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We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by
substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or
vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an
array of stripes representing alternating regions of no shear and finite or no slip. Velocity fields and effective
slip lengths are computed both from molecular dynamicssMDd simulations and solution of the Stokes equation
for flow configurations either parallel or perpendicular to the stripes. Excellent agreement between the hydro-
dynamic and MD results is obtained when the normalized width of the slip regions,a/s*Os10d, wheres is
the sfluidd molecular diameter characterizing the Lennard-Jones interaction. In this regime, the effective slip
length increases monotonically witha/s to a saturation value. Fora/s&Os10d and transverse flow configu-
rations, the nonuniform interaction potential at the lower wall constitutes a rough surface whose molecular
scale corrugations strongly reduce the effective slip length below the hydrodynamic results. The translational
symmetry for longitudinal flow eliminates the influence of molecular scale roughness; however, the reduced
molecular ordering above the wetting regions of finite slip for small values ofa/s increases the value of the
effective slip length far above the hydrodynamic predictions. The strong correlation between the effective slip
length and the liquid structure factor representative of the first fluid layer near the patterned wall illustrates the
influence of molecular ordering effects on slip in noninertial flows.
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I. INTRODUCTION

The development of microfluidic and nanofluidic devices
for the manipulation of films, drops, and bubbles requires
detailed knowledge of interfacial phenomena and small-scale
flows. These systems, which are distinguished by a large
surface-to-volume ratio and flow at small Reynolds, capil-
lary, and Bond numbers, are strongly influenced by boundary
effectsf1g. Liquid affinity to nearby solid boundaries can be
reduced through chemical treatmentsf2–5g, substrate topo-
logy f6–8g, or the nucleation of nanobubbles on hydrophobic
glass surfacesf9–11g. Weak van der Waals interactions be-
tween a polymer melt and solid wallf12–14g or between two
immiscible polymersf15g can also lead to significant slip-
page and reduced frictional resistance. The degree of slip is
normally quantified through the slip length defined as the
distance from the surface within the solid phase where the
extrapolated flow velocity vanishesf16g. Numerous experi-
mental and theoretical studies have examined how the slip
length is influenced by such factors as the degree of hydro-
phobicityf2,17g, the substrate topography and surface rough-
nessf6,7,18–23,51g, the presence of interstitial lubricating
layersf22,24,25g, the polymer molecular weightf14,26,27g,
and the applied shear ratef5,28–31g. In a recent develop-
ment, the large values of the slip length extracted from ex-
periments involving the pressure-driven flow of water
through hydrophobically coated capillaries have been attrib-

uted f32,33g to the spontaneous nucleation of a dense and
stable layer of nanobubbles in water films adjacent to hydro-
phobic glass surfacesf9–11g. Of special interest is the corre-
sponding reduction in drag achieved by proportional substi-
tution of liquid-solid contact area with liquid-gas contact
area or equivalently, substitution of regions of no slip or
finite slip by regions of essentially no shearsi.e., infinite
slipd.

Interest in the hydrodynamic behavior of liquid films in
the vicinity of surfaces with mixed boundary conditions
dates back several decades to the work of Philipf34,35g. He
examined the steady flow of an incompressible and inertia-
less Newtonian liquid driven either by a uniform shear stress
or uniform pressure gradient and subject to mixed wall
boundary conditions. These were represented by surfaces
consisting of alternating striped regions of no shear and no
slip among other geometries. Using conformal mapping,
Philip f34,35g derived analytic expressions for the stream
function and volumetric flux for flow perpendicularstrans-
verse configurationd or parallel slongitudinal configurationd
to the striped array in the limit of Stokes flow. Recently,
Lauga and Stonef33g investigated the behavior of the effec-
tive slip length for steady Poiseuille flow through a capillary
of circular cross section whose inner wall consists of peri-
odically distributed regions of no slip and no shear. Philip’s
earlier treatment was used to extract the slip length for lon-
gitudinal configurations; additional analysis was required for
transverse configurations. Comparison of their results with
available experimental measurements suggests what model
parameter values would reproduce the experimental slip
lengths. For slip lengths in the nanometer range, one might
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ask whether a hydrodynamic analysis can correctly predict
these values or whether the molecular aspects of the fluid can
strong influence the slip behavior causing deviations from
the continuum theory.

Molecular dynamicssMDd simulations provide an ideal
tool for investigating the conformation and behavior of fluid
molecules adjacent to chemically or topologically textured
substrates. The boundary conditions which establish the flow
profile are not specifieda priori, but arise naturally from the
wall-fluid contrast in density and the fluid-fluid and wall
fluid interaction potentials. In recent years, many groups
have examined how various molecular parameters character-
izing the wall and fluid properties affect the degree of slip at
liquid-solid interfaces. In particular, it has been demonstrated
that the structure factor and contact density representative of
the first fluid layer adjacent to a wall significantly influence
the degree of slip in Newtonian and non-Newtonian fluids
f23,28,29,36–39g. The results of this current study confirm
the importance of these molecular parameters for flow on
heterogeneous substrates.

In this work, we investigate the behavior of the slip length
in viscous films under planar shear bounded by substrates
with mixed boundary conditions using both MD simulations
and Stokes flow computations. The upper wall, consisting of
a homogenous surface of finite or no slip, moves at a con-
stant speed,U, a distanced above a lower stationary wall,
whose surface is patterned with an infinite array of stripes
representing alternating regions of no shear and finite or no
slip. As shown in Fig. 1, we consider transverse and longi-
tudinal flow configurations and compute the corresponding
velocity fields and effective slip lengths for a wide range of
stripe widths, periods, and liquid-solid affinities. Excellent
agreement between the hydrodynamic and MD results is ob-
tained when the normalized width of the slip regions,a/s
*Os10d, wheres is the sfluidd molecular diameter charac-
terizing the Lennard-Jones interaction. For surface patterns
approaching molecular size, the degree of fluid ordering near
the patterned wall, as quantified by the in-plane structure
factor and contact density in the first liquid layer, plays a
dominant role causing significant deviations from the hydro-
dynamic predictions. These deviations can be explained in
the context of effective surface roughness and molecular or-
dering effects.

