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Changes to the electroencephalogramsEEGd observed during general anesthesia are modeled with a physi-
ological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse
response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal
ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known
anatomical constraints and predict mean firing rates and power spectra typically encountered in human sub-
jects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on
a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the
prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally
selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane.
Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often
observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at
low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an
outlook on future fits to experimental data is provided.
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I. INTRODUCTION

The electroencephalogramsEEGd is one of the oldest
measures of brain activity and continues to be popular both
in clinical practice and in research. It is a comparatively
cheap, robust, and straightforward technique, but neverthe-
less provides data with millisecond time resolution showing
clear correlations to observed mental states. Its main short-
coming is a lack of spatial resolution. The EEG is asurface
measure; hence any depth information is necessarily derived
and uncertain. Furthermore, even its two-dimensional reso-
lution is at best in the square centimeter rangef1g. However,
many questions about the state of the brain do not require
perfect, or even any, spatial information. The hypnotic state
is a likely candidate, since the absence of pain experience
and memory retention suggests that gross changes of brain
function have occurred.

Despite many decades of research into the mechanisms of
general anesthesia there are surprisingly few integrated theo-
ries attempting to characterize this phenomenon. This has
probably been due to the fact that, until recently, there has
been no real agreement on what macroscopic observables of
anesthetic effect are to be modeled. However, an unquestion-
able indicator of the depth of anesthesia would be of para-
mount importance in clinical practice. In particular frail pa-
tients would benefit from precisely guided dosage. Thus it is
not surprising that in the last decade or so several heuristic
approaches based on electroencephalographic monitoring of
depth of anesthesia have been developedf2g. The use of such

monitoring has been shown to reduce the incidence of post-
operative recallf3g. Hence these heuristic methods of EEG
analysis represent an operational measure of the level of con-
sciousness, albeit of unclear efficacy.

In principle then modeling the effects of anesthetic agents
on EEG activity not only can help in explaining the remark-
able phenomena of general anestheticsGAd action, but also
can provide an entry point for the quantitative characteriza-
tion of consciousness. Methods based on the spontaneous
EEG—proprietary ones like the Narcotrend value and the
Bispectral IndexsBISd, as well as those typical for any
power spectrum analysis—have been employed with varying
degrees of success. For example, Sebelet al. f4g found that
opioid analgesics popular in actual clinical practice limit the
usefulness of the BIS.

Here one encounters a problem inherent to any heuristic
approach: since it is not based on a deeper understanding of
underlying mechanisms, failures do not point to improve-
ments in an obvious manner. Rather than trying to invent yet
another heuristic EEG-based measure, our aim here is to pro-
vide a theoretical model for the induced changes which is
based on known physiology. Our theory relates well known
microscopicscellular and subcellulard targets of GA action to
their macroscopic consequencessEEG activityd. In the long
run this may lead to the development of a depth of anesthesia
monitor based on the EEG, which can truly replace estab-
lished methods like the vegetative PRSTsblood pressure,
heart rate, sweating, tear formationd score f5g in clinical
practice.

By establishing a mesoscopic link through our model we
also open up a much needed window on human physiology.
Most experimentalssubdcellular data can be obtained from
animal preparations only. But if such data lead to successful
predictions of human EEG features, as in this paper, then one
can infer similarssubdcellular behavior of human neurons.
The approach we take here differs from earlier modelsf6,7g
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in that we parametrize, on the basis of detailed empirical data
from rat hippocampus, the effects GAs have on both cortical
excitation and inhibition in the context of a theory that is
based on human physiology and preserves all the essential
dynamical features of human resting EEG. This level of fi-
delity to experimental data is necessary for conclusions
about human physiology now, and for the development of
medical applications in the future.

The paper begins with an overview of the theory of Liley
et al. f8,9g for electroencephalographic rhythmogenesis. In
Sec. III components of this model are then further developed,
on the basis of our current understanding regarding the cel-
lular and subcellular targets of GA agents. Section IV then
comprehensively outlines a range of numerical methods and
approaches needed to establish physiologically plausible
model behavior and parametrization. This will enable us to
meaningfully appraise our theory’s response to perturbations
designed to model the effects of GA agents. Section V con-
tains the results of extensive Monte Carlo parameter space
searches. The identified physiologically plausible parametri-
zations are shown to be capable of reproducing many fea-
tures of the EEG in response to GAs. This paper then ends
with a comparison of our approach with the work of others
and with a discussion of the implications of our theory and
results for better understanding GA action. In the appendix
we tabulate two dozen of the plausible parameter sets we
have found. As an outlook on future work, we also briefly
compare the mean behavior of these sets with some experi-
mental data.

II. BASIC ELECTROCORTICAL MODEL

The model of Liley et al. f8,9g can produce the main
features of the spontaneous human EEG and mirrors at least
qualitatively the effects GABA-enhancingsGABA denotes
gamma-aminobutyric acidd general anesthetics have on the
EEG f10g. As is appropriate for a description of EEG data,
the model is spatially coarse grained. The neural activity
over roughly the extent of a macrocolumnstypical diameter
0.5–3 mmf11gd is averaged to produce a “mean field” de-
scription in space. However, no averaging takes place with
respect to changes in time.

A schematic representation of the model is given by Fig.
1, which depicts the model interactions taking place both
within and between two different macrocolumns. Two dis-
tinct types of spatially averaged subpopulations of neurons
are taken into account to subsume the actual variety of cor-
tical cells: excitatorysEd and inhibitorysId neurons. The in-
teractions of these subpopulations within the macrocolumns
are proportional to the number of their connectionsNlk

b and
their mean firing ratesSk, with k, l =e sexcitatoryd, i sinhibi-
toryd. The subscriptlk meansl →k, i.e., typel acting on type
k. Each macrocolumn can also have extracortical inputsplk,
for example from the thalamus. Only the excitatory subpopu-
lations are considered to form long-range connectionsFek to
other macrocolumns, but those connections can form on both
types of neurons in the target macrocolumn. In mathematical
terms the model is detailed as follows:

tk
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Equation s1d describes the response of the mean soma
membrane potentialshk to synaptic inputsI lk, taking into
account reversal potentials via Eq.s2d. Equations3d traces
these synaptic inputs to three sources: locally in the same
macrocolumn of cortex, further away but within the cortex,
and extracortical. Local activity is estimated with Eq.s4d
using a sigmoidal dependence on the local mean membrane
potential. Extracortical activity at rest is represented by
physiologically shaped brown noise input viaplk. Finally
long-distance effects are modeled by Eq.s5d, which lets ac-
tivity spread omnidirectionally with speedv while decaying
exponentially with a fiber scale constantLek. EEG voltage is
expected to be linearly related tohe, the spatially averaged
excitatory soma membrane potentialf8,12g. Hencehe will be
the main computational observable in the following study.

FIG. 1. A schematic illustration of the Lileyet al. f8,9g model.
Two distinct macrocolumns with their excitatorysEd and inhibitory
sId neuron populations are shown, as well as their short- and long-
range cortical and extracortical connections. The labels correspond
to Eqs.s1d–s6d.
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All parameters in Eqs.s1d–s6d can be related to physi-
ological or anatomical data; see Ref.f8g for further discus-
sion. The limits for the parameters assumed in this paper are
shown in Table I. One has to specify 37 parameters for the
model splus an additional one in the case of noise input, as
discussed belowd. We set four of these parameters to zero
and assume that the scale constants for cortico-cortical exci-
tatory fibers targeting inhibitory and excitatory subpopula-
tions, respectively, are identical. This leaves 32splus oned
independent parameters in the model.

A more in depth discussion of these equations can be
found elsewheref8–10g. This theory differs from other mac-
roscopic continuum theories of electrorhythmogenesis
f13–15g in that the time courses of the inhibitory and excita-
tory postsynaptic potentialssIPSPs and EPSPsd recorded at
the soma are described by a third order differential equations.
The use of lower orders to describe the IPSP are theoretically
found unable to support any appreciable or widespreada
band activitysfor further details see Ref.f8g, Appendix Ad.

Because this theory generatesa activity through the re-
ciprocal interaction of excitatory and inhibitory neuronal
populations it does not require oscillatory thalamic input as
is necessary in pacemaker accounts of cortical electrorhyth-
mogenesis, nor does it need any explicit thalamo-cortical
feedback. It is important to emphasize that this continuum
mean-firing-rate-basedtheory is also “mechanistically” quite
distinct from the discretespike-basedinhibitory interneuron
network models that have been developed to investigate the
genesis of synchronizedg activity and its modulation by a
range of drugsf16,17g.

III. EXTENSIONS FOR ANESTHESIA

The number of cellular and subcellular sites in the central
nervous system at which general anesthetic agents have been
shown to interact is vastf18–20g. While attempts to define a
unitary mechanism of GA action have failed it has become
increasingly well accepted that it is disruption in interneu-
ronal communication that underlies their clinical actions. To
date both pre- and postsynaptic targets have been identified
as important in mediating the effects of GAs. In particular a
large number of volatile and intravenous general anesthetic
agents have been shown to interact with a range of ligand-
gated ionic channelssLGICsd thereby affecting postsynaptic
ionic current flow or presynaptic neurotransmitter release
f21g. Studies to date have revealed GABAA and glutaminer-
gic LGICs as the most important subcellular cortical targets
for GA action at clinically relevant concentrationsf22g.

In general GAs have been shown to potentiate
GABAA-induced ionic currents and/or attenuate glutamate-
mediated ionic currentsf18g. From a cellular electrophysi-
ological perspective this is seen as a prolongation of the tail
of the unitary IPSP and a reduction in the peak amplitude of
the EPSPf23,24g. For example, isoflurane has been shown to
potentiate GABAA-induced ionic currents as well as inhibit-
ing the presynaptic release of glutamate, possibly by the ac-
tivation of presynaptic kainate receptorsf25g. In general GA
agents from the inductive classse.g., propofol or any of the
halogenated ethersd affect GABAA-mediated neurotransmis-
sion postsynaptically and glutaminergic neurotransmission
presynaptically, whereas dissociative GAsse.g., ketamine,
N2O, Xed are currently believed to principally affect excita-

TABLE I. The physiological ranges for the 37 parameters in Eqs.s1d–s6d assumed in this paper. As shown, four parameters are set to zero
and the two fiber scale parameters are set equal to each other. Furthermore,pee= p̄ee, except if there is noise inputpee=N fnsp̄ee,dpeedg; see
Sec. IV A. This leaves 32sor 33d independent parameters.

Parameter Min. Max. Parameter Min. Max.

Mean resting membrane
potential

he
r −80 mV −60 mV Mean Nernst membrane

potential
hee

eq −20 mV 10 mV

hi
r −80 mV −60 mV hei

eq −20 mV 10 mV

Passive membrane decay time
const.

te 5 ms 150 ms hie
eq −90 mV hi

r −5 mV

ti 5 ms 150 ms hii
eq −90 mV hi

r −5 mV

Postsynaptic potential
amplitude

Gee 0.1 mV 2.0 mV Postsynaptic potential rate
constant

gee 100 s−1 1000 s−1

Gei 0.1 mV 2.0 mV gei 100 s−1 1000 s−1

Gie 0.1 mV 2.0 mV gie 10 s−1 500 s−1

Gii 0.1 mV 2.0 mV gii 10 s−1 500 s−1

Total number of intracortical
connections

Nee
b 2000 5000 Total number of cortico-cortical

connections
Nee

a 2000 5000

Nei
b 2000 5000 Nei

a 1000 3000

Nie
b 100 1000 Cortico-cortical decay scale

and conduction velocity
Lsee=eid 0.1 cm−1 1 cm−1

Nii
b 100 1000 v 100 cm/s 1000 cm/s

Maximum mean firing rate Se
max 50 s−1 500 s−1 Rate of extracortical

snoised input
p̄eesdpee/ p̄eed 0 s−1 s0.1d 104 s−1 s0.25d

Si
max 50 s−1 500 s−1 pei 0 s−1 10000 s−1

Firing thresholds m̄e −55 mV −40 mV pie 0 s−1 sfixedd
m̄i −55 mV −40 mV pii 0 s−1 sfixedd

Std. deviation of firing
thresholds

ŝe 2 mV 7 mV Mean synaptic delay j 0 ms sfixedd
ŝi 2 mV 7 mV Absolute refractory period rabs 0 ms sfixedd
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tory synaptic neurotransmission through the modulation of
kainate and N-methyl-D-aspartatesNMDA d receptor func-
tion f18,19g.

