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Slip behavior in liquid films on surfaces of patterned wettability: Comparison between
continuum and molecular dynamics simulations
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We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by
substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or
vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an
array of stripes representing alternating regions of no shear and finite or no slip. Velocity fields and effective
slip lengths are computed both from molecular dynari¢®) simulations and solution of the Stokes equation
for flow configurations either parallel or perpendicular to the stripes. Excellent agreement between the hydro-
dynamic and MD results is obtained when the normalized width of the slip regadnss O(10), whereo is
the (fluid) molecular diameter characterizing the Lennard-Jones interaction. In this regime, the effective slip
length increases monotonically withl o to a saturation value. F@/ o= O(10) and transverse flow configu-
rations, the nonuniform interaction potential at the lower wall constitutes a rough surface whose molecular
scale corrugations strongly reduce the effective slip length below the hydrodynamic results. The translational
symmetry for longitudinal flow eliminates the influence of molecular scale roughness; however, the reduced
molecular ordering above the wetting regions of finite slip for small values/ afincreases the value of the
effective slip length far above the hydrodynamic predictions. The strong correlation between the effective slip
length and the liquid structure factor representative of the first fluid layer near the patterned wall illustrates the
influence of molecular ordering effects on slip in noninertial flows.
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I. INTRODUCTION uted [32,33 to the spontaneous nucleation of a dense and
stable layer of nanobubbles in water films adjacent to hydro-
hobic glass surfacg9-11]. Of special interest is the corre-

for t_he manipulation O.f films,_ drops, and bubbles require ponding reduction in drag achieved by proportional substi-
detailed knowledge of interfacial phenomena and small-scalg iy of liquid-solid contact area with liquid-gas contact

flows. These systems, which are distinguished by a Iar.gﬁrea or equivalently, substitution of regions of no slip or
surface-to-volume ratio and flow at small Reynolds, capil-gi;q slip by regions of essentially no sheére., infinite
lary, and Bond numbers, are strongly influenced by boundarglip)

effects1]. Liquid affinity to nearby solid boundaries can be Interest in the hydrodynamic behavior of liquid films in
reduced through chem|c.al treatmefs-5], substrate topo- . the vicinity of surfaces with mixed boundary conditions
logy [6-8], or the nucleation of nanobubbleg on hyd.mphOb'Cdates back several decades to the work of Ph8#35. He
glass surfalcegg—ll].IWezk v?g delrlglvials lrgteractlons be- examined the steady flow of an incompressible and inertia-
Mee_n a polymer me tand solid wgll2-14 or. et_V_Vee“ tw_o less Newtonian liquid driven either by a uniform shear stress
immiscible polymerg15] can also lead to significant slip- or uniform pressure gradient and subject to mixed wall

page and reduced frictional resistance. The degree of slip 'l§oundary conditions. These were represented by surfaces

normally quantified through the slip length defined as theconsisting of alternating striped regions of no shear and no

distance from the surface within the solid phase where th(gIiIO among other geometries. Using conformal mapping

extrapolated flow velocity vanishgd6]. Numerous experi-  ppijin (34,35 derived analytic expressions for the stream
mental and theoretical studies have examined how the sli nction and volumetric flux for flow perpendiculdirans-

length is influenced by such factors as the degree of hydrc\?erse confi : o : :

- gurationor parallel (longitudinal configuration
phobicity[2,17), the substrate topography an.d. surfac_e ro_ugh—to the striped array in the limit of Stokes flow. Recently,
ness[6,7,18-23,5), the presence of mtersphal lubricating Lauga and Stong33] investigated the behavior of the effec-
Iaygrsh[22,24i_2%, thhe po'ymerzg‘og')e‘“f'ar We'g'ﬁﬂ“a%'zl?’ tive slip length for steady Poiseuille flow through a capillary
and t ehallap e slear r?ﬁéh, " ﬂl. n ‘?] recent de\;e OP~  of circular cross section whose inner wall consists of peri-
ment, the large values of the slip length extracted from ex'odic:aIIy distributed regions of no slip and no shear. Philip’s

periments mvolvmg the pressure-.drl\{en flow of Waler oo ier treatment was used to extract the slip length for lon-
through hydrophobically coated capillaries have been attrlbgitudinal configurations; additional analysis was required for
transverse configurations. Comparison of their results with

available experimental measurements suggests what model

*Electronic address: stroian@princeton.edu; URL: http:parameter values would reproduce the experimental slip
Ilwww.princeton.edTbtroian lengths. For slip lengths in the nanometer range, one might
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(a) II. HYDRODYNAMIC ANALYSIS

d In the limit of vanishingly small Reynolds number Re

z
Tlé‘ =pUd/ u, wherep and u denote thegconstank liquid density
and viscosity, inertial effects are negligible. The velocity pro-
1 s file is then governed by the Stokes equatifu=Vp/u,

where the velocity fields satisfies the condition of incom-
pressibility, V-u=0, andp denotes the pressure distribution
orientations for a liquid film subject to planar shear in a cell with Wh'c_h 'n, this study is induced by the patterned substratgs.
wall separatiord. Darker stripes of widtka signify regions of finite  APPlication of the divergence operator to the Stokes equation
slip or no slip. White stripes signify regions of no shéarequiva- ~ Shows that the pressure field satisfies the equét?qu_:zo. It
lently perfect slip. The upper wall moves at constant spéecela-  then follows that the velocity field satisfies the biharmonic

tive to the lower stationary surfadg=0). The periodicity of the —€quationV?V2u=0 [40].
lower wall pattern geometry is designed hy In the next section, we derive the boundary conditions

(BC's) corresponding to transver§Eig. 1(a)] and longitudi-
nal[Fig. 1(b)] flow orientations. These conditions are used to

ask whether a hydrodynamic analysis can correctly predicompute numerical solutions of the stream function, velocity
these values or whether the molecular aspects of the fluid cdf€!d, and effective slip length as a function of the dimension-
strong influence the slip behavior causing deviations from€SS stripe width of the finite slip regiona/A, and the di-
the continuum theory. mensionless surface periadd. They axis is oriented par-