II. HYDRODYNAMIC ANALYSIS

In the limit of vanishingly small Reynolds number Re
=rUd/m, wherer andm denote thesconstantd liquid density
and viscosity, inertial effects are negligible. The velocity pro-
file is then governed by the Stokes equation¹2u= =p/m,
where the velocity fieldu satisfies the condition of incom-
pressibility,= ·u=0, andp denotes the pressure distribution
which in this study is induced by the patterned substrates.
Application of the divergence operator to the Stokes equation
shows that the pressure field satisfies the equation¹2p=0. It
then follows that the velocity field satisfies the biharmonic
equation¹2¹2u=0 f40g.

In the next section, we derive the boundary conditions
sBC’sd corresponding to transversefFig. 1sadg and longitudi-
nal fFig. 1sbdg flow orientations. These conditions are used to
compute numerical solutions of the stream function, velocity
field, and effective slip length as a function of the dimension-
less stripe width of the finite slip regions,a/l, and the di-
mensionless surface periodl /d. The ŷ axis is oriented par-
allel to the stripe edges for either configuration. All
numerical calculations were performed with the finite-
element softwareFEMLAB 2.3 f41,42g using triangular ele-
ments with quadratic basis functions. The solutions reported
converged upon mesh refinement.

A. Transverse configuration

The two-dimensional velocity field corresponding to the
transverse configuration shown in Fig. 1sad is represented by
usx,zd=su,0 ,wd=s]c /]z,0 ,−]c /]xd, wherecsx,zd denotes
the stream function, which implicitly satisfies the continuity
equation= ·u=0. The vorticity vectorV= = 3u=s0,v ,0d,
wherev=]u/]z−]w/]x, has only one nonzero component.
According to these definitions, it follows that

v =
]2c

]z2 +
]2c

]x2 = ¹2c, ¹2v = 0. s1d

1. Boundary conditions

Solutions of the equations for the vorticity and stream
function given by Eq.s1d require the specification of eight
BC’s. The computational domain sketched in Fig. 2sad is
defined by the region bounded by the upper and lower walls
s0øzødd and the dashed liness0øxøl /2d corresponding
to the midplanes of neighboring stripes. White surfaces des-
ignate shear-free boundariessi.e., surfaces of perfect slipd;
dark surfaces designate boundaries of finite or no slip.
Throughout, partial derivatives are denoted by letter
subscripts—e.g.,]c /]x;cx.

The top and bottom walls represent impenetrable surfaces
where wsx,z=0d=wsx,z=dd=0 or, in terms of the stream
function, cxsx,z=0d=cxsx,z=dd=0. The tangential compo-
nent of the velocity field must satisfy mixed slip and shear
conditions at the upper and lower walls of the cell. The no-
shear BC is given byuz(0øxø sl−ad /2 ,z=0)=0. Slip sur-
faces are characterized by the Navierf16g slip condition
u(sl−ad /2øxøl /2 ,z=0)=buz andusx,z=dd=U−buz. The
Navier slip lengthb is assumed constant—i.e., independent
of the shear rateġ.

FIG. 1. sColor onlined sad Transverse andsbd longitudinal flow
orientations for a liquid film subject to planar shear in a cell with
wall separationd. Darker stripes of widtha signify regions of finite
slip or no slip. White stripes signify regions of no shearsor equiva-
lently perfect slipd. The upper wall moves at constant speedU rela-
tive to the lower stationary surfacesz=0d. The periodicity of the
lower wall pattern geometry is designed byl.
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The lateral boundary conditions for thescalar field u are
derived from the following symmetry considerations. The
biharmonic equation¹2¹2u=0 involves x derivatives of
even order only. The lower wall comprises an infinite num-
ber of mirror symmetry planes located at the stripe centers
x=nl /2, for all integersn. Since the upper surface is homo-
geneous and translationally invariant, the mirror symmetry
imposed by the lower surface determines which symmetry
applies throughout the entire Couette cell. The scalar fieldu
therefore also assumes mirror symmetry about the stripe cen-
ters such thatusx,zd=us−x,zd and uxsx,zd=0 for all x
=nl /2 and integersn. From the continuity equation, it then
also follows thatwzsx=nl /2d=0; i.e., w is independent of
the coordinatez within any mirror plane. Since the upper and
lowers walls are impenetrable—i.e.,wsx,z=0d=wsx,z=dd
=0—this constraint reduces to the BCcxsx=0d=0=cxsx
=l /2d.

The continuity equation requiresux+wz=0. Together with
the condition usx,zd=us−x,zd, this implies wsx,zd
=−ws−x,zd such thatwsx,zd=0 and wxxsx,zd=0 at all x
=nl /2, wheren=0,1,2. . .,.Substitution of this last relation
and uxsx=0,zd=0 into the expression forvx leads tovxsx
=nl /2 ,zd=0. Regions of no shear at the lower wall are rep-
resented by the conditionvsx,z=0d=0.

Along the top and bottom walls, the scalar componentw
is independent of the coordinatex and thereforewxsz=0d
=wxsz=dd=0. Consequently, the vorticity at the top and bot-
tom walls reduces tov=uz and the Navier slip conditions
can be rewritten ascz(sl−ad /2øxøl /2 ,z=0)=bv and
czsx,z=dd=U−bv. The relationwsx,z=0d=wsx,z=dd=cx

=0 also implies that the stream function is constant in the
planesz=0 andz=d, whose values we denote byctop and
cbottom. The difference in the stream function value between
the top and bottom walls is equal to the volumetric flux per
unit length along they axis f40g since

