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Stochastic modeling of protein motions within cell membranes
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A simple model in which immobilizing events are imposed onto otherwise free Brownian diff{iBion
Metzler and J. Klafter, Phys. Re339 1 (2000 and a recent adaptation due to S. Khan and A. M. Reynolds,
Physica A 350 183 (2009] is shown to encapsulate the peculiar transport characteristics of individual cell
receptors within plasma membranes observed in single-particle tra(R®g experiments. These character-
istics include the occurrence of normal diffusion; non-Gaussian subdiffusion; confined diffusion; a superdiffu-
sive mode of transport that is not due to flow of the membrane or molecular motor attachment; and the
occurrence of transitions between these transport modes. Model predictions are shown to be in close agreement
with a reanalysis of existing SPT data.
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INTRODUCTION such as transient binding to a cytoskeletal mdtbt,12.

) ) . o . Model predictions for mean-square displacements at both
Observations of trajectories of individual proteins in ghort and long times and distributions of incremental dis-
plasma membranes show a variety of types of motion includp|acements are shown to be in close accord with a reanalysis
ing ordinary Brownian motion, directed motion, and con-of existing data. This reanalysis also yields identification of a
fined and subdiffusiof1-8]. This variety of motion impacts )y superdiffusive transport mode. In contrast with previous
significantly upon the kinetics of reactions among mem-gpservationg13] this form of superdiffusive motion cannot
brane-bound species and serves as a probe of membragg aitributed to flow of the membrane or to molecular motor

structure[9]. Many mechanisms may be involved, including gttachment.
obstruction by mobile or immobile proteins; transient bind-  The model is presented in Sec. II. This is followed in Sec.
ing to immobile proteins; confinement by membrane skeleta|;, by comparisons of model predictions with data from

corrals; binding or obstruction by the extracellular matrix; gingie-particle trackingSPT) experiments. Sec. IV contains
restrictions to motion imposed by lipid domains; and hydro-4 summary.

dynamic interactions([9] and references therginThese

mechanisms have proved difficult to isolate, in large part

because some or all of them occur simultaneously and be- |MPOSITION OF IMMOBILIZING EVENTS ONTO

cause their relative importance may depend on the protein BROWNIAN MOTION

and the cell type. Transitions between transport modes and ) o o . .
non-Gaussian diffusion characteristics have also been ob- A particle moving in a fluidlike medium experiences two
served[9,10]. This calls into question the traditional under- forces: a frictional force and a fluctuating foreé) originat-
standing of protein mobility as the free Brownian diffusion N9 f_rom the collisions Wl_th the partlcle_s of_the surrounding
of a limited mobile fraction. medium. When the density of the medium is much less than

In this paper we show that a simple phenomenologicafhat of the particle, the fluctuating force can be treated as
model in which immobilizing events are imposed onto oth-White noise whereas for dense fluids and for fluids with in-
erwise free Brownian diffusion encapsulates all of the pecuternal rotational degrees of freedom, it is colored. When cor-
liar transport characteristics of individual proteins within "elations persist for a time,, the evolution of the probability
plasma membranes and, when combined with a fluctuatingensity function(PDF) P(x,t) for the displacement at time
force that is colored rather than white, allows for the occurt of @ Brownian particle is described by the telegraph equa-
rence of superdiffusivity and confined diffusion. In this tlon

model the membrane is regarded as a random array of con-
tinuously changing trags’] with a distribution of energies or TC&ZP(>2<,t) + P = K&ZP(>2<,I) , (1)
escape times so broad that there is no average residence time. a a 28

The model is shown to account naturally for observed tranyhere K is the mean diffusion coefficient. For times much

sitions between_transport modes W.it.hOl_Jt the need_ to resort f@ss than the correlation time scatg particles travel in

ad hocassumptions about the partitioning of mobile speciesirajght lines and transport is ballistic, with mean-square par-

into different microdomains or an active control mechanismjcie displacements from the origin evolving according to
(x?y=Kt?/ r.. At much later times transport is diffusivé?)
=2Kt, and Gaussian. Here, the time scajefor directed

