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This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult
stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer.
We consider two modes of chromosome segregation:s1d random segregation, where the daughter chromo-
somes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell
ands2d “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with
the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed byfCairns
NaturesLondond 255, 197 s1975dg, by which stem cells preserve the integrity of their genomes. For random
segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand
pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect
lesion repairsin this context, lesion repair is taken to mean repair of postreplication base-pair mismatchesd.
Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this
segregation mechanism is age dependent. From our model we are able to mathematically show that, when
lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell
lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion
repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells,
we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid
potentially fixing a mutation in both DNA strands.
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I. INTRODUCTION

The generation and maintenance of tissues in mammals is
currently a topic of intense investigation by experimental and
theoretical biologists. Besides its intrinsic scientific interest,
an understanding of tissue cell kinetics, architecture, and de-
velopment has important implications for aging and cancer.

In vertebrate animals, many tissues and organs are gener-
ated by what are known as adultsor equivalently, somaticd
stem cells. Adult stem cells are rare, undifferentiated cells
that divide asymmetrically to renew differentiated cells in
adult tissues. They divide to produce the original stem cell
and a differentiating progeny cell. The differentiating prog-
eny cell then proceeds, through a series of division and dif-
ferentiation stepsssee Fig. 1d, to produce a large collection of
mature tissue cells.

At this point, it is not clear how adult stem cells emerge in
multicellular organisms, nor is it known how this method of
generating tissue cells evolved. Nevertheless, it is believed
that this mechanism may serve to delay the emergence of
cancer in mammals.

Mature skin cells, for example, are continually regener-
ated by adult stem cells. The tissue cells, after undergoing a
prespecified number of divisions, cease dividingsa process
known as terminal differentiationd and are eventually shed.
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FIG. 1. sColor onlined Generation of differentiated tissue cells
sgreen/lighter grayd from an adult stem cellsblue/darker grayd.
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Thus, any potentially cancerous mutation in differentiated
skin tissue cells will eventually leave the body, thereby re-
ducing the risk of skin cancer.

In order to effectively reduce mutation rates, however,
there must exist a mechanism or collection of mechanisms
that protects the genetic integrity of the adult stem cell popu-
lation. Otherwise, because adult stem cells are long-lived in
the body, they will eventually accumulate a sufficient num-
ber of mutations to become cancerous, or become genetically
inferior stem cells.

One important mechanism by which adult stem cells pro-
tect the integrity of their genomes is through a form of asym-
metric chromosome segregation during cell division, known
asimmortal DNA strandco-segregation. The immortal strand
hypothesis was originally proposed by Cairnsf1g. It states
that when an adult stem cell divides to form a stem cell and
a differentiating tissue cell, the stem cell retains the chromo-
somes with the oldest DNA strands of the genomessee Fig.
2d. Presumably, the oldest DNA strands of the genome pro-
vide the most accurate template for daughter strand synthe-
sis, and hence their preferential segregation into the adult
stem cells ensures optimal maintenance of stem cell genetic
integrity and overall tissue health.

The immortal strand mechanism was recently confirmed
experimentallyf2,3g. The confirmation of this segregation
mechanism has motivated the authors to develop a math-
ematical model describing the evolutionary dynamics of a
population of adult stem cells.

We are interested in three aspects of stem cell evolution-
ary dynamics: First of all, we seek to develop a set of ordi-
nary differential equations describing the evolutionary dy-
namics of a population of adult stem cells. This is done in the
following section. For simplicity, we assume an infinite
population, continuous time model. While strictly speaking
this is not correct, stochastic simulations show good agree-
ment already at populations with as few as 10 000 stem cells.

Second, we wish to rigorously show that immortal strand
co-segregation is necessary to preserve the stem cell lineage.
Immortal strand co-segregation can only provide an advan-
tage, however, if, during a process known aslesion repair,

not all postreplication DNA mismatches are corrected. Oth-
erwise, daughter-strand synthesis errors can become fixed as
mutations in both parent and daughter strands, thereby elimi-
nating the advantage of keeping the oldest template strand in
the stem cellf4–7g.

Finally, because a high lesion repair efficiency reduces the
overall mutation rate, while low lesion repair efficiency pre-
serves the information in the parent strand, there is an opti-
mal lesion repair efficiency for maximally preserving the
stem cell lineage for a given period of time. In our case, the
period of time of interest is a human lifetime, which we take
to be on the order of 80 years.

In the following section, we derive the finite sequence
length equations describing the evolutionary dynamics of
adult stem cells, for the cases of random segregation versus
immortal strand co-segregation. In particular, we develop an
ordered strand pair formulation of the dynamics, analogous
to the ordered strand pair formulation of the quasispecies
equations for semiconservative replication with imperfect le-
sion repairf5–7g. For random segregation, the equations de-
rived are similar to the corresponding quasispecies equa-
tions. For immortal strand co-segregation, the equations are
qualitatively different. Nevertheless, despite the age depen-
dence of the chromosome segregation mechanism, for im-
mortal strand co-segregation it is still possible to develop an
ordered strand pair formulation of the dynamics.

