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Multicomponent alloy solidification: Phase-field modeling and simulations
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A general formulation of phase-field models for nonisothermal solidification in multicomponent and multi-
phase alloy systems is derived from an entropy functional in a thermodynamically consistent way. General
expressions for the free energy densities, for multicomponent diffusion coefficients, and for both weak and
faceted types of surface energy and kinetic anisotropy are possible. A three-dimensional simulator is developed
to show the capability of the model to describe phase transitions, complex microstructure formation, and grain
growth in polycrystalline textures.
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I. INTRODUCTION ible thermodynamic$18-20, they can be applied to pro-

Alloy systems with multiple components are an importantc€Sses  close to  thermodynamical equilibrium—i.e., - at
class of materials, in particular for technical applications and€latively small driving forces. Extensions of the phase-field
processes. The microstructure formation of a material plays @Pproach to describe strongly nonequilibrium solidification,
central role for a broad range of mechanical properties andolute trapping, and solute drag effects at large driving forces
hence, for the quality and the durability of the material. Aim- are discussed ifi21,22. The scaling problem of quantita-
ing for a continuous optimization of materials properties, thetively modeling the low-growth-rate regime where the mi-
study of pattern formation during alloy solidification has Crostructure is typically several orders of magnitude larger
been a focus of many experimental and, recently, also othan the microscopic capillary length has been overcome by
computational work. Since the microstructure characteristicsonsidering a so-called thin interface limit of the phase-field
are a result of the process conditions used during productiorodel[23-27.
the analysis of the fundamental correlation between the pro- The purpose of this paper is to extend the advances of the
cessing pathway and the microstructure is of fundamentgphase-field approach to model general nonisothermal multi-
importance. Multiple components in alloys are combinedcomponent multiphase solidification in situations close to lo-
with the appearance of multiple phases leading to complegal thermodynamical equilibrium and to generalize former
phase diagrams, various phase transformations, and differeftodels [20,28. The underlying general formulation of
types of solidification. Modeling and numerical simulations founded on an entropy functional is given in Sec. Il. Explicit
aim to predict microstructure evolution in multicomponent expressions for the free energy densities of the bulk phases
alloys in order to virtually design materials. However, theand interfaces are discussed. A method is described how the
great number of material parameters and physical variabledrtifical appearance of foreign phase contributions at a two-
involved in systems yields a complexity that remains a bigphase boundary can be avoided. Formulations defining the
challenge for future work. In particular, the gain of statisti- bulk, interdiffusion, and interfacial diffusion coefficients as
cally meaningful data from computations requires simulawell as different types of surface energies and kinetic
tions in sufficiently large domains with a tremendous need ofnisotropies are presented. In particular, an expression of
memory and computing time resources. To treat complexrystalline(faceted anisotropy is given that can be used for
systems, high-performance computing, parallelization, andénodeling general crystal shapes with an arbitrary number of
optimized algorithms including adaptive mesh generators arédges and corners in three spatial dimensions. The essential
mandatory. ingredients of the phase-field model are summarized here,

The phase-field method has become an important tool fothe numerical method for solving the governing equations is
tackling free boundary problems such as grain boundary mddriefly explained, and examples of possible applications to
tion [1,2] and for simulating crystal growth, solidification, numerically simulate moving grain and phase boundaries in
and pattern formation phenomena in allggs-15). The ad-  binary and ternary alloys are given in Sec. Ill. The simula-
vantage of the phase-field method lies in the formulation ofion results are intended to illustratively show the potential of
diffuse interfaces of a finite thickness. Explicit front tracking the phase-field model in computing and numerically analyz-
is avoided by using smooth continuous variables locating théhg complex pattern formations in multicomponent alloys.
grain and phase boundaries. By asymptotic expansions for
vanishing interface thickness, it can be shown that classical
sharp interface models including physical laws at interfaces
and multiple junctions are recoveré¢i6,17]. Since phase- The phase-field model is formulated for a general class of
field models can be derived on the basis of classical irrevergnulticomponent and multiphase alloy systems consisting of