*FAX: +44 (0)1582 760981. Electronic address: motion is not associated exclusively with the effects of iner-
andy.reynolds@bbsrc.ac.uk tia, which are widely acceptdd4-16 as being irrelevant to
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motions of membrane-bound proteins over times exceedingowers, the operator reduces to a standard integral. A de-
several nanoseconds. It may be associated with other weltailed account of fractional calculus can be found in the book
established and dynamically important mechanisms for diby Miller [19], and a good summary may be found in the
rected transport; including transit flow of the membrane andAppendix of [20]. At short timest<7 =(mK/kgT) 7% 2,
attachment to molecular motors. mean-square particle displacements from the origin evolve
Predictions from such one-dimensional models can beccording to (x?)=Kqt?¢/ ' (2a), whereas at much later
compared directly with data for the displacements oftimest> 7" transport is subdiffusive(x?)=Kqt*/T'(a), and
membrane-bound proteins along a particular direction. Thispon-Gaussian. Between these two asymptotes, the growth in
of course, presupposes that the effects of cell-surface hetergre mean-square particle displacements changes continu-
geneity upon protein transport are of secondary importancgysly and smoothly. For an initial pointlike distribution of

compared to the effects of. and K. The validity of this  particles, the distribution of particle displacements at all later
condition and the relevance of the correlation time segle timest is given by a Fox function,

are examined later through comparisons of model predictions " 2 | (alza)
with a reanalysis of existing SPT data of the major histocom- P(x,t) = 1 200 _X ' (4)
patibility complex(MHC) in HeLa cells and fibroblasts. Y ekt MY 4Kt (0.1),(1/2,)

Perhaps the simplest extension of Ej. with the poten- o )
tial for encapsulating the peculiar transport characteristics offor a definition of theH function see, for examplg20]).
individual cell receptors arises when it is combined in a se-The flatness of this distribution
quential manner with trapping events. The time elapsing be- oA ML+l (1+a)
tween two successive jumps is drawn from a waiting time N
PDF w(t). For times much longer than the characteristic % ['(1+2a)
waiting time (i.e., the average waiting timer=/ydttw(t),  lies between 3 and 6 and consequently the distribution is
the dynamics effectively revert back to that of free Brownianbroader than a Gaussian distribution which has a flatness of
motion. It has yet to be established in experiment whetheB.
the anomalous diffusion characteristics of proteins show a The situation changes somewhat when the correlation of
crossover to normal diffusion at large times or is anomaloushe fluctuating force has a power-law time dependency
at all times[9]. If such a transition does exist then it must (F(0)F(t))=Fq(8)t? where 0< 8< 2. Such power-law corre-
occur at a time exceeding the duration of the experimentdations arise when particles are moving in a fluid with a
Consequently when considering the transport processes ogensity comparable to the particle itself or when a particle
curring during the duration of the experiments, the meamoves within a fluid having internal structur21]. Both sce-
waiting timeT can be taken to be a divergent quantity. Here,narios could form the basis for interpreting or modeling the
in the spirit of Nagle[17], who used a continuous time ran- motions of membrane-bound proteins. This power-law de-
dom walk model to examine the effects of long-time tails onpendence of the correlation can either hinder the diffusive
fluorescence photobleaching recovery, we takét)  motion(0<3<1), or enhance the diffusiofl<3<2). The
~ 7*/t}**, where 0< o<1 andr is the intrinsic time scale of ~superdiffusive modes arise when successive fluctuations in
the waiting process. A power-law distribution of trapping the stochastic driving noise are positively correlated. The
times arise when, for example, the energiegoverning the  Fokker-Planck equation describing the evolution of particles
residence times expE;), within binding sites is exponen- subjected to fluctuating force with a power-law correlation is
tially distributed, P(E)=\e™E. Then the distribution of the .
waiting times is a power law of the formP(t)dt DL P(x,1) +f ay(B)(t- T)_BaP(x, 7
=(t"WBHD2\/B)dt. In this immobilizing-release-walking ‘ 0 ar
scenario, the evolution of the PDP(x,t), for the displace-
mentx at timet of a Brownian particle is described by a =K ,D; > (6)
fractional telegraph equatidri 8] 28