Q =E
z=0

z=d

usx,zddz=E
z=0

z=d

czdz= ctop − cbottom. s2d

Because the stream function can only be determined within
an arbitrary constant, we set the value ofcbottom in these

studies to zero without loss in generality. The complete set of
BC’s for the vorticity and stream functions are therefore
given by

csx,z= 0d = 0, s3d

csx,z= dd = ctop, s4d

vsx,z= 0d = 0 for 0ø x , sl − ad/2, s5d

czsx,z= 0d = bv for sl − ad/2 ø x ø l/2, s6d

czsx,z= dd = U − bv, s7d

cxsx = 0,zd = 0 =cxsx = l/2,zd, s8d

vxsx = 0,zd = 0 =vxsx = l/2,zd. s9d

2. Solution procedure

The value ofctop is determined from the pressure field as
follows. The Stokes equation for the vertical component of
the velocity field is given bywxx+wzz=pz/m. As argued in a
previous section, however,wxxsx=nl /2 ,zd=0, and sincew is
independent ofz along any mirror symmetry plane,wzzsx
=nl /2 ,zd=0. The pressure is therefore independent of the
vertical coordinatez in all planesx=nl /2. Furthermore, in
the absence of anyexternallyapplied pressure gradient, as is
the case here, and because of the flow periodicity,psx=0d
=psx=ld. Since it was previously argued thatu exhibits mir-
ror symmetry about the planesx=nl /2, it must also be true
of px since uxx+uzz=px/m. Consequently, the pressure is
equal at the lateral boundaries of the computational cell—
i.e., psx=0d=psx=l /2d. For convenience we setpsx=0d=0.
This constraint, coupled with the relationpx/m=−s=
3Vd ·êx=vz, was used to adjust the numerical value ofctop

by requiring that the following integral vanish identically:

E
0

l/2

pxdx= mE
0

l/2

vzdx= 0. s10d

The value of the effective slip length,Ls, corresponding to
the overall flow within a patterned cell was obtained from
linear extrapolation of the averaged velocity profilekul
=s2/lde0

l/2usx,zddx to zero. Since at planes of mirror sym-
metry ux=0 and psx=0d=psx=l /2d, the integral
me0

l/2¹2usx,zddx=e0
l/2pxdx=0 reduces tokulzz=0. The aver-

aged velocity fieldkul is therefore a linear function ofz and
geometric similarity establishes the relation for the effective
slip length: namely,

Ls

d
=

kusz= 0dl
kusz= ddl − kusz= 0dl

. s11d

For the numerical analysis, the equations for the vorticity
and stream function given by Eq.s1d and the BC’s given by
Eqs. s3d–s9d were nondimensionalized according to the res-
caled variables

x̃ = x/l, z̃= z/d, s12d

FIG. 2. sColor onlined Computational domain and boundary
conditions used for solution of the Stokes equation corresponding to
the sad transverse andsbd longitudinal flow orientations shown in
Fig. 1. The computational domain consists of the region bounded by
the upper and lower wallssz=0 andz=dd and the lateral dashed
lines sx=0 andx=l /2d, which are positioned at neighboring mid-
planes of the no-shear and finite-slip regions.
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ũ = u/U, w̃ = wYSU
d

l
D , s13d

c̃ = cYSUd

2
D, ṽ = vYSU

d
D , s14d

leading to

d2

l2

]2c̃

]x̃2 +
]2c̃

]z̃2 = 2ṽ,
d2

l2

]2ṽ

]x̃2 +
]2ṽ

]z̃2 = 0. s15d

In Sec. II A 4 we present numerical solutions to Eqs.s15d
and the extracted values ofLs as a function of the local slip
lengthb and pattern geometry. Analytic expressions are de-
rived in the limitsl /d→0 andl /d→`.

3. Perturbative analysis for b=0

In order to enhance the numerical precision of solutions
corresponding to small values ofLs, the velocity and pres-
sure fields were decomposed into two contributionsu=u0
+u1 and p=p0+p1. Here, u0=suz/d,0 ,0d and p0=0 corre-
spond to the velocity and pressure fields for planar shear
flow subject to no slip at both solid boundaries. The Stokes
equation then reduces to the formm¹2u1= =p1, where the
perturbed velocity field satisfies the continuity equation
= ·u1=0. The following BC’s for the perturbed stream func-
tion and vorticity fields were determined in similar fashion as
those in Sec. II A 1:

c1sx,z= 0d = 0, s16d

c1sx,z= dd = c1,top, s17d

c1,zsx,z= dd = U, s18d

v1„0 ø x , sl − ad/2,z= 0… = − U/d, s19d

c1,z„sl − ad/2 ø x ø l/2,z= 0… = 0, s20d

c1,xsx = 0,zd = 0 =c1,xsx = l/2,zd, s21d

v1,xsx = 0,zd = 0 =v1,xsx = l/2,zd, s22d

where c1,z=u1, c1,x=−w1, and v1=u1,z−w1,x. Nondimen-
sionalization of the vorticity and stream function perturba-
tions v1 andc1 as in Sec. II A 2 leads to

d2

l2

]2c̃1

]x̃2 +
]2c̃1

]z̃2 = 2ṽ1, s23d

d2

l2

]2ṽ1

]x̃2 +
]2ṽ1

]z̃2 = 0. s24d

4. Numerical results and limiting cases

In Fig. 3sad is plotted the numerical results for the nor-
malized effective slip lengthLs/d as a function of the aspect

ratio l /d for the transverse configuration. Over the range
shown,Ls/d increases monotonically withl /d, saturating at
a constant value beyondl /d,Os10d. When l /d→`, any
significant variation in the velocity and pressure fields will
be localized near the planex=sl−ad /2, where the BC’s
change from no shear to finite slip. Sincepsx=0d=psx
=l /2d, the longitudinal average of the lateral pressure gradi-
ent within the cell must vanishsi.e., kpxl=0d and any pres-
sure gradient above the surface of no shear will be canceled
by an opposing gradient above the surface of finite slip.
Since the transition region in the vicinity of the the planex
=sl−ad /2 does not contribute significantly in the limitl /d
→`, the conditionkpxl=0 is equivalent to the condition

l − a

2
spxd1 = −

a

2
spxd2, s25d

where the subscripts 1 and 2 refer to the regions above the
surface of no shears1d and finite slips2d.