Macroscopically GA action can be detected using the
EEG. In addition to a range of compound specific effects
most GAs, at the point of loss of consciousnesssLOCd, are
associated with low-frequency, high-amplitude activity com-
pared with the high-frequency, low-amplitude activity while
awakef26g. Following the LOC and during anesthetic main-
tenance the EEG spectrum is still dominated by low-
frequency activity but at a magnitude generally somewhat
less than during induction. This rise and fall in low-
frequency power during anesthetic induction is often referred
to as the “biphasic effect.” Similar behavior can be observed
in other frequency bands and in particular also in total
power; see for example Refs.f27,28g.

We will use “biphasic” as a generic label for any rise and
fall of some EEG “strength” measure during a monotonic
change in GA concentration. While the form of this response
can show substantial agent and subject variability it is suffi-
ciently widespread to be considered a canonical GA phenom-
enon. The effect of GABA-enhancing general anesthetics,
like propofol or the halogenated ethers, can be approximated
in the basic model bydecreasingthe appropriate decay rate
constantgik f10g. Upon loweringgik with anesthetics, the
model qualitatively predicts first an increase and then a de-
crease of EEG “strength” in a chosen frequency band. The
reverse happens upon increasinggik to its original value.

A. Modifying the postsynaptic response

In order to obtain more quantitative predictions of anes-
thetic effects, we will modify Eq.s3d here. Imagine that on
its right hand side a unit presynaptic pulsedst=0d arrives.
The postsynaptic activationI lk in Eq. s3d will then show the
impulse response

R0std = eGlkglkte
−glktQstd, s7d

R0svd = eGlkglk
1

siv + glkd2 , s8d

whereQstd is the “Heaviside theta” or unit step function and
R0svd is the Fourier transform ofR0std. This represents the
simplest, so-called a model of “fast” excitatory
fa-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
sAMPAd/kainateg and inhibitory sGABAAd neurotransmitter
kinetics, respectively. Note that the maximumR0=Glk occurs
at t=1/glk.

A biexponential model proportional tose−g1t−e−g2td is of-
ten used to describe experimental data, since it provides
more flexibility in fitting the measured time evolution. The
Fourier transform of this model is simply proportional to
sg2−g1dsiv+g1d−1siv+g2d−1. Note that the standard biexpo-
nential model vanishes forg1=g2. We introduce here a dif-
ferent kind of biexponential model:

Rstd = eglkdlkGlkg̃lk
e−glkt − e−g̃lkt

g̃lk − glk

Qstd, s9d

glk ;
«lk

e«lk − 1

1

dlk
, g̃lk ; e«lkglk, s10d

Rsvd = eglkdlkGlkg̃lk
1

iv + glk

1

iv + g̃lk

. s11d

This parametrization introduces just one additional con-
trol parameter«lk and has several compelling features.s1d It
is a biexponential model with two independent first order
Fourier poles atg1=glk andg2= g̃lk. s2d For «lk→0, R→R0,
whereR0 is the a model of Eq.s7d with one second order
Fourier pole atglk. s3d The maximum is alwaysRst=dlkd
=Glk. This is also true for theR0 limit, where dlk=1/glk. s4d
«lk→−«lk leavesR invariant, thus without loss of generality
«lkù0. s5d RstdùR0std with equality only att=0, dlk. Note
that eglkdlkg̃lk=eg̃lkdlkglk and for«lk→−«lk the polesglk↔ g̃lk.
Hence this factor ensures invariance.

The necessary replacement of Eq.s3d can be read off di-
rectly from the Fourier transform Eq.s11d by replacingiv
→] /]t and multiplying out the norm for the pulses:

S ]

]t
+ glkDS ]

]t
+ g̃lkDI lksxW,td

= eglkdlkGlkg̃lkfNlk
bSlshld + FlksxW,td + plksxW,tdg. s12d

Sinceg̃lk=glk=1/dlk for «lk=0, Eq.s12d obviously reduces to
Eq. s3d in this limit. The implied structural changes to a
numerical computation in terms of first order ordinary differ-
ential equationssODEsd are trivial. However, care has to be
taken in the numerical evaluation ofglk for «lk close to zero.
Here an appropriate Taylor expansion in«lk is used.

R specifies the biexponential fit in terms of the rise time to
maximum dlk and the control parameter«lk. The limiting
«lk=0 case yields the “sharpest” response peak around the
specifieddlk, i.e., the response will rise earlier but decay
more slowly for larger values of«lk. We define the decay
time zlk.dlk by Rszlkd;Glk /e. Although an analytic form
cannot be obtained,zlk is easy to calculate numerically. We
use such a numerical value in our computations. However, an
excellent approximation with a relative error of less than
0.5% for all «lk is provided by

zlk = F0.90211 + 2
sinh«lk

«lk
+

0.30538 tanhs0.79931«lkd
«lk

Gdlk.

s13d

This actually represents a one-parameter fit, since the form is
constrained to have the correct small and large«lk limits:

zlk . 5f3.1462 + 0.28135«lk
2 gdlk, «lk ! 1, s14d

F 1

«lk
e«lkGdlk, «lk @ 1. s15d 6

The decay time rises monotonically with«lk and beyond
about«lk.3 grows exponentially according to Eq.s15d.

Figure 2sbd demonstrates the importance of obtaining the
extra control parameter«lk: If we wish to prolong the decay
of the response inR0, our only choice is to decrease
glk—thus increasingdlk=1/glk. This is obvious from the
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«lk=0 limit of Eq. s14d: decay timezlk=3.1462dlk. But dlk
also represents the rise timeR0sdlkd=Glk; hence forR0 the
rise time is always prolonged together with the decay time.
However, for R with «lkÞ0 the rise and decay times are
decoupled. This is important because GAs prolong the rise
time much less than thesinhibitoryd decay time, if at all.
Hence as Fig. 2sad shows, we will parametrize the inhibitory
zikscd of R to grow with anesthetic agent concentrationc,
whereasdlk=const. If we naively try to enforce the samet
→` behavior forR0 by setting theglk of R0 according to Eq.
s10d, then R0’s rise time quickly becomes unacceptable at
higher concentrations.

How much better would some kind of “best fit” ofR0 to
decay times fare? In Fig. 2sbd we have forcedR0 sgrid linesd
and R ssolid surfaced to have the same decay time:ugii uR0
= u3.1462/ziiscduR. But the R0 rise time is still growing
strongly with concentration and to compensateR0 decays
more quickly. Thus the entire impulse response is distorted in
comparison toR. At the highest concentrations in Fig. 2sbd
the R0 rise time has still grown substantially, but in experi-
ments the rise time is often ignored as negligible compared
to the decay time. In this case theR0 parametrization be-
comes simply inconsistent with the assumptions behind typi-
cal experimental fits.

B. Experimental constraints

In contrast, forR we can use experimental data concern-
ing the postsynaptic potential amplitude and decay time un-
der the influence of anesthetic agents. Currently, only data
obtained from rat hippocampal brain slices appear to be
available. Fits of the Hill equation to dose-response curves

Glkscd = Glk

Klk
Nlk + Mlkc

Nlk

Klk
Nlk + cNlk

, s16d

zlkscd = zlk

klk
nlk + mlkc

nlk

klk
nlk + cnlk

, s17d

wherec is the concentration of the anesthetic agent isoflu-
rane in blood in millimoles, were performed for IPSPs in

Ref. f29g. The resulting parameters are collected in Table II.
The rise timedik was not found to be significantly affected
f32g. Similarly, we use a fit of Eq.s16d to Fig. 3 in Ref.f30g
for describing the concentration dependence of the EPSPs.
As shown in Table II, our fit was compatible with setting
Mek=0. We assume that neither rise timedek nor decay time
zek is significantly affected for EPSPs, consistent with the
sample time courses shown in Ref.f30g and studies of min-
iature excitatory postsynaptic currentsf25g.

Further we assume that the EPSPs are due solely to
AMPA/kainate receptor mediated current flow, as the major-
ity of NMDA receptor mediated currents in cortex are ex-
pected to be disabled as a consequence of the voltage-
dependent Mg2+ block for the modest depolarizations
associated with restinga activity f33g. Nishikawa and
MacIverf31g, by studying the effect of isoflurane in rat CA1,
showed that non-NMDA field EPSPs were reduced by 31.7%
in the presence of 0.5 mM isoflurane. Thus we adjustKek so
that 68.3% of the EPSP amplitude remains atc=0.5 mM.
Furthermore, PSP changes under anesthesia depending on
the nature of thetarget neuron remain unexplored to our
knowledge. Hence we will assume the same dependence in
Eqs.s16d and s17d for k=e and i.

Equations16d can be used directly. The peak heightGlk of
the original parametrization is inserted on the right hand side
sRHSd of Eq. s16d to obtain theGlkscd of the corresponding

FIG. 2. sad ResponseR of the inhibitory sub-
population to an inhibitory impulse depending on
time and concentration of isoflurane according to
Eqs.s9d, s16d, ands17d and Tables II and III.sbd
The grid lines now representR0 of Eq. s7d
with uglkuR0

= u3.1462/zlkscduR. R of sad is displayed
for comparison as a solid surface.scd The re-
sponseR of the excitatory subpopulation after an
excitatory impulse.sdd The responses integrated
over time, approximately proportional to the total
charge transferred.

TABLE II. Isoflurane parameters for Eqs.s16d ands17d accord-
ing to Ref.f29g for l = i and Refs.f30,31g for l =e. The same values
are assumed fork=e, i andzek=const.

Isoflurane parameter l =e l= i

Klk smMd 0.707 0.79±0.24

Mlk 0.0 0.56±0.13

Nlk 2.22 2.6±0.8

klk smMd 0.32±0.05

mlk 4.7±0.5

nlk 2.7±1.2
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anesthesia parametrization at concentrationc. However, Eq.
s17d is used indirectly. The decay timezlk of the original
s«lk=0d parametrization is inserted on the RHS of Eq.s17d to
obtain the correspondingzlkscd at concentrationc. Then we
calculate fromzlkscd the«lkscd needed to prolong the original
decay time accordingly. To put it differently, one equates the
RHSs of Eqs. s17d and s13d, inserts the dlk and zlk

=3.1463dlk of the original parametrization, and then solves
for «lk at a given concentrationc. This «lkscd is then used for
the anesthesia parametrization. However, in practice we cal-
culate «lkscd numerically without the approximation in Eq.
s13d.

What is a reasonable range forc, the anesthetic agent
concentration in blood? We follow Ref.f34g and assume that
1.3 vol % inhaled isoflurane leads to an aqueous concentra-
tion c=0.27 mM at body temperatureT=37 °C. A measure
commonly employed in anesthetic practice is the minimum
alveolar concentrationsMACd of anesthetic agent at 1 atm
pressure. At 1 MAC 50% of recipients still move in response
to a noxious stimulus, typically an incision. In this paper we
use 1 MAC=1.17 vol % for isoflurane. This is appropriate
for a human 40 years of agef35g and corresponds toc
=0.243 mM aqueous concentration. During surgery a patient
would be maintained typically at 0.9 to 2.2 MAC isoflurane
in an oxygen–70% nitrous oxide mixture, or at 1.3–3 MAC
without the nitrous oxide. If the anesthetic induction is per-
formed with isoflurane, it generally commences at low levels
around 0.4 MAC and is then increased to maintenance level.

In the following we will typically investigate concentra-
tions c up to the equivalent of 3.33 MAC, that is,c
=0–0.81 mM. Figure 2sad shows the time course of an IPSP
of the inhibitory subpopulation for concentrations up to
0.81 mM s3.33 MACd using the isoflurane experimental
data. Similarly, Fig. 2scd displays the EPSP of the excitatory
subpopulation. Figure 2sdd shows the areasin timed under the
different PSPs depending on concentration. If the membrane
potentialhk stayed constant, this area would be proportional
to the total charge transferred. For the PSP from a single
impulse this is a good approximation. We see the lowering of
the peak height in both IPSP and EPSP. However, decay
times are only prolonged for the IPSP, leading to drastically
modified relative timing at high concentrations:ziis0 mMd
=3.54zees0 mMd, but at 2 MAC ziis0.486 mMd
=13.4zees0.486 mMd.

