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Modeling the effects of anesthesia on the electroencephalogram
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Changes to the electroencephalogrd@&G) observed during general anesthesia are modeled with a physi-
ological mean field theory of electrocortical activity. To this end a parametrization of the postsynaptic impulse
response is introduced which takes into account pharmacological effects of anesthetic agents on neuronal
ligand-gated ionic channels. Parameter sets for this improved theory are then identified which respect known
anatomical constraints and predict mean firing rates and power spectra typically encountered in human sub-
jects. Through parallelized simulations of the eight nonlinear, two-dimensional partial differential equations on
a grid representing an entire human cortex, it is demonstrated that linear approximations are sufficient for the
prediction of a range of quantitative EEG variables. More than 70 000 plausible parameter sets are finally
selected and subjected to a simulated induction with the stereotypical inhaled general anesthetic isoflurane.
Thereby 86 parameter sets are identified that exhibit a strong “biphasic” rise in total power, a feature often
observed in experiments. A sensitivity study suggests that this “biphasic” behavior is distinguishable even at
low agent concentrations. Finally, our results are briefly compared with previous work by other groups and an
outlook on future fits to experimental data is provided.
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[. INTRODUCTION monitoring has been shown to reduce the incidence of post-
) operative recal[3]. Hence these heuristic methods of EEG
The electroencephalografEEG) is one of the oldest analysis represent an operational measure of the level of con-
measures of brain activity and continues to be popular botRciousness, albeit of unclear efficacy.
in clinical practice and in research. It is a comparatively In principle then modeling the effects of anesthetic agents
cheap, robust, and straightforward technique, but neverthesn EEG activity not only can help in explaining the remark-
less provides data with millisecond time resolution showingable phenomena of general anesthéB@) action, but also
clear correlations to observed mental states. Its main shortan provide an entry point for the quantitative characteriza-
coming is a lack of spatial resolution. The EEG iswaface  tion of consciousness. Methods based on the spontaneous
measure; hence any depth information is necessarily derivddEG—proprietary ones like the Narcotrend value and the
and uncertain. Furthermore, even its two-dimensional resdBispectral Index(BIS), as well as those typical for any
lution is at best in the square centimeter rafife However, power spectrum analysis—have been employed with varying
many questions about the state of the brain do not requiréegrees of success. For example, Sedeil. [4] found that
perfect, or even any, spatial information. The hypnotic stat@pioid analgesics popular in actual clinical practice limit the
is a likely candidate, since the absence of pain experiencesefulness of the BIS. _ .
and memory retention suggests that gross changes of brain H€ré one encounters a problem inherent to any heuristic
function have occurred. approat_:h: since it is not based on a deeper 'unders'tandlng of
Despite many decades of research into the mechanisms Upedneig:qngnn;%%?;ﬁfm;ﬁgglluézsthg? tﬂg; ?r?/:gg tt?) ilrr::/‘()arr?cv;ét
general ane;thega there arelsurpr!smgly few mtegrateq the nother heuristic EEG-based measure, our aim here is to pro-
ries attempting to characterize this phenomenon. This h

) de a theoretical model for the induced changes which is
probably been due to the fact that, until recently, there ha%?Sed on known physiology. Our theory relatesgwell Known

ir macroscopic consequend&EG activity). In the long
) in clinical ce. | icular frail &un this may lead to the development of a depth of anesthesia
mount importance In clinical practice. In particular frail pa- ., hivor hased on the EEG, which can truly replace estab-

tients wom_JIq benefit. from precisely guided dosage. Thus i.t iﬁished methods like the vegetative PR$flood pressure,
not surprising that in the last decade or so several heUI’IStIﬁ art rate, sweating, tear formatjoscore[5] in clinical
approaches based on electroencephalographic monitoring 8 actice ' '

depth of anesthesia have been develd@drhe use of such ™ gy oqtapjishing a mesoscopic link through our model we
also open up a much needed window on human physiology.

Most experimentalsubcellular data can be obtained from
*Electronic  address: ibojak@swin.edu.au; URL: http:// animal preparations only. But if such data lead to successful

users.on.net/ibojak predictions of human EEG features, as in this paper, then one
"Electronic  address:  dliley@swin.edu.au; URL: http:// can infer similar(subcellular behavior of human neurons.
liley.bsee.swin.edu.dtdt!/ The approach we take here differs from earlier mo¢ié)g]
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in that we parametrize, on the basis of detailed empirical data Pe NfS, Pee Pe NBs, Pee
from rat hippocampus, the effects GAs have on both cortical
excitation and inhibition in the context of a theory that is
based on human physiology and preserves all the essential
dynamical features of human resting EEG. This level of fi-
delity to experimental data is necessary for conclusions
about human physiology now, and for the development of
medical applications in the future.

The paper begins with an overview of the theory of Liley
et al. [8,9] for electroencephalographic rhythmogenesis. In
Sec. lll components of this model are then further developed,
on the basis of our current understanding regarding the cel-
lular and subcellular targets of GA agents. Section IV then
comprehensively outlines a range of numerical methods and Pii Pei Pii Pei
approaches needed to establish physiologically plausible
model behavior and parametrization. This will enable us to FIG. 1. A schematic illustration of the Lilegt al. [8,9] model.
meaningfully appraise our theory’s response to perturbationdwo distinct macrocolumns with their excitatofi) and inhibitory
designed to model the effects of GA agents. Section V cont) neuron_populations are s_hown, as w_eII as their short- and long-
tains the results of extensive Monte Carlo parameter spacénde cortical and extracortical connections. The labels correspond
searches. The identified physiologically plausible parametril® Eds-(1—~6).
zations are shown to be capable of reproducing many fea-
tures of the EEG in response to GAs. This paper then ends  gh(X,t + &) . ] R
with a comparison of our approach with the work of others TkT == [h(Xt+ 8 —h ]+ > (X, 1),
and with a discussion of the implications of our theory and !
results for better understanding GA action. In the appendix 1)
we tabulate two dozen of the plausible parameter sets we
have found. As an outlook on future work, we also briefly di(h) =[hid= h (X, t+ &1/|hid - hi, (2)
compare the mean behavior of these sets with some experi-
mental data.

2
(i + %k) L%, 1) = el NES () + Dy (X,1) + (X, 1)1,

II. BASIC ELECTROCORTICAL MODEL 3)
The model of Lileyet al. [8,9] can produce the main _ cmax B a
features of the spontaneous human EEG and mirrors at least Sdho =S¢ 1+(1-rapsS™)
gualitatively the effects GABA-enhancin@GGABA denotes . _
gamma-aminobutyric acjdgeneral anesthetics have on the % expl — V,rEhk(X’t+ £ — (4)
EEG[10]. As is appropriate for a description of EEG data, O '

the model is spatially coarse grained. The neural activity

over roughly the extent of a macrocoluriypical diameter J 2 3 oo . )2

0.5-3 mm[11)) is averaged to produce a “mean field” de- (5 +UAek) — vV Dei(X,1) = v°AGNgS(he), (5)

scription in space. However, no averaging takes place with

respect to changes in time. P =0 ©6)
A schematic representation of the model is given by Fig. L

1, which depicts the model interactions taking place both Equation (1) describes the response of the mean soma

within and between two different macrocolumns. Two dis-membrane potentials, to synaptic inputsl,, taking into

tinct types of spatially averaged subpopulations of neurongccount reversal potentials via E@). Equation(3) traces

are taken into account to subsume the actual variety of cothese synaptic inputs to three sources: locally in the same

tical cells: excitatory(E) and inhibitory(l) neurons. The in-  macrocolumn of cortex, further away but within the cortex,

teractions of these subpopulations within the macrocolumnand extracortical. Local activity is estimated with Ed,)

are proportional to the number of their connectidifsand  using a sigmoidal dependence on the local mean membrane

their mean firing rate§,, with k,I=e (excitatory, i (inhibi-  potential. Extracortical activity at rest is represented by

tory). The subscriptk meand —k, i.e., typel acting on type  physiologically shaped brown noise input vig. Finally

k. Each macrocolumn can also have extracortical inpyts  long-distance effects are modeled by Es), which lets ac-

for example from the thalamus. Only the excitatory subpoputivity spread omnidirectionally with speadwhile decaying

lations are considered to form long-range connectibpsto  exponentially with a fiber scale constakf,. EEG voltage is

other macrocolumns, but those connections can form on botbxpected to be linearly related tg, the spatially averaged

types of neurons in the target macrocolumn. In mathematicatxcitatory soma membrane potentig)12]. Henceh, will be

terms the model is detailed as follows: the main computational observable in the following study.
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TABLE I. The physiological ranges for the 37 parameters in Efjs{6) assumed in this paper. As shown, four parameters are set to zero
and the two fiber scale parameters are set equal to each other. Furthesggops, except if there is noise inpyee=/A [N(Pee, SPed]; SEE
Sec. IV A. This leaves 32or 33) independent parameters.

Parameter Min. Max. Parameter Min. Max.
Mean resting membrane h, -80mV -60mV Mean Nernst membrane hgd -20 mV 10 mv
potential hi -80mV -60mv Potential hed -20 mvV 10 mv
Passive membrane decay timer, ~ 5ms 150 ms hid -90 mV hi -5 mVv
const. 7 5ms 150 ms hsd -90mV  h-5mV
Postsynaptic potential e 0.1mV 2.0mV Postsynaptic potential rate Yee 100 s? 1000 s?
amplitude [y 01mV 20my constant Yei 100 st 1000 s?
e 01mV 20mV Yie 10s? 500 st
i 01mv 20mV Yi 10s? 500 s*
Total number of intracortical N2, 2000 5000 Total number of cortico-cortical Nae 2000 5000
connections N2 2000 5000 connections NZ 1000 3000
4 100 1000 Cortico-cortical decay scale A(eeei) 0.1 cm?t 1cmt
N 100 1000 and conduction velocity v 100 cm/s 1000 cm/s
Maximum mean firing rate /'™ 50s! 500 s! Rate of extracortical Ped e/ Ped 0S1(0.1) 10*s1(0.29
g™ 50s! 500s! (noisg input Pei 0st 10000 st
Firing thresholds e —55mV  -40 mV Pie 0 st (fixed)
wi —-55mV -40 mV Dii 0 s (fixed)
Std. deviation of firing Oe 2 mv 7 mV  Mean synaptic delay 3 0 ms(fixed)
thresholds 6, 2mV  7mV Absolute refractory period I abs 0 ms (fixed)
All parameters in Eqs(1)—(6) can be related to physi- Ill. EXTENSIONS FOR ANESTHESIA

ological or anatomical data; see RE8] for further discus- o
sion. The limits for the parameters assumed in this paper are The number of cellular and subcellular sites in the central
shown in Table I. One has to specify 37 parameters for th&€rvous system at which general anesthetic agents have been

model (plus an additional one in the case of noise input, a§hgwn to interact is va$&8—2q_. While attempts to define a
unitary mechanism of GA action have failed it has become

discussed beloy We set four of these parameters to zero. . N S
and assume that the scale constants for cortico-cortical exc'ir-mre"’lSIneg wgll gccepted that Itis d|§rupt|9n In interneu-
tatory fibers targeting inhibitory and excitatory subpopula-ronal communication that undgrhes their clinical actions. Tp
. . . ) . date both pre- and postsynaptic targets have been identified
ftlons, respectively, are |d_ent|cal. This leaves (@lus ong as important in mediating the effects of GAs. In particular a
independent parameters in the model. _ large number of volatile and intravenous general anesthetic
A more in depth discussion of these equations can bggents have been shown to interact with a range of ligand-
found elsewherg8—10]. This theory differs from other mac- gated jonic channeld GICs) thereby affecting postsynaptic
roscopic continuum theories of electrorhythmogenesisonic current flow or presynaptic neurotransmitter release
[13—13 in that the t|me courses Of the |nh|b|t0ry and eXCita' [21] Studies to date have revealed GAgAnd g|utaminer-
tory postsynaptic potentialdPSPs and EPSPsecorded at  gic LGICs as the most important subcellular cortical targets
the soma are described by a third order differential equationgor GA action at clinically relevant concentratiof2].
The use of lower orders to describe the IPSP are theoretically In general GAs have been shown to potentiate
found unable to support any appreciable or widespread GABA -induced ionic currents and/or attenuate glutamate-
band activity(for further details see Ref8], Appendix A). mediated ionic currentgl8]. From a cellular electrophysi-
Because this theory generatesactivity through the re- ological perspective this is seen as a prolongation of the tail
ciprocal interaction of excitatory and inhibitory neuronal of the unitary IPSP and a reduction in the peak amplitude of
populations it does not require oscillatory thalamic input ashe EPSH23,24. For example, isoflurane has been shown to
is necessary in pacemaker accounts of cortical electrorhyttpotentiate GABA-induced ionic currents as well as inhibit-
mogenesis, nor does it need any explicit thalamo-corticaing the presynaptic release of glutamate, possibly by the ac-
feedback. It is important to emphasize that this continuuntivation of presynaptic kainate receptdgs]. In general GA
mean-firing-rate-basetheory is also “mechanistically” quite agents from the inductive clas.g., propofol or any of the
distinct from the discretspike-basednhibitory interneuron halogenated etheraffect GABA,-mediated neurotransmis-
network models that have been developed to investigate th&on postsynaptically and glutaminergic neurotransmission
genesis of synchronizegl activity and its modulation by a presynaptically, whereas dissociative Glesg., ketamine,
range of drug$16,17. N,O, Xe) are currently believed to principally affect excita-
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tory synaptic neurotransmission through the modulation of e 1 X
kainate and N-methyl-D-aspartattlMDA) receptor func- Yik = eg,k—_la_ Yik = €Y, (10)
tion [18,19. K

