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We present a study of the aggregation of interacting particles in one dimension. This situation, for example,
applies to atoms trapped along linear defects at the surface of a crystal. Simulations are performed with two
lattice models. In the first model, the borders of atoms and islands interact in a vectorial manner via force
monopoles. In the second model, each atom carries a dipole. These two models lead to qualitatively similar but
quantitatively different behaviors. In both cases, the final average island sizeSf does not depend on the
interactions in the limits of very low and very high coverages. For intermediate coverages,Sf exhibits an
asymmetric behavior as a function of the interaction strength: while it saturates for attractive interactions, it
decreases for repulsive interactions. A class of mean-field models is designed, which allows one to retrieve the
interaction dependence on the coverage dependence of the average island size with a good accuracy.
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I. INTRODUCTION

Submonolayer growth—the deposition of less than one
monolayer of atoms on a crystal surface—has attracted much
interestf1–5g in the past decade. This interest was first trig-
gered by the search for a better understanding of the initial
stages of thin-film growth, which drastically influences the
later stages of growth. Another research focus for submono-
layer growth is the formation of novel nanostructures, such
as quantum wires along crystal stepsf6–9g.

The submonolayer regime is dominated by the deposition
and diffusion of adatoms and the formation and growth of
islands, through nucleation, coalescence, and capture of new
adatoms. Another possible relevant factor is the presence of
long-range elastic interactions between adatoms. The inter-
action free energy between two adatoms deposited on a sur-
face, separated by the distancer, is of the formEsrd,1/r3

f10g and is repulsive. This repulsive character is due to the
local deformation that an adatom creates in the substrate,
which gets smaller with the distance from the site in which
this adatom is placed. If another adatom arrives, it tries to be
where the deformation of the substrate is smaller, i.e., far
away from the first adatom. As will be seen later, in reality
the interaction law is more complex and attraction may arise
as well. Beyond the submonolayer regime, elastic relaxation
may be responsible for the formation of mounds in the grow-
ing film, since in this way a coherentsundislocatedd three-
dimensional island can relax its stress.

Apart from the elastic repulsion between adatoms which
are in different sites, there are also direct chemical interac-

tions between them, which are strong and in general attrac-
tive. There is competition between the long-range elastic re-
pulsion and the short-range attraction. The elastic interaction
is in general weaker for isolated atoms, but can become im-
portant for islandsf1g.

Recently, several models of island growth under the influ-
ence of long-range interactionssnot necessarily of elastic ori-
gind have been considered, using computational simulations
and scaling arguments. For instance, Tataruet al. f11g con-
sidered attractive and repulsive interactions between adatoms
of the form 1/r in a postdepositionsdiffusion only after
depositiond model of island growth in one- and two-
dimensional substrates. Steinbrecheret al. f12g considered
the growth of fractal clusters under a diffusion-limited aggre-
gation sDLA d process with elastic interactionssof the form
1/r3d. Similarly, Indiveriet al. f13g used attractive potentials
of the form 1/ra to consider the influence of long-range in-
teractions in the growth of a DLA aggregate. Very recently, a
model of submonolayer island formation with repulsive elas-
tic interactions of the form 1/r3 in a two-dimensional sub-
strate was considered by Gutheimet al. f14g. In their model,
diffusion occurs simultaneously with deposition, and mono-
mers can be deposited on top of existing islands. The islands
become stable when a dimer is formedscritical nucleation
size i =1d. In the regime of low coverages, they observed
that, when the ratio between the elastic interaction and the
temperature increases, the density of monomers continues to
grow until greater values of the coverage is reached, and so
island nucleation is deferred to higher coverage values when
the elastic interaction increases. Another recent workf15g,
using the same repulsive elastic energy between adatoms,
considered a variant of the model of submonolayer island
growth sin a one-dimensional substrated in which only the
adatom that is being deposited at each time diffusessuntil it
reaches the local minimum of the energyd under the influence
of the temperature and the repulsive interaction between par-
ticles, while the rest of the system is frozen. They only con-
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sidered the case of stable dimers and coverages above 0.2.
They found a maximum on the island size distribution that
corresponds to greater island sizes as the coverage increases.
In their model, the temperature does not have a great influ-
ence on the island size distribution.

It turns out that in all the above studies, elastic interaction
was considered to be scalar, and this strongly differs from
what occurs in real situations. It is not obvious that these
studies should apply to heteroepitaxial growth. For example,
in Ref. f15g, it was considered that all the atoms within an
island interact with adatoms with a law 1/r3. The same rea-
soning was applied in Ref.f14g. In reality, the elastic inter-
action is vectorial, and the effect of an island is localized
along the periphery only: the periphery is a location of force
monopolesf16,17g. Of course this result follows from inte-
gration of the elastic interaction 1/r3 over the island, and it is
only when the interaction is treated vectorially that the con-
tributions within the island cancel. In Ref.f11g, only diffus-
ing particles are supposed to interact, but no interaction, ei-
ther between an adatom and the island periphery or between
two islands, was taken into consideration. In view of this
situation, it is desirable to clarify how elasticity must be
taken into account. This is the first goal of this paper.

