and (40) we can also con- tinguish three situationgi) whenn< 2, there is usual coars-
clude the following. ening and an infinite domain eventually spans the entire sys-

(i) If x>1—i.e., B> a—the agents that are withifout-  tem; (i) when there is a finite number of competing zealots,
sidg the disk IntC(c,R) have a positivénegativé magneti-  large domains still develop but their size is limited by the
zation. zealots;(iii) when the density of the competing zealots is

(i) If y<1—i.e., B<a—the agents that are withifout- finite in the thermodynamic limit, there is no longer coars-
side the disk IntC(c,R) have a negativépositive magneti-  ening as the formation of large domains is prevented by the
zation. This case is sketched in Fig. 5. interaction with the numerous inhomogeneities.

These results show that the majority of the voters, except To conclude this section, as in 1D, we notice that
the ones enclosed in the disk, tend to follow the opiniona[1-S)()]=8[1+S,(x)] which implies, with Eq.(18), that
favored by the strongest zealot. The details of the neutrahe global magnetization evolves, following the strongest
region C(c,R) depends nontrivially on all the parameters zealot(a# B), asM(t) ~t/Int. As a consequence, the tirie
a, B, andx and, interestingly, the radius grows with the dif- necessary for the strongest zealot to domirate averagg
ference of the strength of the zealotsRs 1/sinhu, where  the whole 2D system i§~L2InL (whereL—=). In the

Whena # p—i.e., for y # 1—such an equation can be recast
into the following form
2rx X2

r’+ ———cosf- —— =0,
x -1 x -1
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100

20

40

FIG. 6. The stationary site magnetizati§ri>) on a(128x 128) lattice in the presence of six zealots. Three of the zealots favor the +1
state and other three the —1 opinion. The picture on the left shows a 3D phtof (along the vertical axjsand the picture on the right
is the corresponding contour plot. The strengths of the positive zealots are 2.0, 1.2, 0.8 and the strengths of the negative ones are 1.6, 1.4,
1.0.

symmetric caséa=/), as explained above, the 2D space is n.n
exactly separated in two semi-infinite half-planes with oppo- S() =2 2 el (LN X0 {a})]j - (41)
site total magnetization. =11

The three-dimensional lattice Green functip(D) has been
computed very recently by Glasser and Boer$&#. Using
C. Results in 3D the triplet (a,,b;,c,) of rational numbers depending an
given in Table 2 of Ref[22], and the quantitygy=((\3
Above two dimensions, the integrals in E@) are well —1)/967)I'%(1/24I'%(11/24=0.505462.. [I'(2) is Euler’s
defined for all values of and in particular whers—0.  gamma functiofy it has been established that
Therefore, in contrast to what happens in 1D and 2D, to ~ 1 b,
determine the long-time behavior of the magnetization we 1,(0)= —{afg(ﬁcr + ﬂz—r} (42
cannot simply focus on thg— 0 expansion of Eq(4). This 2 %
also means that in dimensioms=3 in the presence ofi  With Egs.(20) and (42) the exact expression of the three-
zealots the static magnetization readily follows from Eq.dimensional magnetization in the presence of two zealots is
(16): explicitly given by

_ il (0) + Beir(0) + apfi (OLein(0) = lx(0)] + (Ol eo(0) ~ &0
L+ (a+ B)io(0) + apli5(0) - 15(0)]

From now on, for the sake of concreteness, we focus on the case where we have two competingezealgts,l, and
thus expressiol43) becomes

S(=) (43

_ a11(0) = Bir(0) + api1(0) =11 (OTTo(0) +1(O]
1+(a+B)ig(0) + aplig(0) - 15(0)]
046102-10
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As we are mainly interested in the largdimit, one can information. In the two-zealot case, as there is a competition

observe that,(0) is just the static solution of the Poisson Petween the effects of the “charges; and C,, we really

. a . L . need to determin& («) through Eqs(42) and(43), to obtain
equation A,1,(0)=-6, 5, which solution in the continuum o . ) .
A - ' . ) the nontrivial spatial dependence of the stationary magneti-
from an “electr?static reformulation,” is valid on the discrete Regarding the dynamical approach toward the steady
lattice forr>1." With the help of Eq(43), this result allows state, it is difficult to study the smasi behavior offr(s) and

us to compute the 3D stationary local magnetization rfor to rigorously obtain the long-time approach toward the sta-
>1 and|r-x|>1: . o .
tionary magnetization. However, it follows from E¢l7)

