
Multicomponent alloy solidification: Phase-field modeling and simulations

Britta Nestler
Department of Computer Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, D-76133 Karlsruhe, Germany

Harald Garcke and Björn Stinner
NWF I, Mathematik, University of Regensburg, 93040 Regensburg, Germany

sReceived 14 May 2004; revised manuscript received 6 December 2004; published 27 April 2005d

A general formulation of phase-field models for nonisothermal solidification in multicomponent and multi-
phase alloy systems is derived from an entropy functional in a thermodynamically consistent way. General
expressions for the free energy densities, for multicomponent diffusion coefficients, and for both weak and
faceted types of surface energy and kinetic anisotropy are possible. A three-dimensional simulator is developed
to show the capability of the model to describe phase transitions, complex microstructure formation, and grain
growth in polycrystalline textures.
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I. INTRODUCTION

Alloy systems with multiple components are an important
class of materials, in particular for technical applications and
processes. The microstructure formation of a material plays a
central role for a broad range of mechanical properties and,
hence, for the quality and the durability of the material. Aim-
ing for a continuous optimization of materials properties, the
study of pattern formation during alloy solidification has
been a focus of many experimental and, recently, also of
computational work. Since the microstructure characteristics
are a result of the process conditions used during production,
the analysis of the fundamental correlation between the pro-
cessing pathway and the microstructure is of fundamental
importance. Multiple components in alloys are combined
with the appearance of multiple phases leading to complex
phase diagrams, various phase transformations, and different
types of solidification. Modeling and numerical simulations
aim to predict microstructure evolution in multicomponent
alloys in order to virtually design materials. However, the
great number of material parameters and physical variables
involved in systems yields a complexity that remains a big
challenge for future work. In particular, the gain of statisti-
cally meaningful data from computations requires simula-
tions in sufficiently large domains with a tremendous need of
memory and computing time resources. To treat complex
systems, high-performance computing, parallelization, and
optimized algorithms including adaptive mesh generators are
mandatory.

The phase-field method has become an important tool for
tackling free boundary problems such as grain boundary mo-
tion f1,2g and for simulating crystal growth, solidification,
and pattern formation phenomena in alloysf3–15g. The ad-
vantage of the phase-field method lies in the formulation of
diffuse interfaces of a finite thickness. Explicit front tracking
is avoided by using smooth continuous variables locating the
grain and phase boundaries. By asymptotic expansions for
vanishing interface thickness, it can be shown that classical
sharp interface models including physical laws at interfaces
and multiple junctions are recoveredf16,17g. Since phase-
field models can be derived on the basis of classical irrevers-

ible thermodynamicsf18–20g, they can be applied to pro-
cesses close to thermodynamical equilibrium—i.e., at
relatively small driving forces. Extensions of the phase-field
approach to describe strongly nonequilibrium solidification,
solute trapping, and solute drag effects at large driving forces
are discussed inf21,22g. The scaling problem of quantita-
tively modeling the low-growth-rate regime where the mi-
crostructure is typically several orders of magnitude larger
than the microscopic capillary length has been overcome by
considering a so-called thin interface limit of the phase-field
model f23–27g.

The purpose of this paper is to extend the advances of the
phase-field approach to model general nonisothermal multi-
component multiphase solidification in situations close to lo-
cal thermodynamical equilibrium and to generalize former
models f20,28g. The underlying general formulation of
founded on an entropy functional is given in Sec. II. Explicit
expressions for the free energy densities of the bulk phases
and interfaces are discussed. A method is described how the
artifical appearance of foreign phase contributions at a two-
phase boundary can be avoided. Formulations defining the
bulk, interdiffusion, and interfacial diffusion coefficients as
well as different types of surface energies and kinetic
anisotropies are presented. In particular, an expression of
crystallinesfacetedd anisotropy is given that can be used for
modeling general crystal shapes with an arbitrary number of
edges and corners in three spatial dimensions. The essential
ingredients of the phase-field model are summarized here,
the numerical method for solving the governing equations is
briefly explained, and examples of possible applications to
numerically simulate moving grain and phase boundaries in
binary and ternary alloys are given in Sec. III. The simula-
tion results are intended to illustratively show the potential of
the phase-field model in computing and numerically analyz-
ing complex pattern formations in multicomponent alloys.

