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We show that Calogero-Sutherland models for interacting particles have a natural supersymmetric extension.
For the construction, we use Jacobians that appear in certain superspaces. Some of the resulting Hamiltonians
have a direct interpretation as models for two kinds of interacting particles. One model may serve to describe
interacting electrons in a lower and upper band of a one-dimensional semiconductor, another model corre-
sponds to two kinds of particles confined to two perpendicular spatial directions with an interaction involving
tensor forces.
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Calogerof1g and Sutherlandf2g reported models for in-
teracting particles, which have much in common with a
group theoretical construction by Dysonf3g. Various modifi-
cations of these models have been studiedssee the reviews in
Refs.f4,5g and references thereind. A model of the Calogero-
Sutherland type is defined by the Schrödinger equation forN
particles in one dimension at positionsxn, n=1, . . . ,N,

HCN
sbdsx,kd = So

n=1

N

kn
2DCN

sbdsx,kd, s1d

with the Hamiltonian

H = − o
n=1

N
]2

]xn
2 + bSb

2
− 1D o

n,m

1

sxn − xmd2 . s2d

The many particle wave functionCN
sbdsx,kd depends onN

quantum numberskn, n=1, . . . ,N whose squares add up to
the energy on the right-hand side of Eq.s1d. The Hamiltonian
s2d consists of a kinetic and a distance-dependent interaction
term. The strength is measured by the parameterb; the in-
teraction vanishes forb=0 andb=2. Usually, one addsN
confining potentials to the Hamiltonians2d. This renders the
system a bound state problem. Apart from this, they do not
significantly affect the structure of the model. Thus, we will
not work with confining potentials in the sequel.

In this paper, we present a most natural extension of these
Calogero-Sutherland models. In our construction, we employ
superspaces. We will arrive at various models. Since their
construction is analogous to the construction of the model
s2d, we conjecture that they are also exactly solvable.
Calogero-Sutherland models were related to supersymmetric
quantum mechanics in Refs.f6,7g. Our approach and the
ensuing models are different from this. Our models also ex-
tend a recent supersymmetric constructionf9,8g. Importantly,
our models have a direct physics interpretation, which is,
however, different from the one in high-energy physics. One
has previously tried to generalize the models of the types1d

to higher space dimensionsf10,11g. Again, our construction
and the results are different from this. Our models are related
to the many-species Calogero model addressed in Refs.
f12,13g. There, however, no connection to supersymmetry
was established.

We briefly sketch the derivation of the models2d. With the
Vandermonde determinantDNsxd=pn,msxn−xmd, the Jaco-
bian on the space of the real-symmetricN3N, the Hermitian
N3N, and the quaternion self-dual 2N32N matrices labeled
with the parameterb=1,2,4, respectively, takes the form
uDNsxdub. These spaces are noncompact forms of the symmet-
ric spaces UsNd /OsNd, UsNd /1, and Us2Nd /Sps2Nd. The
corresponding radial Laplace-Beltrami operator reads

Dx = o
n=1

N
1

uDNsxdub
]

]xn
uDNsxdub

]

]xn
. s3d

The equation DxFN
sbdsx,kd=−son=1

N kn
2dFN

sbdsx,kd for the
eigenfunction FN

sbdsx,kd is mapped onto theN particle
Schrödinger equations1d with the ansatz FN

sbdsx,kd
=CN

sbdsx,kd /DN
b/2sxdDN

b/2skd. The parameterb is now viewed
as positive and continuous, such that the coordinatesxn, n
=1, . . . ,N span a space more general than thesradial parts of
thed symmetric spaces.

For the supersymmetric generalization, we consider the
two sets ofk1 variablessp1, p=1, . . . ,k1 and ofk2 variables
sp2, p=1, . . . ,k2 and the function