1(C C that
S(e)=-—| =+ —=1|, (44)
4| |r - X| S,(t) _ S,(OO) e 1 [C e_|,2/4I +C e_‘r _ X‘2/4t]
where C;=-2a/(2+ag,) and C,=2B/(2+gy). Again, the 2m(4mt)1? ' ? '
resemblance with electrostatics is striking: the static magne- (46)

tization is formally the electrostatic potential generated by ) ] ]
the “charges’C; at site0 andC, atx. As already noticed, the ~This result is expected to be accurate in the regime where
difficulty resides in the fact that the chargésandC, area ~ — %, ’>1, and|r—x|>1. As previously mentioned, we can
priori unknown and have been computed iseif-consistent discuss about the regions with positive or negative stationary
way (assuming a |arge enough separating d|Sta()C@V|th magnetiz:_ition. To determine the “n(.Eutl‘al" .I‘e.gi@Where

the help of the exact and discrete res@®) and(43).2 Even  S(2)=0] it follows from Eq. (44) that, in the limit wherer
though the result44) is formally valid forr>x>1, as ex- >1 and|r—x|>1, one has to solve

plained above, it gives already accurate predictions when
>1 andx is finite but large enouglte.g., already whenx = )
=6). It is suggestive that in the limit where=p==, the Ir=x a(2 + Bgo)
“charges’C,=-C;=2/gy. In this case the magnetization in _ . .

Eq. (4g4) caﬁ be \}iewe%0 as the potential of thegelectric dipoIeWher1 a#p—ie., fpr 0+ 1—the equation can again be re-
of charges +2¢,. To make the connection with electrostatics cast into the following form:

even more transparent, it is worthwhile to notice that the
expressior{44) can be rewritten using multipole expansion r
Also, whenB=0, we recovelS(«)x1/r, as reported in Ref.

[4. In fact, one has |[r-x|["'=(r?+x*~2r-x)™2  gych an expression is the polar equation of a sphégs R)

= (1/1)Zeo(X/1)™Pry(cos 6), where cog= (x-r)/xr and the  centered alC=[1/(1-52)]x with a radiusR=ox/|1-57.

Pm(cos6) are the Legendre polynomials. Thus expressiongrom Eq.(44), we can also infer the following.

(44) can be recast into (i) If 6>1—i.e., B> a—the agents that are withifout-

L - " side the sphere(c,R) have a positivénegativeé magneti-
__ T X zation.
S() Agr !Cl ¥ CZEO ( r) Pm(COSG)] - 49 (i) If 6<1—i.e., B<a—the agents that are withifout-

side the spherex(C,R) have a negativ€positive magne-

At this point it is important to mention a major difference tjzation.

with the case where only a single zealot is present. In the These results show that majority of the voters, except the

latter situation, as showed in Re#], just by taking the gnes enclosed in the spheB4C,R), tends to follow the

continuum limit of the equation for the magnetization, onegpinjon favored by the strongest zealot. The details of the

could anticipate tha§(=)=r* (i.e., it has only radial de- neytral regiors(C,R) depend nontrivially on all the param-

pendencgin three dimensions, which is the main desiredegtergy, B, andx. In particular, we notice thaR increases
linearly with the separating distange

We have compared the continuum result to the exact expression (ill) The case where=p—i.e., 5=1—is special because
(42) and have noticed that the discrete and continuum expressiorf§lus the “effective charges” are such th@ég=C,. In particu-
are very close, even for finite values of for instance, at sitg  1ar, this is the case whea=g=c. It thus follows from Eq.
=(5,3,1), we have exactly,(0)=0.01344. .., whereas the “electro- (47) that the region with zero final magnetization is no
static” reformulation giveé(r)=1/47rx53—5>:o.01345. ... This shows longer a surface but an |nf|n|t_e plane, given IGyx/ 2 coso,
that, already forr finite, the latter reformulation is an excellent that separates the 3D space into two regions.
approximation of Eq(42). In 3D, a[l—SO(of:)]?&ﬁ[hs((oo)] whe.n a# 3, and thus

%In three dimensions, in the presence nf zealots at sites the global magnetization of the above inhomogeneous voter
{al, ... a", using a continuum electrostatic reformulativhich is ~ Model evolves linearly with the timeé¥(t) ~t. This implies
valid if [r-al[>1, ... |r-a">1), we can infer in the same man- that the timeT necessary for the strongest zealot to dominate
ner: S(ee) =—(1/4m)[Cy/|r—al|+--- +C,/|r—a"], which can be de-  (on averagethe whole 3D system scales @s-L3 where
veloped in multipolar expansion. In general, to compute theL— . On the other hand, whem= 3, the space is divided in
“charges”Cy, ... ,C, one needs to explicitly invert the matrix. two symmetric regions with opposite total magnetization.