In Sec. III, we derive the infinite sequence length form of
the evolutionary dynamics equations, for a class of fitness
landscapes defined by a master genome. These equations are
analogous to the equations developed for semiconservative
replication with imperfect lesion repairf7g. We then proceed
to obtain the system of differential equations governing the
decay of the stem cell population with the master-genome
genotype.

We continue in Sec. IV, where we use the master-genome
equations to determine the optimal lesion repair efficiency
for preserving the stem cell lineage for a given amount of
time. In particular, we show that lesion repair should be
turned off in stem cells. That is, postreplication DNA mis-
matches should be left uncorrected in stem cells.

We conclude in Sec. V with a summary of our results, and
plans for future research.

II. DERIVATION OF THE FINITE SEQUENCE LENGTH
EQUATIONS

A. Definitions

We consider a population ofNS replicating adult stem
cells. As is illustrated in Fig. 1, each of these stem cells
generates a lineage of differentiated tissue cells.

We assume that each stem cell has a genome consisting of
a single, double-stranded DNA molecule. A given genome
may then be given by the seths ,s8j, wheres ands8 denote
the two strands. In principle, DNA consists of two antiparal-
lel, complementary strands. Thus, a genome of lengthL
should consist of the strandss and its complements̄, where

s=b1¯bL⇔ s̄= b̄L¯ b̄1. (b̄i denotes the complement ofbi.
For the four bases used in DNA, complementarity is defined

FIG. 2. sColor onlined Illustration of immortal DNA strand chro-
mosome segregation. The red/dark gray lines represent newer
strands, while the brown/lighter gray line represents the oldest tem-
plate strand.
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by the Watson-Crick pairs Adenine:ThyminesA:Td and Gua-
nine:CytosinesG:Cd. See Fig. 1 inf5g.) However, due to
mutations, it is possible that the two strands of a given ge-
nome are not perfectly complementary, and so we have to
relax this restriction.

We also assume first-order growth, so that with each ge-
nomehs ,s8j is associated a first-order growth rate constant
khs,s8j. The collection of all first-order growth rate constants
is known as thefitness landscape. For simplicity, we assume
in this paper astatic or time-independent landscape.

As with all cells with double-stranded DNA genomes, we
assume semiconservative replication, where the genome of
each cell unzips to form two strands, each of which serves as
a template for the synthesis of the complementary daughter
strands. The end result is two new daughter genomes, one of
which is retained by the stem cell, while the other becomes
the genome of the differentiating sister. When genome
hs ,s8j replicates, then we assume that with daughter strand
synthesis there is associated a per-base mismatch probability
of ehs,s8j.

After replication is complete, and stem cell division has
occurred, there may still be some errors in the daughter
strands that were missed by various error-correction mecha-
nismssDNA polymerase proofreading and mismatch repaird.
These mismatches result in lesions along the DNA chain,
which may be recognized and repaired by various mainte-
nance enzymes in the cell. It should be noted that in this
case, the cell cannot distinguish between parent and daughter
strandsswhich it does during daughter strand synthesisd.
Thus, a given error in the daughter strand has a 50% prob-
ability of being corrected, but it also has a 50% probability
of being communicated to the parent strand. When this hap-
pens, the mutation is said to befixed in the genome. Lesion
repair is generally not perfect, and so we assume that when
genomehs ,s8j replicates, a postreplication mismatch in the
resulting daughter genomes is repaired with probability
lhs,s8j.

Errors during daughter strand synthesis and lesion repair
result in a probability distribution for the possible daughter
genome which can be generated from a given parent strand.
Thus, we definep(ss9 ,s-d ,hs ,s8j) to be the probability that
parent strands9, as part of genomehs9 ,s-j, forms the
daughter genomehs ,s8j.

We may also note thats9 can formhs ,s8j by either be-
coming s, with daughter strands8, or s8, with daughter
strands. The probability of the former process is denoted by
p(ss9 ,s-d ,ss ,s8d), and the probability of the latter process
is denoted byp(ss9 ,s-d ,ss8 ,sd). Note that if sÞs8,
then p(ss9 ,s-d ,hs ,s8j)=p(ss9 ,s-d ,ss ,s8d)+p(ss9 ,s-d ,
ss8 ,sd), while p(ss9 ,s-d ,hs ,sj)=p(ss9 ,s-d ,ss ,sd). An
expression forp(ss9 ,s-d ,ss ,s8d) was derived inf7g.

Finally, because stem cell divisionsmore properly, asym-
metric self-renewald results in a constant value forNS, it is
equivalent to look at population fractions. We therefore de-
fine xhs,s8j to be the fraction of the stem cell populationsat a
given timetd with genomehs ,s8j.