As is evident from the Fig. 2sdd, EPSP charge transfer
diminishes steadily. However, IPSP charge transfer rises
quickly to a plateau before slowly falling. This is due to the
competing effects of prolonging decay times and decreasing
peak height. We see that the timing and charge transfer of the
PSPs enter a quasistatic stage forc*0.4 mM. Intriguingly,
this corresponds closely to the concentrations used for main-
tenance in clinical practice. Forc→` Geks`d=0, zeks`d
=zeks0d but Giks`d=0.56Giks0d, ziks`d=4.7ziks0d. This obvi-
ously yields zero for the EPSPs, and the area of the IPSPs of
Fig. 2sdd becomes 0.0083 mV ssied and 0.028 mV ssii d,
respectively. Thus at some high concentration of anesthetic
agent we expect cortex to stop being excitable tissue and
enter an unresponsive state.

IV. ENFORCING PHYSIOLOGICAL FIDELITY

As discussed in Sec. II all 37 parameters contributing to
Eqs.s1d–s6d ands12d can be related to physiological or ana-
tomical data. It is an advantage that such experimental con-
straints exist external to the conception and formulation of
the model. However, the parameter ranges so derivedssee
Table Id, are currently far too large to guarantee physiologi-
cal behavior for all solutions. Future advances may reduce
the ranges, but it is highly unlikely that this problem will
then be eliminated completely.

The external constraints on one parameter are assumed
independent of the constraints on another. This is implied in
just stating upper and lower bounds for all parameters, and
hence in specifying a hypercube in parameter space. But in
reality we expect these parameters to be interrelated in un-
known ways; hence parameters representing real human cor-
tices would necessarily map out a much more complex shape
in parameter space. Furthermore, the simplifications and as-
sumptions necessary in creating our, or indeed any, model
mean that the mapping of experimental data to model param-
eters is approximate. Thus even perfect experimental data
would not necessarily specify the region of physiological
relevant parametrizations with precision.

Experience with our model shows that it has very rich
dynamics which are generally unpredictable in advance; for
illustration see Fig. 3. Hence it is necessary to find ways of
rapidly trialing parametrizations and this section will de-
scribe in detail how this can be achieved.

A. Basic considerations

We usually start from initial conditions that are homoge-
neous over the entire simulated cortex. In cases where a lin-
ear approximation is viable, we use a stable “singular point”
of the parameter set for the initial values of the state vari-

FIG. 3. Dependence of the largest Lyapunov exponent of Eqs.
s1d–s6d in the homogeneous casef36g. The units of the axes are
1 ms−1. This illustrates the “fat fractal” dependence of model dy-
namics on parameterspee andpei.
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ables. Singular points are obtained by solving Eqs.s1d–s6d
and s12d with all derivatives, temporal and spatial, set to
zero. This is equivalent to solving the following two normal-
ized equations:

xe +
yee− xe

uyeeu
S See

1 + ree
−sxe−ued/ve

+ PeeD
+

yie − xe

uyieu S Sie

1 + r ie
−sxi−uid/vi

+ PieD = 0, s18d

xi +
yei − xi

uyeiu
S Sei

1 + ree
−sxe−ued/ve

+ PeiD
+

yii − xi

uyii u
S Sii

1 + r ie
−sxi−uid/vi

+ PiiD = 0, s19d

with fxk,ylk ,ukg;fhk,hlk
eq,m̄kg /hk

r −1, rk;1−rabsSk
max,

vk; ŝk/ sÎ2hk
rd, fSl=e,k,Sl=i,k,Plkg;seglkdlkGlk /glkhk

rdfsNek
a

+Nek
b dSe

max,Nik
bSi

max,plkg. In practice, Eq.s18d is solved alge-
braically for xi and inserted in Eq.s19d. Then zero crossings
in xe are searched for numerically.

We only accept mean firing rates between 0.1 and 20 s−1

as physiological. This translates directly into a restricted
search range forxe, e.g., xe

min=ue−ve lnhfSe
max/ s20 s−1d

−1g / rej rather thanxe
min=yee. Detected zero crossings that

result in inhibitory firing rates outside the physiological
range are discarded. In case there are several stable singular
points, we chose the one with the smallestxe, i.e., the one
closest to “rest.” From thexe andxi we can derive the initial
conditions forhk, I lk, and Fek. If a parameter set does not
have a singular point satisfying all criteria, or if we cannot
assume the validity of linear approximations, we simply use
“resting” initial conditions:hk=hk

r and I lk=Fek=0. All state
variable derivatives are always set to zero initially.

As is obvious from the equations, these initial conditions
on their own would result in complete stasis. However, we
then vary the excitatory extracortical inputpee according to a
random Gaussian normal distributionnsp̄ee,dpeed. That we
use such noise as “input” to the brain reflects three issues.
First, we wish to simulate the simple case of a resting brain,
which is not engaged in either extracting structured informa-
tion from sensory data or manipulating it. Second, even if
structure remained in the extracortical input, at least some of
it would be lost in averaging over macrocolumns. Third, we
simply do not know what sort of structured input the brain is
in reality receiving. Hence using noise avoids introducing
any assumption at all beyond the obvious one that the inputs
will change with space and time. As simple Gaussian
white noise would vary in an unphysiological manner,
it is further shaped. Symbolically we can writepeesxW ,td
=N fnsp̄ee,dpeed ,xW ,tg, with a spatiotemporal filterN.

The finite impulse response filter in time is realized by a
Remez filter of length 21, with a passband for frequenciesf
from 0 to 50 Hz and a stopband above 100 Hz. The 3 dB
point is atfc=75 Hz. Thus time variations with unreasonably
high frequencies are suppressed. The spatial filtering is per-
formed in the Fourier domain, using a passband fork/ s2pd
from 0 to 1.75 cm−1 and a stopband above 2.25 cm−1. Be-

tween those two a cosine half period is inserted such that the
3 dB point is atkc/ s2pd=2 cm−1. Thus regions of roughly
0.5 cm diameter are driven by the same noise signal, but are
uncorrelated to more distant regions. This corresponds to the
assumption that one afferent fiber provides the dominant ex-
tracortical input to 1–2 macrocolumns. Finally, any negative
values still remaining are set to zero.

As the creation, filtering, and distributing of noise is com-
putationally demanding, we currently only fillpee with
brown noise.pei is set to a constant, whereaspie andpii are
assumed to be zero. One can speculate that connections from
thalamus to cortex are predominantly excitatory. But the ef-
fects on the model of changes to theplk are correlated any-
way. For example, inhibitory input to excitatory neuronspie
can be taken into account partially by a reduction of excita-
tory input to the same excitatory neuronspee. Thus our
choice of noise driving represents a reasonable first approxi-
mation.

If we can start from “singular point” initial conditions,
this avoids a transient period which can otherwise last sev-
eral seconds before the simulated cortex settles down into the
behavior “typical” for the chosen parameter set. The possible
dynamics of this system are rich indeed. It is for example not
difficult to find chaotic solutionsf36,37g. As mentioned, the
current constraints on the parameters of Eqs.s1d–s6d ands12d
are not tight enough to allow physiologically sensible solu-
tions only. We can easily find solutions with spectral content
or firing rates which bear no resemblance to those of human
brains at all, or at best remind us of unusual brain states like
an epileptic seizure.

B. Swarm search of homogeneous equations

Thus we are searching for parameter sets within the
physiological ranges shown in Table I, which lead to reason-
able excitatory and inhibitory firing rates and to a Fourier
power spectrum with the major features of a resting EEG:
strong activity atd anda frequencies. We use Eq.s3d rather
than Eq.s12d in the search, since we are looking for a proper
baseline EEG prior to anesthesia. The gross features of the
solution can usually be obtained by solving a spatially ho-
mogeneous system, i.e., experience suggests that frequency
power spectra and firing rates are often qualitatively similar
to those of an inhomogeneous case with the same param-
eters. Thus we sethksxW ,td;hkstd and similarly for all the
other quantities. Consequently, the samepeenoise is assumed
everywhere and the spatial part of noise shaping is omitted.
This corresponds to a “k=0” spatial Fourier mode and means
the Laplacian in Eq.s5d is eliminated, yielding a set of one-
dimensional ordinary differential equations. We solve the
ODEs just like the full set of partial differential equations
sPDEsd, which is discussed in detail below.

In the homogeneous case, the separate dependence on
conduction velocity and fiber scale is reduced to a depen-
dence on their productvLek. That still leaves 32 independent
parameters in Table I to be varied within the shown ranges in
order to find appropriate solutions. Parameters are held con-
stant during the entire simulation time. Unfortunately, prior
investigations had already shown that the dependence of the
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solutions on these parameters is entirely nontrivial. A striking
example is provided by Fig. 3. It shows the largest Lyapunov
exponent of the system depending onpee and pei, while the
other parameters remain fixedf36g. A 32-dimensional param-
eter space of such complexity is hopeless to search with even
sophisticated conventional minimization algorithms like
MINUIT f38g, in particular since it takes a relatively long time
to evaluate any specific parameter choice.

Instead we employ a different type of algorithm called
particle swarm optimizationsPSOd f39g, which is inspired by
the search strategies of swarms in nature. An “off-the-shelf”
versionf40g of the algorithm can be stated concisely. Assume
p particles distributed in ad-dimensional parameter space.
Their current positions are given byd-dimensionalxW i with

i =1, . . . ,p. Each particle memorizes its best positionbW i vis-
ited so far. Furthermore, all particles know the global best
position gW ever visited by any particle. At every time step
“velocities” vW i and positions are updated as follows:

vW ist + 1d = vW istd + ChvW istd + fcogfbW istd − xW istdg

+ fsocfgWstd − xW istdgj, s20d

xW ist + 1d = xW istd + vW ist + 1d, s21d

where fcog=rands0,fcog
maxd and fsoc=rands0,fsoc

maxd. These
functions represent the weights given to individual cognition
versus social interaction. Usingf;fcog

max+fsoc
max.4, the con-

striction factor can be written asC=2/u2−f−Îsf−4dfu. It
slows down the swarm toward convergence. We setfcog

max

=2.8 andfsoc
max=1.3, updating is asynchronous, particles stop

cold at parameter boundaries, and we use about 30–60 par-
ticles f40g. We have invented several improvements over this
basic implementation, which will be presented elsewhere
f41g.

The cost function of our PSO is calculated as follows: 25
time series of 10 s length are collected for the current param-
eter set. We start from “resting” initial conditions and discard
all but the last 4.096 s to eliminate any transients. Firing
rates are costed according to distance from the target range
0.1–20 s−1. Next the average, normalized Fourier power
spectrum is fitted with a function that combines a Lorentzian
resonance atf = fR of quality Q with a sboundedd power law
decayf−B, i.e.,

Ssfd =
A

1 + 4Q2s1 − f/fRd2 +
DCB

fB + CB , s22d

whereD is eliminated by normalization. We force all fit pa-
rameters to stay in a reasonable range, e.g., restrictingfR to
f8.5 Hz,12.5 Hzg and B to f0.8,2.2g represents thea reso-
nance andd shape, respectively. Next the parameter set is
costed according to the deviation of the generated spectrum
from its best reasonable fit. This sort of “friendly” scoring,
which first moves the functionaltargetas close as possible to
the result, facilitates the approach to reasonable spectra
greatly. Using this method we were able to generate 33
promising parameter sets.

C. Full grid simulations

To check that these parameter sets also work for the
PDEs, a full simulation of the PDEs of Eqs.s1d–s6d ands12d
is performed. Equationss1d–s4d and s12d are first trans-
formed to a set of first order ODEs and then solved by for-
ward Euler iterations. However, Eq.s5d is iterated directly in
second order, using three time points]2Fekstd /]t2.fFekst
+Dtd−2Fekstd+Fekst−Dtdg /Dt2. The two-dimensional La-
placian is similarly computed on five space points with spac-
ing Ds=1 mm. Thus the fields represent the spatial mean
over 1 mm2, or about 104–105 neurons. We simulate a
square cortical sheet of realistic human size, 51.2
351.2 cm2, and thus need 5123512 grid points. As any part
of the cortex can connect to any other part, the boundaries of
this square grid are connected to form a toroid. Equations5d
implies an isotropic, roughly exponential decay of connec-
tivity. Until we introduce a more sophisticated representation
of brain connectivity, toroidal boundary conditions guarantee
that no point on the cortical grid connects differently from
the others.

