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By performing sound-scattering measurements with a detector array consisting of 62 elements in a flow
between two counter-rotating disks we obtain the energy and vorticity power spectra directly in both spatial
and temporal domains. Fast-accumulated statistics and a large signal-to-noise ratio allow us to get high-quality
data rather effectively and to test scaling laws in details.
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One of the challenging experimental tasks in studies of
turbulent flows is developing new tools to characterize ve-
locity and vorticity fields in spatial and temporal domains.
Ultrasound scattering by flow is regarded as a promising ap-
proach in this respect. First, sound is the only remotely ac-
cessible nonperturbing probe of flow that does not require
seeding particles. Second, at rather widely satisfied condi-
tions, a direct relation between the scattering signal and the
spatial Fourier transform of either velocity or vorticity fields
exists. Spatial characterization of velocity that is not based
on the Taylor’s frozen flow assumption is one of the goals of
experimental turbulence. Particle image velocimetrysPIVd is
capable of performing this task but it requires seeding par-
ticles and extensive data transferring from a camera. The
main advantage of the sound scattering compared with PIV
particularly shows up in studies of fast dynamics in a flow.

There were a few studies in the past to experimentally
probe turbulent flow by the sound-scattering method. These
experiments were based on a single moving transducer ar-
rangement and concentrated on studies of angular distribu-
tion of scattered waves in atmospheric turbulencef1g and in
grid turbulence in a wind tunnelf2g. However, the quality of
the data permitted just to test consistency of the relation
between scattering cross section and turbulent energy spec-
trum f8g. Later the vorticity distributionf3g in a swirling jet
as well as the temporal dynamics of vorticity fluctuations
f4,5g and a large scale circulation in high Reynolds numbers
flows f6,7g were also investigated.

In this Rapid Communication we present results of the
simultaneous acquisition of 62 acoustic detectors arranged
on the cell wall in front of a linear emitter in the same plane
f7g. The far-field scattering values required by the theory
f8–10g are acquired owing to a wave-construction method
similar to the Huygens principle in optics. The limitation due
to either a finite sound beam width or an aperture discussed
in Ref. f7g is released sincesid they are of the order of the
integral scale of velocity fluctuations, andsii d the edge dif-
fraction of the scattering wave cancels out with time due to
the randomness of the flow. Thus, the amplitude of the com-
plex wave function of the scattering sound in the far-field
limit can be related to the two-dimensionals2Dd spatial Fou-
rier transform of the velocity fieldsand also the vorticityd as
follows f9,10g:
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where Cscat=C−Crest, and C and Crest are the complex
wave functions that describe the sound pressure oscillations
in the presence of a flow and without it, respectively;k0 and
c are the sound wave number and the velocity, respectively;
u and ks are the scattering angle and the wave number, re-

spectively, that are related to each other viaks;uks
W u

=2k0 sinu /2; andr = urWu is the distance from the center of a
scattering region till a detector.Fks

W hvxj is the 2D Fourier
transform of the velocity component in the forward direction
of the beam that is related to the Fourier transform of the

vorticity via Fks
W hvxj=si /2k0d cotsu /2dFks

W hs¹W 3vWdzj.
The construction of the far-field scattering wave function

from the near-field measurements is based on a mathematical
description of the Huygens principle and derived from the
Rayleigh-Sommerfeld integralf11g as
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where rd and r f are the distances measured from the cell
center till the detector and the far-field region, respectively;
Cs0,y8dscat

d andCsx,ydscat
f f are the scattering wave functions

at the detectorsas measuredd and at the far-field, respectively
f7g.

Measuring scattering around the forward direction with
high-frequency sound guarantees avoiding interference from
the scattering of sound beam side lobes. Either a finite flow
extent or a finite beamwidth eliminate any scattering ampli-
tude divergence in the forward directionf12g. In general, the
scattering field of ultrasound in the small Mach number ap-
proximation is the result of phase shifts induced by entrain-
ment of the wave by the flow, and additional effects are the
influence from the spatial derivative of velocity in the beam
direction and the influence of diffraction of those distortions.
The latter effect is the reason that simple analysis of the
phase shifts is not sufficiently accurate.
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The experimental setup is described in detail in Ref.f7g.
The von Karman swirling water flow was produced between
two counter-rotating disks of a diameter 2R=280 mm with
four triangular blades of 20-mm high and 5-mm thick and
with rims. They are driven by two dc brushless motors,
whose velocity is controlled with a stability of about 0.1%
via optical encoders. This setup is well recognized to gener-
ate a strong intensity turbulent flow in a confined regionssee,
for examplef4gd. The flow is confined by a perspex cylinder
with an inner diameter 290 mm and 320 mm in height and
disks separation of 205 mm. By changing a rotation fre-
quency, the Reynolds number, Re=2VR2/n, is varied be-
tween 2.53105 and 1.73106 that corresponds to the Taylor
microscale Reynolds numberRl between 200 and 570. Here
V is the angular velocity of the disk,n is the kinematic
viscosity, and the energy dissipation, e=4.9
310−18Re3 W/kg, and the rms of the velocity fluctuations in
the middle plane,Vrms=0.5310−6Re m/sec, obtained from
the global torque and the hot wire anemometrysHWAd mea-
surements, respectivelyf13g.

