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A simple model in which immobilizing events are imposed onto otherwise free Brownian diffusionfR.
Metzler and J. Klafter, Phys. Rep.339, 1 s2000d and a recent adaptation due to S. Khan and A. M. Reynolds,
Physica A 350, 183 s2005dg is shown to encapsulate the peculiar transport characteristics of individual cell
receptors within plasma membranes observed in single-particle trackingsSPTd experiments. These character-
istics include the occurrence of normal diffusion; non-Gaussian subdiffusion; confined diffusion; a superdiffu-
sive mode of transport that is not due to flow of the membrane or molecular motor attachment; and the
occurrence of transitions between these transport modes. Model predictions are shown to be in close agreement
with a reanalysis of existing SPT data.
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INTRODUCTION

Observations of trajectories of individual proteins in
plasma membranes show a variety of types of motion includ-
ing ordinary Brownian motion, directed motion, and con-
fined and subdiffusionf1–8g. This variety of motion impacts
significantly upon the kinetics of reactions among mem-
brane-bound species and serves as a probe of membrane
structuref9g. Many mechanisms may be involved, including
obstruction by mobile or immobile proteins; transient bind-
ing to immobile proteins; confinement by membrane skeletal
corrals; binding or obstruction by the extracellular matrix;
restrictions to motion imposed by lipid domains; and hydro-
dynamic interactionssf9g and references thereind. These
mechanisms have proved difficult to isolate, in large part
because some or all of them occur simultaneously and be-
cause their relative importance may depend on the protein
and the cell type. Transitions between transport modes and
non-Gaussian diffusion characteristics have also been ob-
servedf9,10g. This calls into question the traditional under-
standing of protein mobility as the free Brownian diffusion
of a limited mobile fraction.

In this paper we show that a simple phenomenological
model in which immobilizing events are imposed onto oth-
erwise free Brownian diffusion encapsulates all of the pecu-
liar transport characteristics of individual proteins within
plasma membranes and, when combined with a fluctuating
force that is colored rather than white, allows for the occur-
rence of superdiffusivity and confined diffusion. In this
model the membrane is regarded as a random array of con-
tinuously changing trapsf7g with a distribution of energies or
escape times so broad that there is no average residence time.
The model is shown to account naturally for observed tran-
sitions between transport modes without the need to resort to
ad hocassumptions about the partitioning of mobile species
into different microdomains or an active control mechanism

such as transient binding to a cytoskeletal motorf11,12g.
Model predictions for mean-square displacements at both
short and long times and distributions of incremental dis-
placements are shown to be in close accord with a reanalysis
of existing data. This reanalysis also yields identification of a
truly superdiffusive transport mode. In contrast with previous
observationsf13g this form of superdiffusive motion cannot
be attributed to flow of the membrane or to molecular motor
attachment.

The model is presented in Sec. II. This is followed in Sec.
III by comparisons of model predictions with data from
single-particle trackingsSPTd experiments. Sec. IV contains
a summary.

IMPOSITION OF IMMOBILIZING EVENTS ONTO
BROWNIAN MOTION

A particle moving in a fluidlike medium experiences two
forces: a frictional force and a fluctuating forceFstd originat-
ing from the collisions with the particles of the surrounding
medium. When the density of the medium is much less than
that of the particle, the fluctuating force can be treated as
white noise whereas for dense fluids and for fluids with in-
ternal rotational degrees of freedom, it is colored. When cor-
relations persist for a timetc, the evolution of the probability
density functionsPDFd Psx,td for the displacementx at time
t of a Brownian particle is described by the telegraph equa-
tion

tc
]2Psx,td

]t2
+

]Psx,td
]t

= K
]2Psx,td

]x2 , s1d

whereK is the mean diffusion coefficient. For times much
less than the correlation time scaletc, particles travel in
straight lines and transport is ballistic, with mean-square par-
ticle displacements from the origin evolving according to
kx2l=Kt2/tc. At much later times transport is diffusive,kx2l
=2Kt, and Gaussian. Here, the time scaletc for directed
motion is not associated exclusively with the effects of iner-
tia, which are widely acceptedf14–16g as being irrelevant to
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motions of membrane-bound proteins over times exceeding
several nanoseconds. It may be associated with other well-
established and dynamically important mechanisms for di-
rected transport; including transit flow of the membrane and
attachment to molecular motors.

