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We study the intermittent dynamics and the fluctuations of the dynamic correlation function of a simple
aging system. Given its size and its coherence length the system can be divided intd independent
subsystems, wherbl=(L/¢£)9, andd is the dimension of space. Each of them is considered as an aging
subsystem which evolves according to an activated dynamics between energy levels. We compute analytically
the distribution of trapping times for the global system, which can take power-law, stretched-exponential or
exponential forms according to the valueshfind the regime of times considered. An effective number of
subsystems at agg,, Netd(t,), can be defined, which decreasestgsincreases, as well as an effective
coherence Iengtkf(tw)~thl"")’d, where u <1 characterizes the trapping times distribution of a single sub-
system. We also compute the probability distribution functions of the time intervals between large decorrela-
tions, which exhibit different power-law behaviors ggsincreaseqor N decreases and which should be
accessible experimentally. Finally, we calculate the probability distribution function of the two-time correlator.
We show that in a phenomenological approach, wiiie replaced by the effective number of subsystems
Netftw), the same qualitative behaviour as in experiments and simulations of several glassy systems can be
obtained.

DOI: 10.1103/PhysRevE.71.041504 PACS nunider64.70.Pf, 05.50+q, 05.70.Jk

[. INTRODUCTION obtained in this direction. Focusing on the spatial aspect of
glassy relaxation, cooperative rearrangements events have
The dynamics of glassy materials such as spin-glasseeen evidenced, both experimentally6,17] and through
structural glasses or amorphous soft materials like gelzomputer simulation§18], stimulating new research on the
pastes or foams has been a subject of considerable stu@pallenging question of coherence lengths and cooperativity
[1-3]. Considerable effort has been made in order to underl? glasses. On the temporal side, beautiful experiments have
stand and quantify the out-of-equilibrium character of theirShOW”, evidence of temporal intermittency in colloidal gels
temporal relaxation, in particular the absence of time trans‘-'de micellar polycrystalg19], qnd n poly(;arbonate glasses
lational invariance(aging, through the study of dynamic [20]. It SEeems now Wel.l esta_bhshe_d that in gla_sses gnd gels,
correlation functions. On the theoretical side, global dynamic,fjel"ixat'On takes place} IrI]I a dlsck())ntlnuplfjs w?y, mvolwrr]]g SUdi
correlations have been described at a mean-field level in digs rearrangements followed by periods of arrest where al-

: $nost nothing happens. The precise experimental determina-
lord'ereidl sysltgms sudcr} as sp;]n-glaihggsor aclitaphenomeno-d Lion of the distribution of time lags between rearranging
ogical level in models such as the random energy model,anis will give insight into the characterictic “trapping

[5,6]. Both approaches neglect all spatial properties of thgjnes» of the system. In experiments on glasses, this distri-
system, and are therefore likely to miss any spatial correlap tion seems to be close to a power [E2@], which is con-
tions that arise during the dynamics. Alternatively, a phe-sistent with a trap model with an exponential distribution of
nomenological picture, the droplet model, has been prognergies[6], whereas it has been found in simulations of
posed, that focuses on the spatial properties as a key #upercooled glasses to correspond to a model of traps with
understand the slow dynamics and the critical properties ogither an exponential distribution of energies, or Gaussian
spin-glasse$7,8]. distribution of energie$21,22. Therefore, quantities of in-

In recent years, interest in the spatial properties of glassyerest are not just average quantities, but also fluctuations,
systems has been growing. The size of excitations in finiteand in particular the full probability distributions of correla-
dimensional spin-glasses has been studied numerif@lly tions. The study of fluctuations in glassy systems may con-
In simulations of kinetically constrained glassy systemstain subtle information, as was already realized by Israeloff
[10,11, and of supercooled liquidg12,13, cooperativity —and Weissman23], who analyzed carefully mesoscopic
lengths have been identified, and related to the presence abise in spin-glasses in an attempt to discriminate between a
heterogeneities in the dynamifs4,15. model of droplets, and a scenario of hierarchical dynamics.