The sound-scattering measurements were conducted in
the middle plane between the disks and in the plane at
30 mm below it. The emitter was 80 mm long and 10 mm
wide, and the size of the scattering region was defined by the
length of the detector designed as a linear array of 62 acous-
tic detectors with 1-mm spacing and 62310 mm2 active
areasfrom Blatekd. Thus, the velocity is averaged across the
beam thickness of 10 mm that is quite larger than the Taylor
scale. A range of frequencies covered in the experiment was
between 1 and 7 MHz. The acquisition system is built in a
heterodyne scheme that is based on 62 lock-in amplifiers

with 62 preamplifiers. The details of the design and its op-
eration are presented in Ref.f7g. Every sound pulse is
sampled exactly simultaneously by 62 lock-in detectors com-
bined with sample and hold components, so 0° and 90° prod-
ucts sfluctuation values of the complex wave functiond are
recorded. A typical sound propagation time through the cell
is about 200ms that is a typical freezing time segment.
Within this period one pulse is sent, and the flow is almost
frozen. In such way the instantaneous fluctuations in sound
due to scattering by the flow can be used to characterize the
velocity components in the plane in which the beam propa-
gates to the detector array.

Scattering from a single incident beam provides informa-
tion about the velocitysvorticityd field only on a single curve
in a (sksdx,sksdy) planessee Fig. 1, left inset, solid lined. To
get information on other curves in the planessee Fig. 1, left
inset, dashed linesd requires us to use sound beams emitted
by different transducers in many different directions simulta-
neously. Then complete structure functions of the velocity
svorticityd fluctuations can be retrieved without any assump-
tion about isotropy and homogeneity of a turbulent flow.
However, with only one emitter at hand and the detector
array we should rely on the isotropy and homogeneity as-
sumptions of the turbulent flow under studies. Thus in the
present case the sound scattering provides direct measure-
ments of the energy spectrum as well as the Fourier trans-
form of the vorticity structure function in a spatial domain

that are related asEsksd=6p3/AksuFkWs
hs¹W 3vWdzju2. Here the

kinetic energy per unit mass is defined aseEskddk
=s3/2Adevx

2d2r, where A is the cross-sectional area of a
sound beam. In Fig. 1 we present a typical result on the
time-averaged velocity Fourier transform in the far field ob-
tained from the scattering wave function via Eq.s1d and the
far-field reconstruction according to Eq.s2d. The same func-
tion, but observed directly in the detector plane, looks dras-
tically different ssee right inset in Fig. 1d. These data are the
result of averaging on 60 000 sound pulses at a 1.8-kHz rep-

FIG. 1. Time-averaged velocity structure function obtained by
sound scattering via the far-field construction taken at Re=1.5
3106 and 3 MHz. Right inset: The same property obtained from
sound-scattering data at the detector without far-field construction.
Left inset: The path in the wave number planessolid lined, on which
information on the velocitysvorticityd spectrum for a given beam
direction is obtained; other curvessdashed linesd contain informa-
tion on scattering from sound beams emitted in various directions.

FIG. 2. Energy spectrum derived from the data presented in Fig.
1. Inset: The scheme of the aperture limit for the sound detector
array.
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etition rate and at a frequency of 3 MHz taken in the von
Karman swirling flow at Re=1.53106.

In Fig. 2 the resulting energy spectrum as a function of
the wave number is shown. The dotted line denotes the
“−5/3” slope according to the Kolmogorov law to demon-
strate that indeed in some range of the wave numbers the
spectrum follows the expected law. It can be compared with
the results on the energy spectra obtained by PIV, where,
though, a shorter scaling region is also observedf13g. In the
sound measurements shown in Fig. 2 the wave numbers are
limited by the range of values 0.1,k,0.8 mm−1, outside of
which the spectrum cannot be retrieved. The lower side of
the range ofk is limited by the beamwidth, i.e., one cannot
get information on a scale exceeding the beamwidthsin the
energy spectra from PIV the scaling region begins already at
k=0.06 mm−1 for Re.106d. On the higher side of the range,
the ultimate limit is determined by the size of the element in
the detector array, namely,kmaxø2p mm−1 corresponding to
a 1-mm detector array spacing. However, even before this
limit is reached, the energy spectrum is cut on the higher
wave number side by the visibility at large scattering angles
through the detector aperture. It means that some sound rays
are blocked by the limited length of the detector array. Ac-
cording to the detector array length and the cell diameter at
angles exceeding about 6°, the visibility starts to deteriorate
ssee the inset in Fig. 2d. The corresponding limit isksslimd

=2k0 sinsumax/2d.0.1k0. It gives about 1.3 mm−1 at 3 MHz
compared to 0.8 mm−1 observed. We tested this relation at
various frequencies, and the results on the energy spectra
taken at different sound frequencies are presented in Fig. 3.
One finds that by changing the frequency from 1 up to
7 MHz the upper wave number limit moves linearly toward
the highest value of about 1.5 mm−1, but still far away from
kmax=2p mm−1.