(5

dr

[22]. For 0< B8< 1, the second term on the left-hand side of

M + ~ ODt““P(x,t) =K ODtl—a'?ZP()Z(’t) , 2) Eq. (6) can be written as a Riemann-Liouville fractional de-
ot 28 rivative and so Eq(6) can be rewritten as
where the Riemann-Liouville operatgb; *=(d/ &) \D;* is " _,PP(x,1)
defined by t t 7D P + DEFP( D =K DF "5 (7)
o 1 ! . P(xt") When ensemble averaged over realizations of the initial ve-
oD “P(x,t) = T(a) ), dt (t—t/)le 3) locity, the mean particle displacemerix3=0. Mean-squared

particle displacements from the origin evolve according to
and Ko=kgT/my,, wherem is the mass of the Brownian (X*)~t?** at short times, while at long timeskx?)/dt
particle, and 7, the friction coefficient. The Riemann- ~t*"#72 and transport is either confindd+8< 1), subdif-
Liouville operator is a fractional integral of order, and fusive (1<a+B<2), or superdiffusive(a+3>2). In the
fractional derivatives may be established similarly via frac-case of confined diffusion, the growth of the mean-squared
tional integration and ordinary differentiation. At integer particle displacements, rather than mean-squared patrticle dis-
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FIG. 1. (@) Ln-In plot of the time evolutior(in
secondp of the MSD (in pixels, using a scale of
0.0 | : | | | | | | 0.205um/pixel) of MHC class Il Fab-
20 25 3.0 35 4.0 45 5.0 5.5 6.0 phycoerythrin on a fibroblast. Linear regression
(@) log t fits (dashed linesto the short and long time be-
haviors are also showiib) Histogram of the in-
100 - cremental displacements in tRelirection in pix-
els that occur within the 20 s intervals between
successive observations. The ensemble is taken
- over the entire measurement time and over all
80 trajectories within the data set. Gaussiaotted
a line) and Fox function(solid line) PDFs with
equivalent mean and variance are shown for
comparison.
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placementger se vanishes at long times. by a cooled back-illuminated charge-coupled device camera,

In the next section it is shown that the transport characappearing as diffraction-limited spots; the exposure times
teristics of cell receptors observed in single-particle trackingvere chosen to give signal-to-noise ratios greater than 4:1.
experiments are described accurately by the fractional teleRixels in an area around the spot can be least-squares fitted
graph equation Eq2) and its relative Eq(7). by a two-dimensional Gaussian functi¢24] to determine

the centroid position to a precision better than 40 nnxin
MEASUREMENT AND ANALYSIS OF SINGLE-PARTICLE andy. Linking these positions through images of a time se-
TRACKING DATA ries shows the trapk followed by_the receptor. in two dlme_n-
sions. Global motion of the particles from microscope drift

Single-particle fluorescence images were obtained using/as determined by tracking off-cell spots that resulted from
R-phycoerythrin as the fluorophore, conjugated to Fab fragthe probe adhering to the glass, and subtracted from the in-
ments of antibodies against the human major histocompatividual track positions; the mean distance moved over all
ibility complex. The labeled MHC class | antibod§] was tracks was an indicator of membrane motidiow) and any
applied to Hela cells, and the labeled antibody against MHCells showing this were not analyzed further. If the change of
class 11[23] was bound to fibroblasts transfected with the mean-square displacement with time interval is linear, a dif-
relevant MHC genes. Both these cell types provide flat areafusion coefficient can be found fron?)=4D, ét. Analysis of
of plasma membrane where small number$00) of recep-  immobile fluorescent particle tracks suggests the smallest ob-
tors are widely dispersed. The fluorophores can be detectegkrvable value ob, to be about 0.% 1072 cn? s [8].
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0.5+ FIG. 2. (a) Ln-In plot of the time-evolutior(in

seconds of the MSD (in pixels, using a scale of
0.205um/pixel) of MHC class I. Linear regres-
(@) Io' t sion fit_s(dashed linesto the shqrt and long time

g behaviors are also showfh) Histogram of the

incremental displacements in thedirection in

100 pixels that occur within the 60 s intervals be-
tween successive observations. The ensemble is
taken over the entire measurement time and over
80 - all trajectories within the data set. Gaussidot-
ted line and Fox function(solid line) PDFs with
equivalent mean and variance are shown for
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(b) Incremental Displacements
COMPARISONS WITH DATA FROM SINGLE-PARTICLE proteins. These complicating factors are incorporated into the
TRACKING EXPERIMENTS model by replacing the actual distribution of waiting times