More generally, a lot of physical questions remain; a cru- Recently, probability distributions of two-time correlation
cial one being: in what manner, at a microscopic level, doegunctions in gels and glasses have been shown to exhibit a
a glassy system evolve, both spatially and temporally? Whation-Gaussian behaviolid9,2(. These non-Gaussian fea-
are the spatial configurations of the typical rearrangementsires have been found also in numerical simulations of dis-
experienced by a glassy system during its relaxation and howrdered systems and kinetically constrained mofids-26|.
are they affected by aging? Are there any common relaxatiomhey have been tentatively explained using the analogy be-
mechanisms of glassy systems, though there also exist spetiveen glassy dynamics and critical dynanii2d], for which
ficities to given materials? Recently, new results have beeunniversal, non-Gaussian features can be expd@eéd
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In this study, we will not advocate any similarity with made[6,29,32,33 In the following, we will consider only
critical dynamics, but we will rather try to deduce the non-the case where the transition rate from barkdo any other
Gaussian behavior merely from finite-size effects in a simpléarrier E’ is W(E— E’)=(1/7,)e 7T [6,29], which means
out-of-equilibrium glassy model. that the escape from the initial trap is the limiting process,

We will consider a system that can be divided ifo whatever the destination. Note that this family of models
independent subsystems. Each subsystem is supposed to repes not include any kind of spatial structure, since energy is
resent an independent model of glassy relaxation betweemot related here to spatial configurations, and that it is mean
energy traps. Such a model of traps has been studied extefield in nature since transitions to all levels are allowed with
sively [6,28]. We will show that the superposition of thé  the same probability. Extensions of these models to finite
subsystems will have the same average dynamical correlalimensionalities have however been attempted3if,35.
tion as one individual subsystem; however, its probabilityWe will see in the following that the superposition of several
distribution function will depend strongly oN; in the limit  of such systems can actually introdugkough rather artifi-
N— o, one has to recover the Gaussian distribution, accordeially) a relevant length scale.
ing to the central limit theorem. Moreover, the distribution of ~ Dynamical properties of the model have been studied in
time intervals between relaxation events or between decorreietail in [6]. In particular, whenu <1, the model exhibits
lations will depend crucially on the number of subsystemsaging (absence of time translation invariance of the correla-
i.e., on the value of the internal coherence length. tions), whereas it is time-translationally invariant fpr>1.

The paper is organized as follows. In Sec. I, we introduceln this paper, we will focus on the cage<1. For a given
the model and recall the main results[6f. In Sec. Ill, we trajectory of the system, the two-time correlation function
calculate the distribution of time intervals between succesc(t,,t,+7) is defined asC(t,,t,+7) =1 if the system has
sive events in the whole system. In Sec. IV, we calculate thgemained in the same energy trap betwegnand t,+r,
distribution of time intervals between successive decorrelag(t,,,t,+ =0 if betweent,, andt,+7, the system has left
tions in the system, the same way they can be measured ifRe energy trap it was in aj,.
time resolved correlation experiments on soft glassy materi- Averaging over all barrier configuratiorsrhich we de-
als[19]. Section V is devoted to the probability distribution note by ()), one obtains the average two-time correlation
of the two-time correlation function. Finally, in Sec. VI, we function:

summarize and discuss our results.
H(tW!tW + T) = <C(tW!tW + T)>

Il. DEFINITION OF THE MODEL It was shown ir{6] that for larget,, this function is given

. . ) by the following formula:
Let us consider a simple model of dynamics of a system

between energy levels. In a generic disordered system, it is Tt t, +7) = sin W/Lfl (1 —v)s s

reasonable to assume that low-lying energy levels are expo- Wi tw T J @it '

nentially distributed: this is the case for example for the low- v

est energy levelgnonextensive corrections to the ground which we will use in Secs. Ill and V.

state energyof the random energy modéREM) [5,29] or in

spin-glasse$30]. Experimental determination of energy bar- o .

riers in low-temperature glasses also seem to support this A. The sprinkling density S(t)

exponential distribution31]. Another important quantity for our study is the sprinkling
More precisely, let us calE an energy barrier, which is  density of events at timg S(t). An “event” has to be under-

the diﬁerence betWeen a reference energy IeVel Wh|Ch |§t00d as a ]ump from an energy |eve| to another one. The

taken as the origin for the energies, and a negative energypyrinkling density of events§(t) is defined as the time den-

Iv_avel. Eis h_ence a positive quantity. We choose the distribu-si»[y distribution of having an event at tinte whatever the

tion of barriers ap(E)=(1/Eq)e™™%. number of events beforg and given that there was one
Changes in configurations in a disordered or glassy syseyvent att=0. This is a standard quantity defined in the con-

tem are often attributed to thermally activated events ovefext of renewal theory36]. For any distribution of trapping

energy barrierd21,22, although other mechanisms exist, times () where the trapping times are independent random

such as kinetically constrained mod¢IE], which do not  yariables—and given that it does not depend on the age, i.e.,

require an energy landscape, and are able to reproduce sog the choice of the time origin—and independently of the

of the features of glassy materials. In the language of actiype of dynamics used, the following formula holds:
vated events, a trapping timecorresponding to a barridt

can be defined as= 7,e¥*eT, wherer, is a microscopic time !