We find that for conduction velocities up tov=10 m/s,
Dt=50 ms is sufficiently short to achieve stable and conver-
gent solutions. However, a 20 s simulation recording all grid
point values for the entire state at all time steps would re-
quire about three terabytes of hard disk space. Instead we
just record one state variable, usuallyhe, which is directly
proportional to the predicted EEG amplitude. Furthermore,
we record time frames only every 2 ms. Finally we sum
square patches of 16316 grid points s1.631.6 cm2d and
output only the resulting 32332 sums of each frame. Of
course, real EEG electrodes also sum the signals of several
square centimeters of underlying cortex and sample at
around 500 Hz. The summation is a linear operation; hence it
does not influence the predicted power spectra except for the
statistical errors. The reduction in time resolution limits the
Nyquist frequency to 250 Hz, but the main features of the
human EEG reside at much lower frequencies anyway. Using
these data reduction measures, the same simulation can be
recorded with only 39 megabytes of hard disk space, which
is manageable.

We have written the simulation code inMPI FORTRAN f42g
to parallelize the calculation. The square cortical sheet is
split in rectangular areas, typically 32 areas of 128364 grid
points each. Each area is assigned to one computing node for
calculation. The only communication required between the
nodes is concerning the one-point-deep edges of their areas.
The reason is that the only spatial coupling results from the
Laplacian, which requires only knowledge of the four nearest
neighbors in two dimensions. For example, of the area to its
left a node needs to know only the rightmost edge in order to
compute the Laplacian at its own leftmost edge.

All nodes obtain their initialization data from, and send
their frame output to, a central node, which performs the
hard disk operations. Finally, one extra node acts as noise
server. It performs the spatial noise shaping for the entire
cortex, splits the noise according to the area setup, and sends
the pieces to the appropriate area nodes. The received noise
piece is then shaped in time at each area node. We have
found that going beyond 64 areas will not improve perfor-
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mance anymore, as communication lags limit throughput. We
generally use 16 or 32 nodes, since the Swinburne and VPAC
clusters are not dedicated exclusively to our computations.

It is advantageous to compute the spatial noise shaping in
the Fourier domain. Assumef lk with l =0, . . . ,Nx−1 and
k=0, . . . ,Ny−1 to denote the real, independent, identically
distributed, zero-mean Gaussian random variables on an
Nx3Ny grid with Nx and Ny even. Their discrete Fourier
transformsDFTd is given by

Fmn= Rmn+ iI mn= o
l=0

Nx−1

o
k=0

Ny−1

f lke
−2pisml/Nx+nk/Nyd. s23d

The expectation value for correlations of the grid random
variablesEff lkf l8k8g=s f

2dl,l8dk,k8. It follows that

EfRmnRopg =
1

2
NxNys f

2fdm,o
Nx dn,p

Ny + dm,−o
Ny dn,−p

Ny g,

EfImnIopg =
1

2
NxNys f

2fdm,o
Nx dn,p

Ny − dm,−o
Ny dn,−p

Ny g,

EfRmnIopg = EfImnRopg = 0, s24d

with a “modulo” Kronecker deltada,b
N equal to 1 forsa−bd

mod N=0 and zero otherwise. Since theFmn are periodic,
they can be restricted to anNx3Ny grid. Furthermore thef lk
are real; henceFNx−m,Ny−n=Fmn

* .
Thus the independentFmn consist ofNxNy real, indepen-

dent, zero-mean Gaussian random variables filling four
real Fmn=Rmn at the “corners” sm,nd=hs0,0d ; s0,Ny/2d ;
sNx/2 ,0d ; sNx/2 ,Ny/2dj andNxNy/2−2 complexFmn. Their
variances are

varfRmng = EfRmn
2 g =

1

2
NxNys f

2H2, corners,

1, others,
J

varfImng = EfImn
2 g =

1

2
NxNys f

2H0, corners,

1, others.
J s25d

Hence we can construct thef lk by filling the Fmn with appro-
priately distributed noise and then performing the inverse
DFT.

The spatial filter can be implemented as a simplemulti-
plication in the Fourier domain prior to the inverse DFT.
Total power is conserved by normalizing by the sum of
squares of the filter coefficients. In our case then the noise
server has to generate 5123512 Gaussian random variables
with variances as in Eq.s25d, multiply each with the appro-
priate filter coefficient, perform the inverse DFT, cut the re-
sult up into typically 32 areas and send them to appropriate
area nodes. As this is time consuming, we only generate and
distribute new noise at every frames2 msd, not at every time
step s5310−5 sd. This is unproblematic, since the noise is
low-pass-filtered in time anyway, with frequencies higher
than 100 Hz eliminated. It is even helpful, since the Remez
time filter can be realized with much fewer coefficients if the
stopband starts at 40% instead of 1% of Nyquist frequency.

A typical example of the grid output is shown in Fig. 4sad.
The value of the state variablehe is shown by the different
gray scales as indicated by the bar. On the horizontal base we
show the activity of the complete 51.2351.2 cm2 cortical
sheet at one point in time. We can see a spatial structure of
synchronized activity consisting in centers and filaments ex-
tending over several centimeters. Vertical time slices show
how the activity along five fixed lines on the cortical sheet
changes during one second. Thea rhythm is easily discern-
ible in the “striped” structure dominating the time slices. It is
more difficult to spot directly the low-frequencyd and u
activity, partly because only 1 s of data is shown.

In order to see the spatiotemporal content more clearly,
we perform a three-dimensional Fourier transform of the
data. Note that the toroidal grid is periodic in space as re-
quired for the Fourier transform. We subtract the overall

FIG. 4. sad One second ofhe data from a full
grid simulation using the parameters of Table III.
The base shows the entire grids32332 values,
interpolatedd at one point in time; the vertical
slices show the development with times500
samplesd. sbd Radial spectrum of these datas24
321 values, interpolatedd in decibels.scd andsdd
show the same assad and sbd, respectively, but
for a fully anesthetized statesc=0.81 mM
isofluraned.
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mean and then multiply the time series of each grid point
individually with a Hanning window to obtain periodicity in
time. We can then compute a three-dimensional power spec-
trum uheskx/2p ,ky/2p , fdu2. But a two-dimensional plot is
more accessible, so for everysdiscreted point sm,nd in Fou-
rier space we compute an integer “radius”r =roundfsm2

+n2d1/2g and then keep only the maximum power spectrum
value encountered for that radius. Thereby we obtain a radial
power spectrumuheslr

−1, fdu2, with lr
−1=r / s51.2 cmd. In Fig.

4sbd we show the result in decibels according to the gray-
scale barsall valuesø−25 are colored blackd.

The radial power spectrum can be misleading close to
zero and maximumlr

−1, where the number of sampled points
is small. Also the detrending and windowing cancels power
around zero frequency. Thus one should disregard the edges
of the plot. We can clearly see the stronga andd frequency
components, separated by a “valley” of loweru activity. a
activity is prominent at all wavelengths with a maximum
aroundlr .26 cm.d activity also occurs at all wavelengths
with a maximum at large wavelengths. However, the depen-
dence of the radial power spectra on wavelength varies con-
siderably from set to set. This dependence could become a
selection criterion in the future. In Figs. 4scd and 4sdd we
show for comparison a fully anesthetized states3.33 MAC
isofluraned based on the same parameter set. The formera
activity has shifted into thed frequency range and merged
with the formerd activity there. Furthermore, the merged
activity is now distributed quite evenly over all wavelengths.

In Fig. 5 we show the actual time course of isoflurane
concentration used in the grid simulation. The grid data in
Fig. 4 correspond to the last second of the “flat” initial 0
MAC sc=0 mMd and final 3.33 MACsc=0.81 mMd phases,
respectively. The concentration is raised with each simula-
tion time snot framed step by the appropriate amount to ob-
tain an overall “linear” rise. As we can see, both excitatory
and inhibitory firing rates drop with increased concentrations

of anesthetic agent. This is universally the case for the pa-
rameter sets investigated here.

If the concentration is raised at every frame instead of
time step by a proportionally larger amount, one observes
minute transient “ringing” in the firing rates. Stepping di-
rectly from zero to high concentration results in large oscil-
lations. However, after the oscillations die down the same
final saveraged steady state results. If the total rise time of the
concentration shown in Fig. 5 is reduced much further, large
amplitude oscillations occur even with changes at every time
step. While it is of interest to explore this sensitivity to rapid
concentration changes, we will defer this here. Clearly,
0–3.33 MAC equivalent isoflurane blood concentration in
approximately 30 s is already much more rapid than the real
inductions we wish to simulate. However,longer concentra-
tion rise times yield the same results relative to concentration
and hence are wasteful computationally.

We can now investigate the 33 parameter sets found by
the swarm algorithm. It turns out that 27 of these sets yield
acceptable power spectra when simulated on a full grid. For
every parameter set the full 5123512 grid is run for 10 s
and every 2 ms 32332 “electrode” values are sampled.
Only the last 4.096 s of these time series are kept, and indi-
vidually Fourier transformed with 2.048 s, 50% overlapping,
detrended Hanning windows. The normalized average yields
the curves shown in Fig. 6.

The spectra vary considerably, sampling the full range of
spectra encountered in humans. Furthermore, an analysis of
the parameter sets shows that inall 27 cases a linear approxi-
mation is possible; see the next subsection. These results are
by no means expecteda priori, since the equations them-
selves are nonlinear in nature and the search method didnot
have any bias toward linear solutions. Thus we can reason-
ably investigate our equations in linear approximation with-
out unduly constraining the type of solutions found. Of
course, linear approximations offer tremendous advantages
with regard to analytic and numerical computations.

FIG. 5. ExcitatorySeshed and inhibitorySishid firing rates during
a full grid simulation with the parameters of Table III and changing
isoflurane concentration, withcs1 MACd=0.243 mM. The bands
indicate the mean and standard deviation over all grid points.

FIG. 6. Normalized power spectra obtained through full grid
simulations with 27 PSO parameter sets.
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D. Linear approximation and eigenspectra

We start by defining a 14-dimensional state variable vec-
tor

SW ; she,hi,Iee, Ĩee,Iei, Ĩei,I ie, Ĩ ie,I ii , Ĩ ii ,Fee,F̃ee,Fei,F̃eidT.

s26d

Here we setĨee=]Iee/]t and so forth for all variables marked

with a tilde. The dependence on space and timeSWsxW ,td is
implied here and in the following. These “tilde” equations
together with Eqs.s1d–s6d and s12d yield

]SW

]t
= FW sSWd + PW . s27d

For example the third component of the RHS function

vector FW sSWd is given by F3sSWd= Ĩee and its fourth compo-

nent F4sSWd=−sgee+ g̃eedĨee−geeg̃eeIee+egeedeeGeeg̃eefNee
b Seshed

+Fee+ p̄eeg. Here p̄ee means the average of the filtered noise

peesxW ,td=Nfnsp̄ee,dpeed ,xW ,tg. The vectorPW is zero except for
components which reflect spatiotemporalchangein the ex-
tracortical input. Thus in this paper only the fourth compo-
nent is nonzero and contains the noise variationP4sxW ,td
=egeedeeGeeg̃eefpeesxW ,td− p̄eeg. Components 6, 8, and 10 ofPW

will be zero here, because we assume other extracortical in-
put to be static or zero.

As mentioned above, Eqs.s18d and s19d can be used to
compute the singular points of our equations for a specific
parameter set. Thus one obtains those singular point values
hk=hk

* , I lk= I lk
* , andFek=Fek

* for which all time derivatives in
Eqs.s1d–s6d ands12d vanish. With these values we can write

a singular point state vectorSW* for which FW sSW*d=0. Now we

define sWsxW ,td;SWsxW ,td−SW* and expandFW aroundSW* to first
order in sW. This yields a vector equation entirely linear in
sWsxW ,td. A spatial Fourier transform then becomes straightfor-
ward and leads to the final result by allowing us to replace
the Laplacian :

]sWskW,td
]t

. J sWskW,td + PW skW,td, s28d

J ;U ]FW sSWd

]SW
U

SW=SW*

¹W 2→−kW 2

. s29d

ThusJ is simply the 14314 Jacobian matrix evaluated atSW*

upon formally replacing¹W 2→−kW 2. Its components are easily
calculated, for exampleJ14,13=−v2sLei

2 + 3
2kW 2d. Obviously in

the case of spatially homogeneoussWsxW ,td=sWstd Eqs.s28d and
s29d hold true withkW 2→0 and could be derived without the
spatial Fourier transform.

In order for the approximation in Eq.s28d to be relevant
practically, it should be stable: small disturbancessW should
return to zero with time. In that case the time development of
Eq. s28d will approximate that of Eq.s27d provided the initial

state is close toSW* and disturbances from the noise termPW

are also small. We can determine this simply from the eigen-
values of the system. As the Jacobian matrix is not symmet-
ric we decompose it with leftL and right R eigenvector
matrices

J R = R diagslnd,

LJ = diagslnd L s30d

LR = diagsend,

with n=1, . . . ,14 eigenvaluesln and normalizing valuesen.
Stability is now guaranteed if all eigenvalues have a real part
Reln,0. In our case this depends not only on the parameter
set, but also on the wave number valuekW 2 in Eq. s29d. We
found that for the 27 parameter sets investigated in the pre-
vious subsection, Reln,0 for all kW 2. In this sense then a
linear approximation of those sets is viable.