Macroscopically GA action can be detected using the 1 1
EEG. In addition to a range of compound specific effects R(w) = €KL, Y, - — (11)
most GAs, at the point of loss of consciousn@s®C), are lo+ Ylo+ yy

associated with low-frequency, high-amplitude activity com-

pared with the high-frequency, low-amplitude activity while trol :
: ! . . parameteg and has several compelling featuréb. It
awake[26]. Following the LOC and during anesthetic main- is a biexponential model with two independent first order

tenance the EEG spectrum is still dominated by lOW'Fourier poles aty, =y, and y,=3. (2) For &y —0, R— Ry,

frequency activity but at a magnitude generally somewhaWhereRO is the @ model of Eq.(7) with one second order

less than during induction. This rise and fall in low- . . .
. L S ourier pole atyy. (3) The maximum is alwayR(t= )
frequency power during anesthetic induction is often referreé_zrlk_ This is also true for th&, limit, where 8= 1/yy. (4)

to as the “biphasic effect.” Similar behavior can be observed : . . .
in other frequency bands and in particular also in total®k " ®lk leavesR invariant, thus without loss of generality
power; see for example Ref27,28. £, =0. ((5152 R(t)?a,RO(t) with equality only att=0, &. N~ote
We will use “biphasic” as a generic label for any rise andate”< < yi=e"%yy and forey— —ey the polesyy — ¥.
fall of some EEG “strength” measure during a monotonicHence this factor ensures invariance. .
change in GA concentration. While the form of this response The necessary replacement of E8) can be read. Oﬁ. di-
can show substantial agent and subject variability it is suffi—rectly from the Fou_ner transform Eq11) by repIaC|.ng|w
ciently widespread to be considered a canonical GA phenom-~ d/at and multiplying out the norm for the pulses:
enon. The effect of GABA-enhancing general anesthetics, 9 9 R
like propofol or the halogenated ethers, can be approximated <E + 7|k)<— + Mk)hk(X,t)
in the basic model bylecreasinghe appropriate decay rate
constanty,, [10]. Upon lowering ;. with anesthetics, the = e I NES (h) + D (X, 1) + pr(X, D], (12)
model litatively predicts first an incr nd then = .
crgggeqoufaEtgé ?s)t/repnzgh(’:’tisn ascr?oserf ﬁ:;ﬁe%c?/ ba?ndfri'lgiff3 incey =y =1/ for ei=0, Eq.(12) obviously reduces to

reverse happens upon increasipgto its original value. d. (3)_ in this Iimit._ The implied s_tructural Ch’c‘_”ges t_o a
numerical computation in terms of first order ordinary differ-

ential equation§ODES9 are trivial. However, care has to be
A. Modifying the postsynaptic response taken in the numerical evaluation gf; for g close to zero.
Here an appropriate Taylor expansioneip is used.
R specifies the biexponential fit in terms of the rise time to

This parametrization introduces just one additional con-

In order to obtain more quantitative predictions of anes-
thetic effects, we will modify Eq(3) here. Imagine that on 5 imum 8, and the control parameten,. The limiting
its right hand side a unit presynaptic puls&=0) arrives. o -0 case yields the “sharpest’ response peak around the
The postsynaptic activatio in Eq. (3) will then show the  gpecified 5, i.e., the response will rise earlier but decay
impulse response more slowly for larger values of,. We define the decay
Ro(t) = el yite M0 (1), @) time > Sk by. R(§|k)%F|k/e. Although an analytic form
cannot be obtained;, is easy to calculate numerically. We
1 use such a numerical value in our computations. However, an
Ro(w) = €Ly, (8) excellent approximation with a relative error of less than
(io+ i) 0.5% for alle,, is provided by

where_@(t) is the “_Heaviside theta” or unit_ step function and [ sinhe,  0.30538 tanf0.7993%,)
Ro(w) is the Fourier transform oRy(t). This represents the i =|0.90211+2 +

simplest, so-called « model of “fast” excitatory
[ @-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic  acid (13
(AMPA)/kainatd and inhibitory (GABA,) neurotransmitter
kinetics, respectively. Note that the maximiryg=I", occurs

k-
€k €k

This actually represents a one-parameter fit, since the form is
constrained to have the correct small and laggdimits:

att=1/y|k.

A biexponential model proportional @ "1'—e 72! is of- [3.1462 + 0.28135, 8, ex<1, (14
ten used to describe experimental data, since it provides L= 1
more flexibility in fitting the measured time evolution. The —e%k |y, ex>1. (19
Fourier transform of this model is simply proportional to Eik

(v2=yD)(iw+y)Hiw+y,)™". Note that the standard biexpo- The decay time rises monotonically with, and beyond
nential model vanishes foy,=y,. We introduce here a dif- aboute, =3 grows exponentially according to E.5).

ferent kind of biexponential model: Figure 2b) demonstrates the importance of obtaining the
_ = extra control parametey;,: If we wish to prolong the decay
e Mkl — g ikt : B
R(t) = e[\ Fp——=——0(t), (9) of the response inR,, our only choice is to decrease
Yik = Yik v—thus increasingd,=1/y,. This is obvious from the
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FIG. 2. (a) Response of the inhibitory sub-
population to an inhibitory impulse depending on
time and concentration of isoflurane according to
Egs.(9), (16), and(17) and Tables Il and IlI(b)
The grid lines now represenR, of Eq. (7)
with y,k|RO: 3.1462/(c)|r. Rof (a) is displayed

.................. for comparison as a solid surfacé&) The re-

P _ sponseR of the excitatory subpopulation after an
® oty % excitatory impulse(d) The responses integrated
© 5 over time, approximately proportional to the total
Z 005 | & charge transferred.
s 08 T
e u 06
b 0 g 0.4&

5 1o 0z &

tims)

£,=0 limit of Eqg. (14): decay time/,=3.14625,. But §,  Ref.[29]. The resulting parameters are collected in Table II.
also represents the rise tinky(4,)=I"; hence forR, the  The rise times, was not found to be significantly affected
rise time is always prolonged together with the decay time[32]. Similarly, we use a fit of E¢(16) to Fig. 3 in Ref.[30]
However, forR with g, #0 the rise and decay times are for describing the concentration dependence of the EPSPs.
decoupled. This is important because GAs prolong the risas shown in Table Il, our fit was compatible with setting
time much less than thénhibitory) decay time, if at all. M, =0. We assume that neither rise tinig nor decay time
Hence as Fig. @) shows, we will parametrize the inhibitory ¢, is significantly affected for EPSPs, consistent with the
{i(c) of R to grow with anesthetic agent concentration  sample time courses shown in RE30] and studies of min-
whereasd =const. If we naively try to enforce the samhe jatyre excitatory postsynaptic currefizs).
— o behavior forR, by setting they of Ry according to Eq. Further we assume that the EPSPs are due solely to
(10), thenRy's rise time quickly becomes unacceptable atanPpA/kainate receptor mediated current flow, as the major-
higher concentrations. _ . ity of NMDA receptor mediated currents in cortex are ex-
How much better would some kind of “best fit” 6% 0 pected to be disabled as a consequence of the voltage-
decay times fare? In Fig.(®) we have forced®, (grid lines  dependent M# block for the modest depolarizations
andR (solid surfacg to have the same decay timey;lr,  associated with restingr activity [33]. Nishikawa and
= 3.1462/;(c)[z. But the R, rise time is still growing Maclver[31], by studying the effect of isoflurane in rat CA1,
strongly with concentration and to compens&g decays showed that non-NMDA field EPSPs were reduced by 31.7%
more quickly. Thus the entire impulse response is distorted iin the presence of 0.5 kh isoflurane. Thus we adjust,, so
comparison taR. At the highest concentrations in Figttl?  that 68.3% of the EPSP amplitude remainscat0.5 mM.
the R, rise time has still grown substantially, but in experi- Furthermore, PSP changes under anesthesia depending on
ments the rise time is often ignored as negligible comparethe nature of thetarget neuron remain unexplored to our
to the decay time. In this case thi parametrization be- knowledge. Hence we will assume the same dependence in
comes simply inconsistent with the assumptions behind typiEgs.(16) and(17) for k=e andi.
cal experimental fits. Equation(16) can be used directly. The peak heidl of
B. Experimental constraints the original parametrization is inserted on the right hand side
‘ (RHS) of Eq. (16) to obtain thel',(c) of the corresponding
In contrast, forR we can use experimental data concern-
ing the postsynaptic potential amplitude and decay time un- TABLE II. Isoflurane parameters for Eq&l6) and(17) accord-
der the influence of anesthetic agents. Currently, only datang to Ref.[29] for |=i and Refs[30,31] for |=e. The same values
obtained from rat hippocampal brain slices appear to bere assumed fok=e,i and /= const.
available. Fits of the Hill equation to dose-response curves

Km'k . MlkCN'k Isoflurane parameter I=e I=i
L) =T, Ry e (16) Ky (MM) 0.707 0.79+0.24
« My 0.0 0.56+0.13
rl'(lk + mlkcnlk Nk 2.22 2.6x£0.8
i(c) = §|kw, (17) Kic (MM) 0.32+0.05
My 4.7+0.5
wherec is the concentration of the anesthetic agent isoflu- Nic 27+1.2

rane in blood in millimoles, were performed for IPSPs in
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- >40

anesthesia parametrization at concentrationlowever, Eq. ' 7
(17) is used indirectly. The decay timg, of the original
(ex,=0) parametrization is inserted on the RHS of ELj) to
obtain the corresponding,(c) at concentratiorc. Then we
calculate fromy,(c) the g (c) needed to prolong the original
decay time accordingly. To put it differently, one equates the
RHSs of Egs.(17) and (13), inserts the §, and ¢
=3.1463, of the original parametrization, and then solves P4
for g at a given concentration This g, (c) is then used for
the anesthesia parametrization. However, in practice we cal
culate g (c) numerically without the approximation in Eq.
(13).