We shall then apply our results to one-dimensionals1Dd
aggregation by means of Monte Carlo simulations. By one
dimensional we mean a line lying on a 2D substrate, like a
quantum wire forming along, for example, a monatomic step.
Some experimental observations of such structures are given
in Refs. f6–9g. We shall see that generically the interaction
between two 1D islands contains contributions like 1/r3

stemming from atom-atom interactions within the two is-
lands, as well as 1/r interactions between the edges of the
islandssif we extend our scheme to growth of 2D islands,
then only contributions from the peripheries survived.

Diffusion and nucleation in the postdeposition regime
were observed in several experimentsf21,22g. This is taken
to mean that the deposition process is performed at low
enough temperaturesf22g so that adatom diffusion is slow
during depositionsdeposition is made on a time scale for
which organization into islands is not yet effectived, then the
flux is shut off, and adatom rearrangement into islands oc-
curs. Significant mass transport and formation of islands af-
ter deposition can also be obtained by annealing the sample
f7g. We shall consider irreversible aggregation here and
adopt the case where a dimer is stable. The other situations,
like simultaneous growth and nucleation, as well as strong
annealing leading to desorption, or the allowance for a mini-
mal size for the stability of nuclei, will constitute the subject
of future work. We hope thus that our understanding of self-
organization can be accomplished by a progressive refine-
ment of the model.

This paper is organized as follows. In the next section, we
present a brief revision about elastic interactions. In Sec. III,
we describe the system under consideration and related ex-
periments. In Sec. IV, we present the details of the model
used, and the simulation technique. Some tools for the analy-
sis, such as the scaling hypothesis and the island correlation
function, are presented in Sec. V. Then the results of the
simulations are presented in Sec. VI. We finally analyze the
results using a mean-field model in Sec. VII, and discuss the

limit of low coverage in Sec. VIII with the help of a point
island model.

II. A BRIEF SURVEY ON ELASTIC INTERACTIONS

An adatom on a surface creates forces on the substrate,
and due to the action-reaction principle, the substrate reacts
by a set of forces that cancel the total forcesFig. 1d. In
addition, the total torque must be zero. The total interaction
energy between two adatoms can be written in terms of a
sum of interactions between individual forces. This has the
form f16g

Eint = −
1 + s

pE
S1 − s

r
f1 · f2 +

s

r3sr · f1dsr · f2dD , s1d

wheres is the Poisson ratio andE is the Young modulus.
Note that in Ref.f16g, the total minus sign is missing. In
order to describe precisely how the interaction energy must
be written, we assign to each atomsbe it free or in an islandd
a set of forces and then use directly the above expression.
For an island of atoms ofB nature on top of a substrate ofA
nature, one can show analyticallyf16g that for an island the
effect follows from a set of forces coming from the periphery
only. This effect, as discussed in the Introduction, owes
its origin to the vectorial character of the interactionssee
Fig. 2d.

Let us specialize the general expressions1d to simple situ-
ations. If two forces lie along the separation vector and have
the same signfFig. 3sadg, then we easily find that

Eint
force= − Ai/r , s2d

whereAi ;s1+sdf2/ spEd. The interaction is thus attractive.
If the forces are antiparallel, then obviously the interaction
would be repulsivefFig. 3sbdg.

Let us suppose now that there is a force doubletfFig.
3scdg pointing alongr . Then we obtain for the interaction
energy

FIG. 1. An adatom on a surface and the forces on the
substrate.

FIG. 2. Islands and adatoms on a substrate. For 2D islands, only
interactions between the peripheries survive.
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Eint
d =

8Aia2

r3 , s3d

which is a repulsive interactionf17g. This is the classical
Kohn-Lau interactionf10g. If, however, the doublet is or-
thogonal tor fFig. 3sddg, we obtain

Eint
d = −

4Ais1 − 3sda2

r3 . s4d

If s,1/3 sthe usual range fors lies within 0.25,s,0.3d,
the interaction is attractive; it is repulsive otherwise. These
simple examples show clearly that the interaction energy
must be treated accurately depending on the situation under
consideration.