Predictions from such one-dimensional models can be
compared directly with data for the displacements of
membrane-bound proteins along a particular direction. This,
of course, presupposes that the effects of cell-surface hetero-
geneity upon protein transport are of secondary importance
compared to the effects oftc and K. The validity of this
condition and the relevance of the correlation time scaletc
are examined later through comparisons of model predictions
with a reanalysis of existing SPT data of the major histocom-
patibility complexsMHCd in HeLa cells and fibroblasts.

Perhaps the simplest extension of Eq.s1d with the poten-
tial for encapsulating the peculiar transport characteristics of
individual cell receptors arises when it is combined in a se-
quential manner with trapping events. The time elapsing be-
tween two successive jumps is drawn from a waiting time
PDF wstd. For times much longer than the characteristic
waiting time si.e., the average waiting timed T=e0

`dt twstd,
the dynamics effectively revert back to that of free Brownian
motion. It has yet to be established in experiment whether
the anomalous diffusion characteristics of proteins show a
crossover to normal diffusion at large times or is anomalous
at all timesf9g. If such a transition does exist then it must
occur at a time exceeding the duration of the experiments.
Consequently when considering the transport processes oc-
curring during the duration of the experiments, the mean
waiting timeT can be taken to be a divergent quantity. Here,
in the spirit of Naglef17g, who used a continuous time ran-
dom walk model to examine the effects of long-time tails on
fluorescence photobleaching recovery, we takewstd
,ta / t1+a, where 0,a,1 andt is the intrinsic time scale of
the waiting process. A power-law distribution of trapping
times arise when, for example, the energiesEi governing the
residence times expsbEid, within binding sites is exponen-
tially distributed,PsEd=le−lE. Then the distribution of the
waiting times is a power law of the formPstddt
=st−sl/b+1d2l /bddt. In this immobilizing-release-walking
scenario, the evolution of the PDF,Psx,td, for the displace-
ment x at time t of a Brownian particle is described by a
fractional telegraph equationf18g

]Psx,td
]t

+
ta

2 0Dt
1+aPsx,td = K 0Dt

1−a]2Psx,td
]x2 , s2d

where the Riemann-Liouville operator0Dt
1−a=s] /]td 0Dt

−a is
defined by

0Dt
−aPsx,td =

1

GsadE0

t

dt8
Psx,t8d

st − t8d1−a s3d

and K0=kBT/mha, where m is the mass of the Brownian
particle, and ha the friction coefficient. The Riemann-
Liouville operator is a fractional integral of ordera, and
fractional derivatives may be established similarly via frac-
tional integration and ordinary differentiation. At integer

powers, the operator reduces to a standard integral. A de-
tailed account of fractional calculus can be found in the book
by Miller f19g, and a good summary may be found in the
Appendix of f20g. At short times t,t* =smK/kBTdt2a−2,
mean-square particle displacements from the origin evolve
according to kx2l=K0t

2a /tGs2ad, whereas at much later
times t@t* transport is subdiffusive,kx2l=K0t

a /Gsad, and
non-Gaussian. Between these two asymptotes, the growth in
the mean-square particle displacements changes continu-
ously and smoothly. For an initial pointlike distribution of
particles, the distribution of particle displacements at all later
times t is given by a Fox function,

Psx,td =
1

Î4pKta
H1,2

2,0FU x2

4KtaU
s0,1d,s1/2,1d

s1−a/2,ad G s4d

sfor a definition of theH function see, for example,f20gd.
The flatness of this distribution

kx4l
kx2l2 =

6Gs1 + adGs1 + ad
Gs1 + 2ad

s5d

lies between 3 and 6 and consequently the distribution is
broader than a Gaussian distribution which has a flatness of
3.