What is a reasonable range for the anesthetic agent
concentration in blood? We follow Rgf34] and assume that
1.3 vol % inhaled isoflurane leads to an aqueous concentra
tion ¢=0.27 mM at body temperaturég=37 °C. A measure ¢ .
commonly employed in anesthetic practice is the minimum 0
alveolar concentratiofAC) of anesthetic agent at 1 atm
pressure. At 1 MAC 50% of recipients still move in response FIG. 3. Dependence of the largest Lyapunov exponent of Egs.
to a noxious stimulus, typically an incision. In this paper we(1)—~(6) in the homogeneous ca$86]. The units of the axes are
use 1 MAC=1.17 vol % for isoflurane. This is appropriate 1 msL. This illustrates the “fat fractal” dependence of model dy-
for a human 40 years of age85] and corresponds tg  Namics on parametefge and pe;.
=0.243 mM aqueous concentration. During surgery a patient
would be maintained typically at 0.9 to 2.2 MAC isoflurane IV. ENFORCING PHYSIOLOGICAL FIDELITY

. o0 i . ; "
in an oxygen—70% nitrous oxide mixture, or at 1.3-3 MAC As discussed in Sec. Il all 37 parameters contributing to

without the nitrous oxide. If the anesthetic induction is per- . .
formed with isoflurane, it generally commences at low IeveIsEqs.'(l)_(G) and(lZ) can be related to phyS|olog|9aI or ana-
around 0.4 MAC and is then increased to maintenance Ieve‘.om!c""I da’ga. It is an advantage that TC’UCh expenmentgl con-
In the following we will typically investigate concentra- Straints exist external to the conception and formulation of
tions ¢ up to the equivalent of 3.33 MAC, that is; the model. However, the parameter ranges so der{sed
y ! Table |), are currently far too large to guarantee physiologi-

=0-0.81 nM. Figure 23) shows the time course of an IPSP cal behavior for all solutions. Future advances may reduce
of the inhibitory subpopulation for concentrations up tothe ranges, but it is highly unlikely that this problem wil

0.81 mM (3.33 MAC) using the isoflurane experimental then be eliminated completel

data. Similarly, Fig. &) displays the EPSP of the excitatory eTh € et ale cot P‘i ely. ¢ q

subpopulation. Figure(d) shows the areéin time) under the . € external constraints on one parameter aré assume

different PSPs depending on concentration. If the membran':Qde‘)en.dent of the constraints on another. This is implied in

potentialh, stayed constant, this area would be proportional ust stating upper and lower bounds for all parameters, and
ence in specifying a hypercube in parameter space. But in

to the total charge transferred. For the PSP from a sing| eality we expect these parameters to be interrelated in un-
impulse this is a good approximation. We see the lowering o y .p P .
own ways; hence parameters representing real human cor-

the peak height in both IPSP and EPSP. However, dec ces would necessarily map out a much more complex shape
times are only prolonged for the IPSP, leading to drastically. wou ly map ou u piex P

modified relative timing at high concentrationg;(0 mM) In parameter space. Fgrthermpre, the simpl(ijficaéions and gsl'
_ sumptions necessary in creating our, or indeed any, mode
:iéSEejg 4m8l\(/ls)r,]M)but at 2 MAC (;(0.486 M) mean that the mapping of experimental data to model param-
- . e . .

: . . eters is approximate. Thus even perfect experimental data
As is evident from the Fig. (@), EPSP charge transfer bp P P

e . - would not necessarily specify the region of physiological
diminishes steadily. However, IPSP charge transfer rises|evant parametrizati)(/)nspwitfgprecisiogn Py g
quickly to a plateau before slowly falling. This is due to the Experience with our model shows that it has very rich
competing effects of prolonging decay times and decreasing

. e namics which are generally unpredictable in advance; for
peak height. We see that the timing and charge transfer of tqﬁy g y unhe

L S ustration see Fig. 3. Hence it is necessary to find ways of
PSPs enter a quasistatic stage éar0.4 mM. Intriguingly, . rapidly trialing parametrizations and this section will de-

this corresponds closely to the concentrations used for MaiNseribe in detail how this can be achieved.
tenance in clinical practice. Fot—o I'g(*)=0, ()

=§ek(0) but Fik(m)ZO.STik(O), £|k(m):47§|k(o) This obvi-
ously yields zero for the EPSPs, and the area of the IPSPs of
Fig. 2d) becomes 0.0083 mV ¢ie) and 0.028 mV sf(ii), We usually start from initial conditions that are homoge-
respectively. Thus at some high concentration of anesthetiseous over the entire simulated cortex. In cases where a lin-
agent we expect cortex to stop being excitable tissue andar approximation is viable, we use a stable “singular point”
enter an unresponsive state. of the parameter set for the initial values of the state vari-

18

Pee

A. Basic considerations
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ables. Singular points are obtained by solving E43—<(6)  tween those two a cosine half period is inserted such that the
and (12) with all derivatives, temporal and spatial, set to 3 dB point is atk./(27)=2 cni'. Thus regions of roughly
zero. This is equivalent to solving the following two normal- 0.5 cm diameter are driven by the same noise signal, but are

ized equations: uncorrelated to more distant regions. This corresponds to the
assumption that one afferent fiber provides the dominant ex-
Xo + yee—xe< %e_ ee) tracortical input to 1-2 macrocolumns. Finally, any negative
Ved \1+rg et values still remaining are set to zero.
Vie = Xe S. As the creation, fiIt_ering, and distributing of n_oise is_ com-
vl (1+rie_(xi_ui)/vi + Pie) =0, (18)  putationally demanding, we currently only filbe, with

brown noise p,; is set to a constant, wherepg and p; are
assumed to be zero. One can speculate that connections from
- Yei — xi( Sei +P ) thalamus to cortex are predominantly excitatory. But the ef-
" el \Lreetelve T fects on the model of changes to thg are correlated any-
way. For example, inhibitory input to excitatory neurgns
+ Yii = Xi( Si + P--) -0 (19) can be taken into account partially by a reduction of excita-
lyil \ 1 +re i = ot ' tory input to the same excitatory neurops, Thus our
with A [X_k,)’u(,Uk]E[hk,hﬁ(q,Mk]/hrk—l, =1 S ?nhaotli((:)i_Of noise driving represents a reasonable first approxi
k=01 (V2h),  [Sefr Sisi oo Pucd = (€7 / yhi [(Ng If we can start from “singular point” initial conditions,
+NEIST™, NES™, py . In practice, Eq(18) is solved alge-  this avoids a transient period which can otherwise last sev-
braically forx; and inserted in Eq19). Then zero crossings  eral seconds before the simulated cortex settles down into the
in X, are searched for numerically. behavior “typical” for the chosen parameter set. The possible
We only accept mean firing rates between 0.1 and20 s dynamics of this system are rich indeed. It is for example not
as physiological. This translates directly into a restrictedgifficult to find chaotic solution§36,37]. As mentioned, the
search range forx, e.g. Xg'"'=Ug—veIN{[ST®/(20S")  current constraints on the parameters of Etjs<(6) and(12)
—1]/r¢} rather thanxg""=y.. Detected zero crossings that are not tight enough to allow physiologically sensible solu-
result in inhibitory firing rates outside the physiological tions only. We can easily find solutions with spectral content
range are discarded. In case there are several stable singutarfiring rates which bear no resemblance to those of human
points, we chose the one with the smallggti.e., the one brains at all, or at best remind us of unusual brain states like
closest to “rest.” From th&, andx; we can derive the initial an epileptic seizure.
conditions forhy, I, and ®,,. If a parameter set does not
have a singular point satisfying all criteria, or if we cannot

X

assume the validity of linear approximations, we simply use B. Swarm search of homogeneous equations
“resting” initial conditions:h=h; and I =®e=0. All state Thus we are searching for parameter sets within the
variable derivatives are always set to zero initially. physiological ranges shown in Table I, which lead to reason-

As is obvious from the equations, these initial conditionsaple excitatory and inhibitory firing rates and to a Fourier
on their own would result in complete stasis. However, wepower spectrum with the major features of a resting EEG:
then vary the excitatory extracortical ingoge according to a  strong activity ats and « frequencies. We use E¢B) rather
random Gaussian normal distributionipee, 9ped. That we  than Eq.(12) in the search, since we are looking for a proper
use such noise as “input” to the brain reflects three issuepaseline EEG prior to anesthesia. The gross features of the
First, we wish to simulate the simple case of a resting brainsolution can usually be obtained by solving a spatially ho-
which is not engaged in either extracting structured informamogeneous system, i.e., experience suggests that frequency
tion from sensory data or manipulating it. Second, even ifpower spectra and firing rates are often qualitatively similar
structure remained in the extracortical input, at least some ab those of an inhomogeneous case with the same param-
it would be lost in averaging over macrocolumns. Third, weeters. Thus we sét(X,t)=h,(t) and similarly for all the
simply do not know what sort of structured input the brain isgther quantities. Consequently, the sgomgenoise is assumed
in reality receiving. Hence using noise avoids introducingeverywhere and the spatial part of noise shaping is omitted.
any assumption at all beyond the obvious one that the input$his corresponds to &< 0” spatial Fourier mode and means
will change with space and time. As simple Gaussianthe Laplacian in Eq(5) is eliminated, yielding a set of one-
white noise would vary in an unphysiological manner, dimensional ordinary differential equations. We solve the
it is further shaped. Symbolically we can wrifg.dX,t)  ODEs just like the full set of partial differential equations
=N [N(Pee: OPea) , X, t], With a spatiotemporal filtelV. (PDES, which is discussed in detail below.

The finite impulse response filter in time is realized by a In the homogeneous case, the separate dependence on
Remez filter of length 21, with a passband for frequen€ies conduction velocity and fiber scale is reduced to a depen-
from 0 to 50 Hz and a stopband above 100 Hz. The 3 dBlence on their produetA,. That still leaves 32 independent
point is atf,.=75 Hz. Thus time variations with unreasonably parameters in Table | to be varied within the shown ranges in
high frequencies are suppressed. The spatial filtering is peotrder to find appropriate solutions. Parameters are held con-
formed in the Fourier domain, using a passbandkitd®7)  stant during the entire simulation time. Unfortunately, prior
from 0 to 1.75 cmi! and a stopband above 2.25¢mBe-  investigations had already shown that the dependence of the
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solutions on these parameters is entirely nontrivial. A striking C. Full grid simulations

example is provided by Fig. 3. It shows the largest Lyapunov To check that these parameter sets also work for the

exponent of the system depending jap and p.;, while the  PDEs, a full simulation of the PDEs of Eq4)—(6) and(12)

other parameters remain fixg86]. A 32-dimensional param- is performed. Equation$l)—(4) and (12) are first trans-

eter space of such complexity is hopeless to search with evelarmed to a set of first order ODEs and then solved by for-

sophisticated conventional minimization algorithms like ward Euler iterations. However, E6) is iterated directly in

MINUIT [38], in particular since it takes a relatively long time second order, using three time poinf&b(t)/dt2 =[Pyt

to evaluate any specific parameter choice. . +A) - 2D (1) + D (t—At)]/At2. The two-dimensional La-
Instead we employ a different type of algorithm called pjacian is similarly computed on five space points with spac-

particle swarm optimizatiofPSQ [39], which is inspired by ing As=1 mm. Thus the fields represent the spatial mean
the search strategies of swarms in nature. An “off-the-shelfoyer 1 mm?, or about 16—10° neurons. We simulate a

version[40] of the algorithm can be stated concisely. Assumesquare cortical sheet of realistic human size, 51.2
p particles distributed in al-dimensional parameter space. x 512 cn?, and thus need 522512 grid points. As any part
Their current positions are given ly-dimensionalx; with  of the cortex can connect to any other part, the boundaries of
i=1,... p. Each particle memorizes its best positignvis-  this square grid are connected to form a toroid. Equation
ited so far. Furthermore, all particles know the global besimplies an isotropic, roughly exponential decay of connec-
position g ever visited by any particle. At every time step tivity. Until we introduce a more sophisticated representation

“velocities” v; and positions are updated as follows: of brain connectivity, toroidal boundary conditions guarantee
that no point on the cortical grid connects differently from
5(t+ 1) =0 (t) + Clo.(t) + B't—)—()'t the others.
vilt+ )=o) 9{v.( )9 Peod (1) = Xi(V)] We find that for conduction velocities up to=10 m/s,
+ ¢sod 9(H) =X (D]}, (200 At=50 us is sufficiently short to achieve stable and conver-

gent solutions. However, a 20 s simulation recording all grid

point values for the entire state at all time steps would re-

quire about three terabytes of hard disk space. Instead we
M and ¢ =rand0, ). These just record one state variable, usually, which is directly

where ¢eoq=rand0, ¢gyg . . ;
functions represent the weights given to individual cognitionpmport'onal o the predicted EEG amplitude. Furthermore,

S . , we record time frames only every 2 ms. Finally we sum
versus social interaction. Usingi= ¢+ doie >4, the con- Y y y

o : N RS vdlrenen square patches of 2616 grid points(1.6x1.6 cnf) and
striction factor can be written 6@_2/?2 ¢=\(¢-4)¢). It output only the resulting 32 32 sums of each frame. Of

X
flgvésaggwnqaxtﬁi ?)swar(;r;t.trc:wiiscc:::\;ﬁ;%%nc;e. \éx\:?élﬁg}sto course, real EEG electrodes also sum the signals of several
e Psoc = 1.3, updating | y us, parti psquare centimeters of underlying cortex and sample at

cold at parameter boundaries, and we use about 30-60 p round 500 Hz. The summation is a linear operation; hence it