For immortal strand co-segregation, the preceding defini-
tions need to be somewhat modified, since we need to also
keep track of the ages of the strands. To this end, we letssTd

denote a strand that has been the templatesparentd strand at
least once, whilessNd denotes a strand that has never been
the template for the synthesis of a daughter strand. For im-
mortal strand segregation, then, we consider genomes of the
form hssNd ,s8sNdj and hssTd ,s8sNdj. We do not consider ge-
nomes of the formhssTd ,s8sTdj, since, if our population ini-
tially consists of genomes that have never been involved in
daughter strand synthesis, then such genomes can never ap-
pear in the population. The reason for this is that when a
parent strand serves as the template for daughter strand syn-
thesis, then it should be clear that the daughter strand auto-
matically receives the “N” designation. Thus, two “T”
strands can never be paired with one another.

B. Random segregation

For random chromosome segregation, each of the parent
strands of a replicating genome has an equal probability of
becoming incorporated into the stem cell. The random seg-
regation equations are then given by

dxhs,s8j

dt
= − khs,s8jxhs,s8j +

1

2 o
hs9,s-j

khs9,s-jxhs9,s-j

3 fp„ss9,s-d,hs,s8j… + p„ss-,s9d,hs,s8j…g.

s1d

The term −khs,s8jxhs,s8j arises from the observation that, in
semiconservative replication, the separation of the parent
strands corresponds to the effective destruction of the origi-
nal genome. The second term gives the rate at whichhs ,s8j
is produced, due to replication and mutation, by all genomes
in the population. The factor of12 arises because for random
chromosome segregation, both parent strandss9 ands- of a
replicating genomehs9 ,s-j have an equal probability of be-
ing retained by the stem cell.

The above equations are fairly cumbersome for direct
analysis, since the dynamics occurs over a space of double-
stranded genomes. If the strands are completely correlated,
so that in a genomehs ,s8j we always haves8=s̄, then,
following the derivation inf5g, it is possible to convert the
dynamics over the space of double-stranded genomes into an
equivalent dynamics over the space of single strands. This
conversion is not possible when the assumption of comple-
mentarity does not hold. Nevertheless, following the deriva-
tion in f7g, we can convert the dynamics over the space of
double-stranded genomes into an equivalent dynamics over
the space of ordered strand pairs. Specifically, given some
genomehs ,s8j, define

yss,s8d = yss8,sd = 51

2
xhs,s8j if s Þ s8,

xhs,s8j if s = s8.
6 s2d

Furthermore, define an ordered strand pair fitness landscape
via kss,s8d=kss8,sd=khs,s8j. The random segregation equa-
tions then become

EVOLUTIONARY DYNAMICS OF ADULT STEM CELLS… PHYSICAL REVIEW E 71, 041914s2005d

041914-3



dyss,s8d

dt
= − kss,s8dyss,s8d +

1

2 o
ss9,s-d

kss9,s-dyss9,s-d

3fp„ss9,s-d,ss,s8d… + p„ss9,s-d,ss8,sd…g.

s3d

C. Immortal strand co-segregation

To derive the evolutionary dynamics for a stem cell popu-
lation replicating with immortal strand segregation, we have
to take into account the ages of the strands. In this case, we
have to separately derive the dynamics for genomes where
neither strand has been used as a template for daughter strand
synthesis, and where one of the strands has been used as a
template for daughter strand synthesis. The resulting system
of equations is given by

dxhssNd,s8sNdj

dt
= − khs,s8jxhssNd,s8sNdj,

dxhssTd,s8sNdj

dt
= − khs,s8jxhssTd,s8sNdj

+
1

2 o
hs9sNd,s-sNdj

khs9,s-jxhs9sNd,s-sNdj

3 fp„ss9,s-d,ss,s8d… + p„ss-,s9d,ss,s8d…g

+ o
hs9sTd,s-sNdj

khs9,s-jxhs9sTd,s-sNdj

3 p„ss9,s-d,ss,s8d… s4d

Note that genomes of the formhssNd ,s8sNdj cannot be pro-
duced via replication, since replication occurs via a parent
strand which has then been used as a template for daughter
strand synthesis at least once.

Note also that when a genomehs9sNd ,s-sNdj replicates,
strandss9 and s- have an equal probability of being re-
tained by the stem cell. Of course, when a genome
hs9sTd ,s-sNdj replicates, then it is strands9 that is retained by
the stem cell.

Finally, note in the second equation that we are not con-
sidering probabilitiesp(ss9 ,s-d ,hs ,s8j), but rather prob-
abilities p(ss9 ,s-d ,ss ,s8d). The reason for this is that in
considering the production of genomehssTd ,s8sNdj, strands
is explicitly marked as the template strand, while strands8 is
explicitly marked as the newly synthesized daughter strand.
Therefore, to formhssTd ,s8sNdj, it is clear that the parent
stemplated strands9 must becomes, with daughter strand
s8.