Molecular dynamicSMD) simulations provide an ideal @ll€l to the stripe edges for either configuration. All
tool for investigating the conformation and behavior of fluid "Umerical calculations were performed with the finite-
molecules adjacent to chemically or topologically texturedelemem _SOﬂwarEFEMLAB _2'3 [41'_42 using tnangular ele-
substrates. The boundary conditions which establish the ﬂo\ments with quadratic ba3|_s functions. The solutions reported

. o o . converged upon mesh refinement.
profile are not specified priori, but arise naturally from the _ .
wall-fluid contrast in density and the fluid-fluid and wall A. Transverse configuration
fluid interaction potentials. In recent years, many groups The two-dimensional velocity field corresponding to the
have examined how various molecular parameters charactdransverse configuration shown in Fidallis represented by
izing the wall and fluid properties affect the degree of slip atu(x,2)=(u,0,w)=(dy/dz,0,-dyl ), wherey(x,z) denotes
liquid-solid interfaces. In particular, it has been demonstratedhe stream function, which implicitly satisfies the continuity
that the structure factor and contact density representative @quationV-u=0. The vorticity vectorQ=V Xu=(0,w,0),
the first fluid layer adjacent to a wall significantly influence where w=du/dz—dw/ dx, has only one nonzero component.
the degree of slip in Newtonian and non-Newtonian fluidsAccording to these definitions, it follows that
[23,28,29,36-3P The results of this current study confirm ) )
the importance of these molecular parameters for flow on ©= ‘9_‘1’4_ M=V2¢ V20 =0 (1)
> s .

heterogeneous substrates. az - Ix

In this work, we investigate the behavior of the slip length
in viscous films under planar shear bounded by substrates
with mixed boundary conditions using both MD simulations
and Stokes flow computations. The upper wall, consisting of Solutions of the equations for the vorticity and stream
a homogenous surface of finite or no slip, moves at a confunction given by Eq(1) require the specification of eight
stant speedy, a distanced above a lower stationary wall, BC’s. The computational domain sketched in Figa)2is
whose surface is patterned with an infinite array of stripeglefined by the region bounded by the upper and lower walls
representing alternating regions of no shear and finite or ng?<2z=<d) and the dashed ling®<x<N\/2) corresponding
slip. As shown in Fig. 1, we consider transverse and longi{0 the midplanes of neighboring stripes. White surfaces des-
tudinal flow configurations and compute the correspondinggnate shear-free boundariése., surfaces of perfect slip
velocity fields and effective slip lengths for a wide range ofdark surfaces designate boundaries of finite or no slip.
stripe widths, periods, and liquid-solid affinities. Excellent Throughout, partial derivatives are denoted by letter
agreement between the hydrodynamic and MD results is otsuUbscripts—e.g.di/ Ix= .
tained when the normalized width of the slip regioasg The top and bottom walls represent impenetrable surfaces
=0(10), whereo is the (fluid) molecular diameter charac- Where w(x,z=0)=w(x,z=d)=0 or, in terms of the stream
terizing the Lennard-Jones interaction. For surface patterniinction, x(x,z=0)=,(x,z=d)=0. The tangential compo-
approaching molecular size, the degree of fluid ordering nearent of the velocity field must satisfy mixed slip and shear
the patterned wall, as quantified by the in-plane structurgonditions at the upper and lower walls of the cell. The no-
factor and contact density in the first liquid layer, plays ashear BC is given by,(O<x=<(\-a)/2,z=0)=0. Slip sur-
dominant role causing significant deviations from the hydrofaces are characterized by the Nav[@6] slip condition
dynamic predictions. These deviations can be explained in((A—a)/2=<x=<\/2,z=0)=bu, andu(x,z=d)=U-bu,. The
the context of effective surface roughness and molecular oNavier slip lengthb is assumed constant—i.e., independent
dering effects. of the shear rate.

FIG. 1. (Color onling (a) Transverse an¢b) longitudinal flow

1. Boundary conditions
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studies to zero without loss in generality. The complete set of
BC's for the vorticity and stream functions are therefore

given by

N _ u_ Y(x,2=0)=0, (3)

ax? ax "

Tz =0

3 (A.-:Ii)ll T o(x,z=0=0 forOs=x<(\-a)/2, (5)

FIG. 2. (Color onling Computational domain and boundary (x,z=0)=bew for (N—a)/2=<x=<\2, (6)

conditions used for solution of the Stokes equation corresponding to
the (a) transverse andb) longitudinal flow orientations shown in U(x,z=d)=U - bw, (7)
Fig. 1. The computational domain consists of the region bounded by
the upper and lower wall&z=0 andz=d) and the lateral dashed $(x=0,2) = 0 = gh (X = \/2,2) (8)
lines (x=0 andx=\/2), which are positioned at neighboring mid- X ' X "
planes of the no-shear and finite-slip regions. 0,(x=0,2) = 0 = (X = \2,2). 9)

The lateral boundary conditions for tisealar field u are
derived from the following symmetry considerations. The
biharmonic equationV2V2u=0 involves x derivatives of The value ofij, is determined from the pressure field as
even order only. The lower wall comprises an infinite num-follows. The Stokes equation for the vertical component of
ber of mirror symmetry planes located at the stripe centerthe velocity field is given by,,+w,,=p,/ u. As argued in a
x=n\/2, for all integersn. Since the upper surface is homo- previous section, howeves,(x=n\/2,z)=0, and sincav is
geneous and translationally invariant, the mirror symmetryindependent oz along any mirror symmetry planay,x
imposed by the lower surface determines which symmetrynA/2,2)=0. The pressure is therefore independent of the
applies throughout the entire Couette cell. The scalar field vertical coordinatez in all planesx=n\/2. Furthermore, in
therefore also assumes mirror symmetry about the stripe cethe absence of angxxternallyapplied pressure gradient, as is
ters such thatu(x,z)=u(-x,z) and uy(x,z)=0 for all x the case here, and because of the flow periodipity=0)
=n\/2 and integers. From the continuity equation, it then =p(x=\). Since it was previously argued thaexhibits mir-
also follows thatw,(x=n\/2)=0; i.e.,w is independent of ror symmetry about the planes-n\/2, it must also be true
the coordinate within any mirror plane. Since the upper and of p, since uy+u,,=p,/u. Consequently, the pressure is
lowers walls are impenetrable—i.ew(x,z=0)=w(x,z=d) equal at the lateral boundaries of the computational cell—
=0—this constraint reduces to the BE(x=0)=0=¢,(x i.e., p(x=0)=p(x=N/2). For convenience we s@{x=0)=0.
=N/2). This constraint, coupled with the relatiop,/u=-(V