III. THE SYSTEM UNDER CONSIDERATION

We restrict ourselves to 1D patterns in the postdeposition
case. That is,N atoms are randomly deposited along a chain
and then, after the deposition flux has been shut off, diffusion
takes place in the presence of elastic interactions. As a real-
istic 1D system, we have in mind a nucleation process oc-
curring along a step on a high-symmetry surface, or on a
vicinal surface. The latter situation is often used for the fab-
rication of quantum wires. Many experiments indeed report
on the formation of chains of atomsf6g, moleculesf7g, or
clustersf8g along steps. Moreover, experimentsf18g show
that, in the case of atom chainsf6g, atoms diffuse along
steps, and do not detach from the steps at room temperature.
Sometimes, more complex structures appear along the steps,
such as plateletsf9g, dots f7g, or rough stripesf6g. Further-
more, the formation of one-dimensional self-organized nano-
structures on patterned substratesf19,20g has recently been
observed in experiments. To our knowledge, the dynamics of
formation and annealing of the chains has not been modeled
yet in the literature. Here we focus on a basic situation, with
a single wire before the completion of a monorow: the 1D
coverage denoted asu hereafter is such thatu,1.

According to the last section, the elastic effect due to
heteroepitaxy of an island corresponds to a set of forces lying
on the periphery of the wire, as schematically shown in Fig.
4sad. In that figure, we show both islands and adatoms. We

suppose here that islands having two atoms are stable. Thus,
in principle, one has to consider interactions between parallel
and perpendicular forces, according to expressions1d. In or-
der to gain a better qualitative understanding, we shall sepa-
rately analyze the situations withsid only the horizontal
forces andsii d only the perpendicular ones. These two mod-
els will be referred to as models I and II, respectively. We
shall also consider both attractive and repulsive interactions.

IV. MODELS

We consider a one-dimensional chain on which the occu-
pation numberssn are defined.sn=0 or sn=1 when the site
n is, respectively, empty or filled with an atom.

Let us first consider model I. In order to account for the
vectorial character of the forces exerted by the atoms on the
substrate, we shall write that each atom at the siten leads to
two opposite forces atn+1/2 andn−1/2. Thus, between
two neighboring atoms atn andn+1, the sum of the forces
exerted atn+1/2 iszero. The only nonvanishing forces will
be at the borders of islands or isolated atoms. These forces
will interact according to Eq.s2d, and the total energy of the
system reads

E = − eo
n

snsn+1 − Ai o
n.m

ssn − sn+1dssm − sm+1d
1

un − mu
,

s5d

where e is the bond energy andAi is the prefactor of the
elastic interaction.

We now turn to model II. In this case, all atoms interact
with each other via dipole-dipole interactions, and the total
energy reads

E = − eo
n

snsn+1 + A' o
n.m

snsm

un − mu3
, s6d

whereA'=4Ais1−3sda2 from Eq. s4d.
In both models, two distant clusters have an interaction

energy,1/r3. Nevertheless, the details of the interactions
are different. As we shall see in the following, these differ-
ences may lead to significant changes in the overall behavior.

These models were implemented in a simple way. Ada-
toms are deposited onto a one-dimensional substrate, with a

FIG. 3. sad Parallel forces,sbd antiparallel forces,scd force dou-
blet alongrW, andsdd force doublet orthogonal torW.

FIG. 4. sad Model I, in which only horizontal forces are consid-
ered, andsbd model II, with perpendicular forces only.
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probabilityu at each site, so that the coverage isu. If none of
the nearest-neighbor sites of an atom is occupied, the atom is
called an adatom, and it is allowed to move. The attachment
to an island is set to be irreversible: atoms with one or two
nearest neighbors do not move. For this regime to be
reached, the bond energye must be large enough, so that
detachment of atoms from the islands is expected to be neg-
ligible during the simulations. We analyze the final state,
where there are no mobile atoms left.

The transition rateW for an atom to diffuse from a site to
the next one is calculated with theMETROPOLIS algorithm.
Defining the energy variationDE between the final and the
initial state for a given move, we chooseW=exp
s−DE/kBTd whenDEù0, andW=1 whenDE,0.

V. SCALING

When the final state is reached, we calculate the island-
size distribution functionNs sdefined as the concentration of
islands with sizesd. From mass conservation, we have

o
s=1

`

sNs = u. s7d

The total density of islandsN is given byN=osù2Ns and the
average island size is

S=
os=1

`
sNs

os=1

`
Ns

=
u

N + N1
. s8d

In the final state, when there is no monomer left,N1=0 and
Sf =u /Nf. From the hypothesis that there is only one charac-
teristic length scalesthe average island sizeSd, the density of
islands of sizes is expectedf5,24,25g to obey a scaling rela-
tion of the formNs,Cfss/Sd, wheref is a scaling function.
Using Eq.s7d with this scaling form leads tof23g

Ns = uS−2fss/Sd. s9d

Another quantity of interest is the island-island correla-
tion function Gsrd, which is the probability to have two is-
lands separated by the distancer,

Gsrd =
2

L
o
k

s̃ks̃k+r . s10d

Here k is the possible positions for the center of the island
sk may be an integer or a half-integerd, ands̃k=1 or 0 if the
sitek is, respectively, occupied or not occupied by an island.
For large r, and in the absence of long-range order,Gsrd
→N2.