As with the random segregation equations, we may define
an equivalent dynamics over the space of ordered strand
pairs. We do this in two steps. First, define,

ysssNd,s8sNdd = yss8sNd,ssNdd = 51

2
xhssNd,s8sNdj if s Þ s8,

xhssNd,s8sNdj if s = s8,
6 s5d

and

ysssTd,s8sNdd = xhssTd,s8sNdj. s6d

The ordered strand pair fitness landscape is defined as for
random segregation. The result is the transformed system of
equations,

dysssNd,s8sNdd

dt
= − kss,s8dysssNd,s8sNdd,

dysssTd,s8sNdd

dt
= − kss,s8dysssTd,s8sNdd

+ o
ss9sNd,s-sNdd

kss9,s-dyss9sNd,s-sNdd

3 p„ss9,s-d,ss,s8d…

+ o
ss9sTd,s-sNdd

kss9,s-dyss9sTd,s-sNdd

3 p„ss9,s-d,ss,s8d…. s7d

The key equality to note in deriving the transformed dynam-
ics is,

o
hs9sNd,s-sNdj

khs9,s-jxhs9sNd,s-sNdj 3 fp„ss9,s-d,ss,s8d… + p„ss-,s9d,ss,s8d…g

= 2 o
hs9sNd,s-sNdj,s9Þs-

3 fkss9,s-dyss9sNd,s-sNddp„ss9,s-d,ss,s8d… + kss-,s9dyss-sNd,s9sNddp„ss-,s9d,ss,s8d…g

+ 2 o
hs9sNd,s9sNdj

kss9,s9dyss9sNd,s9sNddp„ss9,s9d,ss,s8d… = 2 o
ss9sNd,s-sNdd

kss9,s-dyss9sNd,s-sNddp„ss9,s-d,ss,s8d…. s8d

Finally, if we defineyss,s8d=ysssNd,s8sNdd+ysssTd,ssNdd then we obtain

dyss,s8d

dt
= − kss,s8dyss,s8d + o

ss9,s-d

kss9,s-dyss9,s-dp„ss9,s-d,ss,s8d…. s9d
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Note that the ordered strand pair population fractions are
defined somewhat differently for immortal and random chro-
mosome segregation. For random chromosome segregation,
the age of the strands is irrelevant to the division kinetics.
Given a genomehs ,s8j, there is no canonical ordering of the
strandss and s8. If sÞs8, then the ordered pairsss ,s8d
and ss8 ,sd should receive identical contributions from the
genomehs ,s8j.

For immortal strand segregation, the above argument
holds for genomes of the formhssNd ,s8sNdj. However, for
genomes of the formhssTd ,s8sNdj, a canonical ordering of the
strands exists. Namely, we place the older strand before the
younger in the ordered strand pair representation. This means
that, for immortal strand co-segregation, we may regard
yss,s8d to be the total fraction of stem cells with template
strands and daughter strands8. The only potential problem
with this interpretation is the inclusion ofysssNd,s8sNdd as part
of this population fraction. However, this may be resolved by
noting that whilehssNd ,s8sNdj has not yet undergone a repli-
cation cycle, when it does, eitherssNd or s8sNd will be segre-
gated into the original stem cell. Therefore, we may effec-
tively preassigna “T” designation to eithers or s8. If s
=s8, then s is the preassigned template strand for all ge-
nomes, while ifsÞs8, then s is the preassigned template
strand for half of the genomes. This interpretation foryss,s8d
is consistent with the definition foryss,s8d s1/2xhssNd,s8sNdj
+xhssTd,s8sNdj for sÞs8, andxhssNd,ssNdj+xhssTd,ssNdj if s=s8d.

In contrast to random chromosome segregation, for im-
mortal strand segregation it is not generally true thatyss8,sd
=yss,s8d. The reason for this is that in the case ofss ,s8d, s is
the template strand that has been present through all stem
cell divisionssthough perhaps mutated to something differ-
ent from the original strandd. In the case ofss8 ,sd, it is s8
that has remained in the stem cell. Ifs ands8 are different,
there is no reason to expect an identical evolutionary path-
way for the two strands, hence it is incorrect to assume that
yss,s8d=yss8,sd.

D. Equivalence of random and immortal strand segregation
when lesion repair is perfectly efficient

Under very general conditions, it is possible to show that
when lesion repair is perfect, then random and immortal
strand segregation yield identical stem cell dynamics. We
need only make the following assumptions:s1d For any or-
dered strand pairss ,s8d, we havekss̄,s̄8d=kss,s8d. s2d For any
two ordered strand pairsss ,s8d and ss9 ,s-d, we have
p(ss9 ,s-d ,ss ,s8d)=p(ss̄9 ,s̄-d ,ss̄ ,s̄8d). s3d For any or-
dered strand pairss ,s8d, we haveyss̄,s̄8d=yss,s8d.

Because taking the complement of a strand essentially
amounts to a relabelling of the bases and a change in the
direction in which the strand is read, there is no reason to
assume that conditionss1–3d should not hold in general. In-
deed, cases where propertiess1–3d do not hold indicate a
strand asymmetry, a condition which results from specific,
and presumably nongeneric, base orderings.

If we assume that the fitness and “mutation” landscapes
are chosen so that propertiess1d ands2d are met, then if our

population initially satisfies propertys3d sobtained with a
lesion-free population, for exampled, it is possible to show
that propertys3d holds for all time. The proof of this is simi-
lar to the proof of the analogous statement for quasispecies
dynamics with imperfect lesion repairf7g, and will therefore
be omitted here.