The continuity equation requireg+w,=0. Together with X )-&=w,, was used to adjust the numerical valueygy,
the condition u(x,z)=u(-x,z), this implies w(x,2) by requiring that the following integral vanish identically:
=-w(-xX,z) such thatw(x,z)=0 and w,,(x,z)=0 at all x Nz N2
=n\/2, wheren=0,1,2...,.Substitution of this last relation j p,dx= ﬂf w,dx=0. (10)
and u,(x=0,2)=0 into the expression fow, leads tow,(x 0 0
=n\/2,z)=0. Regions of no shear at the lower wall are rep-
resented by the conditioa(x,z=0)=0.

Along the top and bottom walls, the scalar compongnt
is independent of the coordinate and thereforew,(z=0)
=w,(z=d)=0. Consequently, the vorticity at the top and bot-
tom walls reduces taw=u, and the Navier slip conditions
can be rewritten as/,((A—-a)/2<x<\/2,z=0)=bw and

2. Solution procedure

The value of the effective slip lengthy, corresponding to
the overall flow within a patterned cell was obtained from
linear extrapolation of the averaged velocity profile)
=(2/)\)f3/2u(x,z)dx to zero. Since at planes of mirror sym-
metry u,=0 and p(x=0)=p(x=A/2), the integral
wfN?V2u(x,2)dx= [5?p,dx=0 reduces tqu),,=0. The aver-
(x,z=d)=U—-bw. The relationw(x,z=0)=w(x,z=d)= g aged vellocit'y fielun) is thgrefore a Iinear. function afand '
=0 also implies that the stream function is constant in th&eometric similarity establishes the relation for the effective

planesz=0 andz=d, whose values we denote hy,, and slip length: namely,
Uhottom The difference in the stream function value between Ls (u(z=0))
the top and bottom walls is equal to the volumetric flux per q = (uz=d) - (uz=0))’ (11)
unit length along they axis[40] since
=d =d For the numerical analysis, the equations for the vorticity
Q= u(x,z)dz= Y A2= Yhop= Yhotom (2 and stream function given by E¢l) and the BC's given by
=0 =0 Egs. (3)—(9) were nondimensionalized according to the res-

. : ... .caled variables
Because the stream function can only be determined within

an arbitrary constant, we set the value af,;om in these

x1
1
X
ke
N
1
N
e

(12)
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shown,L¢/d increases monotonically with/d, saturating at
a constant value beyond/d~ O(10). When\/d— <, any
Ud U significant variation in the velocity and pressure fields will
N,/,: ¢/(—> ;):w/<—>, (14) be localized near the plane=(\-a)/2, where the BC's
d change from no shear to finite slip. Singgx=0)=p(x
leading to =\/2), the longitudinal average of the lateral pressure gradi-
5 5 ent within the cell must vanisli.e., (p,)=0) and any pres-
RPy Py . PPo Po sure gradient above the surface of no shear will be canceled
Fﬁ‘*g‘zw' FﬁJ’E‘O' (15 by an opposing gradient above the surface of finite slip.
_ _ Since the transition region in the vicinity of the the plane
In Sec. Il A4 we present numerical solutions to EE5)  =(\-a)/2 does not contribute significantly in the limit'd
and the extracted values bf as a function of the local slip o« the condition(p,)=0 is equivalent to the condition

lengthb and pattern geometry. Analytic expressions are de-

rived in the limitsA/d— 0 and\/d— ce. A—-a a
T(px)lz _E(F)x)z: (25

- /(Ud> 13 ratio N/d for the transverse configuration. Over the range

3. Perturbative analysis for b0 . .
Y where the subscripts 1 and 2 refer to the regions above the

In order to enhance the numerical precision of solutionssyrface of no sheatl) and finite slip(2).
corresponding to small values of, the velocity and pres-  Now we first consider the case/d=0. Since the flux
sure fields were decomposed into two contributiersl,  must remain constant,
+Uu, and p=py+p;. Here,uy=(uz/d,0,0 and p,=0 corre- § g
spond to the velocity and pressure fields for planar shear J y dz:f udz (26)
flow subject to no slip at both solid boundaries. The Stokes L 0o
equation then reduces to the foraVu,=Vp,;, where the
perturbed velocity field satisfies the continuity equationwhere
V-u;=0. The following BC's for the perturbed stream func-

0 0

tion and vorticity fields were determined in similar fashion as u=U+ M(Zz -d?), (27)
those in Sec. Il A 1: 2p
#(x,z=0) =0, (16)
Uy = ug + %z(z— d). (28)
Y1(x,2=d) = ¢ gop, (17) K
It follows that (p,),=4(p,);—-6uU/d?, which, when coupled
P xz=d)=U, (18)  with Egs.(11) and(25), yields the limiting value
0 (0=<x<(\-a)/2,z=0)=-U/d, (19 jim Se= (UZ=0)__A-a (29
pa=o d U-=(u(z=0)) 4a
P AN -a)l2<x<\2,2=0)=0, (20) Md—e
The same analysis can be extended to the bade: 0 with
I x(x=0,2) =0 =y (x=N2,2), (21)  the general result
2 2_ a2
w1x(X=0,2 =0=w;,(X=N2,2), (22) im Ls _ \d®+8\bd+ 12\b* - ad? 4abd. (30

. N d 4ad(d + 3b)
where ¢, ,=Uy, ¥1,=-W;, and w;=u;,~W;,. Nondimen-

sionalization of the vorticity and stream function perturba-The horizontal asymptotgslotted lineg shown in Fig. 3a)
tions w; and ¢4 as in Sec. Il A 2 leads to for A\/d>10 represent solutions to E¢30) for the desig-
nated values ob/d anda/\.

