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We show that Calogero-Sutherland models for interacting particles have a natural supersymmetric extension.
For the construction, we use Jacobians that appear in certain superspaces. Some of the resulting Hamiltonians
have a direct interpretation as models for two kinds of interacting particles. One model may serve to describe
interacting electrons in a lower and upper band of a one-dimensional semiconductor, another model corre-
sponds to two kinds of particles confined to two perpendicular spatial directions with an interaction involving
tensor forces.
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Calogero[1] and Sutherlandi2] reported models for in- to higher space dimensiof$0,11]. Again, our construction
teracting particles, which have much in common with aand the results are different from this. Our models are related
group theoretical construction by Dys@8i. Various modifi- to the many-species Calogero model addressed in Refs.
cations of these models have been studsse the reviews in [12,13. There, however, no connection to supersymmetry
Refs.[4,5] and references thergirA model of the Calogero- was established.

Sutherland type is defined by the Schrédinger equatiolNfor ~ We briefly sketch the derivation of the modg). With the

particles in one dimension at positiorg n=1, ... N, Vandermonde determinamy(x)=I1,-n(X,—X%n), the Jaco-
N bian on the space of the real-symmetxi N, the Hermitian
HP B (x k) = 2 | pB(x k), 1 N X N, and the quaternion self-dualN2< 2N matrices labeled
N (%K) EK” N (k) @ with the parameteB=1,2,4, respectively, takes the form
. o |AN(X)|A. These spaces are noncompact forms of the symmet-
with the Hamiltonian ric spaces (N)/O(N), U(N)/1, and U2N)/Sp2N). The
N corresponding radial Laplace-Beltrami operator reads
P B 1
H=-2 S+B5-1]2 ——. @) N
n=1 9Xq 2 n<m (Xn = Xm) A= E 1 i|A (X)|3i 3)
X~ B N .
The many particle wave functioﬂfﬁ\,ﬂ)(x,x) depends orN =1 [ANN 9%, Pn

quantum number%p, n=1,... N whose squares a_dd up 0 The equation A@Lﬁ)(x,K)=-(22‘-1Kﬁ)¢$)(x,f<) for the
the energy on the _rlgh_t—hand S'd.e of ). The Ham|I§0n|an ._eigenfunction (I)(ﬁ)(X,K) is mapped onto theN particle
(2) consists of a kinetic and a distance-dependent interaction ®~ . N . 8)
term. The strength is measured by the paramgtethe in- Sch(;c))dlnger lzequatllcz)n(l) with the ansatz ®\"(x,k)
teraction vanishes fo=0 and 8=2. Usually, one addsl  =¥x (x,K/A{Z(0A{%(K). The parametep is now viewed
confining potentials to the Hamiltonig®). This renders the as positive and continuous, such that the coordinates
system a bound state problem. Apart from this, they do noEl, ... N span a space more general than(ifaelial parts of
significantly affect the structure of the model. Thus, we will the) symmetric spaces.
not work with confining potentials in the sequel. For the supersymmetric generalization, we consider the
In this paper, we present a most natural extension of thes@o sets ofk; variabless,;, p=1, ... k; and ofk; variables
Calogero-Sutherland models. In our construction, we emplog2 P=1, ... K, and the function
superspaces. We will arrive at various models. Since their T (se-s0fT]  (s,-s2)%
construction is analogous to the construction of the model _ p<q Sp1~ St p<q ‘52~ S2
(2), we conjecture that they are also exactly solvable. Bklkz(s) - H (s.,-cC )\;@
Calogero-Sutherland models were related to supersymmetric pg P17 O
quantum mechanics in Ref§6,7]. Our approach and the yith the parameters;, 3,=0, andc=i. For certain values
ensuing models are different from this. Our models also exyf these parameters, EG) is the Jacobiarfor Berezinian
tend a recent supersymmetric co.nstr.uctjﬁjﬁi]. Important.ly, " [14] on symmetric superspaces. In the c#e 8,=2 and
our models have a direct physics interpretation, which isc= 1 the function(4) is the Jacobian on Hermitian super-
however,_ dlﬁerent from the one in high-energy physics. Onenatrices, i.e., on the noncompact form of(KJk,)/1
has previously tried to generalize the models of the tipe [15,16, where Uk,/k,) is the unitary supergroufl4,17.
Apart from an absolute value sign that is unimportant here,
the choicesB;=1, B,=4, c=+i, and B1=4, B,=1,c=-i in
*Electronic address: thomas.guhr@matfys.lth.se Eq. (4) yield the Jacobiangl5,1§ for the two forms of the
"Electronic address: kohler@tphys.uni-heidelberg.de symmetric superspace @} /2k,)/ OSak,/2k,), respectively.