When lesion repair is perfect, then an initially lesion-free
population remains lesion free.

In this case we have,

dyss,s̄d

dt
= − kss,s̄dyss,s̄d

+
1

2 o
ss8,s̄8d

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…

+
1

2 o
ss8,s̄8d

kss̄8,s8dyss̄8,s̄8dp„ss̄8,s8d,ss̄,sd…

= − kss,s̄dyss,s̄d

+
1

2 o
ss8,s̄8d

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…

+
1

2 o
ss8,s̄8d

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…

= − kss,s̄dyss,s̄d

+ o
ss8,s̄8d

kss8,s̄8dyss8,s̄8dp„ss8,s̄8d,ss,s̄d…, s10d

which coincides with the immortal strand equations.

III. THE “MASTER-GENOME” FITNESS LANDSCAPE

A. Infinite sequence length equations

Following the derivation of the quasispecies equations
with imperfect lesion repairf7g, we will now develop the
infinite sequence length equations for a class of fitness land-
scapes defined by a “master” genomehs0,s̄0j. For simplic-
ity, we assume thatehs,s8j and lhs,s8j are genome indepen-
dent, and may respectively be denoted bye andl.

Following the convention used with quasispecies dynam-
ics, we derive the infinite sequence length equations with
m;Le held constant. This is equivalent to fixing the genome
replication fidelity, given bye−m, in the limit of infinite se-
quence length.

The derivation of the infinite sequence length equations
from the finite sequence length equations for stem cell divi-
sion parallels the derivation of the infinite sequence length
equations for semiconservative replication with imperfect le-
sion repair. We therefore refer the reader tof7g for details. In
this paper, we only provide the necessary definitions for un-
derstanding the final form of the infinite sequence length
equations.

To begin, we note that the “master” genomess0,s̄0d gives
rise to the ordered sequence pairsss0,s̄0d and ss̄0,s0d. In
the limit of infinite sequence length, the two master strands
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s0 and s̄0 become infinitely separated from each other in
Hamming distance, hence we may regardss0,s̄0d and
ss̄0,s0d as infinitely separated from each other in the ordered
sequence pair space.

We may therefore group all sequence pairsss ,s8d into
one of three classes: A sequence pairss ,s8d is said to be of
the first classif DHss ,s0d andDHss8 ,s̄0d are both finite. A
sequence pairss ,s8d is said to be of thesecond classif
DHss ,s̄0d andDHss8 ,s0d are both finite. Finally, a sequence
pair not belonging to either one of the first two classes is said
to belong to thethird class.

A given sequence pairss ,s8d of the first class can be
characterized by the four parameters, denotedlC, lL, lR, and
lB. The first parameter,lC, denotes the number of positions
wheres ands8 are complementary, yet differ from the cor-
responding positions ins0 and s̄0, respectively. The second
parameter,lL, denotes the number of positions wheres dif-
fers from s0, but the complementary positions ins8 are
equal to the corresponding ones ins̄0. The third parameter,
lR, denotes the number of positions wheres is equal to the
ones in s0, but the complementary positions ins8 differ
from the corresponding ones ins̄0. Finally, the fourth param-
eter,lB, denotes the number of positions wheres ands8 are
not complementary, and also differ from the corresponding
positions ins0 and s̄0. These definitions are illustrated in
Fig. 3 of f7g. A sequence pair of the second class may be

similarly characterizedsexcepts0 ands̄0 are swapped in the
definitions given aboved.

We assume that the fitness of a given sequence pair of the
first class is determined bylC, lL, lR, and lB, hence we may
write that kss,s8d=kslC,lL,lR,lBd. The fitness of a sequence pair
ss ,s8d of the second class is determined by noting that
ss8 ,sd is of the first class, and thatkss,s8d=kss8,sd. We take
the third class sequence pairs to be unviable, with a first-
order growth rate of 1.

We also assume thatkslC,lL,lR,lBd=kslC,lR,lL,lBd. This is a natu-
ral assumption to make if one assumes symmetry between
the two master strands. Inf7g, we show that this assumption
implies thatkss̄,s̄8d=kss,s8d.

We allow our system to come to equilibrium starting from
the initial conditionyss0,s̄0d=yss̄0,s0d=1/2. This initial condi-
tion corresponds to an initially mutation-free stem cell popu-
lation.