In the opposite limit\/d— 0—i.e., where the upper and
lower walls are essentially infinitely far apart—the deviation
of the flow field from pure shear flow overl@mogeneous
R Po, o, sqrface with slip Ie'ngth_s is limited to a thin layer V\'/hose.
= * = =0. (24) thickness scales v_vlth. As a consequence, the effec'_uve slip
AT K gz length should be independent of the cell dedthnd inde-
pendent of the particular mechanism used to generate the
flow; i.e., the same slip length should result for pressure-
driven or shear-driven flow. Lauga and Stof&8] deter-

In Fig. 3(a) is plotted the numerical results for the nor- mined the asymptotic behavior of the effective slip length for
malized effective slip length./d as a function of the aspect pressure-driven flow in a cylindrical tube of radiBswith

PP P
e 2

4. Numerical results and limiting cases
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Dimensionless slip length L./d
e

ol
2
=
T

b ¥

P @ -

X

=
T

Dimensionless slip length Ly/d

o1 1
Dimensionless stripe width a/A

.01

FIG. 3. (Color onling (a) Normalized slip length_g/d versus
normalized pattern periokl/d derived from the Stokes solutions for

the transverse flow orientation. The parameters values shown a

b/d=0, 0.048, and 0.098 araf A =0.25 and 0.50. The straight lines
superimposed on the numerical solutions féd=0 correspond to
the analytic limitLs/d~ \/d. (b) Normalized slip lengthL¢/d ver-
sus normalized stripe widta/\ for N/d=1 and 14.3 in the limit
b/d=0. The dashed lines correspond to the functiby/d
=Aln[a/\]+B, with fitting parameteré andB. The data points for
the case./d=14.3(A=-2.245B=-3.952 are scaled by a factor of

0.3 for conveniencdc), (d) Streamlines corresponding to the trans-

verse Stokes flow solutions f@c) N/d=1 and(d) N\/d=20 where
b/d=0.048 anda/\=0.5. The cell domain size is/2 X d; the thin

PHYSICAL REVIEW E 71, 041608(2005

also expected that the velocity gradientz=0) will assume
a constant value in the regiof\-a)/2<x<\/2,z=0].
Consequently,

@(0)=“_50=B

aup Ly _AD
dz L A -

N b d ad

i.e., the effective slip length becomes independent/af for
fixed a/\. The term proportional tdA—a)/\ accounts for
the vanishing contribution of the no-shear regions
& uyl 9z(z=0). The horizontal dashed lines shown in Figa)3
for N\/d<<0.1 represent solutions to E(2) for the desig-
nated values ob/d anda/\.

In Fig. 3(b) is plotted the effective slip length,/d versus
a/\ for b/d=0 and\/d=1.0 and 14.3. The data points for
N/d=14.3 are scaled by a factor 0.3 for convenience. The
effective slip vanishes a/\ — 1 since the surface coverage
by regions of perfect slip decreases to zero. The numerical
results were compared to a Taylor expansion of @B4) in
the limit of a/A —0:

3z ) wl3)]

The dashed line shown in Fig(l8 for N\/d=1.0 perfectly

superimposes on the results of the full numerical solutions.

The numerical solution foh/d=14.3 can also be approxi-

mated by a fit-functiomA In[a/\]+B for a/A <1, as shown

by the dashed line; however, E(B3) no longer holds be-
usen/d£1.

Streamlines of the flow field, corresponding to the contour
lines(i.e., constant valug®f the stream function, are shown
in Figs. 3¢) and 3d). The left and right panels represent the
solutions forb/d=0.048 anda/A=0.5 for(c) A/d=1 and(d)

20. The vertical line denotes the transition in boundary con-
dition at the lower wall from no shedieft) to finite slip
(right). For small values of\/d=<1.0, the streamlines are
essentially horizontal in the larger portion of the cell and the
deviation of the streamfunction from pure Couette flow over
a homogeneous surface is confined to a small distance from

0+ (32

to

(33

vertical lines designate the boundary between surfaces of no shegiie patterned wall. As\/d increases, the perturbation ex-

(left) and finite slip(right).

periodically distributedtransversgrings denoting alternat-
ing surfaces of no shear or no slip=0):

L N 1
m —= In . (31
wr=0 R 27R TA—a
co§y ——
2 X\

Md—0

The solutions to Eq.31), obtained by replacing the capillary
radiusR with the cell depthd, superimpose perfectlsloped
dashed linesonto the full numerical solutions shown in Fig.
3(a). In this limit, the slip length increases linearly wikid
up to a limitA/d=1.

The effective slip length in the limit/d— 0 for the case
b+# 0 can be derived as follows. When the array pefiod
much smaller than the local slip lenghh the slip velocity
u(x,z=0) should saturate towards a constant valug, over
the entire interval & x<\/2. Sinceu(z=0)=bu,(z=0), it is

tends further away from the lower boundary. For laigel

the streamlines are horizontal above the individual stripes
except for a steplike vertical displacement in the vicinity of
the transition poink=(\-a)/2.

B. Longitudinal configuration

The velocity field corresponding to the longitudinal con-
figuration shown in Fig. (b) is unidirectional and given by
u(x,2=(0,v,0). There is no pressure gradient in this con-
figuration and the numerical solutions are derived directly
from the Stokes equatio¥i?v=0. The computational cell is
shown in Fig. Zb), where the direction of motion of the
upper wall is indicated by the white concentric circles. Only
four BC’s are required for solution of the velocity field
Aside from the obvious constraints of finite slip, must
vanish atx=0 andx=\/2 because these are planes of mirror
symmetry. The complete set of BCs is given by

v(0<x<N2,z=d)=U-bv,xz=d), (34)