(4)
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They are denotedl |All and All |Al in the classification of
Ref.[19]. Here, Glk;/2k,) is the general linear supergroup
and OSypk,/2k,) is the orthosymplectic supergroup
[14,17,2Q. The imaginary unit in the parametestems from

a Wick-type of rotation of the variables,, which was per-
formed for a convergence reasftb]. Although not needed
here, we keep it for now to make the notation compatible
with the literature. The functio4) induces the operator

K
1< 1 9 d
A= =2 — B (9
VB1p=1 Bik,(S) d5p1 ISm
+1k2 L 05 gt ) -—o - == o——=
\,32p-1 B, kz(s) 0552 klk2 0552 S22 S21 S12 S S

The prefactors 1\/31 and 1/\‘32 in front of the sums are FIG. 1. Electrons in a one-dimensional semiconductor.

such thatAg becomes the radial Laplace-Beltrami operator
on the three symmetric superspaces mentioned above for tfd2.2).(1,4),(4,1) corresponding to the symmetric super-
corresponding choices of the paramet@ysf3,, andc. How-  spaces. The wave functions can be written as supergroup
ever, we emphasize that arbitrary positive valuesd@pand integrals[16,21,23 and are therefore uniquely characterized
B, will be considered in the sequel, while the parameter by the two sets of quantum numberg, p=1,... k;, and
remains restricted to=+i. We map the eigenvalue equation "p2, P=1,... Ko. Second, this feature should extend to all
for the operatorAg with e|genfunct|ons<p(°‘31'32 (s,r) onto  valuesp, ,82 0. As the operatorag andH are real analytic
the equation in B; and B, in the upper right quadrant of th@,, 8,) plane,
W2k the same should hold for the wave functiop{%élﬂz)(s,r) as

ch,Bl 32)(3 r) = (E —pL 2 _p_) ¢(c ,B1,B2) (sr), (6) functions of 8; and B3,. Third, the conjecture is also true for
p=1 \,31 p=1 VB2 ke the parameter valug’, = 8,. ThenH decomposes into a sum
where the wave functions are related by the ansatOf two one-species model8). However, a rigorous proof of

<c Bl B2) (c ,6’1 B2 12 lntegrablllty needs more mathematical work.
Pryky (s.r)= keky S’r)/[Bklkz(s)Bklkz(r)] - The result- We now present a physics interpretation. The operatgrs
ing operator reads

andH are not Hermitian, which is solely due to the Wick-

Ky P ko (92 type of rotation mentioned above. We consiader+i and
~ 1 1 _ Ou . . = . .
H=- 52 > — 52 REEE— undo this rotation by replacingg,, with s;,. By also intro-
VB1pm1 0 VB2p=1 955 p=q (Sp1 ~ Sq1) ducing the momentar,=—-id/ds, and my=-id/Js,, we
U 912 transform the operatof7) into the Hermitian Hamiltonian
+ > 5= > > (7)  for two kinds ofk; particles at positions,;, p=1, ... k; and
p=q (502~ S2)” g (Sp1~Csp) k, particles at positionspz, p=1,... k, on thes axis,
with constants g
H= 2 _p_ + 2 _p_ 2 e e \2 2 2 e o 2
ij = \’,Bj<é21 ]_), J =1,2, p=1 2ml p=1 2m2 p<q (Spl Sql) p<q (SpZ qu)