ECIe.S [40]' I\Ne ha}[vet:_ mventhe_dhsev_e”rag |mprovent1e(rj1ts Ioverhth'sdoes not influence the predicted power spectra except for the
[jls]'c implementation, which will be presented €ISEWneréiistical errors. The reduction in time resolution limits the
: . . N ist frequency to 250 Hz, but the main features of the
The cost function of our PSO is calculated as follows: 25h3/|9ntgn EE(glﬁesid):e at much Izoweur frequenéies anl;/way Using
AT o ! Mhese data reduction measures, the same simulation can be
eter set. We start from “resting” initial conditions and d'scardrecorded with only 39 megabytes of hard disk space, which

all but the last 4.096 s to eliminate any transients. Firingis manageable

rates are costed according to distance from the target range We have written the simulation code Pl FORTRAN [42]

_1 . .
0.1-20 5" Next the average, normalized Faurier power, parallelize the calculation. The square cortical sheet is
nsplit in rectangular areas, typically 32 areas of ¥2& grid
points each. Each area is assigned to one computing node for

Xi(t+1) =X +vi(t+1), (21)

resonance at=fg of quality Q with a (bounded power law

decayfB, i.e., . = ;
calculation. The only communication required between the
B nodes is concerning the one-point-deep edges of their areas.
S(f) = A DC (22) The reason is that the only spatial coupling results from the

+
1+4Q%(1-flfg)® B+ CP Laplacian, which requires only knowledge of the four nearest
neighbors in two dimensions. For example, of the area to its
whereD is eliminated by normalization. We force all fit pa- left a node needs to know only the rightmost edge in order to
rameters to stay in a reasonable range, e.g., restriéfitg  compute the Laplacian at its own leftmost edge.
[8.5 Hz,12.5 HZ and B to [0.8,2.9 represents thex reso- All nodes obtain their initialization data from, and send
nance ands shape, respectively. Next the parameter set igheir frame output to, a central node, which performs the
costed according to the deviation of the generated spectruiiard disk operations. Finally, one extra node acts as noise
from its best reasonable fit. This sort of “friendly” scoring, server. It performs the spatial noise shaping for the entire
which first moves the functionghrgetas close as possible to cortex, splits the noise according to the area setup, and sends
the result, facilitates the approach to reasonable spectthe pieces to the appropriate area nodes. The received noise
greatly. Using this method we were able to generate 3®iece is then shaped in time at each area node. We have
promising parameter sets. found that going beyond 64 areas will not improve perfor-
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(a)h e(x,y,t)[mV] for c=0 mM (b) dB[he(ﬂ.,,D] for c=0 mM

5506 20 0
-55.98 15 &
-10
56 10
-15
-56.02 FIG. 4. (a) One second oh, data from a full
20 grid simulation using the parameters of Table IlI.
56104 The base shows the entire gri@2x 32 values,
0 -25 : PR, :
0 o1 0.4

interpolatedl at one point in time; the vertical
Vi [cml slices show the development with tim@&00
(@Al (7,)]for c=0.81 mM samples (b) Radial spectrum of these data4

1[Hz]

o«

6175 % 21 values, interpolatgdn decibels.(c) and (d)
61.76 show the same a&) and (b), respectively, but
6177 for a fully anesthetized state(c=0.81 niv
5178 E isoflurane.

61.79

-61.8

-61.81

0 01 02 03 04
£ fem™

mance anymore, as communication lags limit throughput. We ) 1 ,) 0, corners,
generally use 16 or 32 nodes, since the Swinburne and VPAC varl iy, = Ell5] = SNy others (25
clusters are not dedicated exclusively to our computations. ’ '
It is advantageous to compute the spatial noise shaping iHence we can construct tlig by filling the F,,,, with appro-
the Fourier domain. Assumé, with 1=0,... Ny-1 and priately distributed noise and then performing the inverse
k=0,... Ny,—1 to denote the real, independent, identically DFT.
distributed, zero-mean Gaussian random variables on an The spatial filter can be implemented as a simpiglti-
N, XN, grid with N, and N, even. Their discrete Fourier plication in the Fourier domain prior to the inverse DFT.
transform(DFT) is given by Total power is conserved by normalizing by the sum of
squares of the filter coefficients. In our case then the noise
o + server has to generate 54512 Gaussian random variables
= Run* il = % kEO fie My (23) with variances as in Eq25), multiply each with the appro-
priate filter coefficient, perform the inverse DFT, cut the re-
The expectation value for correlations of the grid randomsult up into typically 32 areas and send them to appropriate

Ny=1 Ny~1

variablesE[f,kﬁ,kr]zo%d,,,ék,k,. It follows that area nodes. As this is time consuming, we only generate and
distribute new noise at every frani2 msg, not at every time
5 - A L
E[RmRop] = N N O_Z[gr\lnoéw)é_'_ 5Ny 5Ny ] step (5X 107 s). This is unproblematic, since the noise is

low-pass-filtered in time anyway, with frequencies higher
than 100 Hz eliminated. It is even helpful, since the Remez
time filter can be realized with much fewer coefficients if the
6'”“,V_p], stopband starts at 40% instead of 1% of Nyquist frequency.
A typical example of the grid output is shown in Figas
The value of the state variablg is shown by the different
E[Rnrlopl = EllmiRopl =0, (24 gray scales as indicated by the bar. On the horizontal base we
) . ; show the activity of the complete 51x51.2 cnt cortical
with a “modulo Kronecker_deltaﬁgb equal to 1 for(@=b)  gheet at one point in time. We can see a spatial structure of
mod N=0 and zero otherwise. Since th&,, are periodic,  gynchronized activity consisting in centers and filaments ex-
they can be restricted to @ X N, grid. Furthermore thé,  tending over several centimeters. Vertical time slices show
are real; henc&y mn, -n= =Fon how the activity along five fixed lines on the cortical sheet
Thus the independeft,,, consist ofN, Ny real, indepen-  changes during one second. Thehythm is easily discern-
dent, zero-mean Gaussian random variables filling foufple in the “striped” structure dominating the time slices. It is
real Fp,=Ry, at the “corners” (m,n)={(0,0);(0,N,/2);  more difficult to spot directly the low-frequenc§ and @
(Nx/2,0);(N,/2,Ny/2)} and N,N,/2 -2 complexF Their activity, partly because only 1 s of data is shown.

mn op] yUf éN 6N d\lny—

(0]

variances are In order to see the spatiotemporal content more clearly,
1 5 we perform a three-dimensional Fourier transform of the
» corners, data. Note that the toroidal grid is periodic in space as re-
vafRyl = E[RG 1= SN,N aa. 9 b b
Rl = ELRl Y f{l, others, quired for the Fourier transform. We subtract the overall
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10 — S, (h,)[1/s] .

.......... S;(h;) [1/s]

time [s]
0 5 frequency (Hz]

FIG. 5. ExcitatoryS,(he) and inhibitoryS(hy) firing rates during
a full grid simulation with the parameters of Table Ill and changing FIG. 6. Normalized power spectra obtained through full grid
isoflurane concentration, witk(1 MAC)=0.243 nM. The bands simulations with 27 PSO parameter sets.
indicate the mean and standard deviation over all grid points.

of anesthetic agent. This is universally the case for the pa-
mean and then multiply the time series of each grid pointrameter sets investigated here.
individually with a Hanning window to obtain periodicity in If the concentration is raised at every frame instead of
time. We can then compute a three-dimensional power spetime step by a proportionally larger amount, one observes
trum |he(kxl27r,ky/27r,f)|2. But a two-dimensional plot is minute transient “ringing” in the firing rates. Stepping di-
more accessible, so for evefgliscreté point (m,n) in Fou-  rectly from zero to high concentration results in large oscil-
rier space we compute an integer “radiustround(m? lations. However, after the oscillations die down the same
+n?)12] and then keep only the maximum power spectrunifinal (averaggsteady state results. If the total rise time of the
value encountered for that radius. Thereby we obtain a radigioncentration shown in Fig. 5 is reduced much further, large
power spectrumhg(\;*,)[2, with \-*=r/(51.2 cm). In Fig. amplitude oscillations occur even with changes at every time

4(b) we show the result in decibels according to the gray-Step- Whilg it is of interest to explore this sgnsitivity to rapid
scale barall values<-25 are colored blagk concentration changes, we will defer this here. Clearly,

The radial power spectrum can be misleading close t@—3-33 MAC equivalent isoflurane blood concentration in
zero and maximuri; %, where the number of sampled points @PProximately 30 s is already much more rapid than the real
is small. Also the detrending and windowing cancels powefnductions we wish to simulate. Howevéonger concentra- -
around zero frequency. Thus one should disregard the edgdén rise times yield the same results relative to concentration
of the plot. We can clearly see the strongand 6 frequency ~ @nd hence are wasteful computationally.
components, separated by a “valley” of lowerctivity. We can now investigate the 33 parameter sets found by
activity is prominent at all wavelengths with a maximum the swarm algorithm. It turns out that 27 of these sets yield
around\, =26 cm. 5 activity also occurs at all wavelengths acceptable power spectra when simulated on a full grid. For
with a maximum at large wavelengths. However, the depen€Very parameter set the full 5¥2512 grid is run for 10 s
dence of the radial power spectra on wavelength varies cornd every 2ms 3232 *electrode” values are sampled.
siderably from set to set. This dependence could become @Y the last 4.096 s of these time series are kept, and indi-
selection criterion in the future. In Figs(c} and 4d) we  Vidually Fourier transformed with 2.048 s, 50% overlapping,
show for comparison a fully anesthetized sté@e33 MAC detrended Hanning windows. The normalized average yields
isofluran@ based on the same parameter set. The former the curves shown in Fig. 6.
activity has shifted into theS frequency range and merged  The spectra vary considerably, sampling the full range of
with the former § activity there. Furthermore, the merged spectra encountered in humans. Furthermore, an analysis of
activity is now distributed quite evenly over all wavelengths.the parameter sets shows thaalh27 cases a linear approxi-

In Fig. 5 we show the actual time course of isofluranemation is possible; see the next subsection. These results are
concentration used in the grid simulation. The grid data inby no means expected priori, since the equations them-
Fig. 4 correspond to the last second of the “flat” initial O selves are nonlinear in nature and the search methodalid
MAC (c=0 mM) and final 3.33 MAC(c=0.81 mM) phases, have any bias toward linear solutions. Thus we can reason-
respectively. The concentration is raised with each simulaably investigate our equations in linear approximation with-
tion time (not frame step by the appropriate amount to ob- out unduly constraining the type of solutions found. Of
tain an overall “linear” rise. As we can see, both excitatorycourse, linear approximations offer tremendous advantages
and inhibitory firing rates drop with increased concentrationswith regard to analytic and numerical computations.
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D. Linear approximation and eigenspectra are also small. We can determine this simply from the eigen-
values of the system. As the Jacobian matrix is not symmet-

We start by defining a 14-dimensional state variable vec- S ) ;
ric we decompose it with leftC and right R eigenvector

tor .
matrices
S= (hea hi: leelee leirleilie lierliis liis Pee Pee q)ei:q)ei)T- JR=R diag)\n),
(26)

~ LJ= diag\p) L 30
Here we set =4l / dt and so forth for all variables marked J o) (30)
with a tilde. The dependence on space and t#&gt) is LR =diage,),
implied here and in the following. These “tilde” equations
together with Eqs(1)—(6) and(12) yield with n=1,...,14 eigenvalues,, and normalizing values,,.

_ Stability is now guaranteed if all eigenvalues have a real part
IS _ |5(§) +P 27 Re\,<0. In our case this depends noteonly on the parameter
a ' set, but also on the wave number vakigin Eq. (29). We
] ~ found that for the 27 parameter sets investigated in the pre-
For example the third component of the RHS function,;, s snsection, Re,<0 for all K2 In this sense then a
vector F(S) is given by F3(S)=l¢ and its fourth compo- linear approximation of those sets is viable.
nent F 4(§)=—(7ee+3’e(9~|ee— YoVed et e?eeﬁeereg/ee{NgesE(he) We can however go one step further and predict the power
+® oo+ Pedl. Herepge means the average of the filtered noisespectrum from our eigendecomposition. Using a Fourier

Ped %, 1) =N N(Pees Ped , %, t]. The vector® is zero except for transform in time of Eq(28) with §(k,t) —S(k,w) and Eq.
components which reflect spatiotempocalangein the ex- (30
tracortical input. Thus in this paper only the fourth compo-
nent is nonzero and contains the noise variatRyix,t)

=%, o d Pod X, 1) —Peal. COmponents 6, 8, and 10 &f
will be zero here, because we assume other extracortical in-
put to be static or zero.