041608-5
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v(0sx<(\-a)/2,z=0)=0, (35) " T T

v((N—a)/l2=x=<\N2,z=0)=bv,(x,z=0), (36)
b/d =0.098

v,(x=0,2=0=0,(\/2,2). (37

e
S
|

e
o
&

Equation(37) and a lateral average of the Stokes equation

Dimensionless slip length Ly/d

across the computational cell—i.e., (v(2) /bid=0
=(2/\)[3?v(x,2)dx—leads to(v),,=0. As in the transverse //"'
case, the averaged velocity profile) is therefore a linear yd @®
function of z. Geometric similarity determines the equation s I llli e 47 10
for the effective slip length: namely, . e
©] [@ T—
sk 1 |
L (u(z=0) 39 38 —
d (uz=d)-((z=0) £ 4 g
o /
Figure 4a) represents numerical results for the normal- i /
ized effective slip lengtth.¢/d as a function ok /d. Over the § 3 i ]
range shownl./d increases monotonically witih/d. As % ‘I —
with the transverse geometry, there is no significant increase é | R — ) :
in slip length beyond\/d~ O(10). The absolute values of Z ’
Ls/d are larger than in the transverse case. This is due to the A1

fact that for unidirectional flow, the liquid above the region
of no shear always remains in line with the frictionless o .
stripes and is never subject to any deceleration caused by the 001 Dt 1
) L . . imensionless stripe width a/A
regions of finite slip. The functional dependencelLgfd on
A d, however, is identical to the transverse orientation. As gig. 4. (Color onling () Normalized slip lengtiL./d versus
A/ d—0, the slip length should be independent of the cellhormalized pattern period/d derived from the Stokes solutions for
depthd and independent of the type of flowhether pres-  the longitudinal flow orientation. The parameter values shown are
sure or shear drivenUsing the analytical solutions of Philip b/d=0, 0.048, and 0.098 ara/\=0.5. The straight line superim-
[34,35 for the longitudinal configuration, Lauga and Stone posed on the data fds/d=0 corresponds to Eq39) wherelL¢/d
[33] extracted the effective slip length for pressure-driven~\/d. (b) Normalized slip length_s/d versus normalized stripe
flow in a cylindrical tube of radiuRR in the presence of width a/\ for A/d=1 andb/d=0 and 0.098. The straight line su-
alternating stripes of no shear and no $li=0): perimposed on the numerical solutions corresponds t@4g. The
data points forb/d=0.098 are scaled by a factor 0.5 for conve-
nience.(c), (d) Velocity contours corresponding to the longitudinal

lim L_S= L| I S ) (39)  Stokes flow solutions fofc) A/d=0.35 and(d) 10, whereb/d
wr=o R 7R AN-am =0.048 anda/\=0.5. The domain size is/2 X d; the thin vertical
MR—0 co \ E) lines designate the boundary between surfaces of no dleéaand
finite slip (right).
The solutions to Eq(39), obtained by replacing the capillary L« A—a 2\x-ab
radius,R, with the planar cell depthd, are almost indistin- lim —=—— 5 (40)

guishable from the results of the full numerical solutions in Md—e d a a d

Fig. 4@). In this limit, the slip lengthLs/d is exactly twice  The horizontal dashed line fax/d=0.098 and\/d= 10 cor-
that of the transverse configuratipsee Eq(31)] and scales responds to Eq40).
linearly with A/d. In Fig. 4b) is plotted the numerical solutions fdr/d

An analytic expression for the effective slig/d, can be  versusa/\ for \/d=1 andb/d=0 and 0.098. The data points
derived in the limitA\/d— by examining the flow field for b/d=0.098 have been scaled by 0.5 for convenience. For
above the patterned substrates. The velocity profile above th&/d=0 and small valuea/\, a Taylor expansion of E¢39)
no-shear surfacgl) is plug like and given byv,(z)=U.  gives

Above the surface of finite slip;,(z) =U(z+b)/(2b+d). The L N a -

latter result is obtained by noting that the shear natés lim === ——{In(—) + In(—>]. (41

constant throughout the gap depth and equdl t¢2b+d). bia=0 d md A 2

Calculating the average flow spee@), at the upper and Md—0

lower boundaries, and substituting these into B8) leads  The straight line superimposed on the data in Fidp) 4ep-

to the expression resents the asymptotic values given by E4fl). The agree-
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=2.50. The parametes, which controls the attractive part of
| the potential for fluid-fluid interactions, was held fixed &t
=1. The wall-fluid (wf) parameters were chosen to bg;
=0.7% ande:/£=0.8, 0.9, or 1.0. Surfaces of finite slip in
. the hydrodynamic analysis corresponded to the parameter
value 6,;=1.0 (i.e., wetting; surfaces of no shedpr like-
wise perfect slip corresponded to the valug;=0.1 (i.e.,
T nonwetting. For the MD simulations, we restricted our study
to the casea/A=1/2 such that the wetting and nonwetting

| portions of the substrate occupy equal areas.

The upper and lower walls of the simulation cell each

1 consisted of 12 288 molecules distributed between (tild)
A'Mt planes of an fcc lattice with density,=4p, where p
T " e =0.810"2 is the density of the fluid phase. The fluid was
z/c confined to a fixed heighi=20.1%; the cell volume was

266.96r X 7.220- X d for the transverse geometry. To elimi-
FIG. 5. (Color onling Average normalized fluid density(z)oc®  nate any finite size effects for the longitudinal geometry, the
above the wettingd,¢=1.0: triangles and nonwetting(4,+=0.1:  system size along theaxis was doubled in length to 14 45
circles stripes. The parameter values shown @ea=1.04r and  requiring simulations with 61 440 fluid molecules. For either
(b) a=133.48 for £,/£=0.8. configuration, periodic BC's were enforced along &#andy
axes. The fluid was held at a constant temperatlire