_ 912
% C Sq2)2 ,

with now canonical conjugate variables satisfy[rxg, i
The constant on the right-hand side of E@). is interpreted  =id,45;. We notice thithe massy=vB;/4 is positive,

as energy later on. We write it in terms of two sets of vari-while the massn,=-v3,/4 is negative. The interactions are
ablesry,, p=1,... k;, andry,, p=1, ... k; to which we refer  according to Eq(8) repulsive or attractive, depending on the
as quantum numbers It turns out convenlent to take the scathoices forB; and B,. The particles of the same kind inter-
ing factors lA,Bl and 1N B2 into the definition. In Ref[8], act; this interaction vanishes f@,;=2 or 8,=2. Two par-

a similar construction was performed. However, the resultingicles of different kind also interact. This interaction vanishes
operator depends on one parameter only. The natural depefor 8;=5,.

1 9
O12= 5(\551 \,32)( \’ﬂlﬁz + 1) (8

dence on two strength parametgtsand 3, is an essential The Hamiltonian(9) may also serve to model the motion
point in the present study. Thus, our approach contains thef electrons in a one-dimensional semicondué¢see Fig. 1
one in Ref.[8] as a special case. The particles at positions,, (black circleg with positive

We conjecture that the model(g) are exactly solvable. massm, are identified with the electrons subject to a periodic
This conjecture is backed by a series of arguments. First, theotential in the upper band close to the gap. The electrons in
conjecture is true for the parameter valuég,,f,) the lower bandopen circleg have a dispersion relatiof as
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function of the wave numbdewhose second derivative, i.e.,
the inverse mass, is negati{23]. They are identified with
the particles at positions,, that have negative mass,.

The models(2) are based on the ordinary unitary group
and on associated symmetric spaces. There are other mode
in ordinary space related to the ordinary orthogonal and sym-
plectic groupg4]. They have a natural supersymmetric ex-
tension as well. We introduce the two sets &f ariables
Sp1, P=1,... ki and of X, variablessy,, p=1,...,%, We
notice that the number of variables in the second set has to
be even. Instead ofiQ, we could also consider an odd num-

ber rfkl+1' As the ensuing models differ pnly slightly, we axis. The dipole vectors on the same axis have the same direction.
restrict ourselves tokg. We study the function Tensor forces are indicated as thicker and thinner dashed lines, cor-

_ By _ BT B2 responding to the strength of the force. Right: A case with different
I < (Siz)l Ssl) Hp<q (5%2 %2) Hp:l 552 directions of the dipole vectors on different sides of the same axis.
/8182 ’
IR

FIG. 2. Two realizations of the quasi-two-dimensional model.
Left: 2k;=4 particles on thes; axis, and R,=6 particles on the,

Cox,24,(S)

at positions(—sy;, +Sp1) on thes; axis and(-sy,, +Sy,) on
(10 the s, axis. This is a quasi-two-dimensional situation. Here,

which is the Jacobiarfor Berezinian on the supergroup We assume that the initial condition is invariant under the
OSp(2k,/2k,) for B1=B,=2 (see a derivation in Ref24]).  mirror reflection of the positions,; andsy,. Each particle on
For B,=1, B,=4, andB,=4, B,=1, Eq.(10) gives the Jaco- the s; axis carries dfixed and nonquantizedlipole vector
bians on the two forms of the symmetric superspace’j=¢(C0osdj,sind), j=1,2. Themassesn=\p;/4,j=1,2
OSp(2ky/2ky)/Gl(Ky/ky), which are namedCl|DIll and  are both positive. The interaction comprises three parts. First,
DIIl|Cl in Ref. [19]. We proceed exactly as before and de-there are central forces with strengths

rive an eigenvalue equation of the for®) where the opera-

tor now reads fﬁ*‘% Br_y4) and ff‘% %—1 . (19
k k.

no_ L s i_zz K 9SS 255, + 25 Second, there are distance-dependent forces between the par-
VBipmt 501 \Bopet IS5 g (Shy = So)? ticles on the same axis with strengths
k — ,8 .
+922<2 23292*'2529;4_ - i)_glzz Zszgl‘zﬁg hjj=\/5’j<—21—1>+02c032&j, i=1,2, (15)

p=a (S~ S =1 252 ba (S * Sip)

and there is a distance-dependent force between the particles
+> 2hy , (11)  on different axes with strength;, as given by Eq.(12).