Co

Cy

B(2 + agp)

=51 with §= = (47)

2

cosf - X =0
82-1

2rx

24
6%2-1
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Finally, in the case where both zealots favor the sameefilled). The kinetics of monomer-monomer substrate reac-
opinion e=+1—i.e., e,=e,=e—one has just to modify the tion model is therefore awo-state system that can be
expressions of “charges” in Eq$44)—(46). In fact, these mapped onto the voter model supplemented by an infinite-
results are still valid with C;=—2ea/(2+ag,) and temperature Kawasaki exchange prodés§]. In fact, in the
Co=—2€PB/(2+B9p). monomer-monomer catalytic reaction under consideration,

As and Bg desorb and the resulting empty sites are instanta-
neously refilled either byA{Bg (no reaction, AdAs,BsBs
V. MONOMER-MONOMER CATALYTIC REACTION ON (voter dynamics or BsAg (Kawasaki exchange dynamics at
AN INHOMOGENEOUS SUBSTRATE infinite temperature
The other model that we specifically consider in this work Clear!y, more real_ls_tlc S'“_Ja“ons should include the pres-
. . . ence of inhomogeneities which could deeply affect the prop-
is the monomer-monomer catalytic reaction. Such a process .. )
. : . ) . . erties of the system. In fact, real substrafies1D and 2D
is of considerable interest in many fields of science and the

technology. In the catalysis the rate of a chemical reaction is isplay generally some degrees of spatial heterogeneity

enhanced by the presence of a suitable catalytic materia\th'Ch are attributed to imperfections, such as dislocations

such as the platinum used to catalyze the oxidation of carboﬁnd defects27] that modify locally the interactions on the

monoxide (2CO+0y,— 2C0,) [19,23. Because of the nu- sybstrate. In some previous works translatlonqlly invariant
merous and practical implications of the catalytic reaction idlsordered models catalysis have been considered within
P P y ' “mean-field-like approaches—i.e., rate equations and pair ap-

is of prime interest to be able to model its quantitative an roximation [28]. In these works, it was shown that

qua'llltatlve. pehawor. I.n ge_neral, these processes are d uenched substrate imperfections dramatically affect the dy-
scribed within mean-field like approaches where it is as-

sumed that molecules are randomly distributed on the su hamics, resulting in a reactive steady state. One should em-
y hasize that both the physical systetmsthis work, the in-

Shomogeneities are not randomly distributed but fjxadd
gnalytic method$we obtain exact results in arbitrary dimen-
sions, while the authors df28] employed mean-field-like

. ; approaches considered here differ from, and are thus
surface reaction model plays an important part at least from 8omplementary to, those of R&R8]. Also, very recently, an

g}ﬁ)?,\:gt{ga;ggr'gtssfs\g\%\;geiggljess ;r:]zfltr;;g::mt)s/l?;:h; rI'h(zadrecl)gquiIibrium model for monomer-monomer catalysis on a dis-
y Y, Stdered substrate was solvgzb].

of the fluctuation$5,24], the interfacial roughenin@5], and Hereafter we study the static and dynamical effects of

theT?\Igurigr?o(r)rzét?niﬂz?rzgfr::iggl. tic process on a homo elpcal inhomogeneities in the monomer-monomer catalytic
. ytce p : 9 eaction-controlled process and show how to take advantage
neous substrate is by now well understood and it compris

the following reactiongs.6l: €5t the results obtained for the inhomogeneous voter model to
9 e infer some exact properties. In fact, we considergbauine

effects are shown to play often a crucial ro&].
In the modeling of catalysig23], the monomer-monomer