The situation changes somewhat when the correlation of
the fluctuating force has a power-law time dependency
kFs0dFstdl=F0sbdtb where 0,b,2. Such power-law corre-
lations arise when particles are moving in a fluid with a
density comparable to the particle itself or when a particle
moves within a fluid having internal structuref21g. Both sce-
narios could form the basis for interpreting or modeling the
motions of membrane-bound proteins. This power-law de-
pendence of the correlation can either hinder the diffusive
motion s0,b,1d, or enhance the diffusions1,b,2d. The
superdiffusive modes arise when successive fluctuations in
the stochastic driving noise are positively correlated. The
Fokker-Planck equation describing the evolution of particles
subjected to fluctuating force with a power-law correlation is

0Dt
1+aPsx,td +E

0

t

a0sbdst − td−b]Psx,td
]t

dt

= K 0Dt
1−a]2Psx,td

]x2 s6d

f22g. For 0,b,1, the second term on the left-hand side of
Eq. s6d can be written as a Riemann-Liouville fractional de-
rivative and so Eq.s6d can be rewritten as

t 0Dt
1+aPsx,td + 0Dt

bPsx,td = K 0Dt
1−a]2Psx,td

]x2 . s7d

When ensemble averaged over realizations of the initial ve-
locity, the mean particle displacementskxl=0. Mean-squared
particle displacements from the origin evolve according to
kx2l, t2a at short times, while at long timesdkx2l /dt
, ta+b−2 and transport is either confinedsa+b,1d, subdif-
fusive s1,a+b,2d, or superdiffusivesa+b.2d. In the
case of confined diffusion, the growth of the mean-squared
particle displacements, rather than mean-squared particle dis-
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placementsper se, vanishes at long times.
In the next section it is shown that the transport charac-

teristics of cell receptors observed in single-particle tracking
experiments are described accurately by the fractional tele-
graph equation Eq.s2d and its relative Eq.s7d.

MEASUREMENT AND ANALYSIS OF SINGLE-PARTICLE
TRACKING DATA

Single-particle fluorescence images were obtained using
R-phycoerythrin as the fluorophore, conjugated to Fab frag-
ments of antibodies against the human major histocompat-
ibility complex. The labeled MHC class I antibodyf8g was
applied to HeLa cells, and the labeled antibody against MHC
class II f23g was bound to fibroblasts transfected with the
relevant MHC genes. Both these cell types provide flat areas
of plasma membrane where small numberss,500d of recep-
tors are widely dispersed. The fluorophores can be detected

by a cooled back-illuminated charge-coupled device camera,
appearing as diffraction-limited spots; the exposure times
were chosen to give signal-to-noise ratios greater than 4:1.
Pixels in an area around the spot can be least-squares fitted
by a two-dimensional Gaussian functionf24g to determine
the centroid position to a precision better than 40 nm inx
andy. Linking these positions through images of a time se-
ries shows the track followed by the receptor in two dimen-
sions. Global motion of the particles from microscope drift
was determined by tracking off-cell spots that resulted from
the probe adhering to the glass, and subtracted from the in-
dividual track positions; the mean distance moved over all
tracks was an indicator of membrane motionsflowd and any
cells showing this were not analyzed further. If the change of
mean-square displacement with time interval is linear, a dif-
fusion coefficient can be found fromkr2l=4Dldt. Analysis of
immobile fluorescent particle tracks suggests the smallest ob-
servable value ofDl to be about 0.3310−12 cm2 s−1 f8g.

FIG. 1. sad Ln-ln plot of the time evolutionsin
secondsd of the MSD sin pixels, using a scale of
0.205mm/pixeld of MHC class II Fab-
phycoerythrin on a fibroblast. Linear regression
fits sdashed linesd to the short and long time be-
haviors are also shown.sbd Histogram of the in-
cremental displacements in thex direction in pix-
els that occur within the 20 s intervals between
successive observations. The ensemble is taken
over the entire measurement time and over all
trajectories within the data set. Gaussiansdotted
lined and Fox functionssolid lined PDFs with
equivalent mean and variance are shown for
comparison.
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COMPARISONS WITH DATA FROM SINGLE-PARTICLE
TRACKING EXPERIMENTS

Single-particle tracking experiments can resolve move-
ments of individual cell receptors with a precision down to
10 nm, depending on the probe used and the experimental
conditions. There are, however, several limitations of the
method which complicate data interpretation and model
analysis. For example there may be a contribution to drag
resulting from the interaction of the label with the extracel-
lular matrix. In principle, at least, this could be accounted for
by replacing the true massm of a protein, which appears in
Eq. s2d as a model parameter, with an effective massm* .
Other complicating factors include the cross-link binding of
sites by multivalent labels, which may result in a reduction
of diffusivity and which trigger biological responses such as
transmembrane signaling; and antibody binding which may
affect the interactions between the labeled protein and other

proteins. These complicating factors are incorporated into the
model by replacing the actual distribution of waiting times
si.e., the value ofad with an effective distribution of waiting
times which characterizes all the possible binding processes.