Velocity contours, corresponding to constant values,of =.1'.18 kg by_rr_1ean§lof a Lang_evm thermos{a4] with a
are shown in Figs. @) and 4d). The left and right panels fr|qt|on coeffflmentr' . Here, kg is the Boltzmann constant:
represent solutions fdic) A/d=0.35 and(d) \/d=10 where This damplng termis (_)nly _applled to the coordinate equatlon
b/d=0.048 anca/\=0.5. The vertical line denotes the posi- Perpendicular to the direction of flol28,36. The equations
tion corresponding to the change in boundary condition aPf motion were integrated using the Verlet algoritl#b]
the lower wall from no sheafleft) to finite slip (right). For ~ Wwith a time stepAt=0.005r, wherer=\mo?/¢ represents the
N/d=0.35, the velocity contours are horizontal throughoutcharacteristic time set by the LJ potential ands the mono-
almost the entire cell and the deviations from pure shear flommer mass. The fluid was subject to steady planar shear by
over a homogeneous surface are confined to a small distant@nslating the upper wall at a constant spé&edhe lower,
from the patterned wall. Fox/d=10, the perturbation ex- patterned wall remained stationary. In all the simulations, the
tends vertically across the cell. For laryed, the velocity  speed of the upper wall was held fixedat 0.50/ 7. After
distribution varies from plug like above the region of perfectan equilibration period exceeding “ the fluid velocity
slip to Couette like above the region of finite slip, as as-profile was obtained by averaging the instantaneous mono-
sumed in the derivation leading to E@0) for N/d— . mer speeds in slicedz=0.1o for a time interval At=3
. MD SIMULATIONS AND PARAMETER X 10*7. The Reynolds n_umber, based on the upper _WaII
VALUES speedU, the wall separationl, and the fluid shear viscosity
) ) ) ) . (determined previously28,29 to be u=2.2+0.27/ o> for
We have previously used MD simulations to investigatecomparable shear rajesvas estimated to range from 2 to 5,
what equilibrium parameters control the degree of slip iningicative of negligible inertial effects and laminar flow con-
simple and polymeric fluids and how the slip length dependgiisions. In fact, this estimate provides only an upper bound
on shear rat28,29. In these previous studies, the wall-fluid ., he Revnolds number, since the actual fluid velocity for
potential was spatially homogeneous. In this current Worksurfaces comprising regions of finite and infinite slip is sig-

we examine the behavior of the effective slip length for a_... .
fluid subject to planar shear in the presence of a heterogen-'flcan“y smaller than the upper wall speed. In our studies,

neous bottom wall for the two flow configurations shown in Use of the fluid flow speed further reduces Re by a factor of
Fig. 1. The wall-fluid interactions are adjusted to mimic al- YP to 2. We conclude that the small Reynolds numbers char-

ternating stripes of finite slip and no shear by adjusting théct€rizing the MD simulations are consistent with the theo-
attractive part of the potential to simulate more attractive and€tical restriction for the Stokes flow solutions obtained in
less attractive regions. The MD simulations described nexthe limit Re=0. We also note that the numerical solutions to
were conducted with theammps numerical codg43]. In the Stokes equation for the longitudinal geometry are valid
what follows, we refer to the more attractive surfacanas-  irrespective of the value of the Reynolds number because the
ting and the less attractive surface ramnwetting unidirectional flow causes the inertial term in the Navier
The simulation cell consisted of 30 720 fluid moleculesStokes equation to vanish identically.
interacting through a Lennard-Jongs]) potential,

ment with the analytical limit fom/A=<0.3 is very good.

12 6
g g
e :48[<_> —5( ) ] (42 V- RESULTS OF MD SIMULATIONS FOR TRANSVERSE

F AND LONGITUDINAL FLOW

wheree and o represent the energy and length scales char- The two sets of curves in Fig. 5 show the average normal-
acteristic of the fluid phase. The cutoff radius was set.to ized fluid densityp(z) o> for the transverse flow configuration
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FIG. 6. (Color onlineg Average normalized velocity profile FIG. 7. (Color onling Average normalized velocity profile

(uyr/o corresponding to the transverse flow configuration for{v)7/o corresponding to the longitudinal flow configuration for
ewt/£=0.8 anda/0=1.04, 4.17, and 133.48. The nearly horizontal ¢,s/£¢=0.8 anda/0=1.04, 4.17, and 133.48.
profile shown in Eq(4), which designates a pluglike profile repre-

sentative o_f surface_s with large slip lengths, was obtained by s_etting For direct comparison to the hydrodynamic predictions, it
the wall-fluid potential parameter @, =0.1 along both walls. This 55 necessary to extract the actual values of the local slip
choice effectively reproduces nonwetting bounding walls. lengthb, representative of the surfaces characterizedpy

in the region above the wetting and nonwetting stripes for=1.0, for input values to the boundary conditions used in
ent/€=0.8 and a/oc=1.04 and 133.48. The choicea  computing the solutions to the Stokes equation. This was
=133.48r represents the accommodation of only two stripesaccomplished in the MD simulations by extrapolating the
at the lower wall within the Couette cell. The oscillations average velocity profile at theop wall to a speedJ for
near the upper and lower boundaries reflect the moleculatifferent values ofimposed on the lower wall. The extrapo-
layering caused by the presence of dense W}ab$ Increas- lated distancéd was found to depend on the wall-fluid inter-
ing the attractive part of the LJ potential generates largeaction energy but not the shear rate in the fluid nor the flow
peak maxima and more oscillations. Above either type surerientation. As expected, the valuestpfiecreased with in-
face, the density oscillations persist for about four to sixcreasing value of the wall-fluid interaction energy, namely
molecular diameters from the wall. Decreasing the strengtib/0=1.97, 1.36, and 0.95 fos,/£=0.8, 0.9, and 1.0, re-

of the attractive interaction shifts the first peak maximumspectively. By contrast, the local slip length for the flat ve-
away from the lower wall. Also, the fluid density above the locity profile shown in Fig. 6 for uniformly nonwetting walls
wetting stripes is found to increase widio. The density was found to b&362+10¢. Given that this slip length sig-
profiles corresponding to longitudinal flow configurations arenificantly exceeds the wall separation, the choig=0.1

quite similar to the ones shown here. approximates very well the behavior of surfaces of perfect
Figure 6 shows representative velocity profiles across thelip (i.e., no shearassumed in the continuum calculations.
cell depth for transverse flow witlz,;/e=0.8 andal/o The composite or effective slip length was determined