We can however go one step further and predict the power
spectrum from our eigendecomposition. Using a Fourier
transform in time of Eq.s28d with sWskW ,td→sWskW ,vd and Eq.
s30d

ivsW = J ·sW + PW ,

diagsiv − lnd ·L ·sW = L · PW ,

sW = R diagF 1

ensiv − lndG ·L · PW ; P · PW . s31d

In the last step we have assumed thatR forms a basissW
=R ·sWR and thatensiv−lndÞ0. In this paper we are prima-
rily concerned with the first components1skW ,vd=heskW ,vd
andPW is zero except for its fourth component. Hence here we
only need to compute the componentP14 in order to predict

the power spectrum. Furthermore our input noise inPW 4, as
well asP, depends only on the magnitudek= ukWu, so we can
write

uhesk,vdu2 = uP14sk,vdP4sk,vdu2 ~ uP14sk,vdu2. s32d

The final proportionality applies only forv / s2pd&50 Hz
andk/ s2pd&1.75 cm−1, where our noise input is unfiltered
and henceP4sk,vd is constant in Fourier space.

If we wish, we can now predict the power spectrum for
specifiedk modes. Indeed, we find that all spectra of Fig. 6
are fairly well fitted by using a commonk.1.24 cm−1. Note
that this is much smaller than the onset of filter suppression
at k.11 cm−1. The evaluation of Eq.s32d with a fixed wave
number is extremely rapid, and the overall good fit withk
.1.24 cm−1 suggests an average dominant wavelength of
around 5 cm for these sets. However, this value is not uni-
versalssee the discussion of Fig. 7 belowd, and it becomes
particularly problematic to assume so in the investigation of
anesthesia. It isa priori neither clear that one can find a
typical wavelength in the anesthetized state nor what value it
may have.

Instead we can consider an integration over a fixed size
spatial patch, in analogy to the way EEG electrodes sum up
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the signal of a patch of cortex. The total potential measured
at positionxW with xW ,xW8PR2 is

fsxW,vd =E d2x8CsxW8 − xWdhesxW8,vd, s33d

fskW,vd =E d2x e−ikW·xWfsxW,vd = Cs− kWdheskW,vd, s34d

whereCsDxWd represents the weight of a contribution at dis-
tanceDxW. The total power spectrum is then

Hsvd =E d2xufsxW,vdu2 =
1

s2pd2 E d2kufskW,vdu2. s35d

The simplest assumption is that contributions come only
from a two-dimensional disk of radiusR and there with equal
weight

CsDxWd = CsuDxWud = H1 for uDxWu ø R,

0 otherwise,
J s36d

CskWd = Cskd =
2pR

k
J1skRd, s37d

where J1 is a Bessel function of the first kind. Ifhe also
depends only on the magnitudek as in Eq. s32d, we can
reduce Eq.s35d to

Hsvd = 2pR2E
0

` dk

k
J1

2skRduhesk,vdu2. s38d

Note that for uhesk,vdu2=const, Hsvd=pR23const. We
choseR=0.77 cm in the following, which gives a realistic
sample area of almost 2 cm2 f1g. Note that the infinite upper
limit for the integration does not pose a numerical problem.

Our choice of spatial noise filter meansP4sk
.14.14 cm−1,vd=0 and hence the integral in Eq.s38d is
definite in practice.

In Fig. 7 we show the quality of the “eigenspectrum”
estimate in comparison with average spectra from a full
grid simulation. The agreement is impressive. Thus the
frequency content of the grid output is relatively independent
of the grid geometry and of the input noise distribution
for small enough dpee hgrid Nfnsp̄ee,dpeed ,xW ,tg
→ “eigenspectrum”p̄eej. Note that the apparent disagree-
ment at&1.3 Hz is an artifact of the detrending and finite
length of the time series. The “eigenspectra” shown have
been estimated using Eq.s38d. If instead one uses a fixedk
=1.24 cm−1 and Eq.s32d, as before, one obtains a slightly
shifted a peak with smaller frequency width, as well as re-
ducedd activity. This prediction is shown by the thin lines in
Fig. 7 and obviously diagrees somewhat with the results
from our grid simulation. Apparently then, the dependence of
hesk,vd on k is appreciable for the parameter set of Table III.
One can usually find a fixedk that matches the correspond-
ing grid results well, but that scale is not universal. In Fig. 7
we also show the prediction for a fully anesthetized state
s3.33 MAC isofluraned, just as in Fig. 4. The integrated
eigenspectrum prediction continues to be in excellent agree-
ment, whereas the one for fixedk still falls short.

E. Pole sensitivity

The linearization of Eqs.s1d–s6d ands12d also enables the
semianalytical determination of the sensitivity of our model
resonances to parametric perturbations induced by GAs
based on our current knowledge regarding their targets of
action. Because the linearized behavior of our theory de-
pends dominantly on the location in the complex plane of the
corresponding poles, it is sufficient to investigate their mo-

FIG. 7. Normalized eigenspectra using Eq.
s38d as thick and Eq.s32d with k=1.24 cm−1 as
thin lines, respectively, in comparison with the
average power spectras3.072 s, detrended, Han-
ning windowd from the grid with Table III
parameters.
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tion in response to such parametric perturbations.
The first component of Eq.s31d can be written in transfer

function form as

hesk,vd =
Nsv,qW,xed
Dsv,qW,xed

P4sk,vd, s39d

with P14=N/D. The notation withqW and xe makes explicit
the dependences of the model:qW consists of the independent
parameters listed in Table I and of the wave numberk, andxe
represents the singular point around which we linearize. To
obtainxe Eq. s18d is inserted into Eq.s19d and then an equa-
tion of the formFsxe,qWd=0 is solved with a chosenxe

*sqWd.
The total derivative of this equation with respect toqj at

xe
*sqWd is

dF

dqj
fxe

*sqWdg = F ]F

]xe

]xe

]qj
+

]F

]qj
G

xe
*
= 0. s40d

In order to determine the poles we solveDsv ,qW ,xed=0 for v.
For a specific polev*sqW ,xed we similarly obtain the total
derivative of the equation

dD

dqj
fv*sqW,xedg = F ]D

]v

]v

]qj
+

]D

]xe

]xe

]qj
+

]D

]qj
G

v*
= 0. s41d

The sensitivity of a model polev* to a normalized change
q̂j =sqj −qj

*d /qj
* around the given parameter setqW* is then

found by substituting Eq.s40d into Eq. s41d,

]v*

]q̂j

;
]qj

]q̂j
F ]v

]qj
G

xe
* ,v*

= qj
*3

]D

]xe

]F

]qj
−

]D

]qj

]F

]xe

]F

]xe

]D

]v
4

xe
* ,v*

.

s42d

Ref]v* /]q̂jg and −Imf]v* /]q̂jg give the sensitivities of an-
gular frequency and damping, respectively. It is perhaps
helpful to note that the pole and its corresponding eigenvalue
relate as Rev* = Im l* and Imv* =−Rel* . The evaluation of
the expressions in Eq.s42d generally requires a symbolic
algebra program.

Now the predicted change in the EEG resonant frequency,
Dv* , for small normalized changes in the parametersDq̂j
simply becomes

Dv* = o
j

]v*

]q̂j

Dq̂j . s43d

On the basis of our current understanding of the subcellular
targets of inductive GA actionse.g., isofluraned we can hy-
pothesize that dominantly

Dv* =
]v*

]ĝie

Dĝie +
]v*

]ĝii

Dĝii , s44d

which expresses the fact that the principal effect of GAs at
low concentrations is to increase charge transfer at inhibitory
synapses, i.e.,Dĝii ,Dĝie,0; see also Fig. 2sdd. A similar
hypothesis can be postulated for dissociative GAsse.g., ket-
amined assuming that at low concentrations they primarily

reduce charge transfer at excitatory synapses:DĜee,DĜei
,0.

V. SIMULATION RESULTS

A. Average behavior of parameter sets

In the following we will be employing exclusively the
linear approximation in the search for reasonable power
spectra in parameter space. This has the obvious disadvan-
tage that we will overlook all nonlinear solutions. However,
it appears that linear solutions are much more common and
cover the observed range of real human power spectra. In-
deed spontaneous EEGs recorded with and without the pres-
ence of GAs are generally indistinguishable from a linear
random processssee Sec. VI for further detailsd. The huge
advantage of the linear approximation is simply computa-
tional speed. On a typical personal computer we can evaluate
the eigenspectra of 105 parameter sets in less than 1 min.
That includes all the varied tests we perform in order to
determine whether the spectrum is of reasonable shape. With
this kind of speed it becomes possible to search the param-
eter space with Monte Carlo methods. Depending on the de-
tails of our selection criteria, we find one proper solution in
about every 105 trials.

Given a randomly generated set of parameters, we first
check that a singular point solution exists which implies in-
hibitory and excitatory firing rates between 0.1 and 20 s−1.

TABLE III. Parameters within the ranges of Table I yielding a
physiological power spectrum, Figs. 4sbd and 7, appropriate firing
rates, Fig. 5, and a stable “biphasic” power surge under anesthesia,
Fig. 9.

he
r −62.226 mV hi

r −65.666 mV

te 132.55 ms ti 135.91 ms

hee
eq −18.038 mV hei

eq −16.554 mV

hie
eq −81.976 mV hii

eq −78.995 mV

Gee 0.10631 mV Gei 0.64105 mV

Gie 0.46477 mV Gii 0.28663 mV

gee 291.50 s−1 gei 697.76 s−1

gie 458.67 s−1 gii 82.330 s−1

Nee
b 2185.8 Nei

b 3749.8

Nie
b 466.30 Nii

b 160.69

Nee
a 4611.6 Nei

a 1372.4

Lsee=eid 0.92809 cm−1 v 684.24 cm/s

Se
max 196.08 s−1 Si

max 454.40 s−1

m̄e −45.104 mV m̄i −43.910 mV

ŝe 3.8420 mV ŝi 4.5793 mV

p̄ee 6603.4 s−1 dpee 660.34 s−1

pei 2625.7 s−1 pie,ii 0 s−1

j 0 ms rabs 0 ms
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Second, we check that the solution is stable∀ Reln,0.
Then we compute the eigenspectrum. The third test is on the
power in thed s0–4 Hzd, u s4–8 Hzd, a s8–13 Hzd, and
b s13–30 Hzd bands. The criteria used have undergone some
variations and viable solutions have been retained through-
out. About half the solutions come from a selection run
which required 15–50 % of total power ind, 10–25 % inu,
15–40 % ina, 15–40 % inb, and power ratiosu /d,0.6 and
u /a,0.7. Fourth, we check the 90% spectral edge fre-
quency sSEF90d, which is defined as the frequency below
which 90% of the power resides. In the mentioned selection
run SEF90 was required to be 12–21 Hz. Fifth, we compute
the quality of thea peak by subtracting background linearly
and requiringQ=Dfa / fa.5.5, whereDfa is the full width at
half maximum. Sixth, we look at the extremal values of the
spectra in thed, u, anda bands. Here we require that thea
maximum is not larger than five times and not smaller than
one-third thed maximum. Furthermore, theu minimum may
not be larger than half of either thea or d maxima, and not
larger than 90% of thed minimum.

The final, seventh test concerns the behavior with regard
to anesthesia. Here we go from zero to 3.33 MAC isoflurane
in 30 steps and check that the solution remains stable
throughout, as clinical experience indicates that isoflurane
induces seizures only very rarelyssee for example Ref.f43gd.
This involved procedure is necessary in a completely auto-
mated search to suppress spectra which appear unreasonable
to the trained human eye: the remaining spectra look like
typical “occipital a” EEGs and compare well with human
spectra recorded by our group. However, our criteria do not
represent an attempt to characterize the full range of such
human EEGs, but simply aim to select a sufficiently repre-
sentative sample.