Useful information in terms of the turbulent flow energy
dissipation,e, can be gained from the combined presentation
of the energy spectra obtained from the sound-scattering
measurements at different Reynolds numbers. There is a

known scaling law for the energy spectraf14–16g that ap-
pears as the result of plotting the scaled energy density spec-
trum e−2/3h−5/3Eskd vs kh, whereh is the Kolmogorov dis-
sipation scale defined ash=sn3/ed1/4 f16g. The idea is to find
the best match between the scaled spectra at different Re
with fitting values ofe. It turns out that the scaling exists for
the data at all values of Re, and the results for the sound
scattering in the middle planescurve 1d and in the plane at
30 mm below itscurve 2d are shown in Fig. 4. Each data set
for each Re consists of 43106 points. The dependence of the
energy dissipation,e, on Re is found to bee,Re3.1±0.1 with
a good quality of the fits. The exponent value is rather close
to 3, the expected one according to the dimensional analysis
f13,17g scompare with the expression fore presented aboved.

FIG. 5. Upper curve: Power spectra of the time-averaged vor-
ticity as a function ofk taken at Re=1.23106 and frequencies 2.5
sasterisksd and 5.8sdiamondsd MHz. Lower curve: Power spectra of
space-averaged enstrophy as a function off. The dashed lines show
the Kolmogorov scaling with the exponent −2/3.

FIG. 3. sColor onlined Energy spectra taken at various sound
frequencies from 1 up to 7 MHz at Re=1.23106.

FIG. 4. sColor onlined Scaled energy spectra as a function of the
reduced wave number at various Re:s1d at h=0, s2d at h
=−30 mm. The dashed lines show the Kolmogorov scaling law with
the exponent −5/3.
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The Kolmogorov constantC in the Kolmogorov equation
e−2/3h−5/3Eskd=Cskhd−5/3 is determined experimentally from
the fit of the plots in Fig. 4, and the value isC.0.8 for the
curve s1d andC.0.9 for the curves2d.

We also calculate the integral scale in the flow at Re
=1.23106, using f18g Lint=s3p /4dek−1Eskddk/eEskddk
=40±10 mm, based on the system scale 0.02 mm−1 and the
scaling region 0.06,k,1.5 mm−1. This value occurs to be
rather close to the beamwidth, and the corresponding wave
number is located close to the lower end of the wave number
range of the spectrum.

To test the Taylor hypothesisf16,18g for the swirling flow
the energy spectrum in the frequency domain is calculated as

Esfd=1/Te0
TEstdexps−i2pftddt and Estd=e6p3/AksuFkWs

s¹W
3vWstddzu2d2ks. A proper energy spectrum can be obtained
only if the lowestks is available due to the pole atks

−1 in the
integrand. So we turn out to the Fourier transform of the
vertical vorticity. In Fig. 5supper curved we present the time-
averaged power spectrum of the vorticity as a function ofk
sbased on 23107 pointsd at Re=1.23106 obtained at the
sound frequencies 2.5 MHzsasterisksd and 5.8 MHz sdia-
mondsd. The dashed line with the scaling exponent −2/3
represents the expected dependence according to the

Kolmogorov predictions f16,18g. It can be compared
with the space-averaged over the beam area Fourier trans-
form of the enstrophy in the frequency domainNsfd
=1/Te0

TNstdexps−i2pftddt, where Nstd=1/AeAu(¹W

3vWstd)zu2d2r =s2pd2e uFkWs
(¹W 3vWstd)u2d2ks. The latter shows a

rather wide scaling regionssee the lower curve in Fig. 5d.
The advection velocity,VT, found from the two plots in Fig.
5 is VT=2pf /k.0.6 m/s that is rather close to the average
velocity f13g.

We would like to point out also that the mean enstrophy
value, marked in Fig. 5 by asterisk on the left-hand side
ordinate axis, is about an order of magnitude larger than one
corresponding to a rigid body rotation with the same rotation
velocity of 300 rpm and the vorticity of 63 s−1, or the enstro-
phy of about 4000 s−2. In the corotational disks geometry at
the same parameters and with a large scale single vortex flow
configuration the enstrophy is also much lowerf7g.
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