II. PHASE-FIELD MODEL OF MULTICOMPONENT
SOLIDIFICATION

The phase-field model is formulated for a general class of
multicomponent and multiphase alloy systems consisting of
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K components andN different phases in a domainV. It is
assumed that the system is in mechanical equilibrium and,
for simplicity, that the pressure and mass density are con-
stant. The concentrations of the components are represented
by a vector csxW ,td=(c1sxW ,td , . . . ,cKsxW ,td). Similarly, the
phase fractions are described by a vector-valued order pa-
rameterfsxW ,td=(f1sxW ,td , . . . ,fNsxW ,td). The variablefasxW ,td
denotes the local fraction of phasea. It is required that the
concentrations of the components and the phase-field vari-
ables fulfill the constraints

o
i=1

K

ci = 1 ando
a=1

N

fa = 1.

The physical effects occurring during solidification such as
heat and mass transfer, the release of latent heat, the Gibbs-
Thomson relation, and interface kinetics are obtained on the
basis of an entropy functionalSse,c,fd of the form

Sse,c,fd =E
V
Fsse,c,fd − S«asf, = fd +

1

«
wsfdDGdx,

depending on the internal energye, the concentrationsci, i
=1, . . . ,K, and the phase fieldsfa, a=1, . . . ,N. The first
term in the entropy functionalsse,c,fd is a bulk entropy
density. The second and third summandsasf ,=fd and
wsfd model surface entropy densities taking into account the
thermodynamics of the interfaces. As typical in diffuse inter-
face models,« is a small-length scale parameter related to
the thickness of the diffuse interface.

Knowing the free energy densities of the pure phases
fasT,cd, the total free energyfsT,c,fd is obtained as a suit-
able interpolation of thefa. The Gibbs relation readssob-
serve that due to the assumptions the Gibbs free energy and
the Helmholtz free energy coincide up to a constantd

df = f ,TdT+ o
i

f ,ci
dci + o

a

f ,fa
dfa

= − sdT+ o
i

midci + o
a

radfa,

where T is the temperature,s=−f ,T is the entropy density,
mi = f ,ci

are the chemical potentials, andra= f ,fa
are potentials

due to the appearance of different phases. Here,f ,X denotes
the partial derivative of the free energyf with respect toX.
The internal energy density is given bye= f +sT. From this
relation it can be derived thats,e=1/T ands,ci

=−mi /T.
Through the free energiesfa, a general class of phase

diagrams for multiphase multicomponent alloy systems can
be incorporated into the phase-field model. The model allows
for systems with general free energiesfasT,cd being convex
in c and concave inT. Choosing the liquid phase to be the
last componentfN of the phase-field vectorf, an ideal so-
lution formulation of the bulk free energy densityf idsT,c,fd
reads

f idsT,c,fd ª o
a=1

N

o
i=1

K SciLi
aT − Ti

a

Ti
a hsfadD

+ o
i=1

K SRg

vm
Tci lnscidD − cvT lnS T

TM
D ,

with Li
N=0 andLi

a, i =1, . . . ,K, a=1, . . . ,N−1, being the la-
tent heat per unit volume of the phase transition from phase
a to the liquid phase and of pure componenti. Furthermore,
Ti

a, i =1, . . . ,K, a=1, . . . ,N−1 is the melting temperature of
the ith component in phasea, andTM is a reference tempera-
ture. cv, the specific heat andvm, the molar volume, are as-
sumed to be constant, andRg is the gas constant. With a
suitable choice of the functionhsfd satisfyinghs0d=0 and
hs1d=1—e.g., hsfad=fa or hsfad=fa

2s3−2fad—the free
energy densityf is an interpolation of the individual free
energy densitiesfa. A more general expression for alloys is
the Redlich-Kister-Muggianu model of subregular solution,

fsr = f id + o
i=1

K

o
j=1

K

cicjo
n=0

M

Mij
sndsci − cjdn,

with binary interaction coefficientsMij
snd depending on the

parametern. For M =0, the Redlich-Kister-Muggianu ansatz
takes the form of a regular solution model. In most applica-
tions, in particular to metallic systems,M takes a maximum
value of 2. A ternary term,cicjck can be added to describe
the excess free energy.