In Fig. 8 we display the final result: 73 454 spectra gen-
erated from as many parameter sets as have survived the
cuts. As mentioned above, these sets have been selected from
roughly 73109 randomly generated parameter sets and it

took the equivalent of 52 days on a single PC to obtain these
solutions. Since we were able to use a PC cluster, the bare
computation was performed in less than two days. However,
considerable extra time was spent on optimizing the selec-
tion process. Although solutions with largera frequency ap-
pear more common, this does mainly reflect the mentioned
selection rules for about half of the solutions. There we
forced the power in theb band to be comparatively high,
which is more readily satisfied with ana resonance at higher
frequencies. Figure 8 also shows how these spectra change
under anesthesia. There is a clear shift of the formera band
toward lower frequencies. At the shown 2 MAC isoflurane
the gap to thed band has almost closed. Furthermore, we
observe a general tendency of the formera peak to broaden
considerably.

By calculating the linear sensitivity of these sets to GA-
induced parametric perturbations we can evaluate the ability
of our theory to account for the most general EEG features of
the GA effect. Table IV shows calculated sensitivities for the
two most weakly damped poles of Eq.s39d in response to
small perturbations in a range of parameters expected, on the
basis of experimental evidence, to be modified by GAs. We
have averaged over 86 sets chosen at random from the
73 454 and setk=1.24 cm−1. As discussed in Sec. IV E it is
reasonable to assume thatDĝii ,Dĝie,0 describes inductive
GA action at low concentrations. If we further assume, to
first order,Dĝie=mDĝii then we are able to concludefsee Eq.
s44dg that if 0,m&7.7 then inductive GAs will be associ-
ated with a reduction in the frequency and dampingsi.e.,
ReDv* ,0, −ImDv* .0d of the a pole.m can be identified
with the relative efficacy of the GA at inhibitory synapses on
excitatory cells compared to inhibitory synapses on inhibi-
tory neurons. To our knowledge no experimental evidence
exists formñ1.

Thus the effects of low concentrations of GA are qualita-
tively predicted to be associated with a change to higher-
amplitude, lower-frequency EEG activity. This prediction is
in accord with experiment and the known proconvulsant

FIG. 8. sad Eigenspectra of
73 454 “linear” parameter sets.
The spectra are displayed along
the vertical axis at 0.25 Hz fre-
quency resolution with gray scale
indicating their normalized values
s0↔black to 1↔whited. The
spectra are sorted along the hori-
zontal axis according to their
a-peak frequency. sbd Corre-
sponding eigenspectra at 2 MAC
isoflurane; the order along the
horizontal axis fromsad has been
maintained, but now set numbers
are shown. Example: there are
2853 eigenspectra with 10 Hza
peak frequencyf“9.75” to “10” in
sad, “11 689” to “14 542” in sbdg.
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properties of a range of volatile GAs. Because sensitivities of
pole damping for the zero-frequency case have approxi-
mately the same magnitude but opposite signs for equivalent
changes inDĝie and Dĝii we would expect it to contribute
little to changes in total EEG power at low anesthetic con-
centrations. Since dissociative anesthetic agents like ket-
amine or xenon are assumed to principally reduceGeeandGei
their predicted effect, at low concentrations, is to reduce the
frequency, and increase the damping, of thea pole. Thus,
qualitatively at least, inductive and dissociative GAs are pre-
dicted to have different effects on electroencephalographic
stability. At low concentrations dissociative GAs promote

cortical stability, whereas inductive GAs promote cortical in-
stability.

However, to obtain quantitative predictions one should
take into account all poles and their respective gains. Thus
we turn again to the full expression given by Eqs.s31d, s32d,
and s38d. In order to elucidate the general trends for chang-
ing concentrations of an anesthetic agent, we now compute a
number of quantities for all 73 454 sets and concentrations
from 0 to 3.33 MAC: the total power atc relative to the total
power at zero concentration; the fraction of power residing in
d, u, a, b, and g bands; and the spectral edge frequencies
below which 50%, 90%, and 95% of all power resides. These
quantities are shown by the light shaded bands in Fig. 9, as
computed from the eigenspectra of the sets. The edges of the
bands represent the 16% and 84% quantiles of the distribu-
tion of values at a particularc. The middle line represents the
median, i.e., the 50% quantile. Thus 68% of the 73 454 sets
have a value within the shown band.

As anesthetic concentration increases, for most sets total
power decreases. The fraction of power ind andu is above
baseline at high concentrations. The fraction ofd power first
rises and then falls mildly at lower concentrations, before
steadily increasing. In contrastu power rises quickly at lower
concentrations and then slowly sinks again. At the same time
the fraction of power in thea andb bands steadily falls. All
this is consistent with the motion of the originala pole to-
ward lower frequencies.

It is interesting to see that power in theg band is not on
average diminishing, and hence also the spectral edge fre-
quencies at 90% and 95% remain fairly steady. The combi-
nation of slowly fallingb and steadyg fractions of power
suggest that the formera peak is becoming broader while
moving to lower frequencies. On the other hand, SEF50 is
falling as one may have expected. Since the SEF50 frequency
is in thea range, it traces directly the shift of thea peak. The
results shown are consistent with what we expect from the

TABLE IV. Sensitivity to normalized parameter changes of the
frequency and damping of the two most weakly damped poles av-
eraged over 86 randomly chosen setssk=1.24 cm−1d. One of the
poles sa conjugate paird has a frequency, the other.0 Hz. The
frequency sensitivity of the latter is negligible.

Normalized change of
parameterq̂j

Sensitivity srad/sd

Frequency
Res]v* /]q̂jd

Damping
−Ims]v* /]q̂jd

a a .0 Hz

Ĝee
32.5 8.2 −7.3

Ĝei
4.4 1.8 −2.8

Ĝie
−19.0 −1.6 −3.4

Ĝii
17.4 1.1 2.8

ĝee −32.4 −8.2 6.2

ĝei −1.8 −2.9 2.8

ĝie 23.3 0.7 4.2

ĝii 16.5 −5.4 −8.8

FIG. 9. The bands display the
16% slower edged, 50% median
smiddle lined, and 84% supper
edged quantile of all 73 454slightd
and 86 selectedsdarkd parameter
sets. The selection criterion is
marked insad. Results for the set
of Table III, one of the 86, are
shown by a solid black line
seigenspectrumd and stars sgrid
simulationd. The plots show the
following variable’s dependence
on isoflurane concentrationc: sad
total s0–60 Hzd power normal-
ized to that atc=0 mM; sbd d
s0–4 Hzd, scd u s4–8 Hzd, sdd a
s8–13 Hzd, sed b s13–30 Hzd, sfd
g s30–60 Hzd fraction of power;
sgd 50% median,shd 90%,sid 95%
spectral edge frequency.
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pole movement predictions, but we do not see the expected
“biphasic” behavior of total power in the shown 68% of the
73 454 sets. That is to say, we do not see total power first rise
and then fall with concentration of the anesthetic agent. Also,
SEF90 and SEF95 are expected to fall with higher concentra-
tions of anesthetic agent. However, if we take a look at the
parameter set of Table III, which we have already analyzed
in Figs. 4, 5, and 7, a different picture emerges. In Fig. 9 the
solid black line represents the predictions from its eigenspec-
tra. The stars in the same plot represent the predictions ob-
tained from the full grid run. The grid power spectrum has
been corrected for the missing power below 1.3 Hzssee the
discussion of Fig. 7d by replacing it there with its corre-
sponding eigenspectrum.

First, once more we find very good agreement between
full grid and eigenspectra predictions for all concentrations
of anesthetic agent. Second we note that for this particular
set, which is one of the 73 454, we do obtain a “biphasic”
power rise and we also see that for this set SEF90 and SEF95
fall similarly to SEF50. This suggests applying a further cut
on our sets to select only those with such a “biphasic” power
rise. These sets are obviously to be found in the 32% of sets
not represented in the light shaded total power band.

B. Sets selected for “biphasic” behavior

At 1 MAC isoflurane sc=0.243 mMd we require total
power to have risen at least to 1.4 times its values atc
=0 mM. Out of the 73 454 sets, this selects a mere 86—
including the one of Table III. The quantiles computed from
only these selected sets are displayed in Fig. 9 as dark shaded
bands. The desired “biphasic” change of total power has
been obtained. But without any further tuning, ameliorated
behavior of SEF90 and SEF95 also follows. Obviously, this is
reflected in the fraction of power in theg band. There is also
an enhanced rise and fall inu fractional power and greater
variability of the behavior there and in thed band, which
now shows a steady increase of the median. For the 86 se-

lected sets the power fraction in thea band now remains
steady or even rises at low concentrations, before falling rap-
idly at higher concentrations. The fall inb is now consider-
ably faster. This suggests ana pole which initially moves
only slowly toward lower frequencies and does not broaden
quickly.

In order to confirm this, Fig. 10 traces the motion of
the two least damped eigenvaluesl1 and l2 with changing
GA agent concentration up to 2 MAC isoflurane
sc=0.486 mMd. The bands represent the 16%, 50%smiddle
lined, and 84% quantiles of the the 86 “biphasic” sets.
Reslnd,0 yields the damping anduImslndu / s2pd the fre-
quency of the eigenvalue. Imsl2d=0, i.e., the second least
damped eigenvalue is always real. All other eigenvalues are
so strongly damped that they play only a marginal role. We
see that the least damped eigenvaluel1 sactually a conjugate
pair of eigenvaluesd has a frequency mainly in the medium to
high a range. As concentration increases, this frequency at
first stays roughly the same, but then decreases quickly tou
and finallyd frequencies. Around 0.5 MAC the median ofl1
frequencies drops out of thea band. Consequently we see in
Fig. 9 a sudden decrease in the fraction ofa power and an
increase in the fraction ofu power around this concentration.

The slow and roughly linearincreasein median damping
of l1, i.e., broadening of the associated peak in the power
spectrum, coincides at first with the peak moving more com-
pletely into thea band. In Fig. 9 we see an initial increase in
the mediana fraction and loss in the medianb fraction of
power. The edges of thel1 damping band show more struc-
ture. For example, just before 0.5 MAC adecreasein least
dampingsupper edge of bandd of l1—sharpening of somea
peaks—results in an increase in the highest fraction ofa
power supper edge of bandd considerably above baseline in
Fig. 9. However, the medianl1 peak still broadens as it
moves into theu band. Around 1 MAC the combination of
broadening and motion to lower frequencies starts to seri-
ously leak power fromu into d, and the median peak itself
crosses intou at around 1.4 MAC. The other eigenvaluel2

FIG. 10. Bandss16–84 % quantile, middle
line is mediand showing the change with isoflu-
rane concentration for the two least damped ei-
genvalues. FrequencyuImsl2du / s2pd=0 for all 86
“biphasic” sets used.
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in Fig. 10 shows a steadydecreasein damping, which slows
down at higher concentrations. This sharpening of thel2
peak corresponds to a continuous increase in the mediand
fraction of power in Fig. 9.

It is interesting to note that the local sensitivity analysis of
Sec. IV E by itself is sufficient to distinguisha parameter
sets that show a demonstrable surge in powersthe “biphasic”
responsed as a function of anesthetic concentration, from
those that do not. Figure 11 compares the pole sensitivities
obtained for the 86 sets selected here with the 86 parameter
sets previously selected at random to represent all 73 454
plausible sets. The results for the latter are collected in Table
IV. None of the 86 “biphasic” parameter sets are also in-
cluded in the random selection.

The differences in the means, for all parameter sensitivi-
ties exceptgee damping, between the two sets are uniformly
highly significantp!0.001 with a large sample distribution-
free methodf44g. It is notable that changes inDĝii andDĝie
no longer have opposing effects ona pole damping for the
“biphasic” sets. Further the magnitude of these sensitivities
is augmented. Thus the sensitivity profile of the “biphasic”
sets may become a principal determinant for the expectation
of GA-induced EEG power surges at anesthetic concentra-
tions generally associated with LOC. Experimentally this
may enable studying the effects and mechanisms of GA at
low concentrations.

From a more technical point of view these differences
imply that there are additional physiological constraints on
the parameters which are not explicitly incorporated yet in
our parameter searches. This is also indicated by the very
low yield of acceptable power spectra and firing rates, and
even lower yield of “biphasic” behavior, from randomly gen-
erated parameter sets. Future experimental data may tighten
the ranges in Table I, thereby ameliorating the situation. But
it is reasonable to assume that natural variations in one pa-

rameter will require compensatory changes in others to keep
the brain functional.