Il. PHASE-FIELD MODEL OF MULTICOMPONENT
SOLIDIFICATION
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K components and\ different phases in a domaif. It is N K T-T
assumed that the system is in mechanical equilibrium and, fo(T,.Cop):= >, > (ciLi“ ! h(qsa))

for simplicity, that the pressure and mass density are con- a=1i=1 T

stant. The concentrations of the components are represented K T
by a vector c(X,t)=(cy(X,1),...,ck(X,t)). Similarly, the +> (BQTQ |n(Ci)) -c,T In(—),
phase fractions are described by a vector-valued order pa- i=1 \Um Tw

rameterg(X,t)=(¢1(X,t), ... ,¢n(X,1)). The variableg,(X,t)
denotes the local fraction of phase It is required that the with |_iN:0 andL?, i=1,... K, a=1,... N-1, being the la-
concentrations of the components and the phase-field varient heat per unit volume of the phase transition from phase
ables fuffill the constraints a to the liquid phase and of pure componénEurthermore,
T8 i=1,... K, =1, ... N-1 is the melting temperature of
K N theith component in phase, andTy, is a reference tempera-
> ¢=1 and, b,=1. ture.c,, the specific heat and,, the molar volume, are as-
i=1 a=1 sumed to be constant, arig} is the gas constant. With a
suitable choice of the functioh(¢) satisfyingh(0)=0 and
The physical effects occurring during solidification such ash(1)=1—e.g., h(¢,)=¢, or h(¢,)=¢%(3-2¢,)—the free
heat and mass transfer, the release of latent heat, the Gibbenergy densityf is an interpolation of the individual free
Thomson relation, and interface kinetics are obtained on thenergy densitie$,. A more general expression for alloys is

basis of an entropy function&(e, c, ¢) of the form the Redlich-Kister-Muggianu model of subregular solution,
1 K K M
Sec,¢) = [S(e.c, ) - (sa(dr, V) + ;Mdﬂ)]dx, for=fig+ 2 2 g2 M(c - ¢)”,
Q i=1j=1  »=0
depending on the internal energy the concentrations;, i with binary interaction coeﬁicientMi(.”) depending on the

=1,... K, and the phase fieldg, a=1,...N. The first parameten. ForM=0, the Redlich-Kister-Muggianu ansatz
term in the entropy functionai(e,c, ¢) is a bulk entropy  takes the form of a regular solution model. In most applica-
density. The second and third summaralsh,V¢) and  tions, in particular to metallic systemi] takes a maximum
w(¢p) model surface entropy densities taking into account th/alue of 2. A ternary term-cc;c, can be added to describe
thermodynamics of the interfaces. As typical in diffuse inter-the excess free energy.

face modelsg is a small-length scale parameter related to  The gradient entropies(¢,V ¢) can be expressed in

the thickness of the diffuse interface. terms of a generalized antisymmetric gradient veaigs
Knowing the free energy densities of the pure phases:d,avqsﬁ_qgﬁv% by

f,(T,c), the total free energ§(T,c, ¢) is obtained as a suit-

able interpolation of the,. The Gibbs relation read&®b-

serve that due to the assumptions the Gibbs free energy and a(¢, V ¢) = > Ap(Qap) = > M[aaﬁ(qaﬁ)]zma,li'z!
the Helmholtz free energy coincide up to a constant a<p a<p Map

df=fdT+ S .dc + S 5 deb, wher_g Yap TEPresent surface entropy de_nsities ang; are
’ . P mobility coefficients. The formulation using the generalized