VI. RESULTS

We now present the results of the simulations. In the fol-
lowing, all energies and temperatures will be provided in eV
and Kelvins, respectively. Figure 5 shows our results for the
average island sizeSf, at saturationsi.e., when there are no
mobile atoms leftd as a function of the elastic interaction
parameterA. Models I and II exhibit similar results. Depend-

ing on the sign ofA, two regimes are found: whenA,0, the
average island sizeSf slightly increases for increasinguAu.
When A.0, Sf decreases. The main difference between
model I and model II is the quantitative variation ofSf in the
repulsive regime. Indeed, larger variations are observed for
model I.

In Figs. 6 and 7, we provide the coverage dependence of
the average island size. We have performed simulations on
chains ofL=1000 sites foruù0.1 andL=10 000 for 0.1
ùuù0.01. These simulations were averaged over 500 runs.
The interactions significantly change the average island size
for intermediate coverages only. At high coveragesu→1, Sf
does not depend on the interactions. In the opposite limit at
u→0, the island size seems to tend to a constant universal
valueSf →2.76±0.01 which is also independent of the inter-
actions.

The scaled island size distribution is plotted in Fig. 8, for
coverage 0.01,u,0.6, at saturation and for model Ismodel
II leads to similar resultsd. Using Eq.s9d, we obtain a data
collapse for both attractive and repulsive interactions when
u,0.2. Nevertheless, for large enough coverages, significant
deviations from the scaling behavior are found. Indeed, the
scaling functionf =NsSf

2/u exhibits more islands of large size
in this regime. This breakdown of the scaling behavior indi-
cates that there is more than one length scale which inter-
venes in the dynamics.

We have also computed the island correlation function
Gsrd, which is shown in Fig. 9. This function shows that no
order appears in the distribution of islands, even when inter-
actions are present. This result was checked for model I and
model II for attraction and repulsion, as well as without in-
teractions.

VII. MEAN-FIELD MODEL

A. Model equations

For the analysis of the above-mentioned results, we intro-
duce a mean-field model which accounts for the interactions

FIG. 5. Average island sizeSf as a function ofAi for L=1000,
T=1000,u=0.1, ande=10. Dashed lines for model I and solid lines
for model II. Averages are taken over 500 realizations. The lines
without symbols are the results of the mean-field model for model I
and model II discussed in Sec. VII. The dotted line corresponds to
the limit of strong attraction discussed in Sec. VII. The mean-field
models reproduce the results of the simulations within 5% accuracy.
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between the clusters via an adatom capture rateks,S which
depends both on the size of the clusters and on the average
island sizeS. Since the only mobile species are the mono-
mers, and since islands cannot merge, the model reads

]tNs = N1sks−1,SNs−1 − ks,SNsd, s. 1, s11d

]tN1 = − N1o
s=1

`

ks,SNs − k1,SN1
2, s= 1. s12d

The challenge is now to evaluateks,S from microscopic dy-
namics.

B. No interaction

When there is no interaction, we shall assume that the
attachment rates are independent of the sizes of the islands.
Nevertheless,ks,S may depend on the average island sizeS,

which contains information about the typical distance on
which an atom diffuses before reaching an attachment site.
Therefore, one may writeks,S=PS. Assuming random depo-
sition of the atoms with probabilityu at each site as an initial
condition, the mean-field model Eqs.s11d ands12d is solved
in Appendix B. This leads to a final average cluster size
which does not depend onPS. Indeed,PS only determines
how fast the global evolution occurs. We find

Sf
0 =

e1−u

1 − u
. s13d

This result is in good agreement with the simulations, as
shown in Fig. 6. For smallu, one hasSf

0=es1+u2/2d, in
FIG. 6. Variation of the average island size with the coverage in

the saturated lattice forL=1000, T=1000 K, ande=10 eV for
model I and model II. Circles, triangles, squares, and diamonds
correspond toA=−1, 0, 0.5, and 1 eV, respectively. The lines indi-
cate the full solution of the mean-field model for the same values of
A for A.0, and the limit of strong attraction of the mean-field
model.

FIG. 7. Variation of the average island size for low coverages,
with T=1000 K ande=10 eV for model Isdashed linesd and model
II sdotted linesd. Circles, triangles, and squares correspond to
A=−1, 0, and 0.5 eV, respectively. The lines without symbols indi-
cate the solution of the mean-field model without interactions and
for A=0.5.