Now we first consider the caseb/d=0. Since the flux
must remain constant,

E
0

d

u1dz=E
0

d

u2dz, s26d

where

u1 = U +
spxd1

2m
sz2 − d2d, s27d

u2 = U
z

d
+

spxd2

2m
zsz− dd. s28d

It follows that spxd2=4spxd1−6mU /d2, which, when coupled
with Eqs.s11d and s25d, yields the limiting value

lim
b/d=0

l/d→`

Ls

d
=

kusz= 0dl
U − kusz= 0dl

=
l − a

4a
. s29d

The same analysis can be extended to the caseb/dÞ0 with
the general result

lim
l/d→`

Ls

d
=

ld2 + 8lbd+ 12lb2 − ad2 − 4abd

4adsd + 3bd
. s30d

The horizontal asymptotessdotted linesd shown in Fig. 3sad
for l /d.10 represent solutions to Eq.s30d for the desig-
nated values ofb/d anda/l.

In the opposite limitl /d→0—i.e., where the upper and
lower walls are essentially infinitely far apart—the deviation
of the flow field from pure shear flow over ahomogeneous
surface with slip lengthLs is limited to a thin layer whose
thickness scales withl. As a consequence, the effective slip
length should be independent of the cell depthd and inde-
pendent of the particular mechanism used to generate the
flow; i.e., the same slip length should result for pressure-
driven or shear-driven flow. Lauga and Stonef33g deter-
mined the asymptotic behavior of the effective slip length for
pressure-driven flow in a cylindrical tube of radiusR with
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periodically distributedstransversed rings denoting alternat-
ing surfaces of no shear or no slipsb=0d:

lim
b/R=0

l/d→0

Ls

R
=

l

2pR
ln1 1

cosSp

2

l − a

l
D2 . s31d

The solutions to Eq.s31d, obtained by replacing the capillary
radiusR with the cell depthd, superimpose perfectlyssloped
dashed linesd onto the full numerical solutions shown in Fig.
3sad. In this limit, the slip length increases linearly withl /d
up to a limit l /d<1.

The effective slip length in the limitl /d→0 for the case
bÞ0 can be derived as follows. When the array periodl is
much smaller than the local slip lengthb, the slip velocity
usx,z=0d should saturate towards a constant value,us0, over
the entire interval 0øxøl /2. Sinceusz=0d=buzsz=0d, it is

also expected that the velocity gradientuzsz=0d will assume
a constant value in the regionfsl−ad /2øxøl /2 ,z=0g.
Consequently,

]kul
]z

s0d =
us0

Ls
=

l − a

l
0 +

a

l

us0

b
⇒

Ls

d
=

l

a

b

d
; s32d

i.e., the effective slip length becomes independent ofl /d for
fixed a/l. The term proportional tosl−ad /l accounts for
the vanishing contribution of the no-shear regions to
]kul /]zsz=0d. The horizontal dashed lines shown in Fig. 3sad
for l /d,0.1 represent solutions to Eq.s32d for the desig-
nated values ofb/d anda/l.

In Fig. 3sbd is plotted the effective slip lengthLs/d versus
a/l for b/d=0 andl /d=1.0 and 14.3. The data points for
l /d=14.3 are scaled by a factor 0.3 for convenience. The
effective slip vanishes asa/l→1 since the surface coverage
by regions of perfect slip decreases to zero. The numerical
results were compared to a Taylor expansion of Eq.s31d in
the limit of a/l→0:

Ls

d
= −

l

2pd
FlnSa

l
D + lnSp

2
DG . s33d

The dashed line shown in Fig. 3sbd for l /d=1.0 perfectly
superimposes on the results of the full numerical solutions.
The numerical solution forl /d=14.3 can also be approxi-
mated by a fit-functionA lnfa/lg+B for a/l!1, as shown
by the dashed line; however, Eq.s33d no longer holds be-
causel /dÜ1.

Streamlines of the flow field, corresponding to the contour
lines si.e., constant valuesd of the stream function, are shown
in Figs. 3scd and 3sdd. The left and right panels represent the
solutions forb/d=0.048 anda/l=0.5 for scd l /d=1 andsdd
20. The vertical line denotes the transition in boundary con-
dition at the lower wall from no shearsleftd to finite slip
srightd. For small values ofl /dø1.0, the streamlines are
essentially horizontal in the larger portion of the cell and the
deviation of the streamfunction from pure Couette flow over
a homogeneous surface is confined to a small distance from
the patterned wall. Asl /d increases, the perturbation ex-
tends further away from the lower boundary. For largel /d
the streamlines are horizontal above the individual stripes
except for a steplike vertical displacement in the vicinity of
the transition pointx=sl−ad /2.

B. Longitudinal configuration

The velocity field corresponding to the longitudinal con-
figuration shown in Fig. 1sbd is unidirectional and given by
usx,zd=s0,v ,0d. There is no pressure gradient in this con-
figuration and the numerical solutions are derived directly
from the Stokes equation¹2v=0. The computational cell is
shown in Fig. 2sbd, where the direction of motion of the
upper wall is indicated by the white concentric circles. Only
four BC’s are required for solution of the velocity fieldv.
Aside from the obvious constraints of finite slip,vx must
vanish atx=0 andx=l /2 because these are planes of mirror
symmetry. The complete set of BCs is given by

vs0 ø x ø l/2,z= dd = U − bvzsx,z= dd, s34d

FIG. 3. sColor onlined sad Normalized slip lengthLs/d versus
normalized pattern periodl /d derived from the Stokes solutions for
the transverse flow orientation. The parameters values shown are
b/d=0, 0.048, and 0.098 anda/l=0.25 and 0.50. The straight lines
superimposed on the numerical solutions forb/d=0 correspond to
the analytic limitLs/d,l /d. sbd Normalized slip lengthLs/d ver-
sus normalized stripe widtha/l for l /d=1 and 14.3 in the limit
b/d=0. The dashed lines correspond to the functionLs/d
=A lnfa/lg+B, with fitting parametersA andB. The data points for
the casel /d=14.3sA=−2.245,B=−3.952d are scaled by a factor of
0.3 for convenience.scd, sdd Streamlines corresponding to the trans-
verse Stokes flow solutions forscd l /d=1 andsdd l /d=20 where
b/d=0.048 anda/l=0.5. The cell domain size isl /23d; the thin
vertical lines designate the boundary between surfaces of no shear
sleftd and finite slipsrightd.
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vz„0 ø x ø sl − ad/2,z= 0… = 0, s35d

v„sl − ad/2 ø x ø l/2,z= 0… = bvzsx,z= 0d, s36d

vxsx = 0,zd = 0 =vxsl/2,zd. s37d

Equations37d and a lateral average of the Stokes equation
across the computational cell—i.e., kvszdl
=s2/lde0

l/2vsx,zddx—leads tokvlzz=0. As in the transverse
case, the averaged velocity profilekvl is therefore a linear
function of z. Geometric similarity determines the equation
for the effective slip length: namely,