Thus high yields can only be expected from appropriately
correlatedvariations of model parameters. Unfortunately, at
this point in time little external information about such cor-
relations is available. Furthermore, correlation patterns in
high-dimensional parameter spaces are hard to discern, in
particular with a still very small number of sample points per
dimension. A thorough scan is currently infeasible: ten steps
per dimension yields 1032 evaluations, or about 231021 PC
years. Since, however, our completely random search as-
sumes no correlations, we can interpret the differing sensi-
tivities of “biphasic” sets as unbiased evidence for such ex-
pected correlations. More results like these are needed to
constrain and improve the model. Nonetheless, our successes
so far suggest that the basics of the model are sound.

VI. CONCLUSIONS

Two general approaches have distinguished themselves in
accounting for the effects of GAs on neural activity. The first
kind employs spatially discrete network models of neurons
with a variety of voltage- and ligand-dependent ionic con-
ductances. Although usefulper sef17g, it is nevertheless dif-
ficult to relate the resulting dynamics of such models to clini-
cally measurable macroscopic effects—like the EEG. The
second kind of modeling approach seeks to link the known
microscopic targets of GA action with their macroscopic ef-
fects through mean field spatially continuous approaches.

To our knowledge only two other works utilizing this kind
of approach can be identified previous to this paper. The first,
by Steyn-Rosset al. f6g, modeled GA action as a first order
phase transition, induced by an order parameter dependent
on GA concentration. Their calculations take the same start-
ing point as ours, Eqs.s1d–s6d of Liley et al.Thus in a sense
our approach can be seen as the next evolutionary step of the
same mean field method. However, despite these fundamen-
tal similarities they find qualitative agreement with observed
GA effects on the EEG only under physiologically implau-
sible circumstances. We will come back to this related model
in more detail below. The second, by Tinget al. f7g, at-
tempted to describe the effects of GAs on evoked cortical
responsessECRsd based on the theoretical works of Freeman
f45g and Rotterdamet al. f46g. While being able to model the
progressive attenuation of amplitude and prolonged latency
of ECRs seen with increasing agent concentration, it did so
without incorporating any of the currently identified
GABAergic targets implicated in inductive GA action.

In this paper we have addressed the mentioned shortcom-
ings of both previous works. We have shown that the ob-
served spectral features of the human EEG, and in particular
their response to GAs, can be successfully accounted for
using a physiologically parametrized, spatially continuous
mean field formulation of electrocortical neurodynamics.
Furthermore, by developing a different approach to param-
etrizing the action of anesthetic agents we were able to in-
corporate into our macroscopic model detailed and specific
experimental data for the stereotypical inductive GA isoflu-
rane concerning its effects on IPSP and EPSP amplitudes and

FIG. 11. Mean and standard deviation of
thea pole frequencysRe]v* /]q̂jd and dampings−Im ]v* /]q̂jd sen-
sitivities of 86 parameter sets which showed a strong “biphasic”
response, in comparison to 86 others which did notssee Table IVd.
Differences in means were uniformly highly significant withp
!0.001, except forgee damping, as determined by a large sample
distribution-free methodf44g.
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time courses. While the full theory consists of a coupled set
of eight nonlinear, two-dimensional partial differential equa-
tions, almost all physiologically plausible behavior could,
somewhat remarkably, be obtained from a linear analysis
about the system’s low firing singular points. This was veri-
fied by comparing with parallelized computer simulations of
the complete theory on grids representing the full typical
spatial extent of human cortex.

Our conclusion that the resting EEG, and its behavior
during anesthesia, can be modeled as a linear random process
is in accord with the results of a number of nonlinear dy-
namical analyses of experimental data. For instance Stamet
al. f47g used nonlinear forcasting techniques in conjunction
with surrogate data testing to investigate the prevalence ofa
rhythm nonlinearity in resting EEGs. Out of 480 2.5 s EEG
epochs, obtained from 60 healthy male and female partici-
pants, only 6s1.25%d could be distinguished from linearly
filtered white noise using these methods. The successful use
of bispectral measuressBIS monitoringd in determinations of
anesthetic depth would seem to suggest that this conclusion
may not be valid for EEGs recorded in the presence of GAs.
The bispectrum and its normalized version, the bicoherence,
are used to detect nonlinearities such as interfrequency phase
coupling f48g.

However, recent detailed analyses of EEGs recorded from
patients undergoing some form of surgery suggest that such
an EEG, like its resting counterpart, is indistinguishable from
filtered white noise. Specifically Schwilden and Jeleazcov
f49g analyzed 26.4 h of EEGs recorded from a total of eight
patients undergoing abdominal sugery. They found that the
fraction of epochs for which a nontrivial bicoherence was
detected was 6.2%, compared with 13.8% obtained using
synthetic Gaussianswhite noised data. Supporting the rel-
evance of this result, Milleret al. f50g, on the basis of clini-
cal comparisons, were unable to show that a bispectral analy-
sis was any better than a power-spectral-based analysis in
characterizing the anesthetic state.

By studying the theory’s defining equations in linear ap-
proximation, we were able to rapidly search its large and
complex multidimensional parameter space. This allowed us
to find physiologically relevant parametrizations which ex-
hibit the typical features of the human EEG power spectrum
in thed, u, a, andb bands, as well as reasonable mean firing
rates. Starting from such “normative” EEG behavior, we
were then able to meaningfully study its modulation in re-
sponse to the systematic changes in inhibitory and excitatory
neurotransmission induced by GAs. A parameter sensitivity
analysis around zero concentration showed that, on average,
inductive GAs like isoflurane reduce the damping and fre-
quency of the conjugate pair of poles constituting thea reso-
nance. Such behavior is qualitatively consistent with the
known GA effect of shifting EEG power from a high-
frequency, low-amplitude state to a low-frequency, high-
amplitude one.

We then went on to calculate the quantitative behavior of
our theory over GA concentrations typically needed to in-
duce and maintain anesthesia clinically. Systematically in-
creasing the GA concentration for our approximately 70 000
plausible parameter sets resulted in the expected fractional
increases inu andd activity, as well as fractional decrease in
a. But the majority of parameter sets did not exhibit the
transient surge in total EEG power characteristic of the so-
called “biphasic” response. Eighty-six “biphasic” parameter
sets were then selected by requiring a substantial increase in
total powers1.4 times baselined at 1 MAC equivalent isoflu-
rane concentration. For these parameter sets the 90% and
95% spectral edge frequencies clearly showed monotonic re-
ductions with increasing anesthetic concentration.

In contrast, such an effect was absent in the majority of
unselected sets. This result together with the clear difference
in sensitivity profiles of “biphasic” and “nonbiphasic” sets
suggests that additional constraints exist that have not yet
been explicitly incorporated in our theory. From an experi-
mental perspective the discriminating ability of the sensitiv-

FIG. 12. Comparison of the
means and standard deviations of
sad SEF90, sbd total power normal-
ized to that atc=0 mM, scd d, sdd
u, sed a, andsfd b band fraction of
power of data from 12 patients in
Schwenderet al. f54g serror barsd
with eigenspectra predictions
from 12 parameter sets each in
Table Vsdark bandsd and Table VI
slight bandsd, respectively. The
parameter sets have been chosen
to match the data better than a
random selection would, but do
not represent a proper fit.
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ity analysis may suggest ways in which the mechanism of
GA can be studied at conveniently low anesthetic concentra-
tions.

We briefly return to the related theory of Steyn-Rosset al.
f6g, because a comparison allows us to elucidate a number of
crucial advantages of the model presented here. Steyn-Ross
et al. adiabatically reduced Eqs.s1d–s6d in homogeneous
form to a system of two coupled nonlinear ordinary differ-
ential equations, and then studied their linearized white noise
fluctuation spectrum. Qualitatively, a “biphasic” effect was
produced showing hysteresis between the “induction” and
“recovery” phases of anesthesia. The basis for both the surge
in low-frequency powers“critical slowing”d and the hyster-
esis is attributable to their system moving between different
stable null-cline branches. This implies that firing rates, and

by definition the mean soma membrane potentials, are ex-
pected to vary nonsmoothly with anesthetic level, a predic-
tion not borne out experimentally. Comprehensive studies
f51g indicate that GAs reduce spontaneous action potential
firing in a relatively smooth dose-dependent manner.

In contrast, our theory does not require leaving a stable
branch in order to obtain a surge in total EEG power. Indeed,
the majority of physiological plausible dynamics occurs with
parametrizations exhibiting onlyone stable low firing rate
singular point. Even in the minority of cases where multiple
singular points are found, population neural firing activity
should always be in accord with experimental rates typically
between 0.1 to 20 pulses per secondsppsd ssee for example
Refs.f52,53gd. In contrast Steyn-Rosset al. haverestingex-
citatory and inhibitory neuronal firing rates, at zero anes-

TABLE V. A selection of 12 parameter sets for Eqs.s1d–s6d and s12d out of those 86 showing a strong “biphasic” power rise; see Sec.
V B. Parameters not listed here should be chosen according to Table I.he

* =s1+xedhe
r is the chosen solution of Eqs.s18d ands19d. The data

in Table 3 of Ref.f54g have inspired this particular selection; see Fig. 12. But those data have not been used for determining the original 86
parameter sets.

he
r smVd −70.152 −75.083 −71.915 −78.549 −62.822 −67.265 −63.677 −64.451 −62.038 −74.179 −72.293 −79.078

hi
r smVd −65.557 −66.323 −76.042 −76.432 −71.634 −76.182 −74.307 −78.210 −64.990 −62.177 −67.261 −74.426

te smsd 126.05 129.78 105.51 126.46 48.686 81.979 53.688 122.52 133.08 81.961 32.209 129.02

ti smsd 131.15 116.53 149.00 145.13 143.21 65.665 117.42 126.89 96.501 143.39 92.260 77.340

hee
eq smVd −16.422 −12.416 −9.0033 −10.722 −5.7406 −18.154 1.5068 −10.018 −5.4389 −16.256 7.2583 −16.855

hei
eq smVd −18.587 8.1660 −10.326 6.3858 −14.169 −4.9348 −1.2171 −10.040 −7.6872 −8.6829 9.8357 −0.60817

hie
eq smVd −83.601 −82.724 −87.476 −84.666 −77.014 −85.493 −87.907 −83.947 −79.655 −78.006 −80.697 −86.897

hii
eq smVd −77.778 −85.746 −82.275 −83.481 −87.580 −88.833 −85.931 −87.552 −85.636 −79.480 −76.674 −80.248

Gee smVd 1.1204 0.23631 0.29348 1.7299 0.32694 0.11884 0.10831 0.36844 0.46193 0.32740 0.29835 0.32204

Gei smVd 1.7901 1.9680 1.8455 1.5275 1.3505 0.27110 1.3641 1.2134 0.90863 0.47183 1.1465 0.98323

Gie smVd 1.6079 1.2128 1.9915 1.7976 1.3704 1.8885 1.4293 1.5182 0.86035 0.77945 1.2615 1.7386

Gii smVd 0.38521 0.36550 0.35259 0.81632 0.98025 0.28057 0.10257 0.24242 0.19125 0.98994 0.20143 0.64509

gee ss−1d 536.71 594.06 841.18 989.31 826.47 359.89 656.33 133.46 939.65 125.36 122.68 595.98

gei ss−1d 950.75 487.60 859.70 728.78 906.57 897.73 800.05 257.09 717.38 627.14 982.51 930.15

gie ss−1d 470.98 309.93 451.66 249.88 446.06 310.45 389.73 485.09 469.46 210.53 293.10 69.449

gii ss−1d 112.12 89.657 84.790 112.91 85.636 96.192 87.991 111.17 106.88 129.72 111.40 61.290

Nee
b 2495.0 3995.4 2194.0 2509.5 2008.4 3639.7 2603.2 2678.1 4570.7 2786.6 4202.4 2277.8

Nei
b 4425.7 3678.7 4752.2 3401.1 4750.0 3869.3 3811.6 4575.8 4176.1 2802.0 3602.9 2503.1

Nie
b 523.75 106.34 699.60 742.06 582.01 514.24 224.58 373.09 505.21 551.59 443.71 203.01

Nii
b 519.43 233.08 515.95 770.87 385.87 548.39 591.88 626.57 523.02 288.92 386.43 504.47

Nee
a 4169.6 4084.8 3668.7 4208.0 2031.0 3591.9 3505.2 3060.9 2966.6 2149.5 3228.0 4967.6

Nei
a 2099.0 1032.9 1033.0 1452.3 1099.4 2005.9 1247.4 2081.2 1141.5 2448.7 2956.9 1347.6

L scm−1d 0.74744 0.11922 0.34501 0.33835 0.31505 0.28265 0.84744 0.80260 0.21252 0.96933 0.60890 0.94826

v scm−1d 648.82 246.22 780.67 754.34 218.00 673.72 234.51 901.10 481.67 743.94 116.12 984.15