=1.04, 4.17, and 133.48. Shown for comparison is the velocin the MD simulations by linear extrapolation below the sta-
ity profile corresponding to the case wfiformly nonwetting  tionary lower surface of the velocity profile to the value zero.
walls whereé,;=0.1 holds for both surfaces. Decreasing theFigure 8 represents a plot bf/ o with increasing normalized
wall-fluid interaction leads to a high degree of slip and astripe width a/o and increasing wall-fluid interaction
pluglike velocity field. The remaining three profiles increasestrengthe,, for transverse flow configurations. The MD re-
linearly with z/ o, as expected for a fluid subject to planar sults (symbolg show a sharp increase in slip length for
shear, except in the vicinity of the lower wall. Significant a/c=<10 and saturation to a constant value beyaid
deviations from linearity occur for large stripe widths. These=100.

oscillations are caused by the difference in the positions of

the.fluid dens[ty maxima ab_ove the wetting anq nonwgtting V. DISCUSSION
regions[see Fig. B)]. As evident from the velocity profile,
the degree of slip increases with increasing valuea. of As described in Sec. Il A and for fixed valuesaf\, the

Figure 7 shows the computed velocity profiles for longi- effective slip length derived from hydrodynamic consider-
tudinal configurations. The behavior is similar to that shownations depends only on the ratinéd andb/d. The molecu-
in Fig. 6 for the transverse orientation, but the amplitude oflar length scales plays no part in the analysis. For direct
the oscillations near the lower wall is significantly larger. In comparison to the MD results, it was therefore necessary to
this case, the degree of slip does not increase monotonicaliypultiply the numerical values af/d, \/d, andb/d from the
with a. The smallest stripe width generates the second large§tokes solutions with the value of the wall separatidn,
slip velocity in Fig. 7. As the stripe width increases, it is =20.1%, used in the MD simulations. The largest ratio
found that the wetting regions induce stronger molecular ora/d=6.62 accessible to the MD simulations was only limited
dering in the first fluid layer adjacent to the wall, causing aby computational resources. The solid lines shown in Fig. 8
reduction in the slip length, as noted in Fig. 10. represent solutions of the Stokes flow equation for transverse
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FIG. 8. (Color onling Comparison of the effective slip lengtly FIG. 9. (Color onling Direct comparison of the effective slip

as extracted from the MD simulatiorsymbolg, with numerical  |ength extracted from the MD simulatiorisymbolg with the nu-
solutions of the Stokes equatigoontinuous linesfor transverse  merical solutions of the Stokes equatitsolid lines for longitudi-

flow. The local slip lengtlb, as extracted from the MD simulations, nal flow. The local slip lengtl, as extracted from the MD simula-
decreases with increasing wall-fluid attraction energy: namelytions, varies with the LJ wall-fluid interaction energy; asb/o
b/0=1.97, 1.36, and 0.95 far,/£=0.8(0), 0.9(¢), and 1.0(V),  =1.97, 1.36, and 0.95 fa#,/£=0.8 (O), 0.9 (¢), and 1.0(V),
respectively. The dashed horizontal lines &= 100 correspond  respectively. The local slip lengths are observed to be independent
to Eqg.(30). Inset: MD results showing collapse of the effective slip of the flow orientation.

lengthL¢/ o when rescaled by the quantitﬁ,, versusa/ o. ] .
These corrugations trap the fluid molecules, thereby sup-

pressing slip at the wall-fluid interface. The commensurabil-

flow, as discussed in Sec. Il A. The agreement between thiy between the fluid molecular size and the wall corrugation
cont’inuum predictions and the MD simulations is excellent>'2€ can in fact Iead.to a no-slip condmon_f(_)r slightly larger
for a/o=0(10): significant deviations occur foralo values ofe,; [46]. It is therefore not surprising that the ef-

. - ) fective slip length for the transverse configuration, as shown
=O(1). The asymptotic predictions given by EQO) for i, Fig g decreases sharply with decreasing values Bhis

A/d=2a/d— = are designated by the dashed horizontal linesffect also explains why for the smallest valuesadhe slip
in Fig. 8. length L is even smaller than the local slip length obtained
The Green-Kubo-type analysis of Barrat and Bocquefor a fluid confined between two identical walls both charac-
[23,39 for homogeneous surfaces characterized by a singlgerized by the same valué,=1.0. For example, foe,/&
wall-fluid interaction energy predicts that the slip length=0.8 anda/o=1.04, we find thab/c=1.97 butLy/c=0.5.
scales as,7 provided the in-plane structure factor, fluid con-  Figure 9 shows the behavior tf,/o as a function of
tact density, and in-plane diffusion coefficient characteristicstripe widtha/o and increasing interaction strenggly for
of the first fluid layer remain relatively constant. The resultslongitudinal flow configurations. The results of the MD
shown in the inset of Fig. 8 for the transverse geometrysimulations(symbols show a sharp decrease in slip length
confirm this prediction for the ranga=10c, even for the below a/o~ 10 followed by a rapid rise. The effective slip
case of a composite potential where the wall-fluid interactiorlengths have similar magnitudes for very small and very
alternates between two values @éf;. This collapse fails large values of. Once again, there is excellent agreement
abovea= 100 where the continuum solutions show excellenthetween the Stokes flow solutions and the MD simulations
agreement with the molecular simulations. This behaviofor a/o=0(10) but strong deviations below this value. In
suggests that foa/o=0(10), the effective slip length is contrast to the transverse configuration, however, the MD
mostly determined by the molecular scale frictional properresults predict much larger effective slips than the continuum
ties between the first fluid layer and the lower wall. Forsolutions fora/o<0O(10). Because of the translational in-
a/o=0(10), however, the effective slip length is set by the variance of the flow inherent in this case, the molecular scale
wall separatiord, the pattern length scal@sandX, and the  roughness set by the composite potential at the bottom wall
local slip lengthb. The transition region 8a/o =30 there-  cannot diminish the slip length. The reduction in molecular
fore contains mesoscopic information from both the molecuordering above the wetting regions with decreasing stripe
lar and hydrodynamic descriptions. width, however, leads to an increase in the slip length which
The deviation between the MD simulations and the Stokegxceeds the slip lengths obtained for the transverse configu-
solutions belowa/ o= 0(10) can be understood as follows. ration as well as the continuum predictions.
The lower wall is comprised of a potential whose interaction Previous MD simulations of Newtonian and non-
strength alternates between wetting and nonwetting valueNewtonian fluids have demonstrated that the slip length for
with a periodicity set by the stripe wid#y which approaches surfaces characterized by a single wall-fluid potential corre-
the molecular scale. The fluid molecules no longer experifates strongly with the degree of molecular ordering in the
ence uninterrupted stretches of wetting and nonwetting refirst fluid layer adjacent to the wal23,28,29,36—3P The
gions; instead, the fluid molecules are exposed to an effeenore orderly the molecular organization, as reflected by the
tively roughened surface with molecular scale corrugationsmaximum value of the in-plane structure functi@y,,
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. generated a decrease up to 9% with respect to the values
shown in Fig. 9.