We may sum over the population fractions of all first class
sequence pairs characterized by a given set oflC, lL, lR, and
lB, and reexpress the quasispecies dynamics in terms of these
quantities. We definezslC,lL,lR,lBd to be the total population
fraction of first class sequence pairs characterized bylC, lL,
lR, andlB. We similarly definez̄slC,lL,lR,lBd to be the total popu-
lation fraction of second class sequence pairs characterized
by lC, lL, lR, lB. Following the derivation inf7g, we then
obtain

dzslC,lL,lR,0d

dt
= − kslC,lL,lR,0dzslC,lL,lR,0d +

1

2
S 1

lL!
fms1 − ldglLdlR0 +

1

lR!
fms1 − ldglRdlL0De−ms1−l/2d

3 o
lC8=0

lC 1

lC8 !
Slm

2
DlC8

o
l19=0

lC−lC8

o
l29=0

`

ksl19,lC−lC8−l19,l29,0dzsl19,lC−lC8−l19,l29,0d s11d

FIG. 3. A comparison of
theory and simulation for a popu-
lation of 10 000 stem cells with
genomes of sequence length 20.
We assumek+=10, k−=1, m=0.1,
and l =1. We iterated in time steps
of length 0.001 out to a time of
10.
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for random segregation, and

dzslC,0,lR,0d

dt
= − kslC,0,lR,0dzslC,0,lR,0d +

1

lR!
sms1 − lddlRe−ms1−l/2d

3 o
lC8=0

lC 1

lC8 !
Slm

2
DlC8

o
l19=0

`

kslC−lC8 ,0,l19,0dzslC−lC8 ,0,l29,0d

s12d

for immortal strand co-segregation. An analogous set of
equations may be derived for thez̄slC,lL,lR,lBd. Using the fact
that yss̄,s̄8d=yss,s8d we havez̄slC,lL,lR,lBd=zslC,lL,lR,lBd.

An interesting feature to note from comparison of these
two equations is that for random chromosome segregation, it
is possible for lL.0, while for immortal strand co-
segregation, we havelL=0. In the case of random segrega-
tion, the ordered strand pairsss ,s8d andss8 ,sd are equiva-
lent, hence we havez̄slC,lR,lL,lBd=zslC,lL,lR,lBd, which implies that
zslC,lR,lL,lBd=zslC,lL,lR,lBd. In the case of immortal strand segre-
gation, the first strand of the ordered strand pair represents
the parent strand. Because the parent strand differs froms0
sor s̄0 when looking at thez̄ equationsd in only a finite num-
ber of positions, in the limit of infinite sequence length the
probability that a mismatch occurs where the parent strand
differs froms0 is 0. Therefore, any lesions that occur will be
due to an error made in the daughter strand, where the cor-
responding bases of the parent strand are identical to those of
s0. Thus,lL remains 0, butlR can become positive.

Finally, from these equations it is possible to show that a
population of adult stem cells will eventually degrade unless
lesion repair is turned off and chromosome segregation oc-
curs via the immortal strand mechanism. For random chro-
mosome segregation, a given stem cell will periodically re-
tain an erroneous daughter strand, resulting in a steady
degradation of the genome. For immortal strand co-
segregation with nonzero lesion repair efficiency, mistakes in
the daughter strands will periodically be communicated to
the parent strand via lesion repair. The result is again a
steady degradation of the genome.

B. Decay of the master-genome population

We may derive a set of differential equations describing
the decay of the master genome population. We consider a
fitness landscape where the viable genomes have a first-order
growth rate constantk+, and the unviable genomes have a
first-order growth rate constantk−,k+. An ordered strand
pair is taken to be viable iflCø lC,max, and if lL+ lR+ lBø l.
Thus, an ordered strand pair is viable if it has no more than
lC,maxfixed mutations, and no more thanl lesions. Otherwise,
the strand pair is unviable.

Defining z0=zs0,0,0,0d, z1=ol8=0
l zs0,0,l8,0d, and z2

=ol8=0
` zs0,0,l8,0d, we obtain, for random segregation, that

dz0

dt
= − k+z0 +

1

2
e−ms1−l/2dfsk+ − k−dz1 + k−z2g,

dz1

dt
= − k+z1 +

1

2
f1 + f lsm,ldge−ms1−l/2dfsk+ − k−dz1 + k−z2g,

dz2

dt
= − S1 −

1

2
se−ms1−l/2d + e−ml/2dDfsk+ − k−dz1 + k−z2g.

s13d

For immortal strand segregation, we obtain

dz0

dt
= − k+z0 + e−ms1−l/2dfsk+ − k−dz1 + k−z2g,

dz1

dt
= − k+z1 + f lsm,lde−ms1−l/2dfsk+ − k−dz1 + k−z2g,

dz2

dt
= − s1 − e−ml/2dfsk+ − k−dz1 + k−z2g. s14d

We may solve Eqs.s13d and s14d using standard numeri-
cal methods, for the initial conditionz0=z1=z2=1/2. This
corresponds to an initial stem cell population consisting en-
tirely of the master genome genotype.

In Fig. 3 we show a comparison of the numerical solution
of Eqs. s13d and s14d with the results of stochastic simula-
tions of dividing stem cells. The lesion repair probabilityl is
taken to be 0.5 in this case.