The gradient entropiesasf , =fd can be expressed in
terms of a generalized antisymmetric gradient vectorqab

=fa=fb−fb=fa by

asf, = fd = o
a,b

Aabsqabd = o
a,b

gab

mab

faabsqabdg2uqabu2,

where gab represent surface entropy densities andmab are
mobility coefficients. The formulation using the generalized
gradient vectorqab allows us to distinguish the physics of
each phasesor graind boundary by providing enough degrees
of freedom. The anisotropy of the surface entropy density is
modeled by the factorfaabsqabdg2 depending on the orienta-
tion of the interface. The factors are homogeneous of degree
0 and henceAabsqabd is homogeneous of degree 2. Phase
boundaries with isotropic surface entropies are realized by
aabsqabd=1. Weakly anisotropic crystals with an underlying
cubic symmetry can be modeled by the expression

aabsqabd = 1 −dabS3 7 4
uqabu4

4

uqabu4
D , s1d

with uqu4
4=oi=1

d sqi
4d and uqu4=foi=1

d sqi
2dg2. The strength of the

anisotropy of ana /b phase or grain boundary is given by the
parameterdab. For a strongly anisotropic crystal of faceted
type, we define
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aabsqabd = max
1økønab

H qab

uqabu
hab

k J , s2d

where hab
k , k=1, . . . ,nab, are thenab corners of the Wulff

shape of thea-b transition. Equations2d allows us to model
arbitrary crystal shapes withnab corners.

The interfacial free entropy densitywsfd might be of
multiwell type wstsfd or of a multiobstacle typewobsfd.
Suitable expressions of these potentials can be formulated as
extensions of the double well or obstacle potential for solid-
liquid phase-field models:

wstsfd = 9o
a,b

mabgabfa
2fb

2 ,

wobsfd =
16

p2 o
a,b

mabgabfafb.

In the obstacle case, we setwobsfd=` if f is not on the
Gibbs simplexG=hfPRN:oafa=1,faù0j. From a com-
putational point of view, an advantage of using obstacle-type
potentials for numerical simulations is that the partial differ-
ential equations for the phase fieldsfa, a=1, . . . ,N, only
need to be solved in a finite region of the diffuse interface
layer.

The relation between the surface entropyḡabsnd of an
a-b phase boundary with orientationn and the interface
terms is given by

ḡabsnd = 2 inf
p
E

−1

1

Îasp,p8 ^ ndwspddy,

where the infimum is taken over all Lipschitz continuous
functions p: f−1,1g→G with ps−1d=ea, ps1d=eb ssee f2g
for the detailsd. The calibration properties of the phase-field
parametersgab with respect to experimentally given data are
optimal if ḡab=gab. But in general, the minimizer is difficult
to determine, because it does not follow the edge of the
Gibbs simplexG which results in the presence of phase
fields different fromfa and fb in the transition region. To
avoid such third-phase contributions at a two-phase inter-
face, additional terms of third order,fafbfd can be added
to the multiobstacle potential—i.e.,

w̃obsfd = wobsfd + o
a,b,d

gabdfafbfd. s3d

A sufficient condition for choosing the parametergabd in
order to optimize the calibration properties is

gabd ù
96gi jmij

p2 , for all si, jd P hsa,bd,sb,dd,sd,adj.

Alternatively smooth multiwell potentials of the form

wsfd = wstsfd + 72o
a,b

Sgabmabfa
2fb

2 o
dÞa,b

fdD
so far yield very promising results to avoid the appearance of
artificial third-phase contributions. In spite of the fifth-order
terms, the multiwell structure is attained on the Gibbs sim-
plex G, but because of numerical errors in the simulations,

additional terms outside ofG must be added so that the po-
tential is bounded from below by zero. The above potentials
will be studied in more detail in a forthcoming paperf29g.
For further approaches we refer tof30g and f31g swhich is
based on ideas off32gd.