€, =08
wetting

non-wetting

3 3
X X

. VI. SUMMARY
Y oLj/o

1r all v A/PSwmS) ] We have investigated the behavior of the slip length in
m wf ¥ 1 Newtonian liquids subject to planar shear in a Couette cell
. . with mixed surface boundary conditions. The upper wall is
R . PR modeled as a homogenous surface with finite or no slip mov-
0 3 alc 6 o ing at a constant speed above a lower stationary wall pat-
terned with alternating stripes representing regions of no
FIG. 10. (Color onling The dominant peak in the in-plane fluid shear and finite or no slip. The velocity fields and effective
structure factor evaluated separately above the wettihg and slip lengths are computed both from molecular dynamics
non-wetting(O) regions for longitudinal flow ané,/e=0.8. Inset:  gimy|ations and solution of the Stokes equation for flow par-
M.D results showing the strong correla.tion between the eﬁgctived||e| (longitudinal caspor perpendiculattransverse cageo
slip 'en%t;'_lfla. (C'rldes; g_atﬁ f}:om Fig. 0 arruld the q“ar}t'ty the stripe pattern. A detailed comparison between the results
AlSmapco) . (tr'a.ng. es, which characterizes the degr'.ae oF MO~ ¢ the hydrodynamic calculations and MD simulations shows
lecular ordering W|_th_|n the first fIU|d_ layer above the wetting Smpes'excellent agreement when the length scale of the substrate
The value of the fitting parametéris 92.4. pattern geometry is larger th&@(100), whereo denotes the
fluid molecular diameter as set by the Lennard-Jones inter-

the smaller the slip length. To test these predictions for th&etion. The effective S.I'p length then increases monotonically
with a/o to a saturation value. For the transverse case, the

case of pattern_ed walls in a IongltL_ldmaI orientation, we €OM5tokes flow solutions predict an effective slip larger than the
puted the maximum value of the in-plane structure functio

" . ) . 19" results whena/ o~ 0O(10). This discrepancy is under-
within the first fluid layer above the wetting and nonwetting stood from a molecular point of view since a narrowing of

reg_ions separately. The_ _thickness (.)f the_fi_rst flui_d layer Wathe regions subject either to no shear or no slip essentially
estimated from the position of the first minimum in the den-gqapjishes a roughened surface. The molecular scale corru-
sity profile above a wetting stripe. The contact dengitwas  gation created by the composite wall potential strongly re-
|(_jent|f|¢d with the maximum of thg fluid density within the §ces the effective slip length below the hydrodynamic re-
first fluid layer. The structure function was computed accordsyjts. This surface roughening effect is not present for the
ing to S(q)=[Z)"€¥|?/N,, whereN, is the number of mol- |ongjtudinal flow configuration since the fluid molecules are
ecules in the first fluid layer adjacent to either a wetting ortransported along homogeneous stripes representing regions
nonwetting surface. As shown in Fig. 10, the molecular or-of either no shear or finite slip. In this case, however, the 2D
dering adjacent to a wetting region is far stronger and influid structure factor above the non wetting strigesgions
creases with increasing stripe width By contrast, the mo- of perfect slip or equivalently no sh@adecreases foa/ o
lecular ordering adjacent to the nonwetting region is=O(10), which enhances the effective slip lengths above the
unaffected by the stripe widtla, except for the smallest values predicted by the hydrodynamic solutions. On the mo-
value shown. The inset in Fig. 10 demonstrates the correldecular level, the strong correlation observed between the
tion between the effective length and the parametegffective slip lengthLs and the productp Sna) ™ confirms
(Snawco? ! as estimated above the wetting regions. Herethat a reduction in molecular ordering within the first fluid
the values oL/ o versusa/ o from Fig. 9 are plotted along- l2yer generates an increase in the effective slip length.

side the quantityA(Syap.0?)", whereA=92.4 is a fitting Detailed comparison bgtween continuum computations
parameter. In the limif/o<O(10), the strong correlation and molecular dynamics simulations is of increasing impor-

1 : . . tance to the development of hybrid computational schemes
betwgeri.s QndA(Snapcaz) establlshg S thgt the increase in [47-50. These algorithms are designed to stitch together hy-
effective slip length for narrow stripe widths is mainly

. . - 2 drodynamic solutions obtained from continuum equations
caused by the reduction in molecular ordering within the first i, the molecular scale solutions obtained from MD simu-
fluid layer above the wetting zones. _ lations or other microscopic solvers. It has been demon-

The BCs used in the continuum analysis correspond Qyrated that the spatial coupling across this wide range in
stripes of finite(or no) slip and no sheafi.e. b=x). We  |ength scales can be achieved by implementation of con-
repeated the analysis in Section Il by replacing the no-sheajiraint dynamics within an overlap region. We hope that our
BC with a second slip BC to define surfaces comprisingstudies of shear-driven flow along surfaces with mixed
alternating stripes of smallb/c=1.97) and large slip boundary conditions will complement ongoing efforts using
(b/ 0=362, as extracted from ca$®) shown in Fig. . For  hybrid codes. The system and results described here offer an
the transverse configuration, the curve corresponding tinteresting test case for a better understanding of the inter-
b/ 0=1.97 in Fig. 8 showed a slight decreasd_iyof about  mediate region bridging the behavior of fluids from the
3% for a/ 0>30, whereas the longitudinal configuration nanoscale to microscale dimensions.
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