Ls

d
=

kvsz= 0dl
kvsz= ddl − kvsz= 0dl

. s38d

Figure 4sad represents numerical results for the normal-
ized effective slip lengthLs/d as a function ofl /d. Over the
range shown,Ls/d increases monotonically withl /d. As
with the transverse geometry, there is no significant increase
in slip length beyondl /d,Os10d. The absolute values of
Ls/d are larger than in the transverse case. This is due to the
fact that for unidirectional flow, the liquid above the region
of no shear always remains in line with the frictionless
stripes and is never subject to any deceleration caused by the
regions of finite slip. The functional dependence ofLs/d on
l /d, however, is identical to the transverse orientation. As
l /d→0, the slip length should be independent of the cell
depthd and independent of the type of flowswhether pres-
sure or shear drivend. Using the analytical solutions of Philip
f34,35g for the longitudinal configuration, Lauga and Stone
f33g extracted the effective slip length for pressure-driven
flow in a cylindrical tube of radiusR in the presence of
alternating stripes of no shear and no slipsb=0d:

lim
b/R=0

l/R→0

Ls

R
=

l

pR
ln1 1

cosSl − a

l

p

2
D2 . s39d

The solutions to Eq.s39d, obtained by replacing the capillary
radius,R, with the planar cell depth,d, are almost indistin-
guishable from the results of the full numerical solutions in
Fig. 4sad. In this limit, the slip lengthLs/d is exactly twice
that of the transverse configurationfsee Eq.s31dg and scales
linearly with l /d.

An analytic expression for the effective slipLs/d, can be
derived in the limit l /d→` by examining the flow field
above the patterned substrates. The velocity profile above the
no-shear surfaces1d is plug like and given byv1szd=U.
Above the surface of finite slip,v2szd=Usz+bd / s2b+dd. The
latter result is obtained by noting that the shear rateuz is
constant throughout the gap depth and equal toU / s2b+dd.
Calculating the average flow speed,kvl, at the upper and
lower boundaries, and substituting these into Eq.s38d leads
to the expression

lim
l/d→`

Ls

d
=

l − a

a
+

2l − a

a

b

d
. s40d

The horizontal dashed line forb/d=0.098 andl /d*10 cor-
responds to Eq.s40d.

In Fig. 4sbd is plotted the numerical solutions forLs/d
versusa/l for l /d=1 andb/d=0 and 0.098. The data points
for b/d=0.098 have been scaled by 0.5 for convenience. For
b/d=0 and small valuesa/l, a Taylor expansion of Eq.s39d
gives

lim
b/d=0

l/d→0

Ls

d
= −

l

pd
FlnSa

l
D + lnSp

2
DG . s41d

The straight line superimposed on the data in Fig. 4sbd rep-
resents the asymptotic values given by Eq.s41d. The agree-

FIG. 4. sColor onlined sad Normalized slip lengthLs/d versus
normalized pattern periodl /d derived from the Stokes solutions for
the longitudinal flow orientation. The parameter values shown are
b/d=0, 0.048, and 0.098 anda/l=0.5. The straight line superim-
posed on the data forb/d=0 corresponds to Eq.s39d whereLs/d
,l /d. sbd Normalized slip lengthLs/d versus normalized stripe
width a/l for l /d=1 andb/d=0 and 0.098. The straight line su-
perimposed on the numerical solutions corresponds to Eq.s41d. The
data points forb/d=0.098 are scaled by a factor 0.5 for conve-
nience.scd, sdd Velocity contours corresponding to the longitudinal
Stokes flow solutions forscd l /d=0.35 andsdd 10, whereb/d
=0.048 anda/l=0.5. The domain size isl /23d; the thin vertical
lines designate the boundary between surfaces of no shearsleftd and
finite slip srightd.
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ment with the analytical limit fora/l&0.3 is very good.
Velocity contours, corresponding to constant values ofv,

are shown in Figs. 4scd and 4sdd. The left and right panels
represent solutions forscd l /d=0.35 andsdd l /d=10 where
b/d=0.048 anda/l=0.5. The vertical line denotes the posi-
tion corresponding to the change in boundary condition at
the lower wall from no shearsleftd to finite slip srightd. For
l /dø0.35, the velocity contours are horizontal throughout
almost the entire cell and the deviations from pure shear flow
over a homogeneous surface are confined to a small distance
from the patterned wall. Forl /d=10, the perturbation ex-
tends vertically across the cell. For largel /d, the velocity
distribution varies from plug like above the region of perfect
slip to Couette like above the region of finite slip, as as-
sumed in the derivation leading to Eq.s40d for l /d→`.

III. MD SIMULATIONS AND PARAMETER
VALUES

We have previously used MD simulations to investigate
what equilibrium parameters control the degree of slip in
simple and polymeric fluids and how the slip length depends
on shear ratef28,29g. In these previous studies, the wall-fluid
potential was spatially homogeneous. In this current work,
we examine the behavior of the effective slip length for a
fluid subject to planar shear in the presence of a heteroge-
neous bottom wall for the two flow configurations shown in
Fig. 1. The wall-fluid interactions are adjusted to mimic al-
ternating stripes of finite slip and no shear by adjusting the
attractive part of the potential to simulate more attractive and
less attractive regions. The MD simulations described next
were conducted with theLAMMPS numerical codef43g. In
what follows, we refer to the more attractive surface aswet-
ting and the less attractive surface asnonwetting.