g 5§1+ 552 Third, there are tensor or dipole-dipole forces. The last term
of the Hamiltonian(13) is a two-dimensional dipole-dipole
interaction[25] between the particles on different axes. The

1— — — unit vectoré,, points from the particlg on thes, axis to the
hp= Z\’ﬂlﬁz(\’ﬁl ~\Ba). (12)  particleq on thes, axis. The strength of the dipoles follows
from the relations? cog &, + 9,) =4g;, With g;, as defined in
The operator(11) remains invariant when replacing any of Eq. (8). Consistently, the tensor force also acts between the
the variables by its negative. Due to this symmel?tyi,tself dipoles on the same axis. As the latter are parallel, the tensor
is an Hermitian operator and can be viewed as a Hamilforce acquires a form identical to the distance-dependent in-
tonian; there is no need to undo the Wick-type of rotation teraction. This explains the additional term in the constants
We now come to an interpretation. In a straightforward cal-hyjj, j=1,2 ascompared to the constangg. In Fig. 2 we
culation, the Hamiltoniati=2H can be cast into the form illustrate the model. Other choices of the parameters are also
possible, leading, for example, to different angles of the di-

with gi11, 02, andg;, as given in Eq(8) and with

. 22k1 zﬁ_l . 2Ek2 15_2 . szl i, . 2k, f, S hiy pples on the positive and negative side of the same(agis
- ~ om ~ om — 32 - _ 2 Flg 2)
F2M 12T oS S pea (b S Again, for the same reasons as above, we conjecture that
h,, hy, the modelq13) are exactly solvable. For the parameter val-
+ zq (So— sq2)2 _E S§1+ 532 ues corresponding to O8ik,/2k,), the wave functions are

supergroup integral24]. Analytical continuation ing; and
(Enq - 01)(Epq - 0) = 07 - G2/2 B> should be possible. A rigorous proof has yet to be given.
> + : (13 To gain some first intuition for the solutions of these mod-
pa v els, we consider the simplest cdgsek,=1 andc=+i of Eq.
We exploit the symmetry by writingd as a Hamiltonian for  (6). The operatof7) has then a simple structure which yields
2k, plus X, particles, i.e.k; plusk, pairs of particles sitting the wave function
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i(VBs . —ivVaa —j sions of models for interacting particles. The correspondin
Yl PLrP(s r) = ex;{i ISELE ,L'stlgrll |r12)> physics is most natural as wegll,pinvolving two kinds %f par—g
VBL= VB2 ticles. We presented two possible applications, a one-
o _Ja \VB1BI2 dimensional and a quasi-two-dimensional one. In high-
( \‘.'82 VB . ) Z’H(2). energy physics, the physical bosons and fermions are
(S11=is19)(r11=irgo) ! represented by commuting and anticommuting variatdes

(16) Ref. [28]). This is also so in the interacting boson-fermion

model[29] of nuclear physics. In chaotic and disordered sys-

Too\ . N tems[15], the commuting and anticommuting variables serve
Ti;ez’ HVCEZ) is the :’hﬂ.kel fu_nctllon of ord(a;v—yﬁl,_sz/)i to considerably reduce the numbers of the degrees of free-
and we use Imensioniess, complex varia dom; they are not seen as physical particles. Here, we

:(\‘;'Bzr“._i \‘J“Blrlz)(%l_islz)/(\fﬁz._ \5'81)'. The appearance gp,eq that the radial coordinates on certain superspaces can
of the differences in the denominator in HG6) is typical e \iewed as the positions of interacting particles.
for superspacessee Ref[22)]). In ordinary space, those dif-

ferences are found in the numeratsee Refs[26,27). In This work was finished at the Centro Internacional de

particular, this affects the behavior of the wave functions aCiencias(CIC) in Cuernavaca, Mexico. We thank Director

the origin. Work on further analytical results is in progress. Thomas Seligman for hospitality. T.G. acknowledges finan-
In conclusion, we derived natural supersymmetric exten¢ial support from the Swedish Research Council.
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