As mentioned above, Eq$18) and (19) can be used to 3=R diag[
compute the singular points of our equations for a specific
parameter set. Thus one obtains those singular point valu
he=hy, k=1, and®e,=®;, for which all ime derivatives in
Egs.(1)—(6) and(12) vanish. With these values we can write
a singular point state vect& for which F(S)=0. Now we

define §X,t)=S(X,1)-S and expandE aroundS' to first

iwS=7J-S+P,

O

diagiw-\y) - £ -§=L -

1 B, R
m}-E-P='P-P. (31

?rs1 the last step we have assumed tRatforms a basisS

=R Sz and thate,(iw—X\,) # 0. In this paper we are prima-

rily concerned with the first componers(k, w)=hg(K, w)

andP is zero except for its fourth component. Hence here we
SN T . : : . only need to compute the compon in order to predict

order inS. This yields a vector equation entirely linear in y P ponen, D

§(X,1). A spatial Fourier transform then becomes straightfor-{N€ POWer spectrum. Furthermore our input noisePjn as
ward and leads to the final result by allowing us to replaceVell as’P, depends only on the magnituéte |k, so we can

the Laplacian : write
BEO . Ihe(k, )2 = [Prak, 0)Pa(k, )2 o [Prak @) 2. (32)
ot = Jsk.t) + Pk, (28) The final proportionality applies only fow/(27) <50 Hz
andk/(27)=<1.75 cm!, where our noise input is unfiltered
. | v2R2 and henceP,(k, ) is constant in Fourier space.
J= IF(S) (29) If we wish, we can now predict the power spectrum for
S i ' specifiedk modes. Indeed, we find that all spectra of Fig. 6

are fairly well fitted by using a commak=1.24 cmi*. Note
ThusJ is simply the 14< 14 Jacobian matrix evaluatedgt that this is much smaller than the onset of filter suppression
s N —~ -1 ; ; ;
upon formally replacing/?— -k 2. Its components are easily atk=11 cm-. The evaluatlon of Eq32) with a fixed wave
_ (2 .3po . . number is extremely rapid, and the overall good fit with
calculated, for example/,4 13=—v (Aei+§k ). Obviously in

: o el 27 =1.24 cm? suggests an average dominant wavelength of
the case of spatially homogeneasiz, t) =S(t) Egs.(28) and around 5 cm for these sets. However, this value is not uni-

(29 hold true withk?— 0 and could be derived without the yersal(see the discussion of Fig. 7 belpvand it becomes
spatial Fourier transform. particularly problematic to assume so in the investigation of
In order for the approximation in Eq28) to be relevant  anesthesia. It i priori neither clear that one can find a

practically, it should be stable: small disturbangeshould  typical wavelength in the anesthetized state nor what value it
return to zero with time. In that case the time development ofyay have.

Eq. (28) will approximate that of Eq(27) provided the initial Instead we can consider an integration over a fixed size
state is close t& and disturbances from the noise teAn  spatial patch, in analogy to the way EEG electrodes sum up
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normalized power

— eigen ¢=0 mM, norm
o gridc=0 mM

- gigen ¢=0.81 mM
x  grid ¢=0.81 mM

. FIG. 7. Normalized eigenspectra using Eq.
(39) as thick and Eq(32) with k=1.24 cm? as

: thin lines, respectively, in comparison with the
average power spectf8.072 s, detrended, Han-
ning window from the grid with Table Il
parameters.

thick lines: k-integrated
thin lines: fixed k=1.24/cm

f[Hz]

the signal of a patch of cortex. The total potential measure®ur choice of spatial noise filter meansP,(k

at positionx with x,X’ € R? is >14.14 cm*,w)=0 and hence the integral in E¢39) is
definite in practice.
¢()Z,w):fd2xrqf()z' -X)ho(X', w), (33) In Fig. 7 we show the quality of the “eigenspectrum”
estimate in comparison with average spectra from a full

grid simulation. The agreement is impressive. Thus the
N P T T R frequency content of the grid output is relatively independent
dKw)= | dXe" (X 0) =V(-Khe(k,w), (34  of the grid geometry and of the input noise distribution
for small enough &pee {grid  Mn(Pee OPed X, t]
whereW(Ax) represents the weight of a contribution at dis- — “eigenspectrum”p.g. Note that the apparent disagree-
tanceAX. The total power spectrum is then ment at<1.3 Hz is an artifact of the detrending and finite
length of the time series. The “eigenspectra” shown have
(21)2 f d?k| p(K, w)|2. (35) been estimated using E(B9). If instead one uses a fixdd
a

=1.24 cm? and Eq.(32), as before, one obtains a slightly
: L - hifted « peak with smaller frequency width, as well as re-
The simplest assumption is that contributions come onlyc’ o . T L .
from a two-dimensional disk of radidgand there with equal dgcedé activity. Th|s pre(j|ct|on is shown by th? thin lines in
Fig. 7 and obviously diagrees somewhat with the results

H(w) = f d*X| p(X, w)|* =

weight from our grid simulation. Apparently then, the dependence of
. 1 for |AX| <R, ho(k, w) onk is appreciable for the parameter set of Table III.
W(AX) =W (|AX]) = 0 otherwise (36)  One can usually find a fixeki that matches the correspond-

ing grid results well, but that scale is not universal. In Fig. 7
2mR we also show the prediction for a fully anesthetized state
W(K)=W(k) = =3, (kR), (37)  (3.33 MAC isoflurang just as in Fig. 4. The integrated
k eigenspectrum prediction continues to be in excellent agree-

where ] is a Bessel function of the first kind. ti, also ~Ment whereas the one for fixédstill falls short.

depends only on the magnitudeas in Eq.(32), we can
reduce Eq(35) to E. Pole sensitivity

The linearization of Eq9.1)—(6) and(12) also enables the
semianalytical determination of the sensitivity of our model
resonances to parametric perturbations induced by GAs
Note that for |ho(k,w)|>=const, H(w)=mR?X const. We based on our current knowledge regarding their targets of
choseR=0.77 cm in the following, which gives a realistic action. Because the linearized behavior of our theory de-
sample area of almost 2 &fil]. Note that the infinite upper pends dominantly on the location in the complex plane of the
limit for the integration does not pose a numerical problem.corresponding poles, it is sufficient to investigate their mo-

©

H(w) = 27R? J %(Jf(kRﬂhe(k, o). (39)

0
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TABLE Ill. Parameters within the ranges of Table | yielding a
physiological power spectrum, Figs(bd and 7, appropriate firing
rates, Fig. 5, and a stable “biphasic” power surge under anesthesia,

Fig. 9.
ht, -62.226 mV h! -65.666 mV
Te 132.55 ms T 135.91 ms
hed -18.038 mV hed -16.554 mV
hed -81.976 mV htd -78.995 mv
Tee 0.10631 mV T 0.64105 mV
Tie 0.46477 mV T 0.28663 mV
Yee 291.50 st Yei 697.76 st
Yie 458.67 st Yi 82.330 §*
NE, 2185.8 N2 3749.8
NE 466.30 NE 160.69
N, 4611.6 N, 1372.4
Aeesei) 0.92809 cm? v 684.24 cm/s

Sl 196.08 st g 454.40 st
e -45.104 mV ) -43.910 mV
e 3.8420 mv G 45793 mv
Pee 6603.4 st SPee 660.34 st
Dei 2625.7 st Pieii 0st?

& 0ms I abs 0 ms

tion in response to such parametric perturbations.

The first component of Eq31) can be written in transfer

function form as

PHYSICAL REVIEW E 71, 041902(2005

DF D F
&izﬂ_ql[&_w] i <9Xef9qj'_5qj'5'xe
o oLyl JF D
IXe dw X,

(42)

Redw/98;] and -Infdw’/4G;] give the sensitivities of an-
gular frequency and damping, respectively. It is perhaps
helpful to note that the pole and its corresponding eigenvalue
relate as R@ =Im\" and Imw =—Re\". The evaluation of
the expressions in Eq42) generally requires a symbolic
algebra program.

Now the predicted change in the EEG resonant frequency,

o, for small normalized changes in the parametes

simply becomes

(43

On the basis of our current understanding of the subcellular
targets of inductive GA actioge.g., isofluranpwe can hy-
pothesize that dominantly
" o'
TA A'Yie + TAA’YH ,
Yie Vi
which expresses the fact that the principal effect of GAs at
low concentrations is to increase charge transfer at inhibitory
synapses, i.e.AY,A%.<0; see also Fig. @). A similar
hypothesis can be postulated for dissociative GAg., ket-
amine assuming that at low concentrations they pnmanly

reduce charge transfer at excitatory synapSlEEee,AFe,

Aw' = (44)

N(w,q,Xe)

oK,
nelkw) = D(w,q,%e)

—— Puko), (39

with P;,=N/D. The notation withg and x, makes explicit
the dependences of the modglconsists of the independent
parameters listed in Table | and of the wave nunbemdx,
represents the singular point around which we linearize. To
obtainx, Eq. (18) is inserted into Eq(19) and then an equa-

<0.

V. SIMULATION RESULTS

A. Average behavior of parameter sets

In the following we will be employing exclusively the
linear approximation in the search for reasonable power

tion of the formF(x.,) =0 is solved with a chosex,(q).

The total derivative of this equation with respectdoat

X(d) is

f%ﬁ]
X

SF o
5qj[Xe(d)]—{ oy T o

(40)

In order to determine the poles we so®éw,q,X,) =0 for w.

For a specific polew’(4,%) we similarly obtain the total

derivative of the equation

a]:[@a—‘%

L@ Je o0

@%+£] _
&9 ®

The sgnsit*ivity of a model pole” to a normalized change
aj=(qj—qj)/qj around the given parameter sgt is then

found by substituting Eq(40) into Eq. (41),

(41)

spectra in parameter space. This has the obvious disadvan-
tage that we will overlook all nonlinear solutions. However,
it appears that linear solutions are much more common and
cover the observed range of real human power spectra. In-
deed spontaneous EEGs recorded with and without the pres-
ence of GAs are generally indistinguishable from a linear
random procesgsee Sec. VI for further detajlsThe huge
advantage of the linear approximation is simply computa-
tional speed. On a typical personal computer we can evaluate
the eigenspectra of ¥(parameter sets in less than 1 min.
That includes all the varied tests we perform in order to
determine whether the spectrum is of reasonable shape. With
this kind of speed it becomes possible to search the param-
eter space with Monte Carlo methods. Depending on the de-
tails of our selection criteria, we find one proper solution in
about every 19trials.

Given a randomly generated set of parameters, we first
check that a singular point solution exists which implies in-
hibitory and excitatory firing rates between 0.1 and 20 s
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o-peak frequency [Hz]
85 9 9.5 10 10.5 11 11.5 12 12.5

FIG. 8. (a Eigenspectra of
73 454 “linear” parameter sets.
The spectra are displayed along
the vertical axis at 0.25 Hz fre-
qguency resolution with gray scale
indicating their normalized values
(O—black to 1+~white). The
\ ‘ I | spectra are sorted along the hori-
675 025 975 1025 10.75 125 175 1225 zontal axis according to their
681 4287 8971 14542 22110 32986 66174 73428 a-peak frequency. (b) Corre-

(b) c = 0.486 mM (2 MAC) sponding eigenspectra at 2 MAC
isoflurane; the order along the
horizontal axis from(a) has been
maintained, but now set numbers
are shown. Example: there are
2853 eigenspectra with 10 Ha
AR ‘ peak frequency“9.75" to “10” in

LU T A I N M (a), “11 689" to “14 542" in (b)].