Photobleaching and trajectory interception limit the maxi-
mum number of data points for a receptor track to about 20.
Following the approach of Andersonet al. f24g, effects of
statistical noise were reduced in determining mean-squared
particle displacementssMSDsd in a time periodt by averag-
ing over all pairs of data points separated temporally byDt
rather than by averaging over particle displacements at time
t=Dt relative to their position at the origin of time. In Ander-
son et al. f24g, only independent pairs of data points were
used. The scatter is considerably greater when only indepen-
dent pairs of data points are used, but the general behavior of
the MSD is unchanged. Hence, to reduce the scatter, and
hence the error in the exponents, nonindependent averaging
has been used for calculation of exponents. To facilitate com-

FIG. 2. sad Ln-ln plot of the time-evolutionsin
secondsd of the MSD sin pixels, using a scale of
0.205mm/pixeld of MHC class I. Linear regres-
sion fitssdashed linesd to the short and long time
behaviors are also shown.sbd Histogram of the
incremental displacements in thex direction in
pixels that occur within the 60 s intervals be-
tween successive observations. The ensemble is
taken over the entire measurement time and over
all trajectories within the data set. Gaussiansdot-
ted lined and Fox functionssolid lined PDFs with
equivalent mean and variance are shown for
comparison.
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parisons with predictions from the one-dimensional model, it
is assumed that components of the observed displacements
of proteins can be treated independently. The distribution of
incremental displacements in each direction was also re-
corded by considering all pairs of data points in the sample
separated by a single time step.

Figure 1 shows an example of subdiffusion, a transition
between modes of diffusive transport, and a non-Gaussian
distribution of incremental displacements. The data were ob-
tained from a reanalysis of previously acquired MHC class II
Fab-phycoerythrin on a fibroblast at 20 °Cf25g. The data set
comprises 79 tracks, each with 15 data points acquired at
20 s intervals. Many earlier experiments on the MHC com-
plex have indicated cell surface heterogeneity on spatial
scales much smaller than the expected 20 s diffusion inter-
val. The data capture the cumulative effects of these inhomo-
geneities. In accordance with model predictions there is a

transition from a regime characterized bykx2l, t2a to one
where kx2l, ta. A linear regression fit with a transition oc-
curring after four data points yieldsa=0.25. This estimate is
comparable with the mean-squared independenta=0.23 ob-
tained using Eq.s5d in conjunction with the long-time flat-
ness statistickx4l / kx2l2=5.63 of the data. The observed dis-
tribution of incremental displacements in thex directionsi.e.,
displacements occurring within the 20 s interval between
successive observationsd is seen to be well represented by the
predicted Fox function witha=0.25 when the variance is
matched to the data. The distribution cannot be well repre-
sented by a Gaussian distribution of similar variance, further
indicating that the diffusion present is not normal diffusion,
but is strongly anomalous in character. In they direction the
transition is from a regime characterized byky2l, t0.38 to one
whereky2l, t0.13. The short length of the data set, and cor-
responding errors in finding the exponent by curve fitting,

FIG. 3. sad Ln-ln plot of the time evolutionsin
secondsd of the MSD sin pixels, using a scale of
0.205mm/pixeld of MHC class II Fab-
phycoerythrin on a fibroblast. Linear regression
fits sdashed linesd to the short and long time be-
haviors are also shown.sbd Histogram of ob-
served incremental displacements in thex direc-
tion in pixels that occur within the 20 s interval
between successive observations. The ensemble
is taken over the entire measurement time and
over all trajectories within the data set. Gaussian
sdotted lined and Fox functionssolid lined PDFs
with equivalent mean and variance are shown for
comparison.
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are sufficient to explain the difference in exponent between
thex andy directions. The long-time flatness statistic for the
y direction of 6.43 indicates strongly anomalous diffusion,
but Eq.s5d is not valid for values greater than 6, and hence it
is not possible to calculate an anomalous diffusion exponent
from the statistic in this case.