IV. OPTIMAL LESION REPAIR PROBABILITIES

We can use Eq.s14d to determine the optimal lesion repair
probability for preserving the stem cell line out to a given
time T. We usez0 as our measure for the extent of the pres-
ervation of the stem cell line. The higher the value ofz0, the
better the stem cell line is preserved. To this end, for sim-
plicity, we also takek−=0, i.e., we assume that unviable stem
cells do not replicate at all. We also rescale the time by
definingt=k+t. We then obtain

z0std =
1

2
e−tS1 +

1

f lsm,ld
seflsm,ldexpf−ms1−l/2dgt − 1dD .

s15d

Therefore, maximizingz0sTd is equivalent to maximizing
glsl ;m ,Td;seflsm,ldexpf−ms1−l/2dgT−1d / f lsm ,ld.

It is instructive to consider the behavior ofgl for l =0 and
l =`. For l =0, we have g0=eexpf−ms1−l/2dgT−1, which is
clearly maximized for anym andT whenl=1. This makes
sense because, whenl =0, then any lesion renders the stem
cell unviable. Preserving the information in the parent strand
by reducing the lesion repair efficiency does not help main-
tain the population of master genomes, since an unviable
stem cell does not replicate. Therefore, in this case, it is
optimal to make lesion repair maximally efficient, thereby
reducing the overall mutation rate away from the master ge-
nome.

For imperfect lesion repair to allow for better preservation
of the stem cell population within our model, we must there-
fore assume thatl .0. While typical values ofl for cellular
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organisms are not availablesthe matter is also complicated
by additional repair mechanisms such as SOS responsed, we
may note that the smaller the value ofm, the fewer errors are
made during replicationsan average ofm are maded. Thus, in
practice, for smallm, one may assume thatl =`, since a large
number of lesions will not be produced in any casefmath-
ematically, this is equivalent to the observation that the series
hf lsm ,ldj converges tof`sm ,ld=ems1−ld more quickly at
smaller values ofm than at larger values ofmg. Since cells
have various error correction mechanisms that keep the over-
all number of replication errors to on the order of 1 or less
per replication cycle, the assumption thatl =` seems to be a
reasonable one, and will be used here.

For l =`, we then haveg`=e−ms1−ldseexps−ml/2dT−1d. For a
given m and T, we definey=e−ml/2T, giving g`=e−muT2sey

−1d /y2. The function sey−1d /y2 goes to` at y=0 and y
=`. It has a unique point where its derivative vanishes, cor-
responding to a global minimum. Thus, on any given inter-
val, the maximum value ofsey−1d /y2 occurs at one of the
endpoints. In particular, this implies thatg` is maximized for
a givenm andT at eitherl=0 or l=1.

To determine whether the optimall is 0 or 1 for given
values ofm and T, we note thatl=0 corresponds toy=T,
while l=1 corresponds toy=e−m/2T. The minimum value of
sey−1d /y2 occurs beforey=2, hence, oncee−m/2T.2, sey

−1d /y2 becomes monotone increasing onfe−m/2T,Tg, so that
g` is maximized forl=0. For human cells, the genome
length is of the order of 33109 base pairs, givingm<3 f4g.
Therefore, ifT.2e−3/2<9, then optimal preservation of the
stem cell line occurs forl=0. Current estimates place the
number of adult stem cell divisions over a human lifetime at
around 5000f8g. In our rescaled time coordinates, this gives
T=5000@9. Clearly, then, to optimally preserve the stem
cell line, our model indicates that lesion repair should be
turned off during cell division.

We should note that, at short times, it is optimal to keep
l=1, independent ofl sthis can be shown by expandinggl
out to first order inT, and optimizingd. Also, for finite values
of l, it is possible to show that, at sufficiently long times, the
optimal lesion repair efficiency can be made arbitrarily close
to 1 by making the mutation ratem arbitrarily large. This
makes sense, because, at high mutation rates, it is necessary
to prevent the formation of more thanl lesions during repli-
cation, which renders the adult stem cell unviable.

For our purposes, however, thel =` simplification seems
appropriate, since it is reasonable to assume thatm=3 is
considerably less than the number of mismatches that a hu-
man adult stem cell can tolerate before becoming unviable.

It is important to note that, by lesion repair, we specifi-
cally refer to mismatched base-pairs along the DNA chain.
The underlying assumption, however, is that each of the
bases is chosen from one of the four standard basessA, T, G,
Cd. Thus, when considering lesions in this model, we are not
considering lesions caused by chemical modifications of
bases, due to, for example, radiation or oxidative damage. In
principle, these lesions can be correctly repaired, assuming
that the damage is localized to only one of the strands, be-
cause the chemical changes to the bases allows the cellular
repair mechanisms to determine on which strand the lesion is
present.

Thus, in determining that, for human stem cells, lesion
repair should be turned off during cell division, we mean that
mismatches along the DNA genome should be left alone, so
as not to risk fixing a mutation in both strands.

While it is possible that distinct cellular mechanisms exist
for repairing postreplication mismatches and lesions due to
DNA damage, it is also possible that both types of modifica-
tions to a DNA genome are handled by the same repair path-
wayssnucleotide excision repair, for instancef4gd. Thus, it is
possible that the way by which adult stem cells suppress
correction of mismatches along the DNA chain is by a gen-
eral suppression of lesion repair. In this case, adult stem cells
should be more susceptible to the effects of agents that can
damage DNA. This increased susceptibility to DNA damage
has been hypothesized by Cairnsf9g, and does indeed appear
to be a property of adult stem cellsf9g.