A+ @ —— A, nonequilibriumsituation where the substrate spatially in-
ka homogeneoysecause of the presence of a collectionnof
inhomogeneities located at sitgg},j=1, ... n, favoring the
B+ @ —— Bg, local adsorption ofA’s or B's. We show that the inhomoge-
ks neities induce spatially dependent reactive steady state when
n>1. As a substrate, as described in Sec. Il, we consider a
As+ BST ABT+20Q. hypercubic lattice with2L+1)¢ sites and introduce a set of

' parameterSEj’,, taking the values 0 or 1, and consider, in
The A andB particles impinge upon a substrate with raétgs  addition to the usual homogeneous catalytic reaction de-
andkg, respectively, adsorb onto vacant sitg%) and form  scribed above, that some inhomogeneit@sally favor the
monolayers of adsorbed particleds and Bs. Nearest- presence oA via desorption oB’s (and vice versathrough
neighbor pairs of different adsorbed particlédgBs, react the additional reactions
and desorb with ratk,, leaving two vacant site2@) on the
substrate. The dynamics on a spatially homogeneous sub- Bs—— As,
strate is most interesting in dimensiods<2, whenk,=Kkg i
(otherwise the species with the bigger rate will rapidly satuyyneree’=1. and
rate the substratelIn this case there is coarsening on the b
substrate induced by fluctuations and islandsAgfand Bg As—— Bg,
particles grow. As in Refs[5,6], we will consider the ajr
reaction-controlledimit, where k;, <ky=kg. This limit turns , i .
out to be useful from a technical point of view and, mostWhere €, =0. We therefore consider the following homoge-
importantly, provides qualitatively the same kind of behaviorneous processe&oter +infinite-temperature Kawasaki dy-
as the general ca$®,6,24. In the reaction-controlled limit, namicg, all occurring with the same rates 1/2, and local
the substrate quickly becomes fully occupied and stays cowinhomogeneoysreactions at sites! and al'#i, occurring,
ered withAg's andBg's for ever (vacancies are immediately respectively, with rates; and a;::
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ABs—— AAs, ABs—— BgBs, al,
12 1/2

8(9=—Hr (52)
Sl +a|0(S)

AsBs 12 » BAs, On the right-hand side of this equation, one recognizes im-

mediately the same expression as the Laplace transform of
the magnetization obtained in Rd#]. From previous re-
sults, we can immediately infer the long-time behavior of the
concentration ofAs particles.

Here, the bimolecular reactions correspond to the voter dy-
namics supplemented by Kawasaki infinite-temperature ex-
change process, whereas monomolecular processes corre-Following the same steps as in Rd#], on a one-
spond to reactions induced by local inhomogeneitiegdlimensional substrate we find from E@2) that the long-

1. Results in 1D

favoring the adsorption of one species. Following the saméime behavior of the concentration 8§ reads

steps as in Refs[5,6], for this spatially inhomogeneous

monomer-monomer catalytic process, in the thermodynamic

limit we obtain the following equation of motion for the
concentratiorc, (t) of Ag at siter of the substrate:

d n
d_tcr(t) =Ac(t) + E aj[ej, —Cai(1)]3 4 (48)
=1

Of course, the concentration Bf at siter is simply given by
1-c,(t). The resemblance of E¢48) with Eq. (3) is striking
(the only difference is that hemﬂi =0,1) and one can imme-
diately infer the solution of Eq48) from Eqgs.(15) and(20).

In particular, in the thermodynamic limit, starting from a
system initially completely occupied bBg particles, the
Laplace transform of the concentration &f reads

1w -
ér(s) = ng félai—r(s)[N_l(Sr{a})]j,fi (49
IB

and we get, for the time-dependent concentrafioitially
¢(0)=0)],
1 CHie

Cr(t) =

d_sst " ~17
2mi )y, 50 2 a9V (50

c—io
In this language, the quantity

n
Eaj

t
dre - cai(7)] (51
=1 Jo

M) =2 et =

provides the average total number of thgparticles on the
substrate at timé.

r+2la
—,
Vot

G(t) =1~ (53
This result is valid for any & r <.