The simulation cell consisted of 30 720 fluid molecules
interacting through a Lennard-JonessLJd potential,

VLJsrd = 4«FSs

r
D12

− dSs

r
D6G , s42d

where« and s represent the energy and length scales char-
acteristic of the fluid phase. The cutoff radius was set torc

=2.5s. The parameterd, which controls the attractive part of
the potential for fluid-fluid interactions, was held fixed atd
=1. The wall-fluid swfd parameters were chosen to beswf
=0.75s and«wf /«=0.8, 0.9, or 1.0. Surfaces of finite slip in
the hydrodynamic analysis corresponded to the parameter
value dwf =1.0 si.e., wettingd; surfaces of no shearsor like-
wise perfect slipd corresponded to the valuedwf =0.1 si.e.,
nonwettingd. For the MD simulations, we restricted our study
to the casea/l=1/2 such that the wetting and nonwetting
portions of the substrate occupy equal areas.

The upper and lower walls of the simulation cell each
consisted of 12 288 molecules distributed between twos111d
planes of an fcc lattice with densityrw=4r, where r
=0.81s−3 is the density of the fluid phase. The fluid was
confined to a fixed heightd=20.15s; the cell volume was
266.96s37.22s3d for the transverse geometry. To elimi-
nate any finite size effects for the longitudinal geometry, the
system size along theŷ axis was doubled in length to 14.45s,
requiring simulations with 61 440 fluid molecules. For either
configuration, periodic BC’s were enforced along thex̂ andŷ
axes. The fluid was held at a constant temperatureT
=1.1« /kB by means of a Langevin thermostatf44g with a
friction coefficientt−1. Here,kB is the Boltzmann constant.
This damping term is only applied to the coordinate equation
perpendicular to the direction of flowf28,36g. The equations
of motion were integrated using the Verlet algorithmf45g
with a time stepDt=0.005t, wheret=Îms2/« represents the
characteristic time set by the LJ potential andm is the mono-
mer mass. The fluid was subject to steady planar shear by
translating the upper wall at a constant speedU; the lower,
patterned wall remained stationary. In all the simulations, the
speed of the upper wall was held fixed atU=0.5s /t. After
an equilibration period exceeding 104t, the fluid velocity
profile was obtained by averaging the instantaneous mono-
mer speeds in slicesDz=0.1s for a time intervalDt<3
3104t. The Reynolds number, based on the upper wall
speedU, the wall separationd, and the fluid shear viscosity
sdetermined previouslyf28,29g to be m=2.2±0.2et /s3 for
comparable shear ratesd, was estimated to range from 2 to 5,
indicative of negligible inertial effects and laminar flow con-
ditions. In fact, this estimate provides only an upper bound
on the Reynolds number, since the actual fluid velocity for
surfaces comprising regions of finite and infinite slip is sig-
nificantly smaller than the upper wall speed. In our studies,
use of the fluid flow speed further reduces Re by a factor of
up to 2. We conclude that the small Reynolds numbers char-
acterizing the MD simulations are consistent with the theo-
retical restriction for the Stokes flow solutions obtained in
the limit Re=0. We also note that the numerical solutions to
the Stokes equation for the longitudinal geometry are valid
irrespective of the value of the Reynolds number because the
unidirectional flow causes the inertial term in the Navier
Stokes equation to vanish identically.

IV. RESULTS OF MD SIMULATIONS FOR TRANSVERSE
AND LONGITUDINAL FLOW

The two sets of curves in Fig. 5 show the average normal-
ized fluid densityrszds3 for the transverse flow configuration

FIG. 5. sColor onlined Average normalized fluid densityrszds3

above the wettingsdwf =1.0: trianglesd and nonwettingsdwf =0.1:
circlesd stripes. The parameter values shown aresad a=1.04s and
sbd a=133.48s for «wf /«=0.8.
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in the region above the wetting and nonwetting stripes for
«wf /«=0.8 and a/s=1.04 and 133.48. The choicea
=133.48s represents the accommodation of only two stripes
at the lower wall within the Couette cell. The oscillations
near the upper and lower boundaries reflect the molecular
layering caused by the presence of dense wallsf36g. Increas-
ing the attractive part of the LJ potential generates larger
peak maxima and more oscillations. Above either type sur-
face, the density oscillations persist for about four to six
molecular diameters from the wall. Decreasing the strength
of the attractive interaction shifts the first peak maximum
away from the lower wall. Also, the fluid density above the
wetting stripes is found to increase witha/s. The density
profiles corresponding to longitudinal flow configurations are
quite similar to the ones shown here.

Figure 6 shows representative velocity profiles across the
cell depth for transverse flow with«wf /«=0.8 and a/s
=1.04, 4.17, and 133.48. Shown for comparison is the veloc-
ity profile corresponding to the case ofuniformlynonwetting
walls wheredwf =0.1 holds for both surfaces. Decreasing the
wall-fluid interaction leads to a high degree of slip and a
pluglike velocity field. The remaining three profiles increase
linearly with z/s, as expected for a fluid subject to planar
shear, except in the vicinity of the lower wall. Significant
deviations from linearity occur for large stripe widths. These
oscillations are caused by the difference in the positions of
the fluid density maxima above the wetting and nonwetting
regionsfsee Fig. 5sbdg. As evident from the velocity profile,
the degree of slip increases with increasing values ofa.

Figure 7 shows the computed velocity profiles for longi-
tudinal configurations. The behavior is similar to that shown
in Fig. 6 for the transverse orientation, but the amplitude of
the oscillations near the lower wall is significantly larger. In
this case, the degree of slip does not increase monotonically
with a. The smallest stripe width generates the second largest
slip velocity in Fig. 7. As the stripe width increases, it is
found that the wetting regions induce stronger molecular or-
dering in the first fluid layer adjacent to the wall, causing a
reduction in the slip length, as noted in Fig. 10.

For direct comparison to the hydrodynamic predictions, it
was necessary to extract the actual values of the local slip
lengthb, representative of the surfaces characterized bydwf
=1.0, for input values to the boundary conditions used in
computing the solutions to the Stokes equation. This was
accomplished in the MD simulations by extrapolating the
average velocity profile at thetop wall to a speedU for
different values ofa imposed on the lower wall. The extrapo-
lated distanceb was found to depend on the wall-fluid inter-
action energy but not the shear rate in the fluid nor the flow
orientation. As expected, the values ofb decreased with in-
creasing value of the wall-fluid interaction energy, namely
b/s=1.97, 1.36, and 0.95 for«wf /«=0.8, 0.9, and 1.0, re-
spectively. By contrast, the local slip length for the flat ve-
locity profile shown in Fig. 6 for uniformly nonwetting walls
was found to bes362±10ds. Given that this slip length sig-
nificantly exceeds the wall separation, the choicedwf =0.1
approximates very well the behavior of surfaces of perfect
slip si.e., no sheard assumed in the continuum calculations.