(i.e., the value ofx) with an effective distribution of waiting

Single-particle tracking experiments can resolve movetimes which characterizes all the possible binding processes.
ments of individual cell receptors with a precision down to  Photobleaching and trajectory interception limit the maxi-
10 nm, depending on the probe used and the experimentaium number of data points for a receptor track to about 20.
conditions. There are, however, several limitations of the~ollowing the approach of Anderscet al. [24], effects of
method which complicate data interpretation and modebktatistical noise were reduced in determining mean-squared
analysis. For example there may be a contribution to dragarticle displacementd§SDs) in a time periodt by averag-
resulting from the interaction of the label with the extracel-ing over all pairs of data points separated temporallyAlby
lular matrix. In principle, at least, this could be accounted forrather than by averaging over particle displacements at time
by replacing the true mass of a protein, which appears in t=At relative to their position at the origin of time. In Ander-
Eg. (2) as a model parameter, with an effective mass  sonet al. [24], only independent pairs of data points were
Other complicating factors include the cross-link binding ofused. The scatter is considerably greater when only indepen-
sites by multivalent labels, which may result in a reductiondent pairs of data points are used, but the general behavior of
of diffusivity and which trigger biological responses such asthe MSD is unchanged. Hence, to reduce the scatter, and
transmembrane signaling; and antibody binding which mayhence the error in the exponents, nonindependent averaging
affect the interactions between the labeled protein and othdras been used for calculation of exponents. To facilitate com-
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FIG. 3. (a) Ln-In plot of the time evolutior{in
seconds of the MSD (in pixels, using a scale of
0 T T T T T T T | 0.205um/pixel) of MHC class Il Fab-
2.0 2.5 3.0 3.5 4.0 45 5.0 55 6.0 phycoerythrin on a fibroblast. Linear regression
@) Iog t fits _(dashed linesto the short :_;md long time be-
haviors are also shownb) Histogram of ob-
60 served incremental displacements in thdirec-
tion in pixels that occur within the 20 s interval
between successive observations. The ensemble
is taken over the entire measurement time and
M over all trajectories within the data set. Gaussian
5 (dotted ling and Fox function(solid line) PDFs
40 - - with equivalent mean and variance are shown for

comparison.
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RO 1

parisons with predictions from the one-dimensional model, itransition from a regime characterized k¥f) ~t>* to one
is assumed that components of the observed displacementdhere (x?) ~t®. A linear regression fit with a transition oc-
of proteins can be treated independently. The distribution ofurring after four data points yields=0.25. This estimate is
incremental displacements in each direction was also reecomparable with the mean-squared independen®.23 ob-
corded by considering all pairs of data points in the sampléained using Eq(5) in conjunction with the long-time flat-
separated by a single time step. ness statistiéx*/(x?)=5.63 of the data. The observed dis-
Figure 1 shows an example of subdiffusion, a transitiontribution of incremental displacements in thélirection(i.e.,
between modes of diffusive transport, and a non-Gaussiadisplacements occurring within the 20 s interval between
distribution of incremental displacements. The data were obsuccessive observatioris seen to be well represented by the
tained from a reanalysis of previously acquired MHC class lipredicted Fox function withw=0.25 when the variance is
Fab-phycoerythrin on a fibroblast at 20 {25]. The data set Matched to the data. The distribution cannot be well repre-
comprises 79 tracks, each with 15 data points acquired &ented by a Gaussian distribution of similar variance, further
20 s intervals. Many earlier experiments on the MHC com-indicating that the diffusion present is not normal diffusion,
plex have indicated cell surface heterogeneity on spatidput is strongly anomalous in character. In theirection the
scales much smaller than the expected 20 s diffusion intefransition is from a regime characterized{yy) ~t**to one
val. The data capture the cumulative effects of these inhomowhere(y?) ~t%3 The short length of the data set, and cor-
geneities. In accordance with model predictions there is aesponding errors in finding the exponent by curve fitting,
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are sufficient to explain the difference in exponent betweerng,=1.72. The difference betwegs, and 3, is not statisti-
the x andy directions. The long-time flatness statistic for the cally significant. It is evident from Fig. 3 that the distribution
y direction of 6.43 indicates strongly anomalous diffusion,of incremental displacements in tkedirection is well ap-
but Eq.(5) is not valid for values greater than 6, and hence itproximated by a Fox function probability density function
is not possible to calculate an anomalous diffusion exponenkith parameter 0.76. Evidence for superdiffusidsy the
from the statistic in this case. o Levy flight mechanism has previously been reported in a