FIG. 8. Model I: Scaled size distributions in the saturated lattice
for a coverage range of 0.01øuø0.2 andu=0.6 forL=10 000 and
T=1000. The empty symbols correspond toAi=−1 and the filled
ones toAi=0.5. For the sake of clarity, we have not plotted the case
without interactions, which leads to similar results, with scaling
functions between the attractive and repulsive case.
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agreement with Ref.f23g, which indicate thatSf ,uz with z
=0 si.e., Sf is constantd whenu→0.

C. Repulsive interactions

We now consider the case where interactions are present.
Due to the interaction with all clusters of the chain, the en-
ergy landscape experienced by a diffusing adatom is com-
plex. Nevertheless, the interaction energy between atoms and
clusters decreases with the distance as 1/r3, and as a first
approach, we shall only account for the first neighbors of an
adatom. In Appendixes A and B, the interaction energy of an
adatom with a single cluster is calculated. As expected, we
generically find a long-range attraction or repulsion whenA
is positive or negative.

We now assume that

ks,S= 2PSps,S, s14d

wherePS is an attempt frequency which does not depend on
s. ps,S is the probability for an atom between an island of
sizes and another island of sizes1 to attach to the cluster of
sizes, averaged over the sizes1. In this definition, the distri-
bution of probability ofs1 is the time-dependent global dis-
tribution of islands in the system. We use an approximate
expression forps,S which is the probability for atoms to at-
tach to a cluster of sizes when the neighboring cluster has
the average sizeS. In addition, we shall assume that the
monomer starts exactly half-way between the two clusters. In
the case without interaction, we then find thatps,S=1/2, and
one retrieves the expression of the previous sectionks,S=PS.

The splitting probability for an atom between a cluster of
sizes at L=0 and a cluster of sizeS at L=, is f26g

ps,S=

E
,/2

,

dL expfUsLd/kBTg

E
0

,

dL expfUsLd/kBTg
, s15d

where , is the distance between the clusters andU is the
potential experienced by the adatom between the two clus-

ters. Instead of analyzing directly Eq.s15d, we will use ap-
proximated expressions in the following, which will make
the physical ingredients more explicit.

In the regime where clusters and atoms repel each other
sAi .0 or A'.0d, an adatom has to cross an energy barrier
Es to attach to a cluster starting from a reference state far
from the island whereU=0. The energy barrier for attach-
ment of an atom to an island is calculated in Appendixes A 1
and A 2. For model I, we have

Es = Ai

sss+ 3d
2ss+ 1dss+ 2d

. s16d

As shown in Appendixes A 1 and A 2, islands-adatoms and
adatoms-adatoms interactions are,1/r3. Since the integral
of 1/r3 converges, one can consider that the interaction has a
finite range, as opposed, for example, to 1/r interactions,
which have an infinite range. It is therefore reasonable to
assume that the interaction between an island and an atom is
negligible at a distance larger thanã swhich is on the order
of several atomic distancesd. Since the integrands in Eq.s15d
are proportional to expsU /kBTd, they vary rapidly with the
value of U. Taking the reference energy to be zero on the
terrace far from the island, one has expsU /kBTd<1 in this
region, and expsU /kBTd<expsES/kBTd close to an island. A
simple approximation for Eq.s15d is therefore

ps,S<
ã expsES/kBTd + ,/2

ã expsEs/kBTd + ã expsES/kBTd + ,

<
u expsES/kBTd + 1/2

ufexpsEs/kBTd + expsES/kBTdg + 1
. s17d

Sinceã is of the order of atomic distances, we can write that
ã/,,u, which leads to the second expression in Eq.s17d.

As a rough approximation, we linearize Eqs.s14d, s16d,
and s17d for ss−Sd small, and obtainps,S=s1/2df1+QSss
−Sdg, with QS= u2]sps,Sus=S. Using Eq.s14d, we finally get

ks,S= PSf1 + QSss− Sdg, s18d

whereQS is a function ofS. In the present case where inter-
actions are repulsive, we find

QS= −
u]SES/kBT

2u + exps− ES/kBTd
. s19d

The mean-field models11d ands12d with arbitraryQS in Eq.
s18d is solved analytically in Appendix B. Linearizing the
solution for smallQS, we find the final average island size,

Sf = Sf
0S1 −E

s1 − ud−1

Sf
0 dS

S
E

s1 − ud−1

S

dS8sS8−1 − 1dQS8D ,

s20d

where Sf
0, given in Eq. s13d, is the average island size in

absence of interactions. Once again, we find thatPS has no
influence onSf. As shown in Figs. 5 and 6, Eq.s20d repro-
duces the results of the simulations within better than 5%
accuracy.