0 i 1
2251 6484 11689 17441 27108 40058 57789 71679
set number

20

15

1[Hz]

10

Second, we check that the solution is stabl&keN,<<0.  took the equivalent of 52 days on a single PC to obtain these
Then we compute the eigenspectrum. The third test is on thgolutions. Since we were able to use a PC cluster, the bare
power in thes (0-4 H2, 6 (4—8 H2, a (8—13 H2, and  computation was performed in less than two days. However,
B (13—30 H2z bands. The criteria used have undergone somé&onsiderable extra time was spent on optimizing the selec-
variations and viable solutions have been retained througHion process. Although solutions with largerfrequency ap-
out. About half the solutions come from a selection runP€ar more common, this does mainly reflect the mentioned
which required 15-50 % of total power @ 10-25 % in@ selection rules for_ about half of the solutlons_. Ther_e we
15-40 % ina, 15-40 % inB, and power ratio®/ 5<0.6 and forced the power in theg band to be comparatively high,

0l a<0.7 Fé)urth we chéck the 90% spectral edge fre_whlch is more readily satisfied with anresonance at higher

S : frequencies. Figure 8 also shows how these spectra change
quency (SEFyg), which is defined as the frequency below under anesthesia. There is a clear shift of the formband

which 90% of the power resides. In the mentioned selectioy\ 4rq lower frequencies. At the shown 2 MAC isoflurane
run SEky, was required to be 12-21 Hz. Fifth, we computéhe gap to thes band has almost closed. Furthermore, we
the quality of thea peak by subtracting background linearly gpserve a general tendency of the formepeak to broaden
and requiringQ=Af,/f,>5.5, whereAf, is the full width at  ¢considerably.

half maximum. Sixth, we look at the extremal values of the By calculating the linear sensitivity of these sets to GA-
spectra in thes, 6, and« bands. Here we require that the  induced parametric perturbations we can evaluate the ability
maximum is not larger than five times and not smaller tharof our theory to account for the most general EEG features of
one-third thed maximum. Furthermore, thé minimum may  the GA effect. Table IV shows calculated sensitivities for the
not be larger than half of either the or § maxima, and not two most weakly damped poles of E9) in response to
larger than 90% of thé minimum. small perturbations in a range of parameters expected, on the

The final, seventh test concerns the behavior with regarthasis of experimental evidence, to be modified by GAs. We
to anesthesia. Here we go from zero to 3.33 MAC isoflurandiave averaged over 86 sets chosen at random from the
in 30 steps and check that the solution remains stabl@3 454 and sek=1.24 cmi*. As discussed in Sec. IV E it is
throughout, as clinical experience indicates that isofluraneeasonable to assume th&¥; ,A%,,<0 describes inductive
induces seizures only very rardlgee for example Ref43]). GA action at low concentrations. If we further assume, to
This involved procedure is necessary in a completely autofirst order,A%,.=uA%; then we are able to concludieee Eq.
mated search to suppress spectra which appear unreasonaf#d)] that if 0<w=<7.7 then inductive GAs will be associ-
to the trained human eye: the remaining spectra look likeated with a reduction in the frequency and damping.,
typical “occipital «” EEGs and compare well with human ReAw" <0, -ImAw" > 0) of the a pole. u can be identified
spectra recorded by our group. However, our criteria do nowith the relative efficacy of the GA at inhibitory synapses on
represent an attempt to characterize the full range of sucéxcitatory cells compared to inhibitory synapses on inhibi-
human EEGs, but simply aim to select a sufficiently repretory neurons. To our knowledge no experimental evidence
sentative sample. exists forus1.

In Fig. 8 we display the final result: 73 454 spectra gen- Thus the effects of low concentrations of GA are qualita-
erated from as many parameter sets as have survived thigely predicted to be associated with a change to higher-
cuts. As mentioned above, these sets have been selected framplitude, lower-frequency EEG activity. This prediction is
roughly 7x 10° randomly generated parameter sets and iin accord with experiment and the known proconvulsant
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TABLE V. Sensitivity to normalized parameter changes of the cortical stability, whereas inductive GAs promote cortical in-
frequency and damping of the two most weakly damped poles avstability.

eraged over 86 randomly chosen sgits 1.24 cn1l). One of the However, to obtain quantitative predictions one should
poles (a conjugate pajrhas « frequency, the other=0 Hz. The  take into account all poles and their respective gains. Thus
frequency sensitivity of the latter is negligible. we turn again to the full expression given by E(&l), (32),
and(38). In order to elucidate the general trends for chang-
Sensitivity (rad/9 ing concentrations of an anesthetic agent, we now compute a
number of quantities for all 73 454 sets and concentrations
Frequency Damping from 0 to 3.33 MAC: the Fotal power qirelative to the t.ot_al _
Re(dw'[3G)  ~Im(dw'/4;) power at zero concentration; the fraction of power residing in
Normalized change of 5, 6, a, B, and y bands; and the spectral edge frequencies
parameteq; a o =0Hz  below which 50%, 90%, and 95% of all power resides. These

quantities are shown by the light shaded bands in Fig. 9, as

lee 32.5 8.2 73 computed from the eigenspectra of the sets. The edges of the
T 4.4 18 —2.8  bands represent the 16% and 84% quantiles of the distribu-
e -19.0 -16 -3.4 tion of values at a particular. The middle line represents the
. median, i.e., the 50% quantile. Thus 68% of the 73 454 sets
T 17.4 1.1 2.8 .

i have a value within the shown band.
Yee —-32.4 -8.2 6.2 As anesthetic concentration increases, for most sets total
Yei -1.8 -2.9 2.8 power decreases. The fraction of powerdiand 6 is above
Yie 23.3 0.7 4.2  baseline at high concentrations. The fractionsgfower first
W 16.5 5.4 —g.g rises and then falls mildly at lower concentrations, before

steadily increasing. In contragtpower rises quickly at lower
concentrations and then slowly sinks again. At the same time
properties of a range of volatile GAs. Because sensitivities ofhe fraction of power in ther and 8 bands steadily falls. All
pole damping for the zero-frequency case have approxithis is consistent with the motion of the originalpole to-
mately the same magnitude but opposite signs for equivalentard lower frequencies.

changes inA%y, and Ay; we would expect it to contribute It is interesting to see that power in theband is not on
little to changes in total EEG power at low anesthetic con-average diminishing, and hence also the spectral edge fre-
centrations. Since dissociative anesthetic agents like ketjuencies at 90% and 95% remain fairly steady. The combi-
amine or xenon are assumed to principally redigeandl’s;  nation of slowly falling 8 and steadyy fractions of power
their predicted effect, at low concentrations, is to reduce thesuggest that the formex peak is becoming broader while
frequency, and increase the damping, of thg@ole. Thus, moving to lower frequencies. On the other hand, $EF
qualitatively at least, inductive and dissociative GAs are prefalling as one may have expected. Since the SEEquency
dicted to have different effects on electroencephalographies in thea range, it traces directly the shift of thepeak. The
stability. At low concentrations dissociative GAs promote results shown are consistent with what we expect from the

vol.% vol.% vol.%
0 1.17 2.34 3.51 1.17 2.34 3.51

o

T = = 60 FIG. 9. The bands display the
e 15 § § 16% (lower edge, 50% median
g , sl g 240 (middle lin®, and 84% (upper
: 1 R | = = edge quantile of all 73 454light)
30 \\. 3 220) and 86 selecteddark) parameter
B g g 7 sets. The selection criterion is
s 0 0 marked in(a). Results for the set
E:’ —] ::,eaed 5 ge of Table Ill, one of the 86, are
3 — eigen 5 5 sh_own by a solid black I_|ne
£ 30 * fllgid J} o o (eigenspectrum and stars (grid

2 55 2 E ' simulation. The plots show the
3; 5 52_ TR esa— following variable's dependence
g | @ LN GRS 5 S | on isoflurane concentratioat (a)

C o o total (0-60 H2 power normal-
% 30 ized to that atc=0 mM; (b) &
- (0-4 H2, (c) 0 (4-8 H2, (d) @

(8—13 H2, (e) B (13—30 Hz, (f)
vy (30—60 Hz fraction of power;
(g) 50% median(h) 90%, (i) 95%
| spectral edge frequency.

(h)SEF g,
(i) SEF o

0 0.243 0486 0.729 0 0243 0486 0.729 0 0.243 0486 0.729
¢ [mM] ¢ [mM] ¢ [mM]
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vol.%

FIG. 10. Bands(16—84 % quantile, middle
line is median showing the change with isoflu-
rane concentration for the two least damped ei-
genvalues. Frequendym(\,)|/(2)=0 for all 86
“biphasic” sets used.

n
n

damping: ®(1_) [1/s]

20 A, - damping

frequency: | 3(4 )|/ (2x) [1/s]

Ay - frequency

25 |12
1 1 1 1 1 L 1 o
0 0.1215 0.243 0.3645 0.486
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pole movement predictions, but we do not see the expectedcted sets the power fraction in the band now remains
“biphasic” behavior of total power in the shown 68% of the steady or even rises at low concentrations, before falling rap-
73 454 sets. That is to say, we do not see total power first risilly at higher concentrations. The fall i is now consider-
and then fall with concentration of the anesthetic agent. Alsoably faster. This suggests an pole which initially moves
SERy, and SEk; are expected to fall with higher concentra- only slowly toward lower frequencies and does not broaden
tions of anesthetic agent. However, if we take a look at thequickly.
parameter set of Table Ill, which we have already analyzed In order to confirm this, Fig. 10 traces the motion of
in Figs. 4, 5, and 7, a different picture emerges. In Fig. 9 thehe two least damped eigenvalues and A, with changing
solid black line represents the predictions from its eigenspedsA agent concentration up to 2 MAC isoflurane
tra. The stars in the same plot represent the predictions olje=0.486 nM). The bands represent the 16%, 50&tiddle
tained from the full grid run. The grid power spectrum hasline), and 84% quantiles of the the 86 “biphasic” sets.
been corrected for the missing power below 1.3(ske the Re(\,,) <0 yields the damping andm(\,)|/(27) the fre-
discussion of Fig. ¥ by replacing it there with its corre- quency of the eigenvalue. [x,)=0, i.e., the second least
sponding eigenspectrum. damped eigenvalue is always real. All other eigenvalues are
First, once more we find very good agreement betweero strongly damped that they play only a marginal role. We
full grid and eigenspectra predictions for all concentrationssee that the least damped eigenvalyéactually a conjugate
of anesthetic agent. Second we note that for this pal’tiCU|E¥5air of eigenvaluegshas a frequency mainly in the medium to
set, which is one of the 73 454, we do obtain a “biphasic’high « range. As concentration increases, this frequency at
power rise and we also see that for this set QERd SEls  first stays roughly the same, but then decreases quickdy to
fall similarly to SEFs,. This suggests applying a further cut and finally § frequencies. Around 0.5 MAC the median)of
on our sets to select only those with such a “biphasic” powefrequencies drops out of theband. Consequently we see in
rise. These sets are obviously to be found in the 32% of sefsig. 9 a sudden decrease in the fractionaopower and an
not represented in the light shaded total power band. increase in the fraction of power around this concentration.
The slow and roughly lineancreasein median damping
of \4, i.e., broadening of the associated peak in the power
spectrum, coincides at first with the peak moving more com-
At 1 MAC isoflurane (c=0.243 nM) we require total pletely into thea band. In Fig. 9 we see an initial increase in
power to have risen at least to 1.4 times its valuex at the mediana fraction and loss in the media# fraction of
=0 mM. Out of the 73 454 sets, this selects a mere 86—power. The edges of the; damping band show more struc-
including the one of Table Ill. The quantiles computed fromture. For example, just before 0.5 MACdecreasean least
only these selected sets are displayed in Fig. 9 as dark shadddmping(upper edge of bandf A;,—sharpening of some
bands. The desired “biphasic” change of total power hagpeaks—results in an increase in the highest fractiorwof
been obtained. But without any further tuning, amelioratedoower (upper edge of bandconsiderably above baseline in
behavior of SEf, and SEks also follows. Obviously, thisis Fig. 9. However, the mediai, peak still broadens as it
reflected in the fraction of power in thgband. There is also moves into thed band. Around 1 MAC the combination of
an enhanced rise and fall i fractional power and greater broadening and motion to lower frequencies starts to seri-
variability of the behavior there and in th& band, which  ously leak power fron¥ into &, and the median peak itself
now shows a steady increase of the median. For the 86 serosses intdd at around 1.4 MAC. The other eigenvalig

B. Sets selected for “biphasic” behavior

041902-16



MODELING THE EFFECTS OF ANESTHESIA ON THE PHYSICAL REVIEW E 71, 041902(2005

=
o
o

rameter will require compensatory changes in others to keep
= selected | the brain functional.