When bothr—oo and t—o, we obtain the following
simple scaling expressidd]:

c () = erfc( Lr) . (54)
2Vt

2. Results in 2D

In two dimensions, following results from Ref4] we
obtain a nonscaling expression for the concentration, with
very slow time dependence:

1

Int’ (55)

A1
Colt) = Co(%0) = = (—)
o
where co(0)=1. For the other sites, we find that the long-
time behavior in the regime>r?>1 is given by

2

Cr(t) —C(0) == ——,

Int (56)

C(e0)=1.
As in the one-dimensional case, the stationary concentration
of Ag corresponds again to a substrate fully covered with
particles—i.e.c,(«)=1. Therefore, the presence of a single
inhomogeneity favoring locally the adsorption & is
enough to completely cover the substrate within spite of

the fact that initially onlyBg particles were present. From
expressiong53), (55), and (51), we can also compute the
total number ofAg particles on the substrate at tirtie 1. In

_ Next, we restrain ourself to physical situations and consg doing, one obtainil’(t) ~ 1t in the one-dimensional case
sider in detail the monomer-monomer catalytic reaction ingngm-(t)~t/Int in 2D.

the presence of one and two inhomogeneities in one and two

dimensions.

A. Inhomogeneous monomer-monomer catalytic reaction in
the presence of one single “defect”

B. Inhomogeneous monomer-monomer catalytic reaction in
the presence of two defects

Here, we consider the case where two “competing” inho-
mogeneities are present: one is at site0, with strength

Here, we consider the case where there is a single inhQ;, =4 and ;=1 and the other at sita?=x, with strength

mogeneity at sitea'=0, with strengtha;=a and ¢=1. In
this case, we simply have/™*=a/[1+aly(s)]. Therefore,
starting from a system initially full ofBg particle [i.e.,
¢,(0)=0] we obtain

Cl’Z:IB and 62:0.

In this case, using Eq$49) and(11), we obtain the fol-
lowing expression for the Laplace transform of the concen-
tration of Aq at siter, starting fromc,(0)=0:
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course, it is easy to check that in the limit—0, as the
system is initially full ofBg, thenc,(t)=0. Also, whengB=0,

we recover expression$3) and (54). From Egs.(51) and
(58 we obtain the average number of adsorbed particles
which evolves(at long timeg asM’(t) ~ vt.

Again, in one dimension we can obtain the stationary con-
centration of adsorbedg particle in the completely disor-
dered case—i.e., whem is arbitrary large—just by replac-
ing, respectively, S;i(*),S(<),¢ by ca,-(oc),c,(oo),ej’ in

In one dimension, without loss of generality, we assumeaxpression$27)—(33). As illustrated in Fig. 4, in this case the
that the inhomogeneity at sig=x, x=|x| is on the right side  stationary concentration profile is piecewise. Also, when the
of the origin. number of competing inhomogeneities is finite the system

Proceeding as in Sec. IV A, we study the static and longtcoarsens as described in Sec. IV A.
time behavior of the concentration 8§ with c,(0)=0, and
distinguish various situations.

(i) For sites between the two inhomogeneities—i.e., 0
<srsx—we get

aof1+B(x-r)] _( a )

(9= .3 a9 s el
IE

_ a9+ apll9lo(® ~l9] o

S{L+(a+ B)lo(s) + aBlids) ~ 129

1. Results in 1D

2. Results in 2D
In two dimensions and at large distance from both
inhomogeneities—i.e., for>1 and |r—x|>1—we find a
nonscaling expression for both static and time-dependent

c (t) =

a+ B+ apx a+ B+ apx concentrations of thég particles,
— — 2
X”i_{r_'_[l'i'ﬁ(x-l-r)]iz a,BX/Z)} (58) a—;—i|:|n<x|rr_x|)—ﬂ'(’y—|n2):|
vt arpTaps () = . (63

(i) At the right of the origin, whenx<r <o, we obtain a+ B+ a—B[ln X+ m(y—1In2)]
T

a 1 2 - apBxil2 .
ct)=—""-"|1-—=y1r+——|. and, whenx is large enough:
a+ B+ afX Vit a+ B+ afX
(59 o 1+£ )
o o
(iii) At the left of the origin, when &r <o, we find Co() = and cy() = a :
1 a+pB+—Inx a+pB+—InX
at B+ apx vt We can notice that in 2D the stationary concentration of
(1+Bx)(2 — aBX?l2) the Ag particles is a fluctuating reactive state exhibiting non-
X r+ a+ B+ apx . (60) trivial radial and polar dependence. Regarding the approach
toward the steady state, proceeding as in Sec. IV B, we ob-
(iv) When botht— o andr — o, we have tain
r B'(r,x
c,(t) = — % erfd — |, (612) C (t) = ¢() = - # (64)
a+ B+ apx 24t Int
( ) where the amplitude
a(l+pBx r
c(t)= rfc(—r) . (62) apB
at B+ apx 2\t — Inx{In|r =x|+y=In2} + 2aInr
a
These results show that in the interval between the inhomo- B"=