gradient vectom,; allows us to distinguish the physics of
=—sdT+ > wdg + 2 r,dé,, each phaséor grain boundary by providing enough degrees
i a of freedom. The anisotropy of the surface entropy density is
modeled by the factdia,s(q,s)]? depending on the orienta-
whereT is the temperatures=-f 1 is the entropy density, tion of the interface. The factors are homogeneous of degree
wi=f are the chemical potentials, ang=f , are potentials 0 and henceA,4(q,s) is homogeneous of degree 2. Phase
due to the appearance of different phases. Hegejenotes boundaries with isotropic surface entropies are realized by
the partial derivative of the free enerdywith respect toX. a,5(0,p)=1. Weakly anisotropic crystals with an underlying
The internal energy density is given legf+sT. From this  cubic symmetry can be modeled by the expression
relation it can be derived that,=1/T andsyci:—,ui/T.
Through the free energiek,, a general class of phase 104l
diagrams for multiphase multicomponent alloy systems can Aap(Qap) =1 - 5aﬁ(3 ¥4 “ﬂj), (1)
be incorporated into the phase-field model. The model allows |qaﬁ|
for systems with general free energiggT,c) being convex
in ¢ and concave iff. Choosing the liquid phase to be the with |g[3==,(q*) and|q[*=[=L,(g)]% The strength of the
last componentpy of the phase-field vectop, an ideal so- anisotropy of arw/ 8 phase or grain boundary is given by the
lution formulation of the bulk free energy density(T,c, ¢) parameters,z. For a strongly anisotropic crystal of faceted
reads type, we define
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Aap & additional terms outside d& must be added so that the po-
8ap(dap) = max 90 UNIE (2)  tential is bounded from below by zero. The above potentials
“Nap Hap will be studied in more detail in a forthcoming pag@9].
where 77a , k=1,...n,s are then,; corners of the Wulff  For further approaches we refer t80] and[31] (which is
shape of thex -8 transmon Equatior§2) allows us to model based on ideas ¢82)).
arbitrary crystal shapes with,; corners. The governing set of equations follows from conservation
The interfacial free entropy densitw(¢) might be of laws for the internal energge and the concentrations, i
multiwell type wg(¢) or of a multiobstacle typewv,,(#). =1,... K, coupled to a gradient flow for the nonconserved

Suitable expressions of these potentials can be formulated gbase-field variableg,, «=1,... N. The equations are de-
extensions of the double well or obstacle potential for solid+ived by variational differentiation of the entropy functional
liquid phase-field models: S(e,c, ¢), ensuring energy and mass conservation and the

increase of total entropy. They read
WSI(¢) = 92 maﬁyaﬁ(ﬁz(ﬁfi’v

= s 1 (-M>
—==V [ LpVZ+2 Ly V|I—=2]], 4
ot [00 T E 0j T (4)

WOb( ¢) - 2 maﬁyaﬁd)a(ﬁﬁ

a<B K ]

ac; 1 = Ui
In the obstacle case, we set,(¢)=x= if ¢ is not on the E‘ ==V '|:Li0V $+E Ly V (#) : 5)
Gibbs simplexG={¢ € RN:=_¢,=1,¢,=0}. From a com-
putational point of view, an advantage of using obstacle-type
potentials for numerical simulations is that the partial differ- Do _ ) _
ential equations for the phase fields, a=1,... N, only e oLV -avy (b V d) =2, (6. V §)]
need to be solved in a finite region of the diffuse interface
ayer J Wy (B 4 (TCd)

The relation between the surface entropy(v) of an e T ’

a-B phase boundary with orientatiom and the interface
terms is given by

(6)

where V-(--+) denotes the divergence of the term in the
bracketsa¢ Wy f¢ , andaw are the derivatives of the
energy contributions ‘with respect 0, and V¢,, respec-
tively. The parametek in Eq. (6) is a Lagrange multiplier

garantueeing that the constramf;‘ 19,=1 is preserved—
where the infimum is taken over all Lipschitz continuousije

functions p:[-1,1]— G with p(-1)=e,, p(1)=e; (see[2]

1
Yap(v) =2 igf f va(p,p’ ® v)w(p)dy,
-1

for the detail. The calibration properties of the phase-field 1 N

parametersy, ; with respect to experimentally given data are A= NE eV ay, (¢, Vo)-a, (. V)]
optimal if y,z= v, But in general, the minimizer is difficult a=l

to determine, because it does not follow the edge of the Wy (@) f,(Tcd)