Se
max ss−1d 73.134 363.20 355.24 149.33 67.222 87.005 81.612 58.463 83.887 222.71 66.433 272.80

Si
max ss−1d 182.39 121.55 424.78 51.599 233.78 176.30 52.578 312.88 363.52 122.30 393.29 142.84

m̄e smVd −43.383 −53.610 −52.279 −40.604 −42.869 −48.925 −53.577 −41.437 −43.611 −51.129 −44.522 −47.867

m̄i smVd −46.960 −45.360 −48.592 −53.120 −42.052 −49.717 −42.697 −49.024 −40.450 −51.109 −43.086 −47.732

ŝe smVd 4.2840 4.2660 4.9083 6.1417 6.7898 6.7627 4.6999 2.2834 4.3683 4.4783 4.7068 6.7860

ŝi smVd 2.9594 5.1212 3.6979 2.7247 4.0164 6.9368 4.6956 3.9589 4.8866 4.8342 2.9644 3.9343

p̄ee ss−1d 2258.1 8992.9 6024.9 4662.4 2288.9 8924.6 5975.4 2117.7 8041.4 4804.5 2250.6 204.95

pei ss−1d 1139.6 385.28 1115.6 2693.2 212.00 2025.0 8684.6 98.487 530.95 2642.8 4363.4 3041.8

he
* smVd −56.859 −71.569 −71.877 −62.223 −58.604 −61.278 −66.274 −48.905 −54.966 −65.452 −59.661 −68.424
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thetic concentration, always greater thanSe
max/2 andSi

max/2,
respectively. For their parametrizations this is typically
greater than 250 pps. Furthermore, they parametrize anes-
thetic action only by scaling inhibitory neuronal rate con-
stantssi.e., glk→glk /ld in an adiabatically reduced model
incapable of exhibiting any physiologicala resonance. Our
model delivers the complete spectral content observed in hu-
man EEG, appropriate mean firing rates, yet “biphasic” rises
in total EEG power can occur within meaningful physiologi-
cal and pharmacological domains.

A number of further advances can be made based on the
work performed in this paper. More stringent experimental
constraints, in particular with regard to the GA modeling, can
remove much of the remaining uncertainty in the predictions.

Many insights will be gained from the comparison of the
predicted effects for different GA agents, once appropriate
data is available. Even now it appears feasible to fit our
model predictions quantitatively to experimental EEG data.
As an outlook, we present in Fig. 12 a rough comparison.
See the appendix for the details. However, we believe that
dedicated experiments in which the theoretical modelers are
closely involved are necessary. Otherwise it appears nearly
impossible to disentangle failures of the model from vagaries
of the experimental procedure, in particular if the data are
taken in an operating theater full of noisy electronic equip-
ment. In this respect the possibility of performing studies
with low concentrations of GAs, as suggested by our sensi-
tivity study, may become very useful.

TABLE VI. A selection of 12 parameter sets for Eqs.s1d–s6d ands12d out of those 73 368not showing a strong “biphasic” power rise;
see Sec. V B. Parameters not listed here should be chosen according to Table. I.he

* =s1+xedhe
r is the chosen solution of Eqs.s18d ands19d.

The data in Table 3 of Ref.f54g have inspired this particular selection; see Fig. 12. But those data have not been used for determining the
original 73 368 parameter sets.

he
r smVd −79.301 −74.262 −73.375 −74.809 −63.009 −67.309 −68.008 −77.897 −73.148 −78.504 −74.887 −69.468

hi
r smVd −65.658 −70.219 −72.156 −74.010 −77.819 −69.499 −64.406 −61.485 −63.755 −74.825 −70.819 −65.402

te smsd 74.633 11.787 65.733 42.183 43.667 120.29 51.353 114.34 148.18 112.02 64.389 15.060

ti smsd 116.48 138.25 77.238 77.991 48.614 85.927 139.91 120.98 110.45 130.87 102.88 45.711

hee
eq smVd −1.7913 −12.998 −6.1453 −9.4775 −8.3898 1.4387 0.10317 −15.478 −12.312 0.19506 −5.0918 1.5372

hei
eq smVd −8.9948 −18.516 −6.8789 2.3501 −12.819 −7.6350 0.89281 −17.960 −9.7025 9.6042 −7.5187 −12.830

hie
eq smVd −84.503 −81.389 −85.087 −82.383 −86.471 −78.148 −76.314 −84.965 −70.637 −86.581 −86.376 −76.218

hii
eq smVd −86.279 −82.898 −84.564 −83.772 −86.492 −89.533 −80.368 −87.456 −86.168 −81.842 −80.451 −78.381

Gee smVd 0.79070 0.92695 0.25283 0.55879 0.11685 1.2015 0.29420 0.62454 0.24586 0.55290 0.67576 0.54214

Gei smVd 1.8752 1.3012 1.7238 1.8244 1.3761 1.3415 0.68088 1.9905 1.5104 0.75036 1.6601 1.2301

Gie smVd 1.7374 0.19053 1.6983 1.0051 0.61087 1.9721 1.6722 1.5395 0.39485 1.4952 1.8018 1.3222

Gii smVd 0.93418 0.94921 0.21967 0.70799 1.1084 1.9578 0.86047 1.0311 1.8980 0.68146 1.2419 1.7150

gee ss−1d 911.23 816.04 238.83 854.84 585.52 971.10 351.64 947.55 703.62 196.69 405.30 601.75

gei ss−1d 263.64 261.29 188.92 421.82 254.60 571.17 406.30 491.92 426.65 106.67 314.96 194.64

gie ss−1d 415.20 219.09 485.66 314.93 294.38 125.79 335.58 447.17 202.25 265.16 390.34 203.81

gii ss−1d 37.922 40.575 32.659 44.507 28.351 49.013 54.252 50.021 38.169 49.030 54.273 28.176

Nee
b 2493.0 3893.0 2682.7 2654.2 3169.8 3246.2 2335.5 2957.5 2013.8 2290.9 4234.6 4492.9

Nei
b 2133.1 3326.8 2433.8 3030.1 4349.8 2539.9 2823.5 4689.2 3601.3 2285.6 4440.1 4172.5

Nie
b 952.04 839.39 959.11 466.65 883.26 822.84 933.82 758.36 804.38 257.81 839.75 482.48

Nii
b 691.83 682.41 337.13 211.81 129.65 745.97 692.24 289.56 146.48 222.87 578.24 952.66

Nee
a 3410.9 4013.5 3813.4 2729.3 2716.7 2629.3 3177.9 2367.2 4471.2 2055.0 2296.0 3571.4

Nei
a 2775.8 1544.3 2183.2 2482.7 1965.8 1784.8 1211.5 1619.0 1603.3 2165.3 1811.2 2769.0

L scm−1d 0.85707 0.96545 0.36352 0.61940 0.37098 0.64873 0.66420 0.98304 0.12448 0.38379 0.80136 0.34765

v scm−1d 106.68 101.78 332.11 776.27 161.41 636.07 475.32 125.41 953.10 513.42 795.75 317.83

Se
max ss−1d 196.17 266.44 291.86 231.51 398.31 335.82 307.69 462.24 253.15 402.81 267.50 102.61

Si
max ss−1d 389.24 300.65 377.27 183.69 252.23 257.93 397.24 183.35 145.59 53.402 344.75 475.63

m̄e smVd −53.020 −43.634 −44.648 −42.756 −40.859 −45.007 −41.154 −41.903 −46.486 −42.852 −48.084 −43.695

m̄i smVd −42.091 −50.836 −40.912 −52.535 −46.798 −49.958 −52.219 −51.854 −54.379 −49.230 −54.688 −42.247

ŝe smVd 6.2966 5.6536 6.6687 6.4016 3.7178 3.0158 5.3708 6.7661 6.2127 5.6446 4.7320 4.8791

ŝi smVd 4.6483 3.3140 3.3770 3.2945 2.4196 3.2253 3.2753 3.0434 3.7758 4.4832 3.6845 2.7574

p̄ee ss−1d 4406.3 83.190 2133.2 4087.4 9225.2 9379.7 9909.2 9265.9 5073.9 4381.4 2073.4 983.37

pei ss−1d 4133.7 6407.5 4219.3 3031.3 5932.3 8900.6 7011.4 3023.7 165.84 7775.2 1387.0 2303.9

he
* smVd −79.764 −72.299 −79.743 −73.618 −62.403 −61.811 −65.271 −78.263 −69.261 −70.227 −72.334 −66.541
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Furthermore, there still remain some fundamental con-
cerns aboutwhatone should attempt to model. For example,
we have not addressed at all the issue of possible hysteresis
in EEG total power surges with regard to the induction and
recovery phase. At this point in time it is unclear whether
such hysteresis is not just a reflection of pharmacokinetics.
We may be able to shed light on this issue with our full grid
simulations, which showed sensitivity to the speed of GA
concentration change. In the long run we may be able to
determine the parameter set corresponding to the brain of a
patient with sufficient precision to predict his or her indi-
vidual response to a range of GAs with an accuracy useful to
researchers of consciousness and medical practitioners.
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APPENDIX: PARAMETER TABLES

The complete collection of 73 454 plausible parameter
sets is available on request, as is the subset of 86 parameter
sets showing a strong “biphasic” power rise. However, it
seems appropriate to list here some exemplars of these sets
for immediate use. A selection of 12 parameter sets out of the
86 “biphasic” ones can be found in Table V. To represent the
majority of other parameter sets, Table VI collects 12 “non-
biphasic” ones. In order to arrive at the selections in a non-
arbitrary manner, we have compared results derived from the
eigenspectra of these sets with the isoflurane data in Table 3
of Ref. f54g. Thus we have computed and compared the
mean and standard deviation of SEF90, total power, andd, u,
a, andb band fractional power for these selections.

Given the impossibility of investigatings 86
12

d or even
worses 73368

12
d unique combinations, we have just endeavored

to find selections matching these data “better than average.”
Furthermore, the original parameter searches were not tai-
lored to this data. Hence these selections do not represent a
best fit of our theory to this data. Proper comparisons with
experimental data will be the topic of a future paper. With
those caveats in mind, it is nevertheless instructive to see
how well these selections compare with the data. The bands

in Fig. 12 represent this time not quantiles, but means
smiddle lined and standard deviationssedgesd. This allows
direct comparison with the means and standard deviations of
data taken from 12 patientsf54g. The dark bands in Fig. 12
represent the selection of Table V, the light ones are calcu-
lated from the selection in Table VI.

The comparison is nontrivial for total power: The appro-
priate constant of proportionality for relating ourhe and the
experimental EEG amplitude of Ref.f54g is unknown in
practice. Furthermore, for linear eigenspectrum predictions
he~dpee and thus itsabsolutevalue is as uncertain as the
constant of extracortical noise variancedpee. An upper limit
for dpeecould be obtained by requiring consistent linearity in
full grid simulations, but we have not attempted this here.
Instead total power has been normalized to its value at zero
concentration. Hence agreement there is by construction and
comparisons should be made only at higher concentrations.

The “biphasic” selection provides a decent description of
SEF90, total power, andd fractional power. The large stan-
dard deviation of thed predictions at higher concentrations
devalues the agreement there somewhat. Also predicted total
power follows the experimental trend well, but appears sys-
tematically lower than experiment. Among the unselected
“biphasic” parameter sets some have stronger power surges,
but did not improve the overall agreement. In contrast, the
“nonbiphasic” selection fails completely with regards to
SEF90 and total power. Concerning the fraction of power in
the d band, the “nonbiphasic” selection agrees but seems to
have the wrong concentration trend. The reverse situation
occurs foru, a, andb fractional power. Here the “biphasic”
selection clearly fares worse than the “nonbiphasic” one.

However, the concentration trend inb is actually better
described by the “biphasic” selection. A constant increase of
the b fraction of power by about 8% would mean very good
agreement. A corresponding decrease ina at low concentra-
tions and inu at high concentrations would result in a good
overall fit for the “biphasic” set. A dedicated search for
matching parameter sets might ameliorate these problems.

One can also speculate that there is some contamination
in the shown experimental data. If some of the observed
power in theb band stems from noncortical sources, e.g., is
an artifact of muscle movements, then the deviations may be
artificial. In particular the data showing a constant power
fraction in the a band are curious. One could reasonably
expect some decrease at higher concentrations. On the other
hand, there is a clear power rise in the data and thus the
“nonbiphasic” selection is clearly disfavored.
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