geneities, the static concentration profiles varies linearly
from the origin with a slope «B8/(a+B+aBx). Outside

from this interval, the static concentration is uniform on theexhibits a nontrivial Spatia| dependence_ Again, the result
right and left side of the origin: on the right(*)=a(l  (64) shows that the stationary concentration profi®) is
+Bx)/(a+B+apfx), whereas on the lefc.(<)=al/(a+B  reached logarithmically slowly. Using E¢51) we can also
+apx). Such a static profile can again be interpreted as th@otice that the average number of particlesadsorbed on
solution of a discrete 1D electrostatic Poisson equation withhe substrate evolvegt long timg asM’(t) ~t/Int.

peculiar and suitable boundary conditions. Again, the static There is a practical interest in understanding the spatial
concentration is reached according to a power [@Wt)  distribution of adsorbed particles in the steady sfa@ and
~t72] and with amplitudes depending nontrivially on all one can thus askyhat is the region of the 2D substrate
parameters of the system. At very large distances and longshere one can find moregfarticles?

time, the concentration displays a scaling form which ampli- To answer this question, from E(63), we proceed as in
tude depends on which inhomogeneity is the closest. O8ec. IV B and, according to Eq40), we see that whem

a+ B+ a—f[ln x+ m(y=In2)]
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> B(B>a), the region richer inAg particles is outside species—sayAs—with respect to the other is sufficient to
(within) the disk IntC(c,R) [defined in Sec. IV B where the ensure that eventually the substrate will be completely filled
concentration of\g is ¢,(«) = %[Cr(oo) < %] Whena=8, the with Ag particles. When we have two competing inhomoge-

2D substrate is separated into two half-planes with concer?€ities, favoring locally opposite states or the adsorption of
tration of Ag>1/2 in the region including the origin. particles of different species, we have obtained rich behavior.
In 1D, between the two inhomogeneities, the stationary pro-
files of the order parameters vary linearly with the distance
from the origin(22) and(58) and then reaches two plateaus

In this work we have shown how to compute some exact23), (24), (59), and (60). These static profiles are always
properties of a class of many-body stochastic systems in the¢ached algebraically in 108,(t)~S(«) =At™*/2 and c,(t)
presence of an arbitrary number of inhomogeneitiesnd ~ —C/(%) =A’'t™"2 where the amplitudes andA’ depend non-
have specifically focused on the voter model and monomettrivially on all parameters of the problem and in particular on
monomer catalytic reactiofin the reaction-controlled limit ~ the separating distance between the inhomogendites
We have studied the effects of local perturbations of the dyEgs.(23), (24), (59), and(60)]. Far away from the inhomo-
namical rules on the static and time-dependent properties @eneities, the order parameters display scaling expression of
these models by obtaining both genetget forma) and  the variabler/+t [see Eqs(25), (61), and(62)]. In one di-
many explicit results in the presence of one and two inhoimension, we have also been able to compute the expression
mogeneities. In fact, the latter situation already displays an@f the stationary magnetization in the completely disordered
covers most of the generic features of the models. Namelgituation where the number of zealots is arbitrary ldigse
when there is only one inhomogeneity present, it is responEgs.(27)—(33)]. In two dimensions, fon=2, in the presence
sible for a uniform and “unanimous” steady state in low di- of two competing inhomogeneities, we have obtained non-
mensiong 4], while in the presence of competing inhomoge-uniform and nontrivial stationary profiles for the order pa-
neities(n> 1) the steady state is fluctuating and reactive. Forrameters, in agreement with an electrostaticlike reformula-
the sake of concreteness we have mainly focused on the amiéon, the latter display logarithmic spatial depende(reglial
nable case with two inhomogeneities and have shown quar@nd polay [Egs. (37) and (63)]. The approach toward the
titatively how the local interactions deeply affect the proper-reactive steady state is very slo§i(t)-S()=B/Int and
ties of these systems. Neither the stationary nor the times,(t)—c,(«)=B’/Int, with amplitudesB and B’ depending
dependent expression of the order parameters aragain nontrivially on all parameters of the problgsee Egs.
translationally invariant but exhibit nontrivial radial and po- (39) and (64)]. In 2D, for the inhomogeneous voter model,
lar dependencéwvhend>1). we have also studied the spatial regions with positive and