Bk1k2
ssd =

pp,q
ssp1 − sq1db1pp,q

ssp2 − sq2db2

pp,q
ssp1 − csq2dÎb1b2

, s4d

with the parametersb1,b2ù0, andc= ± i. For certain values
of these parameters, Eq.s4d is the Jacobiansor Bereziniand
f14g on symmetric superspaces. In the caseb1=b2=2 and
c= + i, the functions4d is the Jacobian on Hermitian super-
matrices, i.e., on the noncompact form of Usk1/k2d /1
f15,16g, where Usk1/k2d is the unitary supergroupf14,17g.
Apart from an absolute value sign that is unimportant here,
the choicesb1=1, b2=4, c= + i, andb1=4, b2=1, c=−i in
Eq. s4d yield the Jacobiansf15,18g for the two forms of the
symmetric superspace Glsk1/2k2d /OSpsk1/2k2d, respectively.
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They are denotedAI uAII and AII uAI in the classification of
Ref. f19g. Here, Glsk1/2k2d is the general linear supergroup
and OSpsk1/2k2d is the orthosymplectic supergroup
f14,17,20g. The imaginary unit in the parameterc stems from
a Wick-type of rotation of the variablessp2, which was per-
formed for a convergence reasonf15g. Although not needed
here, we keep it for now to make the notation compatible
with the literature. The functions4d induces the operator

Ds =
1

Îb1
o
p=1

k1 1

Bk1k2
ssd

]

]sp1
Bk1k2

ssd
]

]sp1

+
1

Îb2
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Bk1k2
ssd

]

]sp2
Bk1k2

ssd
]

]sp2
. s5d

The prefactors 1/Îb1 and 1/Îb2 in front of the sums are
such thatDs becomes the radial Laplace-Beltrami operator
on the three symmetric superspaces mentioned above for the
corresponding choices of the parametersb1, b2, andc. How-
ever, we emphasize that arbitrary positive values forb1 and
b2 will be considered in the sequel, while the parameterc
remains restricted toc= ± i. We map the eigenvalue equation
for the operatorDs with eigenfunctionswk1k2

sc,b1,b2dss,rd onto
the equation

H̃ck1k2

sc,b1,b2dss,rd = So
p=1

k1 rp1
2

Îb1

+ o
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2

Îb2
Dck1k2

sc,b1,b2dss,rd, s6d

where the wave functions are related by the ansatz
wk1k2

sc,b1,b2dss,rd=ck1k2

sc,b1,b2dss,rd / fBk1k2
ssdBk1k2

srdg1/2. The result-
ing operator reads
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with constants

gjj = Îb jSb j

2
− 1D, j = 1,2,

g12 =
1

2
sÎb1 − Îb2dS1

2
Îb1b2 + 1D . s8d

The constant on the right-hand side of Eq.s6d is interpreted
as energy later on. We write it in terms of two sets of vari-
ablesrp1, p=1, . . . ,k1, andrp2, p=1, . . . ,k2 to which we refer
as quantum numbers. It turns out convenient to take the scal-
ing factors 1/Îb1 and 1/Îb2 into the definition. In Ref.f8g,
a similar construction was performed. However, the resulting
operator depends on one parameter only. The natural depen-
dence on two strength parametersb1 and b2 is an essential
point in the present study. Thus, our approach contains the
one in Ref.f8g as a special case.

We conjecture that the modelss7d are exactly solvable.
This conjecture is backed by a series of arguments. First, the
conjecture is true for the parameter valuessb1,b2d

=s2,2d ,s1,4d ,s4,1d corresponding to the symmetric super-
spaces. The wave functions can be written as supergroup
integralsf16,21,22g and are therefore uniquely characterized
by the two sets of quantum numbersrp1, p=1, . . . ,k1, and
rp2, p=1, . . . ,k2. Second, this feature should extend to all

valuesb1,b2ù0. As the operatorsDs andH̃ are real analytic
in b1 andb2 in the upper right quadrant of thesb1,b2d plane,
the same should hold for the wave functionsck1k2

sc,b1,b2dss,rd as
functions ofb1 andb2. Third, the conjecture is also true for

the parameter valuesb1=b2. ThenH̃ decomposes into a sum
of two one-species modelss2d. However, a rigorous proof of
integrability needs more mathematical work.