_ The correspondence between diffusion exponerind  photobleaching study of the diffusion of dye bound to cylin-
distribution function finds further support in the_ reanalysis of ysjcal micelles[26].
data for MHC class 1 shown in Fig. [B]. This data set As a control, a similar analysis was performed on a set of

comprises 72 tracks, each with 13 data points acquired &fy, jated normal diffusion trajectories with the same sample

60 s intervals. A linear regression fit to the MSD data yields_: h I fth | h
. . . . d .D
(3) 198 and in they direction.(y2) ~ 73 The slight dif- size as the smallest of the samples presented here. Data were

. N . simulated using a simple random walk model with Gaussian
ference in the exponents for the two directions can again b

; : . : mps occurring at constant time intervals. The distribution
explained by the inaccuracies inherent in the method. Th f exponents found is shown in Fig. 4, and are seen to fall
absence of a transition in the evolution of the mean-square .

displacements may indicate that the transition time is shorterrnalnly near 1, but with some scatter due to the smallness of

than the sampling interval or longer than the duration of thethe data set. _No transitions were seen, and d|_str|but|ons_ O.f
records. For example in the direction, in the former case iIncremental displacements were close to Gaussian. Thus it is

«=0.80 while in the latter casen0.80. The flatness statis- Cl€ar that these results are not an artifact of the method of

tic for the x direction of this data set of 3.50 gives an esti- 2nalysis used.

mate fora of 0.84, indicating the first of these two cases. In

the y direction the flatness statistic of 4.54 indicates an

anomalous diffusion exponent of 0.55. Figure 2 shows that

the distribution of incremental displacements in thdirec-

tion is well represented by a Fox function witt+ 0.80 when

the variance is matched to the data. It has been shown that the transport characteristics of in-
Shown in Fig. 3 is an example of a transition from sub- todividual cell receptors observed in SPT can be understood in

superdiffusive transport. As in a previous example, the datéerms of the imposition of immobilizing events onto Brown-

were obtained from a reanalysis of acquired data for MHGan motion. The immobilizing events model phenomologi-

class Il Fab-phycoerythrin on a fibroblast at 20 °C. The dataally obstruction by mobile or immobile proteins, transient

set comprises 81 tracks, each with 14 data points acquired dinding to immobile proteins, confinement of skeletal cor-

20 s intervals. There is no evidence of a mean drift in anyals, binding to the extracellular matrix and restrictions to

particular direction, and hence there is no directed motiormotions imposed by lipid domains. The transition from

present. Linear regression fits to the MSD data yielkfs (x® ~12* to (x?) ~t* growth of mean-square displacements

~ " at short times an¢®) ~ t**at long times, whereas in  ang the Fox distributions of incremental displacements pre-

the y direction the transition is fromy?~t%%3 to (y  dicted by this model were shown to be well supported by a

~1%-9 Both these results are compatible with model predicteanalysis of previously acquired data for MHC class | and II

tions, (x2) ~t2* and (x?) ~t**#71, for the case of power-law Fab-phycoerythrin on a fibroblast.

correlated noise if ,=0.38, «,=0.27, ,=1.92, and Monte Carlo simulations have provided evidence of a

CONCLUSIONS
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