Gibbs simplexG which results in the presence of phase - ; - -

fields different from¢, and ¢, in the transition region. To
avoid such third-phase contributions at a two-phase inter- In referring to nonequilibrium thermodynamics, we pos-
face, additional terms of third order ¢,¢z¢, can be added tulate the fluxes for the conserved quantities to be linear

to the multiobstacle potential—i.e., combinations of the thermodynamical driving forces
_ B s V 8S/5e=V (1/T) andV 58/50, V(=i T).
Wor() = Wor(¢h) + woes YapobaPpds- ) To fulfill the constraini={c lcI 1 during the evolution, it is
required that=f |L;; =0, j= . K. Further, it is assumed
A sufficient condition for choosing the parametggg;s in that the matrixL= (L”)i’j is positive semidefinite and sym-
order to optimize the calibration properties is metric according to the Onsager relations. It can be shown
that this condition leads to a local entropy inequality ensur-
Yaps = —J—lﬂ2 , forall(i,j) € {(a,B),(B,9),(6,a)}. ing non-negative local entropy production. The mobility co-
efficients(L); j=o,.. x are allowed to depend oR, c, and ¢.
Alternatively smooth multiwell potentials of the form Given some heat and mass diffusion coefficierks
=k(T,c,#) and D;=D;(T,c, ), the L;; can be related to
W) = W) + 72 (yaﬁma,mi% > ¢5) them by
a<f 5+ a,B
so far yield very promising results to avoid the appearance of Li=L;= U—mD i 8- _Dig (7)
artificial third-phase contributions. In spite of the fifth-order Ry Ek 1 Dick

terms, the multiwell structure is attained on the Gibbs sim-
plex G, but because of numerical errors in the simulationsfor i,j=1,... K and then recursively,
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N K
Loj=- v—mE > Lih(¢l )L, (8)
Rga=1 i=1
o KK
Loo=KT2+ 27> D h(¢p,)LILjh(p)LE, 9
af i

where g; denotes the Kronecker delta ahfl are the latent
heats of fusion. The formulation in Eq&l)—(9) takes bulk
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FIG. 1. Growth of two eutectic grair(svhite and black and light
and dark greyof a binaryA-B alloy with different crystal orienta-

diffusion effects including interdiffusion coefficients into ac- tjons into an isothermally undercooled m@bntinuous grey scale
count. The dependence of the mass and heat diffusion coeit four time steps.

ficients on¢ can be realized by, e.g., linear expansions. To

also consider enhanced diffusion in the interfacial region oby one spatial dimension. Three different time steps are cho-
phase or grain boundaries, additional terms proportional t@en to solve the three types of equatiplgs.(4)—(6)]. Simi-

b With interfacial diffusion coefficientsD*(T,c,q,,)
need to be added. Altogether, we suggest

1 B
;2 Di (T!C!QQﬂ)d)ad)B!

a<f

N
Di= > DX(T,C) ¢, +
a=1

i.e., in particular that the diffusion coefficients in E@) can
be anisotropic. The quantity=7(¢, V ¢) in Eq. (6) models
an anisotropic kinetic coefficient of the form

A, V ) =19+ 2 Bp(Uup),

a<pf

with B,4(q.)=0 if q,5=0. Possible choices are

4
Bus= Tgﬁ[ugw(sﬂ'%ﬁ';‘ﬂ -7 (10
|qaﬁ|
or
Aap
Bus=105 Max 5‘3}—7, 11
A A 1sk<raﬁ{ Iqaﬁl A 0

if d,s#0 for weakly cubic[Eq. (10)] or strongly faceted
[Eq. (11)] kinetic anisotropies with cornersgiﬁ. Herel,z

larly, three different spatial meshes are used to determine the
internal energy, the concentration, and the phase-field equa-
tions. The values at intermediate grid points are interpolated
from the coarsener mesh. Furthermore, a parallelization of
the numerical algorithm is realized dividing the 3D compu-
tational domain into partial sublayers. The subdomains are
computed on a Linux cluster of dual processor machines
using a combination of two cooperating techniques: MPI
(Message Passing Interface, standard library for implement-
ing distributed parallelisinand OpenMPR(Open Multi Pro-
cessing, library for implementing shared memory parallel-
ism).