The composite or effective slip lengthLs was determined
in the MD simulations by linear extrapolation below the sta-
tionary lower surface of the velocity profile to the value zero.
Figure 8 represents a plot ofLs/s with increasing normalized
stripe width a/s and increasing wall-fluid interaction
strength«wf for transverse flow configurations. The MD re-
sults ssymbolsd show a sharp increase in slip length for
a/s&10 and saturation to a constant value beyonda/s
*100.

V. DISCUSSION

As described in Sec. II A and for fixed values ofa/l, the
effective slip length derived from hydrodynamic consider-
ations depends only on the ratiosl /d andb/d. The molecu-
lar length scales plays no part in the analysis. For direct
comparison to the MD results, it was therefore necessary to
multiply the numerical values ofLs/d, l /d, andb/d from the
Stokes solutions with the value of the wall separation,d
=20.15s, used in the MD simulations. The largest ratio
a/d=6.62 accessible to the MD simulations was only limited
by computational resources. The solid lines shown in Fig. 8
represent solutions of the Stokes flow equation for transverse

FIG. 6. sColor onlined Average normalized velocity profile
kult /s corresponding to the transverse flow configuration for
«wf /«=0.8 anda/s=1.04, 4.17, and 133.48. The nearly horizontal
profile shown in Eq.s4d, which designates a pluglike profile repre-
sentative of surfaces with large slip lengths, was obtained by setting
the wall-fluid potential parameter todwf =0.1 along both walls. This
choice effectively reproduces nonwetting bounding walls.

FIG. 7. sColor onlined Average normalized velocity profile
kvlt /s corresponding to the longitudinal flow configuration for
«wf /«=0.8 anda/s=1.04, 4.17, and 133.48.
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flow, as discussed in Sec. II A. The agreement between the
continuum predictions and the MD simulations is excellent
for a/s*Os10d; significant deviations occur fora/s
&Os1d. The asymptotic predictions given by Eq.s30d for
l /d=2a/d→` are designated by the dashed horizontal lines
in Fig. 8.

The Green-Kubo-type analysis of Barrat and Bocquet
f23,39g for homogeneous surfaces characterized by a single
wall-fluid interaction energy predicts that the slip length
scales as«wf

−2 provided the in-plane structure factor, fluid con-
tact density, and in-plane diffusion coefficient characteristic
of the first fluid layer remain relatively constant. The results
shown in the inset of Fig. 8 for the transverse geometry
confirm this prediction for the rangea&10s, even for the
case of a composite potential where the wall-fluid interaction
alternates between two values ofdwf. This collapse fails
abovea*10s where the continuum solutions show excellent
agreement with the molecular simulations. This behavior
suggests that fora/s&Os10d, the effective slip length is
mostly determined by the molecular scale frictional proper-
ties between the first fluid layer and the lower wall. For
a/s*Os10d, however, the effective slip length is set by the
wall separationd, the pattern length scalesa andl, and the
local slip lengthb. The transition region 8&a/s&30 there-
fore contains mesoscopic information from both the molecu-
lar and hydrodynamic descriptions.

The deviation between the MD simulations and the Stokes
solutions belowa/s&Os10d can be understood as follows.
The lower wall is comprised of a potential whose interaction
strength alternates between wetting and nonwetting values
with a periodicity set by the stripe widtha, which approaches
the molecular scale. The fluid molecules no longer experi-
ence uninterrupted stretches of wetting and nonwetting re-
gions; instead, the fluid molecules are exposed to an effec-
tively roughened surface with molecular scale corrugations.

These corrugations trap the fluid molecules, thereby sup-
pressing slip at the wall-fluid interface. The commensurabil-
ity between the fluid molecular size and the wall corrugation
size can in fact lead to a no-slip condition for slightly larger
values of«wf f46g. It is therefore not surprising that the ef-
fective slip length for the transverse configuration, as shown
in Fig. 8, decreases sharply with decreasing values ofa. This
effect also explains why for the smallest values ofa the slip
lengthLs is even smaller than the local slip length obtained
for a fluid confined between two identical walls both charac-
terized by the same valuedwf =1.0. For example, for«wf /«
=0.8 anda/s=1.04, we find thatb/s=1.97 butLs/s=0.5.

Figure 9 shows the behavior ofLs/s as a function of
stripe widtha/s and increasing interaction strength«wf for
longitudinal flow configurations. The results of the MD
simulationsssymbolsd show a sharp decrease in slip length
below a/s,10 followed by a rapid rise. The effective slip
lengths have similar magnitudes for very small and very
large values ofa. Once again, there is excellent agreement
between the Stokes flow solutions and the MD simulations
for a/s*Os10d but strong deviations below this value. In
contrast to the transverse configuration, however, the MD
results predict much larger effective slips than the continuum
solutions fora/s&Os10d. Because of the translational in-
variance of the flow inherent in this case, the molecular scale
roughness set by the composite potential at the bottom wall
cannot diminish the slip length. The reduction in molecular
ordering above the wetting regions with decreasing stripe
width, however, leads to an increase in the slip length which
exceeds the slip lengths obtained for the transverse configu-
ration as well as the continuum predictions.