We might first notice that whenu→0, one hasQS→0,
and it follows thatSf →e for any interaction constant. In-

FIG. 9. Model I: Correlation function in the saturated lattice for
a coverage range ofu=0.1 andAi=0.5, 0, and −1, forL=10 000
andT=1000.
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deed, the distances between adatoms and islands diverge in
the limit of low coverages. Therefore, the diffusion from one
island to the other takes a much longer time than the attach-
ment to an island or to another atom. In this limit, the kinet-
ics is limited by diffusion, and the interactions have no con-
sequences on the evolution of the system. From Eq.s17d one
can easily find that the universal diffusion-limited regime is
reached whenu,u* =exps−ES/kBTd. These results are in
agreement with the simulations, where we have found that
Sf →2.76±0.01 whenu→0 for all values of the interaction.
The crossover to the diffusion-limited regime in the simula-
tions is seen foru* <0.1 whenAi=0.5 eV andT=1000 K.
Considering that the limiting process is that of dimer forma-
tion, we indeed find thatu* <exps−E1/kBTd<0.1.

In the opposite limitu.u* , the attachment dynamics is a
standard Arrhenius law limited by the attachment barriersEs,

ps,S=
exps− Es/kBTd

exps− Es/kBTd + exps− ES/kBTd
, s21d

which leads toQS=−s1/2d]SES/kBT. In the low coverage
limit of this regimeu* ,u!1, the final average island size
given by Eq.s20d does not depend on the coverageu and
takes a simple form,

Sf < e− 0.02sAi/kBTd. s22d

In the limit u→1, the final configuration is mainly dic-
tated by the initial conditions. Therefore, it is once again
independent of the interactions, and we find thatSf →Sf

0

<1/s1−ud.
For model II in the repulsive regimesA'.0d, and whene

is largeswhich corresponds to the limit of irreversible aggre-
gationd, the attachment energy barrier is

Es = A'o
i=2

s+1
1

i3
. s23d

Approximating Es by a continuous integral sEs

<A'e3/2
s+3/2dx/x3d, and following the same lines as for model

I, the mean-field model is solved with energy barriers given
by Eq. s23d.

Once again, the result is given by Eq.s20d, and the
diffusion-limited regimeSf →e is recovered foru,u* . We
also retrieve the limit of high coverageSf <1/s1−ud when
u→1. At intermediate coveragesu* ,u!1, we find

Sf < e− 0.01sA'/kBTd, s24d

which, as compared to model IfEq. s22dg, indicates a weaker
decrease of the average island size with the interaction
strength. This result is confirmed by the simulations reported
in Fig. 5. This seemsa priori surprising since the long-range
interaction takes exactly the same form in both models:
As/ r3, wheres is the island size, andA=Ai or A'. This result
in fact confirms that the dynamics is controlled by the
model-dependent energy barriersEs rather than by the
asymptotic behavior of the interactions.

D. Attractive interactions

Let us now consider the case of attractive interactions
sAi ,0 or A',0d. The potential experienced by an adatom
exhibits a maximum somewhere between the two neighbor-
ing clusters, and decreases when approaching one of these
clustersssee Fig. 11 and Appendixes A 1 and A 2d.

When the attraction is strong enough, the potential expe-
rienced by a mobile atom is very steep, and the atom always
moves towards the direction where the potential decreases.
Therefore, the dynamics is deterministic, and the probability
for an adatom to attach to a cluster of sizes when the neigh-
boring cluster has a sizeS is the probability for the adatom to
be between the cluster of sizes and the maximum of the
potential seen by the adatomU,AfsL−3+Ss,−Ld−3g. This
potential is the same for model I and model II. We have
defined, as the distance between the clusters, andL as the
distance to the cluster of sizes. Assuming that the initial
position of the adatom is random, we find thatps,S is the
ratio of the distance between the maximum of the potential
and the island of sizes, called Lmax, over the distance be-
tween the clusters,. Since Lmax=, / f1+sS/sd1/4g does not
depend on the strength of the interactionsA, the probability
ps,S also does not depend onA. We find

ps,S=
Lmax

,
=

1

1 + sS/sd1/4. s25d

Expanding forss−Sd small and assuming once again that
ks,S=2PSps,S, we find QS=q/S, where q=1/8. Using Eq.
s20d, we obtain an expression for the final average island size
in the limit of infinitely strong attraction,

Sf =
e1−u

1 − u
+ qS1 + u

2
e1−u − 1D + osq2d s26d

with q=1/8. Thefirst term of Eq.s26d corresponds to the
case without interactions. The second term is positive and
small. Equations26d therefore suggests a small increase ofSf
when the attraction increases, up to a limit value. The pre-
diction of the mean-field model Eq.s26d is plotted together
with the simulation results ofFig. 6. Once again, good agree-
ment is found with the simulations. As opposed to the case of
repulsive interactions discussed in the previous section, the
dynamics here is solely dictated by the asymptotic behavior
of the potential at long distances, which is identical for
model I and model II. This explains why these models lead
to identical results in the presence of strong attractive inter-
actions.