We now present a physics interpretation. The operatorsDs

and H̃ are not Hermitian, which is solely due to the Wick-
type of rotation mentioned above. We considerc= + i and
undo this rotation by replacingisp2 with sp2. By also intro-
ducing the momentapp1=−i] /]sp1 and pp2=−i] /]sp2, we
transform the operators7d into the Hermitian Hamiltonian
for two kinds ofk1 particles at positionssp1, p=1, . . . ,k1 and
k2 particles at positionssp2, p=1, . . . ,k2 on thes axis,

H = o
p=1

k1 pp1
2

2m1
+ o

p=1

k2 pp2
2

2m2
+ o

p,q

g11

ssp1 − sq1d2 − o
p,q

g22

ssp2 − sq2d2

− o
p,q

g12

ssp1 − sq2d2 , s9d

with now canonical conjugate variables satisfyingfsql ,ppjg
= idpqd jl . We notice that the massm1=Îb1/4 is positive,
while the massm2=−Îb2/4 is negative. The interactions are
according to Eq.s8d repulsive or attractive, depending on the
choices forb1 andb2. The particles of the same kind inter-
act; this interaction vanishes forb1=2 or b2=2. Two par-
ticles of different kind also interact. This interaction vanishes
for b1=b2.

The Hamiltonians9d may also serve to model the motion
of electrons in a one-dimensional semiconductorssee Fig. 1d.
The particles at positionssp1 sblack circlesd with positive
massm1 are identified with the electrons subject to a periodic
potential in the upper band close to the gap. The electrons in
the lower bandsopen circlesd have a dispersion relationek as

FIG. 1. Electrons in a one-dimensional semiconductor.
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function of the wave numberk whose second derivative, i.e.,
the inverse mass, is negativef23g. They are identified with
the particles at positionssp2 that have negative massm2.

The modelss2d are based on the ordinary unitary group
and on associated symmetric spaces. There are other models
in ordinary space related to the ordinary orthogonal and sym-
plectic groupsf4g. They have a natural supersymmetric ex-
tension as well. We introduce the two sets of 2k1 variables
sp1, p=1, . . . ,k1 and of 2k2 variablessp2, p=1, . . . ,2k2. We
notice that the number of variables in the second set has to
be even. Instead of 2k1, we could also consider an odd num-
ber 2k1+1. As the ensuing models differ only slightly, we
restrict ourselves to 2k1. We study the function

C2k12k2
ssd =

pp,q
ssp1

2 − sq1
2 db1pp,q

ssp2
2 − sq2

2 db2pp=1

k2 sp2
b2

pp,q
ssp1

2 + sq2
2 dÎb1b2

,

s10d

which is the Jacobiansor Bereziniand on the supergroup
OSps2k1/2k2d for b1=b2=2 ssee a derivation in Ref.f24gd.
For b1=1, b2=4, andb1=4, b2=1, Eq.s10d gives the Jaco-
bians on the two forms of the symmetric superspace
OSps2k1/2k2d /Glsk1/k2d, which are namedCI uDIII and
DIII uCI in Ref. f19g. We proceed exactly as before and de-
rive an eigenvalue equation of the forms6d where the opera-
tor now reads

H̃ = −
1

Îb1
o
p=1

k1 ]2

]sp1
2 −

1
Îb2

o
p=1
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2 − g11o

p,q
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2 + 2sq1

2

ssp1
2 − sq1

2 d2

+ g22So
p,q

2sp2
2 + 2sq2

2

ssp2
2 − sq2

2 d2 + o
p=1

k2 1

2sp2
2 D − g12o

p,q

2sp1
2 − 2sq2

2

ssp1
2 + sq2

2 d2

+ o
p,q

2h12

sp1
2 + sq2

2 , s11d

with g11, g22, andg12 as given in Eq.s8d and with

h12 =
1

4
Îb1b2sÎb1 − Îb2d. s12d

The operators11d remains invariant when replacing any of

the variables by its negative. Due to this symmetry,H̃ itself
is an Hermitian operator and can be viewed as a Hamil-
tonian; there is no need to undo the Wick-type of rotation.
We now come to an interpretation. In a straightforward cal-

culation, the HamiltonianH=2H̃ can be cast into the form

H = o
p=1

2k1 pp1
2

2m1
+ o

p=1

2k2 pp2
2

2m2
+ o

p=1

2k1 f1

sp1
2 + o

p=1

2k2 f2

sp2
2 + o

p,q

h11

ssp1 − sq1d2

+ o
p,q

h22

ssp2 − sq2d2 − o
p,q

h12

sp1
2 + sq2

2

+ o
p,q

seWpq · sW 1dseWpq · sW 2d − sW 1 · sW 2/2

sp1
2 + sq2

2 . s13d

We exploit the symmetry by writingH as a Hamiltonian for
2k1 plus 2k2 particles, i.e.,k1 plusk2 pairs of particles sitting