The governing set of equations follows from conservation
laws for the internal energye and the concentrationsci, i
=1, . . . ,K, coupled to a gradient flow for the nonconserved
phase-field variablesfa, a=1, . . . ,N. The equations are de-
rived by variational differentiation of the entropy functional
Sse,c,fd, ensuring energy and mass conservation and the
increase of total entropy. They read

]e

]t
= − = ·FL00 =

1

T
+ o

j=1

K

L0j = S− m j

T
DG , s4d

]ci

]t
= − = ·FLi0 =

1

T
+ o

j=1

K

Lij = S− m j

T
DG , s5d

t«
]fa

]t
= «f= ·a,=fa

sf, = fd − a,fa
sf, = fdg

−
w,fa

sfd

«
−

f ,fa
sT,c,fd

T
− l, s6d

where = ·s¯d denotes the divergence of the term in the
brackets.a,fa

, w,fa
, f ,fa

, anda,=fa
are the derivatives of the

energy contributions with respect tofa and =fa, respec-
tively. The parameterl in Eq. s6d is a Lagrange multiplier
garantueeing that the constraintoa=1

N fa=1 is preserved—
i.e.,

l =
1

N
o
a=1

N F«f= ·a,=fa
sf, = fd − a,fa

sf, = fdg

−
w,fa

sfd

«
−

f ,fa
sT,c,fd

T
G .

In referring to nonequilibrium thermodynamics, we pos-
tulate the fluxes for the conserved quantities to be linear
combinations of the thermodynamical driving forces
= dS/de= = s1/Td and= dS/dci = = s−mi /Td.

To fulfill the constraintoi=1
K ci =1 during the evolution, it is

required thatoi=1
K Lij =0, j =0, . . . ,K. Further, it is assumed

that the matrixL=sLijdi,j is positive semidefinite and sym-
metric according to the Onsager relations. It can be shown
that this condition leads to a local entropy inequality ensur-
ing non-negative local entropy production. The mobility co-
efficientssLijdi,j=0,. . .,K are allowed to depend onT, c, andf.
Given some heat and mass diffusion coefficientsk
=ksT,c,fd and Di =DisT,c,fd, the Lij can be related to
them by

Lji = Lij =
vm

Rg
DiciSdi j −

Djcj

ok=1

K
Dkck

D s7d

for i , j =1, . . . ,K and then recursively,
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L0j = −
vm

Rg
o
a=1

N

o
i=1

K

LjihsfadLi
a, s8d

L00 = kT2 +
vm

Rg
o
a,b

N,N

o
i,j

K,K

hsfadLi
aLjihsfbdLj

b, s9d

wheredi j denotes the Kronecker delta andLi
a are the latent

heats of fusion. The formulation in Eqs.s7d–s9d takes bulk
diffusion effects including interdiffusion coefficients into ac-
count. The dependence of the mass and heat diffusion coef-
ficients onf can be realized by, e.g., linear expansions. To
also consider enhanced diffusion in the interfacial region of
phase or grain boundaries, additional terms proportional to
fafb with interfacial diffusion coefficientsDi

absT,c,qabd
need to be added. Altogether, we suggest

Di = o
a=1

N

Di
asT,cdfa +

1

«
o

a,b

Di
absT,c,qabdfafb,

i.e., in particular that the diffusion coefficients in Eq.s7d can
be anisotropic. The quantityt=tsf , =fd in Eq. s6d models
an anisotropic kinetic coefficient of the form

tsf, = fd = t0 + o
a,b

Babsqabd,

with Babsqabd=0 if qab=0. Possible choices are

Bab = tab
0 F1 + zabS3 ± 4

uqabu4
4

uqabu4
DG − t0 s10d

or

Bab = tab
0 max

1økørab

H qab

uqabu
jab

k J − t0, s11d

if qabÞ0 for weakly cubicfEq. s10dg or strongly faceted
fEq. s11dg kinetic anisotropies withrab cornersjab

k . Herezab

determines the strength of the kinetic anisotropy similar to
dab in Eq. s1d for the surface energy anisotropy. Systems
with isotropic kinetics are realized by settingzab=0.