Previous MD simulations of Newtonian and non-
Newtonian fluids have demonstrated that the slip length for
surfaces characterized by a single wall-fluid potential corre-
lates strongly with the degree of molecular ordering in the
first fluid layer adjacent to the wallf23,28,29,36–39g. The
more orderly the molecular organization, as reflected by the
maximum value of the in-plane structure functionSmax,

FIG. 8. sColor onlined Comparison of the effective slip lengthLs

as extracted from the MD simulationsssymbolsd, with numerical
solutions of the Stokes equationscontinuous linesd for transverse
flow. The local slip lengthb, as extracted from the MD simulations,
decreases with increasing wall-fluid attraction energy: namely,
b/s=1.97, 1.36, and 0.95 for«wf /«=0.8 ssd, 0.9sLd, and 1.0s,d,
respectively. The dashed horizontal lines fora/s*100 correspond
to Eq.s30d. Inset: MD results showing collapse of the effective slip
lengthLs/s when rescaled by the quantity«wf

2 versusa/s.

FIG. 9. sColor onlined Direct comparison of the effective slip
length extracted from the MD simulationsssymbolsd with the nu-
merical solutions of the Stokes equationssolid linesd for longitudi-
nal flow. The local slip lengthb, as extracted from the MD simula-
tions, varies with the LJ wall-fluid interaction energy«wf as b/s
=1.97, 1.36, and 0.95 for«wf /«=0.8 ssd, 0.9 sLd, and 1.0s,d,
respectively. The local slip lengths are observed to be independent
of the flow orientation.
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the smaller the slip length. To test these predictions for the
case of patterned walls in a longitudinal orientation, we com-
puted the maximum value of the in-plane structure function
within the first fluid layer above the wetting and nonwetting
regions separately. The thickness of the first fluid layer was
estimated from the position of the first minimum in the den-
sity profile above a wetting stripe. The contact densityrc was
identified with the maximum of the fluid density within the
first fluid layer. The structure function was computed accord-
ing to Ssqd= uo1

N,eiqyu2/N,, whereN, is the number of mol-
ecules in the first fluid layer adjacent to either a wetting or
nonwetting surface. As shown in Fig. 10, the molecular or-
dering adjacent to a wetting region is far stronger and in-
creases with increasing stripe widtha. By contrast, the mo-
lecular ordering adjacent to the nonwetting region is
unaffected by the stripe widtha, except for the smallest
value shown. The inset in Fig. 10 demonstrates the correla-
tion between the effective length and the parameter
sSmaxrcs

2d−1 as estimated above the wetting regions. Here,
the values ofLs/s versusa/s from Fig. 9 are plotted along-
side the quantityAsSmaxrcs

2d−1, whereA=92.4 is a fitting
parameter. In the limita/s&Os10d, the strong correlation
betweenLs andAsSmaxrcs

2d−1 establishes that the increase in
effective slip length for narrow stripe widths is mainly
caused by the reduction in molecular ordering within the first
fluid layer above the wetting zones.

The BCs used in the continuum analysis correspond to
stripes of finitesor nod slip and no shearsi.e. b=`d. We
repeated the analysis in Section II by replacing the no-shear
BC with a second slip BC to define surfaces comprising
alternating stripes of smallsb/ s =1.97d and large slip
sb/ s =362, as extracted from cases4d shown in Fig. 6d. For
the transverse configuration, the curve corresponding to
b/ s =1.97 in Fig. 8 showed a slight decrease inLs of about
3% for a/ s .30, whereas the longitudinal configuration

generated a decrease up to 9% with respect to the values
shown in Fig. 9.

VI. SUMMARY

We have investigated the behavior of the slip length in
Newtonian liquids subject to planar shear in a Couette cell
with mixed surface boundary conditions. The upper wall is
modeled as a homogenous surface with finite or no slip mov-
ing at a constant speed above a lower stationary wall pat-
terned with alternating stripes representing regions of no
shear and finite or no slip. The velocity fields and effective
slip lengths are computed both from molecular dynamics
simulations and solution of the Stokes equation for flow par-
allel slongitudinal cased or perpendicularstransverse cased to
the stripe pattern. A detailed comparison between the results
of the hydrodynamic calculations and MD simulations shows
excellent agreement when the length scale of the substrate
pattern geometry is larger thanOs10sd, wheres denotes the
fluid molecular diameter as set by the Lennard-Jones inter-
action. The effective slip length then increases monotonically
with a/s to a saturation value. For the transverse case, the
Stokes flow solutions predict an effective slip larger than the
MD results whena/s,Os10d. This discrepancy is under-
stood from a molecular point of view since a narrowing of
the regions subject either to no shear or no slip essentially
establishes a roughened surface. The molecular scale corru-
gation created by the composite wall potential strongly re-
duces the effective slip length below the hydrodynamic re-
sults. This surface roughening effect is not present for the
longitudinal flow configuration since the fluid molecules are
transported along homogeneous stripes representing regions
of either no shear or finite slip. In this case, however, the 2D
fluid structure factor above the non wetting stripessregions
of perfect slip or equivalently no sheard decreases fora/s
&Os10d, which enhances the effective slip lengths above the
values predicted by the hydrodynamic solutions. On the mo-
lecular level, the strong correlation observed between the
effective slip lengthLs and the productsrcSmaxd−1 confirms
that a reduction in molecular ordering within the first fluid
layer generates an increase in the effective slip length.

Detailed comparison between continuum computations
and molecular dynamics simulations is of increasing impor-
tance to the development of hybrid computational schemes
f47–50g. These algorithms are designed to stitch together hy-
drodynamic solutions obtained from continuum equations
with the molecular scale solutions obtained from MD simu-
lations or other microscopic solvers. It has been demon-
strated that the spatial coupling across this wide range in
length scales can be achieved by implementation of con-
straint dynamics within an overlap region. We hope that our
studies of shear-driven flow along surfaces with mixed
boundary conditions will complement ongoing efforts using
hybrid codes. The system and results described here offer an
interesting test case for a better understanding of the inter-
mediate region bridging the behavior of fluids from the
nanoscale to microscale dimensions.

FIG. 10. sColor onlined The dominant peak in the in-plane fluid
structure factor evaluated separately above the wettingsLd and
non-wettingssd regions for longitudinal flow and«wf /«=0.8. Inset:
MD results showing the strong correlation between the effective
slip length Ls/s scircles: data from Fig. 9d and the quantity
AsSmaxrcs

2d−1 strianglesd, which characterizes the degree of mo-
lecular ordering within the first fluid layer above the wetting stripes.
The value of the fitting parameterA is 92.4.
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