at positionss−sp1, +sp1d on thes1 axis ands−sp2, +sp2d on
the s2 axis. This is a quasi-two-dimensional situation. Here,
we assume that the initial condition is invariant under the
mirror reflection of the positionssp1 andsp2. Each particle on
the sj axis carries asfixed and nonquantizedd dipole vector
sW j =sscosq j ,sinq jd, j =1,2. Themassesmj =Îb j /4, j =1,2
are both positive. The interaction comprises three parts. First,
there are central forces with strengths

f1 = +
b1

8
Sb1

2
− 1D and f2 = −

b2

8
Sb2

2
− 1D . s14d

Second, there are distance-dependent forces between the par-
ticles on the same axis with strengths

hjj = Îb jSb j

2
− 1D + s2 cos 2q j, j = 1,2, s15d

and there is a distance-dependent force between the particles
on different axes with strengthh12 as given by Eq.s12d.
Third, there are tensor or dipole-dipole forces. The last term
of the Hamiltonians13d is a two-dimensional dipole-dipole
interactionf25g between the particles on different axes. The
unit vectoreWpq points from the particlep on thes1 axis to the
particleq on thes2 axis. The strength of the dipoles follows
from the relations2 cossq1+q2d=4g12 with g12 as defined in
Eq. s8d. Consistently, the tensor force also acts between the
dipoles on the same axis. As the latter are parallel, the tensor
force acquires a form identical to the distance-dependent in-
teraction. This explains the additional term in the constants
hjj , j =1,2 ascompared to the constantsgjj . In Fig. 2 we
illustrate the model. Other choices of the parameters are also
possible, leading, for example, to different angles of the di-
poles on the positive and negative side of the same axisssee
Fig. 2d.

Again, for the same reasons as above, we conjecture that
the modelss13d are exactly solvable. For the parameter val-
ues corresponding to OSps2k1/2k2d, the wave functions are
supergroup integralsf24g. Analytical continuation inb1 and
b2 should be possible. A rigorous proof has yet to be given.

To gain some first intuition for the solutions of these mod-
els, we consider the simplest casek1=k2=1 andc= + i of Eq.
s6d. The operators7d has then a simple structure which yields
the wave function

FIG. 2. Two realizations of the quasi-two-dimensional model.
Left: 2k1=4 particles on thes1 axis, and 2k2=6 particles on thes2

axis. The dipole vectors on the same axis have the same direction.
Tensor forces are indicated as thicker and thinner dashed lines, cor-
responding to the strength of the force. Right: A case with different
directions of the dipole vectors on different sides of the same axis.
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c11
s+i,b1,b2dss,rd = expS±

isÎb1s11 − iÎb2s12dsr11 − ir 12d
Îb1 − Îb2

D
3S Îb2 − Îb1

ss11 − is12dsr11 − ir 12d
DÎb1b2/2

znHn
7szd.

s16d

Here, Hn
7szd is the Hankel function of ordern=Îb1b2/2

+1/2 and we use thedimensionless, complex variablez
=sÎb2r11− iÎb1r12dss11− is12d / sÎb2−Îb1d. The appearance
of the differences in the denominator in Eq.s16d is typical
for superspacesssee Ref.f22gd. In ordinary space, those dif-
ferences are found in the numeratorssee Refs.f26,27gd. In
particular, this affects the behavior of the wave functions at
the origin. Work on further analytical results is in progress.

In conclusion, we derived natural supersymmetric exten-

sions of models for interacting particles. The corresponding
physics is most natural as well, involving two kinds of par-
ticles. We presented two possible applications, a one-
dimensional and a quasi-two-dimensional one. In high-
energy physics, the physical bosons and fermions are
represented by commuting and anticommuting variablesssee
Ref. f28gd. This is also so in the interacting boson-fermion
modelf29g of nuclear physics. In chaotic and disordered sys-
temsf15g, the commuting and anticommuting variables serve
to considerably reduce the numbers of the degrees of free-
dom; they are not seen as physical particles. Here, we
showed that the radial coordinates on certain superspaces can
be viewed as the positions of interacting particles.
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CienciassCICd in Cuernavaca, Mexico. We thank Director
Thomas Seligman for hospitality. T.G. acknowledges finan-
cial support from the Swedish Research Council.
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