III. SIMULATIONS OF SOLIDIFYING GROWTH
STRUCTURES IN BINARY AND TERNARY SYSTEMS

To compute microstructure formation, a three-
dimensionals3Dd parallel simulator has been developed to
numerically solve the set of equations for the internal energy,
the concentrations, and the phase fieldsfEqs. s4d–s6dg. The
solving method is based on an explicit finite- difference dis-
cretization on a rectangular mesh. The following strategies to
optimize the efficiency of the numerical algorithm with re-
spect to computation time and memory usage are applied: An
obstacle- type potentialwsfd as in Eq.s3d is used in the
computations providing the advantage of solving the phase-
field equations only in the region of the phase or grain
boundaries—i.e., in the finite diffuse interface region of a
width of approximately 10 numerical cells. This reduces the
computational effort with respect to the phase-field equations

by one spatial dimension. Three different time steps are cho-
sen to solve the three types of equationsfEqs.s4d–s6dg. Simi-
larly, three different spatial meshes are used to determine the
internal energy, the concentration, and the phase-field equa-
tions. The values at intermediate grid points are interpolated
from the coarsener mesh. Furthermore, a parallelization of
the numerical algorithm is realized dividing the 3D compu-
tational domain into partial sublayers. The subdomains are
computed on a Linux cluster of dual processor machines
using a combination of two cooperating techniques: MPI
sMessage Passing Interface, standard library for implement-
ing distributed parallelismd and OpenMPsOpen Multi Pro-
cessing, library for implementing shared memory parallel-
ismd.

In the following, microstructure simulations of binary and
ternary phase transformation processes are shown to illus-
trate the wide variety of realistic growth structures and mor-
phologies in multicomponent multiphase systems that can be
described and investigated by the new phase-field model.
Fields of applications are eutectic grain boundary formations
and structure evolutions in ternary systemsf33g as well as
eutectic colony growth involving ternary impurity effects
f34g which will be shown by the following examples, but
also multicomponent dendritic and eutectic crystal growth
can be simulated.

To perform the simulations in Figs. 1–4 we considered a

FIG. 1. Growth of two eutectic grainsswhite and black and light
and dark greyd of a binaryA-B alloy with different crystal orienta-
tions into an isothermally undercooled meltscontinuous grey scaled
at four time steps.

FIG. 2. sad Concentration fieldscA, cB, and cC of a ternary
eutectic lamellar solidification front with a solid phase configuration
saubuaugu¯ d. sbd Concentration fieldcC for a phase sequence
saubugu¯ d.
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ternary eutectic model alloy system of three componentsA,
B, and C si =1, . . . ,3d, three solid phasesa, b, and g sa
=1, . . . ,3d, and one liquid phaseL sa=4d. We nondimen-
sionalized the model equationsfEqs.s4d–s6dg and, for initial-
ization of the computations, we chose the following param-
eter set: Equal grid spacings for the two or three coordinates
at a valueDx=0.01, mobility coefficientsmab=0.1, a diffu-
sive interface thicknesse=0.05, surface entropy densities
gab=0.001, an isotropic kinetic coefficientt=0.2, zero dif-
fusion in the solid phases,Di=1,. . .,3

a,b,g =0.0, and diffusion coef-
ficients in the liquid,Di=1,. . .,3

L =0.01. Further, we constructed
a completely symmetric phase diagram with dimensionless
data for the latent heats of fusion,Li

a, and for the melting
temperaturesTi

a:

sLi
ad i=1,. . .,3

a=1,. . .,4
= 11.47 1.00 1.00 0.00

1.00 1.47 1.00 0.00

1.00 1.00 1.47 0.00
2 ,

sTi
ad i=1,. . .,3

a=1,. . .,4
= 11.50 0.50 0.50 0.00

0.50 1.50 0.50 0.00

0.50 0.50 1.50 0.00
2 ,

wherea=4 is assumed to be the liquid phaseL. As a result,
the phase fractions of the three solid phases at the ternary
eutectic temperature are equal. Further, we considered the
solidification process under the condition of isothermally un-
dercooled melts.