The correspondence between diffusion exponenta and
distribution function finds further support in the reanalysis of
data for MHC class 1 shown in Fig. 2f8g. This data set
comprises 72 tracks, each with 13 data points acquired at
60 s intervals. A linear regression fit to the MSD data yields
kx2l, t0.80, and in they direction,ky2l, t0.73. The slight dif-
ference in the exponents for the two directions can again be
explained by the inaccuracies inherent in the method. The
absence of a transition in the evolution of the mean-squared
displacements may indicate that the transition time is shorter
than the sampling interval or longer than the duration of the
records. For example in thex direction, in the former case
a=0.80 while in the latter case 2a=0.80. The flatness statis-
tic for the x direction of this data set of 3.50 gives an esti-
mate fora of 0.84, indicating the first of these two cases. In
the y direction the flatness statistic of 4.54 indicates an
anomalous diffusion exponent of 0.55. Figure 2 shows that
the distribution of incremental displacements in thex direc-
tion is well represented by a Fox function witha=0.80 when
the variance is matched to the data.

Shown in Fig. 3 is an example of a transition from sub- to
superdiffusive transport. As in a previous example, the data
were obtained from a reanalysis of acquired data for MHC
class II Fab-phycoerythrin on a fibroblast at 20 °C. The data
set comprises 81 tracks, each with 14 data points acquired at
20 s intervals. There is no evidence of a mean drift in any
particular direction, and hence there is no directed motion
present. Linear regression fits to the MSD data yieldskx2l
, t0.76 at short times andkx2l, t1.54 at long times, whereas in
the y direction the transition is fromky2l, t0.53 to ky2l
, t0.99. Both these results are compatible with model predic-
tions, kx2l, t2a and kx2l, ta+b−1, for the case of power-law
correlated noise if ax=0.38, ay=0.27, bx=1.92, and

by=1.72. The difference betweenbx and by is not statisti-
cally significant. It is evident from Fig. 3 that the distribution
of incremental displacements in thex direction is well ap-
proximated by a Fox function probability density function
with parameter 0.76. Evidence for superdiffusionsby the
Levy flight mechanismd has previously been reported in a
photobleaching study of the diffusion of dye bound to cylin-
drical micellesf26g.

As a control, a similar analysis was performed on a set of
simulated normal diffusion trajectories with the same sample
size as the smallest of the samples presented here. Data were
simulated using a simple random walk model with Gaussian
jumps occurring at constant time intervals. The distribution
of exponents found is shown in Fig. 4, and are seen to fall
mainly near 1, but with some scatter due to the smallness of
the data set. No transitions were seen, and distributions of
incremental displacements were close to Gaussian. Thus it is
clear that these results are not an artifact of the method of
analysis used.

CONCLUSIONS

It has been shown that the transport characteristics of in-
dividual cell receptors observed in SPT can be understood in
terms of the imposition of immobilizing events onto Brown-
ian motion. The immobilizing events model phenomologi-
cally obstruction by mobile or immobile proteins, transient
binding to immobile proteins, confinement of skeletal cor-
rals, binding to the extracellular matrix and restrictions to
motions imposed by lipid domains. The transition from
kx2l, t2a to kx2l, ta growth of mean-square displacements
and the Fox distributions of incremental displacements pre-
dicted by this model were shown to be well supported by a
reanalysis of previously acquired data for MHC class I and II
Fab-phycoerythrin on a fibroblast.

Monte Carlo simulations have provided evidence of a

FIG. 4. Distribution of the diffusion expo-
nents found when using simulated normal diffu-
sion data.
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crossover from anomalous to normal diffusion at long times
f27g. Establishing whether the anomalous diffusion charac-
teristics of proteins actually show a crossover to normal dif-
fusion at large times or remain anomalous at all times re-
mains a key issue to be resolved.
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