V. CONCLUSIONS

This paper developed a set of ordinary differential equa-
tions describing the evolutionary dynamics of a population
of adult stem cells. For simplicity, we considered stem cell
genomes consisting of a single double-stranded DNA mol-
ecule, i.e., one chromosome.

We considered two possible mechanisms of chromosome
segregation. In the first case, we assumed that chromosomes
randomly segregate into the adult stem cell and undifferenti-
ated tissue cell. In the second case, we assumed that the stem
cell retains the chromosome containing the oldest DNA
strand of the genome. This co-segregation mechanism,
termed the immortal strand hypothesis, was originally pro-
posed by Cairns in 1975f1g as a mechanism by which stem
cells preserve the integrity of their genomes.

For the case of random segregation, we derived a set of
equations analogous to the quasispecies equations for semi-
conservative replication with imperfect lesion repair. In par-
ticular, the ordered strand pair formalism developed inf7g
was used.

For immortal strand co-segregation, we showed that an
analogous ordered strand pair formalism is possible, though
in contrast to random segregation, the labelling of parent and
daughter strands leads to a canonical method for constructing
an ordered strand pair from a given genome. This results in a
different set of equations describing the dynamics over the
space of ordered strand pairs.

Following the approach taken with the semiconservative
quasispecies equations with imperfect lesion repairf7g, we
developed the infinite sequence length equations for the stem
cell population, assuming a fitness landscape defined by a
master genome. From both the random and immortal strand
equations it is readily shown that immortal strand segrega-
tion with imperfect lesion repair helps to maintain a popula-
tion of stem cells.

From the infinite sequence length equations, we obtained
the differential equations governing the decay of the master
genome population, and developed a criterion for determin-
ing the optimal lesion repair probability for maximizing the
population of stem cells with the genotype defined by the
master genome. Based on parameters for human stem cells,
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we predict that lesion repair should be completely turned off
in adult human stem cells. This result, of course, is in the end
a prediction made by a highly simplified model and needs to
be experimentally tested. Furthermore, because it appears
that postreplication mismatches and lesions due to DNA
damage are repaired by the same biochemical pathwaysf9g,
future research will need to explicitly incorporate DNA dam-
age in order to refine our estimate for optimal lesion repair
efficiency in adult stem cells.

We should also add that an additional effect which further
complicates the dynamical model presented here is a process
known assister chromatid exchangesSCEd, which, even
when lesion repair is completely suppressed, leads to the
accumulation of mutations in immortal DNA strands. While
this effect will need to be incorporated in future models of
adult stem cell division, we must emphasize that the pro-
posed evolutionary basis for immortal DNA strands in adult
stem cells is toreducethe rate of carcinogenesis sufficiently,
so that mammals survive for effective reproduction
f1,8,10,11g. Thus, while SCEs can and do occur, and may
indeed be responsible for the observed cancer rates, immortal
strand co-segregation nevertheless acts to reduce the overall
accumulation rate of mutations in adult stem cells to a level
that allows the organism to survive long enough in order to
reproduce. The reduction in overall mutation rate as a result
of immortal strand co-segregation and suppressed lesion re-
pair is clearly captured by our model. Thus, despite the sim-
plifying assumptions made in this work, we regard this paper
as an important first step toward a quantitative modeling of
stem cell evolutionary dynamics.

In this paper, we assumed that the stem cell and tissue
genomes consist of only one chromosome. While one chro-

mosome is sufficient for studying immortal strand co-
segregation, in reality vertebrate cells contain numerous
chromosomes. Furthermore, it is known that certain free-
living organisms, such asSaccharomyces cerevisiaevariants
sBaker’s yeastd, segregate chromosomes according to the im-
mortal strand mechanismf12g. For single-chromosome ge-
nomes, the immortal strand mechanism cannot be applied to
free living cells, since there is no qualitative distinction be-
tween the two daughter cellsssuch as “stem” and “tissue”d.
However, with multiple chromosomes, it is possible for
asymmetric segregation to occur so that one of the daughter
cells retains the chromosomes with the oldest DNA strands.
Thus, the study of immortal strand co-segregation for multi-
ply chromosomed genomes is an important extension of the
model presented here and the imperfect lesion repair qua-
sispecies equations presented inf7g.

Finally, we should also point out that the tissue architec-
ture topology illustrated in Fig. 1 is a specific instance of
what is known as anevolutionary graph. The study of mu-
tation and selection on graphs of arbitrary topology is known
as evolutionary graph theory. There has been some recent
work on how the structure of evolutionary graphs can change
the effective accumulation rate of mutations in a population
f13g. Another important extension of the model presented
here is to incorporate semiconservative replication and addi-
tional effectssimperfect lesion repair, immortal strand co-
segregationd into evolutionary graph theory.
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