In the following, microstructure simulations of binary and
ternary phase transformation processes are shown to illus-
trate the wide variety of realistic growth structures and mor-
phologies in multicomponent multiphase systems that can be
described and investigated by the new phase-field model.
Fields of applications are eutectic grain boundary formations
and structure evolutions in ternary systef8] as well as
eutectic colony growth involving ternary impurity effects
[34] which will be shown by the following examples, but
also multicomponent dendritic and eutectic crystal growth
can be simulated.

determines the strength of the kinetic anisotropy similar to 10 Perform the simulations in Figs. 1-4 we considered a

S,
with isotropic kinetics are realized by settigg,=0.

IIl. SIMULATIONS OF SOLIDIFYING GROWTH
STRUCTURES IN BINARY AND TERNARY SYSTEMS

«p IN EQ. (1) for the surface energy anisotropy. Systems

(o

To compute microstructure formation, a three-
dimensional(3D) parallel simulator has been developed to
numerically solve the set of equations for the internal energy,
the concentrations, and the phase fidlégs. (4)—(6)]. The
solving method is based on an explicit finite- difference dis-
cretization on a rectangular mesh. The following strategies tc
optimize the efficiency of the numerical algorithm with re-
spect to computation time and memory usage are applied: Ar
obstacle- type potential(¢p) as in Eq.(3) is used in the
computations providing the advantage of solving the phase-
field equations only in the region of the phase or grain F|G. 2. (a) Concentration fields,, cg, and cc of a ternary
boundaries—i.e., in the finite diffuse interface region of aeutectic lamellar solidification front with a solid phase configuration
width of approximately 10 numerical cells. This reduces the(a|g|a|y|---). (b) Concentration fieldce for a phase sequence
computational effort with respect to the phase-field equationsa|g|y|- - ).
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@ @ @ FIG. 4. Simulation of lamellar eutectic growth in a ternary sys-
tem with an impurity componert:: The concentration profile of

the main component, in melt is shown in the left and centered
FIG. 3. Formation of a 3D hexagonal rodlike structure in ajmages for two time steps. The ternary impurityis pushed ahead
ternary eutectic system with isotropic surface energies and thregf the growing eutectic front so that concentration-enriched zones
different solid phases, 8, andy. of component can be observed at the solid-liquid interface in the
right image.

ternary eutectic model alloy system of three componénts
B, andC (i=1,...,3, three solid phases&, B, and y («
=1,...,3, and one liquid phasé (a=4). We nondimen-
sionalized the model equatiofiEgs.(4)—(6)] and, for initial-
ization of the computations, we chose the following param-
eter set: Equal grid spacings for the two or three coordinate
at a valueAx=0.01, mobility coefficientsn,;=0.1, a diffu-
sive interface thicknesg=0.05, surface entropy densities

Yap=0.001, an isotropic kinetic coefficient=0.2, zero dif- Dependin h ition in the phase di

@y = p g on the position in the phase diagram, ternary
fusion in the solid phaseﬁ) ¢=0.0, and diffusion coef- alloy solidification may involve phase changes of four differ-
ficients in the liquid, D~ 1. 3—0 01 Further, we constructed gp¢ phases and diffusion of three alloy componégtB, and
a completely symmetric phase diagram with dimensionlesg:_ At the ternary eutectic composition, three solid phases
data for the latent heats of fusioh;, and for the melting  grow into an undercooled melt via the reactiba- a+ 3

solid phases—namely; and —with just a different orien-
tation. The result illustrates the capability of the model to
distinguish several phases and grains at the same time. The
images visualize the phase evolution and the concentration

rofile of the alloy componerB in the liquid ahead of the
growing solid phases at different time steps. Concentration
depleted zones occur in dark grey and concentration enriched
zones appear in light grey.