From a sociophysical perspective, in voter model lan-negative static magnetization and have shown that only
guage, this means that a system which tolerates the presene&hin a circle, whose center and radius depend on the
of “competing zealots"—i.e., which accepts the competitionstrength of the “zealots” and on the distance between the
between opposite points of view—will never reach a unanidatter, the sign of the magnetization is the one favorite by the
mous state but always end in a final configuration where bothweakest” zealot. When both zealots have the same strength,
opinions coexist and fluctuate. Of course, such a conclusiothere is positive and negative magnetization in half-space. In
seems to be consistent with the results of electoral competthree dimensions, fon=2 and in the continuum limit, we
tions in modern democracies. have shown that the stationary magnetization of the inhomo-

In the presence of competing inhomogeneities- 1) in geneous voter model displays a radial and polar dependence
low dimensions, subtle coarsening phenomena take place that can be recast into a multipole expansidd), corre-
1D and 2D. In fact, the local and competing perturbations ofsponding formally to the electrostatic potential generated by
the dynamics lead us to distinguish the case where the nuntwo “charges” that are determined self-consistently using ex-
ber of inhomogeneities is finite and the case where theiact results from the discrete lattice system. The connection
number is comparable to the size of the system. In the formewith electrostatics is particularly striking in the limit where
case the system coarsens and large domains develop, twth zealots have an infinite strength; thus, the stationary
their size are typically limited by the number of competing magnetization corresponds to the potential of an electric di-
inhomogeneities, while in the latter case coarsening is prepole. The approach toward the static magnetization follows a
vented by the interaction with all the numerous inhomogenepower law S (t) - S (=) =Ct %2 [see Eq.(46)]. Also, in 3D
ities. we have studied the spatial regions with positive and nega-

More specifically, in this work we have obtained exact,tive magnetization and have shown that outside from a
yet formal, expressions of the static and time-dependent oisphere whose center and radius depend on the parameters of
der parametergsee Eqs(15) and(50)]. The main technical the system and varies linearly with the distance separating
problem to carry out detailed calculation resides in the inverthe zealots, the sign of the final magnetization is the one
sion of thenxn matrix N. The case with one single inho- favored by the strongest zealot.
mogeneity in the voter model was already considerefd]n The results obtained from Monte Carlo simulations of
and here we show that such results can be translated in tlmme- and two-dimensional lattices show excellent agreement
language of the catalysis reaction. In particular we havewith the theoretical results obtained for an infinite system. In
shown that on 1D and 2D substrates, the presence of a singlee presence of multiplen>2) competing inhomogeneities
spatial inhomogeneity favoring the adsorption of onethe calculations in two dimensions become very tedious and

VI. SUMMARY AND CONCLUSION
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we consider this case by numerical simulations which conities at sites{al}. In the same manner, it would be quite
firm the extremely slow dynamics and the existence of noninteresting to consider the disordered case where the strength
trivial spatial dependence of the order parameters. We alsef the inhomogeneities would follow a distribution function

would like to point out one intriguing and interesting fact h ast o[ e(aj—@%20 | ;
) . o ; i . In thi ne woul
about the small-time behavior of the magnetization of theSuc as73({gj}) =1 . this case, one would be
Hterested in the quantity:

zealots in the one-dimensional case. As it can be extracte
from Fig. 3, (t) and S(t), for smallt, evolve as a power - - ) )
law with an exponent numerically smaller than 0.50. The Sr(t)zj Hj da;P({eh)S({@'}{a'}1),

small-time behavior of the site magnetization of the usual

one-dimensional voter modelno inhomogeneitios is  whereS({al},{a/},t) is the magnetization computed in this
linear—i.e.,S(t)-S(0) «t for any siter on the lattice. We work for a given set of inhomogeneities at sit@s}, with
think it would be interesting to investigate further this strength{al}.

“anomalous” smalt- behavior of the magnetizations of the

zealots in the one- and two-dimensional cases and we plan to
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