= e - Thus high yields can only be expected from appropriately
o 5 S
,,,,,, e cqrrela_ted'var'latlor?s of model p_aramete_rs. Unfortunately, at
N this point in time little external information about such cor-
1 relations is available. Furthermore, correlation patterns in
high-dimensional parameter spaces are hard to discern, in
100 ' ' ‘ ‘ ‘ ‘ particular with a still very small number of sample points per
« selected ‘ ‘ dimension. A thorough scan is currently infeasible: ten steps
° all 1 per dimension yields 8 evaluations, or about 2 10?* PC

E I I 1 years. Since, however, our completely random search as-
e P Iv IE -FF - I = I -4 sumes no correlations, we can interpret the differing sensi-
I E tivities of “biphasic” sets as unbiased evidence for such ex-
I I | pected correlations. More results like these are needed to
a0 . . ‘ ‘ ‘ ‘ constrain and improve the model. Nonetheless, our successes
r r r r Too 1, Te Y so far suggest that the basics of the model are sound.
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FIG. 11. Mean and standard deviation of
the a pole frequencyRedw"/ 4d)j) and dampind-Im dw"/ 30 sen- VI. CONCLUSIONS
sitivities of_ 86 paran_1eter sets which shc_)wed_ a strong “biphasic” Two general approaches have distinguished themselves in
response, in comparison to 86 others which didsee Table IV. - 506 nting for the effects of GAs on neural activity. The first
Differences in means were uniformly h'g.hly significant wigh kind employs spatially discrete network models of neurons
<0.001, except foryee damping, as determined by a large Samplewith a variety of voltage- and ligand-dependent ionic con-
distribution-free methodl44].

ductances. Although usefpkr se[17], it is nevertheless dif-
in Fig. 10 shows a steadyecreasan damping, which slows ficult to relate the resulting dynamics of such models to clini-

down at higher concentrations. This sharpening of Xge cally measurable macroscopic effects—like the EEG. The
peak corresponds to a continuous increase in the metliansecond kind of modeling approach seeks to link the known
fraction of power in Fig. 9. microscopic targets of GA action with their macroscopic ef-
It is interesting to note that the local sensitivity analysis offects through mean field spatially continuous approaches.
Sec. IV E by itself is sufficient to distinguish parameter To our knowledge only two other works utilizing this kind
sets that show a demonstrable surge in padityer “biphasic”  of approach can be identified previous to this paper. The first,
responsg as a function of anesthetic concentration, fromby Steyn-Rost al. [6], modeled GA action as a first order
those that do not. Figure 11 compares the pole sensitivitieghase transition, induced by an order parameter dependent
obtained for the 86 sets selected here with the 86 parameten GA concentration. Their calculations take the same start-
sets previously selected at random to represent all 73 45#g point as ours, Eq$1)—(6) of Liley et al. Thus in a sense
plausible sets. The results for the latter are collected in Tableur approach can be seen as the next evolutionary step of the
IV. None of the 86 “biphasic” parameter sets are also in-same mean field method. However, despite these fundamen-
cluded in the random selection. tal similarities they find qualitative agreement with observed
The differences in the means, for all parameter sensitiviGA effects on the EEG only under physiologically implau-
ties excepty,. damping, between the two sets are uniformly sible circumstances. We will come back to this related model
highly significantp<0.001 with a large sample distribution- in more detail below. The second, by Tireg al. [7], at-
free method 44]. It is notable that changes iby; andA%,  tempted to describe the effects of GAs on evoked cortical
no longer have opposing effects anpole damping for the response$ECRS9 based on the theoretical works of Freeman
“biphasic” sets. Further the magnitude of these sensitivitie$45] and Rotterdanet al.[46]. While being able to model the
is augmented. Thus the sensitivity profile of the “biphasic”progressive attenuation of amplitude and prolonged latency
sets may become a principal determinant for the expectatioof ECRs seen with increasing agent concentration, it did so
of GA-induced EEG power surges at anesthetic concentrawithout incorporating any of the currently identified
tions generally associated with LOC. Experimentally thisGABAergic targets implicated in inductive GA action.
may enable studying the effects and mechanisms of GA at In this paper we have addressed the mentioned shortcom-
low concentrations. ings of both previous works. We have shown that the ob-
From a more technical point of view these differencesserved spectral features of the human EEG, and in particular
imply that there are additional physiological constraints ontheir response to GAs, can be successfully accounted for
the parameters which are not explicitly incorporated yet inusing a physiologically parametrized, spatially continuous
our parameter searches. This is also indicated by the venyean field formulation of electrocortical neurodynamics.
low yield of acceptable power spectra and firing rates, andrurthermore, by developing a different approach to param-
even lower yield of “biphasic” behavior, from randomly gen- etrizing the action of anesthetic agents we were able to in-
erated parameter sets. Future experimental data may tighteorporate into our macroscopic model detailed and specific
the ranges in Table I, thereby ameliorating the situation. Buexperimental data for the stereotypical inductive GA isoflu-
it is reasonable to assume that natural variations in one paane concerning its effects on IPSP and EPSP amplitudes and
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time courses. While the full theory consists of a coupled set By studying the theory’s defining equations in linear ap-
of eight nonlinear, two-dimensional partial differential equa-proximation, we were able to rapidly search its large and
tions, almost all physiologically plausible behavior could, complex multidimensional parameter space. This allowed us
somewhat remarkably, be obtained from a linear analysiso find physiologically relevant parametrizations which ex-
about the system’s low firing singular points. This was veri-hibit the typical features of the human EEG power spectrum
fied by comparing with parallelized computer simulations ofin the , 6, «, andg bands, as well as reasonable mean firing
the complete theory on grids representing the full typicalrates. Starting from such “normative” EEG behavior, we
spatial extent of human cortex. were then able to meaningfully study its modulation in re-
Our conclusion that the resting EEG, and its behaviorsponse to the systematic changes in inhibitory and excitatory
during anesthesia, can be modeled as a linear random processurotransmission induced by GAs. A parameter sensitivity
is in accord with the results of a number of nonlinear dy-analysis around zero concentration showed that, on average,
namical analyses of experimental data. For instance tam inductive GAs like isoflurane reduce the damping and fre-
al. [47] used nonlinear forcasting techniques in conjunctionquency of the conjugate pair of poles constituting gheeso-
with surrogate data testing to investigate the prevalence of nance. Such behavior is qualitatively consistent with the
rhythm nonlinearity in resting EEGs. Out of 480 2.5 s EEGknown GA effect of shifting EEG power from a high-
epochs, obtained from 60 healthy male and female particifrequency, low-amplitude state to a low-frequency, high-
pants, only 6(1.25% could be distinguished from linearly amplitude one.
filtered white noise using these methods. The successful use We then went on to calculate the quantitative behavior of
of bispectral measurd81S monitoring in determinations of our theory over GA concentrations typically needed to in-
anesthetic depth would seem to suggest that this conclusiafuce and maintain anesthesia clinically. Systematically in-
may not be valid for EEGs recorded in the presence of GAscreasing the GA concentration for our approximately 70 000
The bispectrum and its normalized version, the bicoherencelausible parameter sets resulted in the expected fractional
are used to detect nonlinearities such as interfrequency phas&reases irf and § activity, as well as fractional decrease in
coupling[48]. a. But the majority of parameter sets did not exhibit the
However, recent detailed analyses of EEGs recorded frortransient surge in total EEG power characteristic of the so-
patients undergoing some form of surgery suggest that suatalled “biphasic” response. Eighty-six “biphasic” parameter
an EEG, like its resting counterpart, is indistinguishable fromsets were then selected by requiring a substantial increase in
filtered white noise. Specifically Schwilden and Jeleazcowuotal power(1.4 times baselineat 1 MAC equivalent isoflu-
[49] analyzed 26.4 h of EEGs recorded from a total of eightrane concentration. For these parameter sets the 90% and
patients undergoing abdominal sugery. They found that th®5% spectral edge frequencies clearly showed monotonic re-
fraction of epochs for which a nontrivial bicoherence wasductions with increasing anesthetic concentration.
detected was 6.2%, compared with 13.8% obtained using In contrast, such an effect was absent in the majority of
synthetic Gaussialiwhite noise data. Supporting the rel- unselected sets. This result together with the clear difference
evance of this result, Milleet al. [50], on the basis of clini- in sensitivity profiles of “biphasic” and “nonbiphasic” sets
cal comparisons, were unable to show that a bispectral analpuggests that additional constraints exist that have not yet
sis was any better than a power-spectral-based analysis been explicitly incorporated in our theory. From an experi-
characterizing the anesthetic state. mental perspective the discriminating ability of the sensitiv-
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TABLE V. A selection of 12 parameter sets for Eq$)—(6) and (12) out of those 86 showing a strong “biphasic” power rise; see Sec.
V B. Parameters not listed here should be chosen according to Tetlile(ll +Xg)hy, is the chosen solution of Eq&L8) and(19). The data
in Table 3 of Ref[54] have inspired this particular selection; see Fig. 12. But those data have not been used for determining the original 86
parameter sets.

hi (mV) -70.152 -75.083 -71.915 -78.549 -62.822 -67.265 -63.677 -64.451 -62.038 -74.179 -72.293 -79.078
h' (mV) -65.557 -66.323 -76.042 -76.432 -71.634 -76.182 -74.307 -78.210 -64.990 -62.177 -67.261 -74.426
Te (M9 126.05 129.78 10551 126.46 48.686 81.979 53.688 12252 133.08 81.961 32.209 129.02
7 (M9 131.15 116.53 149.00 145.13 14321 65.665 117.42 126.89 96.501 143.39 92.260 77.340
hid(mV) -16.422 -12.416 -9.0033 -10.722 -5.7406 -18.154 15068 -10.018 -5.4389 -16.256 7.2583 -16.855
hg!(mv) -18.587 8.1660 -10.326 6.3858 -14.169 -4.9348 -1.2171 -10.040 -7.6872 -8.6829 9.8357 -0.60817
h(mv) -83.601 -82.724 -87.476 -84.666 -77.014 -85.493 -87.907 -83.947 -79.655 -78.006 -80.697 -86.897
hi9(mv) -77.778 -85.746 -82.275 -83.481 -87.580 -88.833 -85.931 -87.552 -85.636 -79.480 -76.674 -80.248
lee(MV) 1.1204 0.23631 0.29348 1.7299 0.32694 0.11884 0.10831 0.36844 0.46193 0.32740 0.29835 0.32204
Iei(mV) 1.7901 19680 1.8455 15275 1.3505 0.27110 1.3641 1.2134 0.90863 0.47183 1.1465 0.98323
e (mV) 16079 1.2128 19915 1.7976 1.3704 1.8885 1.4293 15182 0.86035 0.77945 1.2615 1.7386
I (mv) 0.38521 0.36550 0.35259 0.81632 0.98025 0.28057 0.10257 0.24242 0.19125 0.98994 0.20143 0.64509
Yee(SH) 536.71 594.06 841.18 989.31 826.47 359.89 656.33 133.46 939.65 125.36 122.68 595.98
Yei(sH) 950.75 487.60 859.70 728.78 906.57 897.73 800.05 257.09 717.38 627.14 98251 930.15
Ye (s 470.98 309.93 451.66 249.88 446.06 310.45 389.73 485.09 469.46 210.53 293.10 69.449
¥ (sH 11212 89.657 84.790 11291 85.636 96.192 87.991 111.17 106.88 129.72 111.40 61.290
Nge 2495.0 39954 21940 25095 2008.4 3639.7 2603.2 2678.1 4570.7 2786.6 42024  2277.8
Ne'Bi 4425.7 3678.7 4752.2 3401.1 4750.0 3869.3 3811.6 4575.8 4176.1 2802.0 3602.9 2503.1
Ni'% 523.75 106.34 699.60 742.06 582.01 514.24 22458 373.09 505.21 55159 443.71 203.01
Nﬁ 519.43 233.08 51595 770.87 385.87 548.39 591.88 626.57 523.02 288.92 386.43 504.47
Nge 4169.6 4084.8 3668.7 4208.0 2031.0 35919 3505.2 3060.9 2966.6 2149.5 3228.0 4967.6
Ng; 2099.0 10329 1033.0 1452.3 1099.4 20059 12474 2081.2 11415 2448.7 2956.9 1347.6
A (cm™Y)  0.74744 0.11922 0.34501 0.33835 0.31505 0.28265 0.84744 0.80260 0.21252 0.96933 0.60890 0.94826
v(cmY)  648.82 24622 780.67 754.34 218.00 673.72 23451 901.10 481.67 743.94 116.12 984.15
S™(sl) 73.134 363.20 355.24 149.33 67.222 87.005 81.612 58.463 83.887 22271 66.433 272.80
" (s} 182.39 12155 42478 51599 233.78 176.30 52578 312.88 363.52 122.30 393.29 142.84
pe (MV)  -43.383 -53.610 -52.279 -40.604 -42.869 -48.925 -53.577 -41.437 -43.611 -51.129 -44.522 -47.867
wi (MV)  -46.960 -45.360 -48.592 -53.120 -42.052 -49.717 -42.697 -49.024 -40.450 -51.109 -43.086 -47.732
oe(MV) 42840 4.2660 4.9083 6.1417 6.7898 6.7627 4.6999 2.2834 4.3683 4.4783 4.7068 6.7860
o (mV) 29594 51212 3.6979 2.7247 4.0164 6.9368 4.6956 3.9589 4.8866 4.8342 2.9644  3.9343
Pee (1) 22581 89929 60249 46624 22889 8924.6 5975.4 2117.7 8041.4 48045 2250.6 204.95
Pei (S 1139.6 385.28 11156 2693.2 212.00 2025.0 8684.6 98.487 530.95 2642.8 4363.4 3041.8
h; (mV) -56.859 -71.569 -71.877 -62.223 -58.604 -61.278 -66.274 -48.905 -54.966 -65.452 -59.661 -68.424