Moreover, as mentioned for the case of repulsive interac-
tions, one should recover the universal diffusion-limited re-
gime whereSf does not depend on the interactions for low
enough coveragessor weak enough interactionsd, when u
!expsES/kBTd. This result is indeed observed in the simula-
tions in Fig. 6.

VIII. DISCUSSION

We would now like to draw the attention of the reader to
the limit of low coverages. Many authors in the literature
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f11,15,23g introduce an exponentz from the relationS,u−z

whenu→0. If z is nonvanishing,Sf should either diverge or
vanishsdepending on the sign ofzd at low enough coverages.
But it is clear thatSf ù2 because the smallest islands are
dimers. Therefore,z,0 is impossible, and we must havez
ù0. The mean-field model of the previous section predicts
that Sf tends to a finite value in the limit of low coverages.
This would indicate thatz=0.

The limit u→0 is in fact very difficult to check, and we
do not know of any study in the literature whereSf is ob-
tained from simulations over several orders of magnitude for
u→0. In order to check the robustness of our results, we
have performed simulations at low coverages with a point
island model. In this model, all atoms interact with each
other with a dipolar interactionAp/ r3. The interaction poten-
tial between an adatom and an island of sizes is therefore
sAp/ r3. We also use theMETROPOLIS algorithm, and attach-
ment to a cluster is irreversible.

We have performed simulations at low coverage onlysi.e.,
u,0.2d, where the point island model is expected to
be valid. The results, reported in Fig. 10, are once again
consistent with the existence of a universal value of
Sf →2.75±0.02 at small coverages, which is the same as that
obtained from the extended island model. Moreover, the
saturation of the increase ofSf in the attractive regime is
similar to that observed in the case of extended islands. For
the repulsive regime, the behavior is similar to that of the
extended island models, although quantitatively different.

In the absence of interaction, and in the presence of at-
tractive interactions, the predictions of the mean-field model
are in agreement with the simulations of the point island
model. Nevertheless, they are quantitatively not accurate in
the repulsive regime. This discrepancy may be due to the
faster variation of the attachment barrier in the point island
model fEs=ssAp/kBTdg, which questions the validity of the
linearization ofks,S.

IX. CONCLUSIONS

We have analyzed irreversible aggregation in one dimen-
sion in the presence of elastic interactions between the par-

ticles. Two models were considered: a vectorial force-force
modelsmodel Id and a dipole-dipole modelsmodel IId. These
models were analyzed both with Monte Carlo simulations
and with the help of a mean-field model. Despite the very
rough approximations used to design the mean-field model,
its predictions reproduce the final average island sizeSf ob-
tained from the simulations within better than 5% accuracy.
Let us now summarize the main results.

The distribution of islands exhibits a scaling behavior
NsS

2/u= fss/Sd for low coverages, but not at high coverages.
Moreover, the correlation functions of the spatial distribution
of clusters reveal no order.

For both model I and model II, the limits of low and high
coverage do not depend on the interactions. In the low cov-
erage limit, the dynamics is diffusion-limited, and the aver-
age island size tends to a universal valueSf =2.76±0.01. In
the high coverage limit, the island distribution is essentially
determined by the initial conditions, andSf <1/s1−ud with
random initial conditions.

For intermediate coverages,Sf depends on the interac-
tions. We have obtained an asymmetric behavior as a func-
tion of the interaction strength. Indeed, the average island
size decreases with repulsive interactions, but increases only
slightly and saturates in the presence of attractive interac-
tions. Significant quantitative differences between model I
and model II are observed only for repulsive interactions.

A detailed analysis shows that dynamics is controlled by
the long-distance asymptotic behavior of the interaction po-
tential in the attractive regime, which is the same for all the
models that we have studiedsmodel I, model II, or the point
island modeld. Therefore,Sf does not depend on the precise
model for attractive interactions. On the contrary,Sf is deter-
mined essentially by the model-dependent attachment barrier
at the border of the islands in the repulsive regime. This
explains why we have obtained quantitative differences be-
tween different models in this regime.

To conclude, we shall mention that our study allows one
to identify the relevant ingredients which control the nucle-
ation dynamics. For example, we have found that the control
of the average island size of the aggregates can be achieved
only by tuning repulsive interactions at intermediate cover-
agesswhich is the only regime where significant variations
of Sf have been observedd.

APPENDIX A: ADATOM-CLUSTER INTERACTIONS

We analyze here the interactions between a cluster and an
isolated atomsadatomd. The qualitative behavior of the elas-
tic contribution to the interaction energy is given in Fig. 11.
A detailed analysis is given in the following.