In Fig. 1, the formation of two eutectic grains in the bi-
nary A-B “edge” system of initial compositionscA,cB,cCd
=s0.5,0.5,0.0d has been simulated in a 2D domain of 270
3540 grid points. The simulation involves pattern formation
on different length scales. On a larger scale, grains with dif-
ferent orientations due to anisotropy of the surface entropy
densitiesgab grow and form a eutectic grain boundary. To
include anisotropic effects, we used the faceted formulation
of Eq. s2d for a cubic crystal symmetry and defined two sets
of four corners for the upper and for the lower grain, whereas
the corners of the lower grain are rotated by 10° with respect
to the growth direction. On a smaller scale, a lamellar eutec-
tic substructure solidifies: Below a critical eutectic tempera-
tureTe shereTe=1.0d, a parent liquid phaseL transforms into
two solid phasesa and b in a binary eutectic reaction:L
→a+b. The white and light grey colored regions as well as
the black and dark grey colored regions represent the same

solid phases—namely,a andb—with just a different orien-
tation. The result illustrates the capability of the model to
distinguish several phases and grains at the same time. The
images visualize the phase evolution and the concentration
profile of the alloy componentB in the liquid ahead of the
growing solid phases at different time steps. Concentration
depleted zones occur in dark grey and concentration enriched
zones appear in light grey.

Depending on the position in the phase diagram, ternary
alloy solidification may involve phase changes of four differ-
ent phases and diffusion of three alloy componentsA, B, and
C. At the ternary eutectic composition, three solid phases
grow into an undercooled melt via the reactionL→a+b
+g. While simultaneously growing, the solid phases mutu-
ally enhance each other’s growth conditions as they reject
opposite components of the alloy into the liquid. We have set
an equal initial composition vector ofscA,cB,cCd
=s0. 3̄,0 . 3̄,0 . 3̄d. For isotropic phases, this leads to very
regular lamellar structures as those in Figs. 2sad and 2sbd.
The three images insad display the concentration fields of the
three componentsA, B, andC in front of the growing eutec-
tic lamellae with a phase sequence ofaubua uguau¯ at the
same intermediate time step. It can be observed that the
white a phase consumes componentA from the melt and
pushes componentsB and C into the melt. The respective
process happens for the two other solidsb andg. For com-
parison of the diffusion fields, Fig. 2sbd shows the concen-
tration ofC for a phase sequenceaubuguau¯. By performing
phase-field simulations, the stability of different phase se-
quences for varying solidification conditions can be investi-
gated. The diffusion processes of the three components are
illustrated in a 2D domain of size 2003200.

Figure 3 shows a time sequence of a 3D simulation of
ternary eutectic solidification in a computational domain 60
390390. The computation was initialized with cubic crys-
tal shapes. During the evolution, a regular hexagonal struc-
ture of the three isotropic solid phases with 120° angles be-
tween the solid phases is established as steady growth
configuration in 3D in analogy to the lamellar structure in
2D. This symmetry breaks if anisotropy is included.

The simulation in Fig. 4 was conducted with an initial
composition vector ofscA,cB,cCd=s0.47,0.47,0.06d so that
the concentration componentcC acts as a ternary impurity of
minor amount. As can be seen in the first two images, the
solid phasea in white color is formed by using up the con-

FIG. 4. Simulation of lamellar eutectic growth in a ternary sys-
tem with an impurity componentcC: The concentration profile of
the main componentcA in melt is shown in the left and centered
images for two time steps. The ternary impuritycC is pushed ahead
of the growing eutectic front so that concentration-enriched zones
of componentcC can be observed at the solid-liquid interface in the
right image.

FIG. 3. Formation of a 3D hexagonal rodlike structure in a
ternary eutectic system with isotropic surface energies and three
different solid phasesa, b, andg.
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centrationcA whereas solid phaseb rejectsA atoms. If ag
solid phase containingcC as its major composition is intro-
duced, it is instable and immediately dissolves for these con-
centration proportions. Neither thea phase nor theb phase
engulfs the concentrationcC so that it increases all along the
solid-liquid interface. The simulated evolution process re-
covers the experimentally observed effect that the impurity
becomes enriched ahead of the solidifying lamellae and

builds up. At larger computational domains, we expect the
effect of cell and colony formation to occur.
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