temperatured;": +7. While simultaneously growing, the solid phases mutu-
1.47 1.00 1.00 0.0 ally enhance each other’'s growth conditions as they reject
-1 3 opposite components of the alloy into the liquid. We have set
(L )a=]:,...y,4_ 1.00 1.47 1.00 0.00, an equal initial composition vector of(ca,Cg,Cc)
1.00 1.00 1.47 0.0 =(0.3,0.3,0.3. For isotropic phases, this leads to very
regular lamellar structures as those in Fig&) Zand 2b).
1.50 0.50 0.50 0.0 The three images ia) display the concentration fields of the
(Ta)' =L...83=10.50 1.50 0.50 0.0Q, three componenta, B, andC in front of the growing eutec-
“b% 1050 050 150 00 tic lamellae with a phase sequence @f3|a|v|a| -+ at the

same intermediate time step. It can be observed that the

wherea=4 is assumed to be the liquid phéseAs a result, white « phase consumes componehtfrom the melt and
the phase fractions of the three solid phases at the ternapushes componen® and C into the melt. The respective
eutectic temperature are equal. Further, we considered th®ocess happens for the two other solgland y. For com-
solidification process under the condition of isothermally un-parison of the diffusion fields, Fig.(B) shows the concen-
dercooled melts. tration of C for a phase sequeneég|y|al - -. By performing

In Fig. 1, the formation of two eutectic grains in the bi- phase-field simulations, the stability of different phase se-
nary A-B “edge” system of initial compositiorica,Cg,Cc) guences for varying solidification conditions can be investi-
=(0.5,0.5,0.0 has been simulated in a 2D domain of 270 gated. The diffusion processes of the three components are
X 540 grid points. The simulation involves pattern formationillustrated in a 2D domain of size 200200.
on different length scales. On a larger scale, grains with dif- Figure 3 shows a time sequence of a 3D simulation of
ferent orientations due to anisotropy of the surface entropyernary eutectic solidification in a computational domain 60
densitiesy, grow and form a eutectic grain boundary. To X 90X 90. The computation was initialized with cubic crys-
include anisotropic effects, we used the faceted formulatiotial shapes. During the evolution, a regular hexagonal struc-
of Eq. (2) for a cubic crystal symmetry and defined two setsture of the three isotropic solid phases with 120° angles be-
of four corners for the upper and for the lower grain, whereagween the solid phases is established as steady growth
the corners of the lower grain are rotated by 10° with respectonfiguration in 3D in analogy to the lamellar structure in
to the growth direction. On a smaller scale, a lamellar eutec2D. This symmetry breaks if anisotropy is included.
tic substructure solidifies: Below a critical eutectic tempera- The simulation in Fig. 4 was conducted with an initial
ture T, (hereT,=1.0), a parent liquid phask transforms into  composition vector ofca,cg,Ccc)=(0.47,0.47,0.06s0 that
two solid phasesr and B in a binary eutectic reactior: the concentration componecg acts as a ternary impurity of
— a+ 3. The white and light grey colored regions as well asminor amount. As can be seen in the first two images, the
the black and dark grey colored regions represent the sansslid phasex in white color is formed by using up the con-
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centrationc, whereas solid phasg rejectsA atoms. If ay  builds up. At larger computational domains, we expect the
solid phase containingc as its major composition is intro- effect of cell and colony formation to occur.

duced, it is instable and immediately dissolves for these con-

centration proportions. Neither the phase nor thgg phase ACKNOWLEDGMENTS

engulfs the concentratioty, so that it increases all along the

solid-liquid interface. The simulated evolution process re- The authors gratefully acknowledge the financial support
covers the experimentally observed effect that the impurityof the German Research Foundation, Grant Nos. Ne 882/1-2,
becomes enriched ahead of the solidifying lamellae andNe 882/2-2, Ga 695/1-2 and Ga 695/2-2.
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