1. Model I

In the case of force-force interactions, the total energy of
a system with one adatom and one cluster containingsC at-
oms is

EtotsL,sd = EC + EA + EAC, sA1d

whereEC and EA are, respectively, the self-energies of the
cluster and the adatom, andEAC is the interaction energy

FIG. 10. Point island model, low coverage behavior of the final
average island size. From top to bottom, the curves correspond to
values of the repulsive interactionAp/kBT=−1, 0, 0.1, 1, 2, and 4.
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between the adatom and the cluster.L is the distance be-
tweeen the center of the cluster and the center of the adatom.
The self-energy of a cluster containings atoms is

Eselfssd = − ess− 1d +
A

s
. sA2d

One therefore hasEC=Eselfss=sCd and EA=Eselfss=1d. The
interaction energy between the cluster and the adatom is

EAC =
2AiLsC

fL2 − ssC − 1d2/4gfL2 − ssC + 1d2/4g
. sA3d

When the adatom is far from the islandsi.e.,L@sCd, one has
EAC,AisC/L3. Finally, when the adatom attaches to the clus-
ter, the total energy is simplyEtot=EselfssC+1d.

The total energy is plotted in Fig. 12 for various values of
Ai ande. We only consider the casee.0. WhenAi .0, there
is a long-range repulsion between the adatom and the cluster.
WhenAi ,0, there is a long-range attraction.

Nevertheless, there is a short-range repulsion of elastic
origin whenAi ,0 ande is small. This effect is not relevant
for our simulations which are performed in the irreversible
limit, where e.Ai.

2. Model II

We now consider dipole-dipole interactions. The total en-
ergy is once again given by Eq.sA1d. Nevertheless, one has
now

EAC = A'o
i=1

sC 1

fL + ssC + 1d/2 − ig3 sA4d

and

EselfssCd = − essC − 1d + A' o
i=1

sC−1
sC − i

i3
. sA5d

Contrary to the case of force-force interactions, we now have
a monotonous contribution of the elastic interaction as a
function of L. Therefore,A'.0 and A',0 respectively
lead to a repulsion and an attraction. These results are re-
ported in Fig. 13.

APPENDIX B: MEAN-FIELD MODEL

We present a general solution of the mean-field model
Eqs.s11d and s12d when

ks,S= PSf1 + QSss− Sdg, sB1d

wherePS andQS are functions ofS f27g. Using Eq.sB1d in
the mean-field model Eqs.s11d and s12d, we extract two
coupled evolution equations:

]tN = PSN1
2F1 + QSS1 −

u

N1 + N
DG , sB2d

FIG. 11. Elastic contribution to the energy landscape experi-
enced by a mobile atom between two clusters.

FIG. 12. Force-force model:
Energy landscapeEtot−E` experi-
enced by a diffusing adatom as a
function of its distanceL to the
center of a cluster of five atoms.
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]tN1 = − PSs2 + QSdN1
2 − PSNN1 + PSQSu

N1
2

N + N1
. sB3d

The first step is to use a new time variablet such that]tt
=PSN1. One can easily check thatM =N+N1=u /S decays
exponentially in the new time variablet, and using the initial
conditionN1=N1

i andN=Ni at t=0 scorresponding tot=0d,
we get M =Mi exps−td, where Mi =N1

i +Ni. Since S=u /M,
we have

S= su/Midexpstd. sB4d

Using this result in the evolution equation forN1, we find a
first-order differential equation with nonconstant coefficients,
which can be put in the form

]tfN1 expst + gdg = − Mi expsgd, sB5d

where

]tg = QSf1 − su/Midexpstdg. sB6d

Integrating this relation and using the condition for the final
stateN1=0, t=t f, we find

N1
i expsugut=0d = MiE

0

tf

dt expsgd, sB7d

which is an implicit equation from whicht f can be extracted.
Finally, the final average island size is found from Eq.sB4d:
Sf =su /Midexpst fd.

A linearization of this model forQS small leads to

Sf =
u

Mi e
N1

i /MiS1 +
N1

i

Mi ugut=0 −E
0

N1
i /Mi

dtgD + osQS
2d.

sB8d

Let us now determine the initial conditions which corre-
spond to our simulations. We have deposited atoms on each
site of the chain with a probabilityu. The resulting coverage
is u=os=1

` sNs. The initial density of monomers is the prob-
ability to have a monomer at a given site times the probabil-
ity not to have a monomer at the neighboring sites on both
sides,

N1
i = us1 − ud2. sB9d

The initial density of islands is the initial density of left ends
of islands. Therefore,Ni =u2s1−ud. We then deduce

Mi = us1 − ud. sB10d

Changing the integration variable fromt to S in Eq. sB8d and
using the initial conditions mentioned above lead to Eq.s20d.

FIG. 13. Dipole-dipole model:
Energy landscapeEtot−E` experi-
enced by a diffusing adatom as a
function of its distanceL to the
center of a cluster of five atoms.
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