ity analysis may suggest ways in which the mechanism oby definition the mean soma membrane potentials, are ex-
GA can be studied at conveniently low anesthetic concentrggected to vary nonsmoothly with anesthetic level, a predic-
tions. tion not borne out experimentally. Comprehensive studies
We briefly return to the related theory of Steyn-Ressl.  [51] indicate that GAs reduce spontaneous action potential
[6], because a comparison allows us to elucidate a number @ifing in a relatively smooth dose-dependent manner.
crucial advantages of the model presented here. Steyn-Ross In contrast, our theory does not require leaving a stable
et al. adiabatically reduced Eq$1)—(6) in homogeneous branch in order to obtain a surge in total EEG power. Indeed,
form to a system of two coupled nonlinear ordinary differ- the majority of physiological plausible dynamics occurs with
ential equations, and then studied their linearized white noisparametrizations exhibiting onlgne stable low firing rate
fluctuation spectrum. Qualitatively, a “biphasic” effect was singular point. Even in the minority of cases where multiple
produced showing hysteresis between the “induction” andgingular points are found, population neural firing activity
“recovery” phases of anesthesia. The basis for both the surgghould always be in accord with experimental rates typically
in low-frequency powe(“critical slowing”) and the hyster- between 0.1 to 20 pulses per secdp@s (see for example
esis is attributable to their system moving between differenRefs.[52,53). In contrast Steyn-Rost al. haveresting ex-
stable null-cline branches. This implies that firing rates, anctitatory and inhibitory neuronal firing rates, at zero anes-
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TABLE VI. A selection of 12 parameter sets for Eq$)—6) and(12) out of those 73 3680t showing a strong “biphasic” power rise;

see Sec. V B. Parameters not listed here should be chosen according to Tbl#él&xe)hg is the chosen solution of Eg6L8) and(19).

The data in Table 3 of Ref54] have inspired this particular selection; see Fig. 12. But those data have not been used for determining the

original 73 368 parameter sets.

hy (mV) -79.301 -74.262 -73.375 -74.809 -63.009 -67.309 -68.008 -77.897 -73.148 -78.504 -74.887 -69.468
hl (mv) -65.658 -70.219 -72.156 -74.010 -77.819 -69.499 -64.406 -61.485 -63.755 -74.825 -70.819 -65.402
7o (M9 74.633 11.787 65.733 42.183 43.667 120.29 51.353 114.34 148.18 112.02 64.389 15.060
7 (M9 116.48 138.25 77.238 77.991 48.614 85927 139.91 120.98 11045 130.87 102.88 45.711
hed(mV) -1.7913 -12.998 -6.1453 -9.4775 -8.3898 1.4387 0.10317 -15.478 -12.312 0.19506 -5.0918 1.5372
hel (mV) -8.9948 -18.516 -6.8789 2.3501 -12.819 -7.6350 0.89281 -17.960 -9.7025 9.6042 -7.5187 -12.830
hi'(mV) -84.503 -81.389 -85.087 -82.383 -86.471 -78.148 -76.314 -84.965 -70.637 -86.581 -86.376 -76.218
hi%(mVv) -86.279 -82.898 -84.564 -83.772 -86.492 -89.533 -80.368 -87.456 -86.168 -81.842 -80.451 -78.381
Fge (MV) 0.79070 0.92695 0.25283 0.55879 0.11685 1.2015 0.29420 0.62454 0.24586 0.55290 0.67576 0.54214
i (mV) 18752 1.3012 1.7238 1.8244 1.3761 1.3415 0.68088 1.9905 15104 0.75036 1.6601 1.2301
e (mV) 17374 0.19053 1.6983 1.0051 0.61087 1.9721 1.6722 15395 0.39485 1.4952 1.8018 1.3222
I (mV) 0.93418 0.94921 0.21967 0.70799 1.1084 1.9578 0.86047 1.0311 1.8980 0.68146 1.2419 1.7150
Yee(Sh) 911.23 816.04 238.83 854.84 58552 971.10 351.64 94755 703.62 196.69 405.30 601.75
Yei (S 263.64 26129 188.92 421.82 254.60 571.17 406.30 491.92 426.65 106.67 314.96 194.64
Ye (s 41520 219.09 485.66 314.93 294.38 12579 335.58 447.17 20225 265.16 390.34 203.81
yi (s 37.922  40.575 32.659 44507 28.351 49.013 54252 50.021 38.169 49.030 54.273 28.176
Nge 2493.0 3893.0 2682.7 2654.2 3169.8 3246.2 23355 2957.5 2013.8 2290.9 4234.6 4492.9
iji 2133.1 3326.8 2433.8 3030.1 4349.8 2539.9 28235 4689.2 3601.3 2285.6 4440.1 41725
Nilfe 952.04 839.39 959.11 466.65 883.26 822.84 933.82 758.36 804.38 257.81 839.75 482.48
Ni‘f 691.83 682.41 337.13 211.81 129.65 745.97 692.24 289.56 146.48 222.87 578.24 952.66
Nge 34109 40135 38134 2729.3 2716.7 2629.3 31779 2367.2 44712 2055.0 2296.0 3571.4
Ng; 2775.8 1544.3 2183.2 24827 1965.8 1784.8 12115 1619.0 1603.3 2165.3 1811.2 2769.0
A (cmil)  0.85707 0.96545 0.36352 0.61940 0.37098 0.64873 0.66420 0.98304 0.12448 0.38379 0.80136 0.34765
v(cm?Y 106.68 101.78 33211 776.27 161.41 636.07 47532 12541 953.10 513.42 79575 317.83
S™(sh) 196.17 266.44 291.86 23151 398.31 335.82 307.69 46224 253.15 402.81 267.50 102.61
"™ (sh) 389.24 300.65 377.27 183.69 252.23 257.93 397.24 183.35 14559 53.402 34475 475.63
e (MV)  -53.020 -43.634 -44.648 -42.756 -40.859 -45.007 -41.154 -41.903 -46.486 -42.852 -48.084 -43.695
wi (mV)  -42.091 -50.836 -40.912 -52.535 -46.798 -49.958 -52.219 -51.854 -54.379 -49.230 -54.688 -42.247
0. (MV) 6.2066 5.6536 6.6687 6.4016 3.7178 3.0158 5.3708 6.7661 6.2127 5.6446 4.7320 4.8791
o (mV) 4.6483 3.3140 3.3770 3.2945 24196 3.2253 3.2753 3.0434 3.7758 4.4832 3.6845 2.7574
Pee(sh) 4406.3 83.190 2133.2 4087.4 92252 9379.7 9909.2 9265.9 5073.9 4381.4 2073.4 983.37
Pei (S  4133.7 64075 42193 30313 59323 8900.6 7011.4 3023.7 165.84 77752 1387.0 2303.9
h; (mV) -79.764 -72.299 -79.743 -73.618 -62.403 -61.811 -65.271 -78.263 -69.261 -70.227 -72.334 -66.541

thetic concentration, always greater thg§f*/2 andS"*72,

Many insights will be gained from the comparison of the

respectively. For their parametrizations this is typically predicted effects for different GA agents, once appropriate
greater than 250 pps. Furthermore, they parametrize anedata is available. Even now it appears feasible to fit our
thetic action only by scaling inhibitory neuronal rate con- model predictions quantitatively to experimental EEG data.
stants(i.e., yx— y/\) in an adiabatically reduced model As an outlook, we present in Fig. 12 a rough comparison.
incapable of exhibiting any physiological resonance. Our See the appendix for the details. However, we believe that
model delivers the complete spectral content observed in hidedicated experiments in which the theoretical modelers are
man EEG, appropriate mean firing rates, yet “biphasic” riselosely involved are necessary. Otherwise it appears nearly
in total EEG power can occur within meaningful physiologi- impossible to disentangle failures of the model from vagaries
cal and pharmacological domains. of the experimental procedure, in particular if the data are

A number of further advances can be made based on thaken in an operating theater full of noisy electronic equip-
work performed in this paper. More stringent experimentalment. In this respect the possibility of performing studies
constraints, in particular with regard to the GA modeling, canwith low concentrations of GAs, as suggested by our sensi-
remove much of the remaining uncertainty in the predictionstivity study, may become very useful.
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Furthermore, there still remain some fundamental conin Fig. 12 represent this time not quantiles, but means
cerns aboutvhatone should attempt to model. For example, (middle line and standard deviation®dge$. This allows
we have not addressed at all the issue of possible hysteregigrect comparison with the means and standard deviations of
in EEG total power surges with regard to the induction anddata taken from 12 patienf§4]. The dark bands in Fig. 12
recovery phase. At this point in time it is unclear whetherrepresent the selection of Table V, the light ones are calcu-
such hysteresis is not just a reflection of pharmacokineticdated from the selection in Table VI.
We may be able to shed light on this issue with our full grid  The comparison is nontrivial for total power: The appro-
simulations, which showed sensitivity to the speed of GAPpriate constant of proportionality for relating ol and the
concentration change. In the long run we may be able t&xperimental EEG amplitude of Ref54] is unknown in
determine the parameter set corresponding to the brain of Rractice. Furthermore, for linear eigenspectrum predictions
patient with sufficient precision to predict his or her indi- Ne™ 6pee @and thus itsabsolutevalue is as uncertain as the
vidual response to a range of GAs with an accuracy useful t§onstant of extracortical noise variangg.. An upper limit

researchers of consciousness and medical practitioners.  for 6pee could be obtained by requiring consistent linearity in
full grid simulations, but we have not attempted this here.
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Victorian Partnership for Advanced Computing. power follows the experimental trend well, but appears sys-
tematically lower than experiment. Among the unselected
APPENDIX: PARAMETER TABLES “biphasic” parameter sets some have stronger power surges,

but did not improve the overall agreement. In contrast, the
The complete collection of 73 454 plausible parameternonbiphasic” selection fails completely with regards to
sets is available on request, as is the subset of 86 parametgER,, and total power. Concerning the fraction of power in
sets showing a strong “biphasic” power rise. However, itthe 5 band, the “nonbiphasic” selection agrees but seems to
seems appropriate to list here some exemplars of these sefgve the wrong concentration trend. The reverse situation
for immediate use. A selection of 12 parameter sets out of theccurs foré, «, and B fractional power. Here the “biphasic”
86 “biphasic” ones can be found in Table V. To represent theselection clearly fares worse than the “nonbiphasic” one.
majority of other parameter sets, Table VI collects 12 “non-  However, the concentration trend & is actually better
biphasic” ones. In order to arrive at the selections in a nongescribed by the “biphasic” selection. A constant increase of
arbitrary manner, we have compared results derived from thghe 3 fraction of power by about 8% would mean very good
eigenspectra of these sets with the isoflurane data in Tab'e@I'eement_ A Corresponding decreaseiat low concentra-
of Ref. [54]. Thus we have computed and compared theajons and iné at high concentrations would result in a good
mean and standard deviation of SgRotal power, and, 6,  overall fit for the “biphasic” set. A dedicated search for

a, and 8 band fractional power for these _selgé:tions. matching parameter sets might ameliorate these problems.
Given the impossibility of mvestlgatlndlz) or even One can also speculate that there is some contamination
worse(%3*®) unique combinations, we have just endeavoredn the shown experimental data. If some of the observed

to find selections matching these data “better than averagegower in theg band stems from noncortical sources, e.g., is
Furthermore, the original parameter searches were not taan artifact of muscle movements, then the deviations may be
lored to this data. Hence these selections do not representaatificial. In particular the data showing a constant power
best fit of our theory to this data. Proper comparisons withfraction in the « band are curious. One could reasonably
experimental data will be the topic of a future paper. Withexpect some decrease at higher concentrations. On the other
those caveats in mind, it is nevertheless instructive to sekand, there is a clear power rise in the data and thus the
how well these selections compare with the data. The bandsionbiphasic” selection is clearly disfavored.
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