scale kg the Boltzmann constant, afidthe temperature. For S(t) = (t) + fo dyS(t) ut-t), (1)

an exponential distribution of barriers, the distribution of

trapping times is equal to/(n)=u(r/m**), where u  wheret, stands for the time of the last event to have taken

=kgT/Eg. place beforg; the first termy(t) corresponds to the special
The dynamics of a system evolving in such an energycaset;=0.

landscape has been studied by different authors, according to In the following, we will use the following trapping times

which choice of transition rates between energy levels iglistribution: (1) =u7s/(1o+ 7)1, in order to ensure that

041504-2



FINITE-SIZE EFFECTS AND INTERMITTENCY IN A.. PHYSICAL REVIEW E 71, 041504(2005

can take values from O te. We will also need the large time (i) The correlation function of the whole system is de-
behavior of the corresponding sprinkling dens8ft). Fol-  fined as

lowing the lines of{37], this can be easily computed using N
Laplace transforms. Using the notatidtz) to denote the Cltyty+ 7 = 12 Ci(tyty+ 7,
Laplace transform of a functiof(t), Eq. (1) is equivalent to Niz
R fp(z) whereCi(tW,tWJ.r 7) is the corrglation funct_ion of subsystdm
2)=———. Before turning to a detailed calculation &4(7,t,), we
1-y(2) can invoke an argument of statistics of extremesr I§ a

trapping time of the whole system, then it seems natural to
say thatr=min{7}i-; .\, Wherer; is a trapping time of each
o e subsystemi. However, this is true only if all subsystems
f dv undergo one event at some time origin, and that one com-
putes the first trapping time of the whole system from this

Two cases have to be considered before taking the limitMe origin. Hence this argument definitely excludes aging
62— 0. effects, because it neglects any memory effects in the dy-

A namics of the subsystems.
If <1, Y2=1-T(1-p) (702" +[1/(1~p)]7ez+0(702). Having made this approximation, one can follow a stan-
Then S(2)=[1/T(1-w)][1/(12)*], and for t>m, S(t) dard calculation of statistics of extremes, and one can find
=c(u)(t*" 78); with o(u)=1/T(1-w)T(w)=sin(mpu)/m. In  the distribution of time interval®y(7):
this regime S(t) decreases with time; the decrease in time of . Ne1 N
the density of events results in the aging of the correlation Py(7) = Nd,(T)lf dt’ lﬂ(t')} =Ny 0

The Laplace transforrﬁf(z) can be computed as

pim

W2) = J dt e 2ydt) = urhez*
0

T0Z

function Il(t,,,t,+ 7), which characteristic time scale is pro- (ro+ D)t HN

portional to the agé, By expanding around the most probable valts0, and
On the other hand, Jf“>1’ ¥ =1+{1/(1-p)]rez settingu=uN7/ 75, one finds the limiting exponential distri-
+0(7p2). This implies thatS(z) = (u—1)/ 79z, and that fort  putionP(u)=e™ for u<1 (i.e., 7< 7o/ uN). This corresponds
> 19, S()=(u—1)/7o=1/(7). In this nonaging regime, the in fact to the convergence of the probability distribution of
sprinkling density is uniform in time and simply equal to the extremes towards the Weibull distribution, in the case where
inverse trapping timer)=[qd7 7¢(7) =7/ (1 —1). the elementary distributions(7) has a finite value for its
minimum time =0 [38].
o - In this approximation, the time distribution of events of
B. Definition of the system of study as a superposition the whole system simply follows a Poisson process, with a
of N subsystems rate proportional to the number of subsystems. In a Poisson
Let us now turn to our system of interest. This new sys-process, the conditions of the experiment are supposed to
tem is defined as the superpositio\b$ubsystems, identical remain constant in time, and all events are independent of
to the one introduced previously, each of which is defined byeach other. However, in this model, although single events in
the same trapping times distributiog(7) = w4/ (7+ 1)1 all subsystems are indeed independent of each other, the dy-
The subsystems are assumed to be independent of each otH¥Mics is not invariant under time translatioies can be
One can give an interpretation of such a model in a realnferred from the sprinkling densitg(t)]. As we shall see in
space representation: given a system of size d dimen-  the next section, this will give rise to more complicated laws
sions, we assume that one can divide this system hto for Py(7,ty).
independent subsystems of lengthwhereN=(L/&)%. ¢ is Note finally that we have not been able to find a suitable
the typical coherence length of the system, and is considereafgument of statistics of extremes 10t t,+ 7) (the statis-
constant during the time relaxation. However, we will seetics of this quantity in the framework of nonequilibrium dy-
that this quantity is susceptible to evolve during aging. namics have been related to the Gumbel distributions
During the dynamical evolution, each system relaxes in{24,27], which are one of the “universal” families of prob-
dependently, and hence contributes to some extent to trapility distributions of extremesinstead, we will gain infor-
relaxation of the whole system. We will make the following mation(see Sec. Yby studyingC(t,,t,+7) as the sum oN
assumptionsti) all events occurring in a subsystem are alsorandom variables, reinforcing the idea that it is not an ex-
defined as individual events for the whole syste(i); all ~ tremal quantity, but rather originates in the contribution of
events contribute equally to the relaxation of the whole sysmany individual eventgas was already pointed out [j27]).
tem.
This translates into the following definitions:

. . lll. DISTRIBUTION OF TIME INTERVALS BETWEEN
(i) The analog for the whole system ¢f7) will be de-

L . . . ALL EVENTS
noted asPy(7): it is the distribution of time intervals between
all events(i.e., trapping times We will see in the next sec- Let Py(7,t,) be the probability that an event takes place
tion that this quantity depends in general on the ggave  att,+ 7 if one took place at,, in the system composed bf
will then call it Py(7,t,,). independent subsystems.
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In this section, it will be more practical for the computa- subsystems. In the case @), one can see thdN.«(t,) de-
tion to work with the cumulative probability distribution creases explicitly with the age; in the limiting case where
PS(7, 1) =[7d7 Py(7',t,,). By definition, it is the probability aging disappear§u— 1), Ng¢ is simply a constant equal to
that the time difference between two successive events iN. The idea of a number of independent subsystems decreas-
larger than 7. Similarly, we will use Q(7)=/7d7r y(7’) ing with the age in nonequilibrium systems is not new. It is
=74/(7p+7)*, which is the probability for a trapping time of intimately related to the concept of a growing lengthscale in
a subsystem to be larger thani.e., the probability for a an aging system. If one defines a typical lengtbf a sub-
subsystem not to change trap during the period of time ~ system byN=(L/§)°, one hasé.;=LNg#%, and the depen-

We now calli the subsystem in which one event has takendence ofNg¢; on t,, induces the following power law fof.s+:
place att,. Then let{t;};; be the(N-1) times of the last ¢\ (1=
events beforé,, in the other subsystenjs The next event to Eor(ty) = |_|\|—1/d<—W) .
take place in the whole system will either happen in sub- 70
systemi or in any other subsystem. In order for this next
event to occur after a time, one requires the following
conditions:(i) subsystem has to remain trapped betwegn
and t,+7, with probability Q(7), and (ii) the other sub- In the regime most accessible experimentaky; 7/t,,
systemsg have to remain trapped betwegrandt,+7, with <1, andII(t,t,+7) =1-c(u)(7/t,)* ™, which leads to the
probability Q(t,,+ r)+fE,Wdth(tj)Q(tW+r—tj), Q(t,+7) being result
the contribution for the special cage-0. This last probabil-

B. Casex=7/t, <1

C —(N— ity L

ity is in fact equal toll(t,,,t,+ 7), the probability for a sys- PR(7ty) = Q(r)em NP7t ©)
tem to remain trapped between timgsandt,+ 7 (see Sec. and
).

Hence (N=Dec(p)(1-p)

PN(Tatw) = ';b(T) + tl_M’T'U’ Q(T)
PR(7.tw) = QM (ty by + DIV, w
X @ (N=De(u)(7lta)
Pn(Tty) =— ;[Q(T)[H(tw,tw + )N, Again the limiting caseP(,t,)=y(7) for N=1 is recov-
T

ered. In this regime, wheiN increases, the distribution

In the following, we will always consider the case of large PR(7.t) evolves towards a stretched exponentiat,imwith a
t,: t,> 70. We now treat separately two different regimes for characteristic time proportional to the agg But as in the

7 (i) 7~ 70, and(ii) x=7/t,, finite and smaller than 1. case 0f(2), the scaling of3) suggests that the systemtgts
equivalent to a “young” system composed Nf;(t,) sub-
A. Case 7~ 7, systems WithNeg(t,) =N(7o/t,) .

Let us now be more precise concerning the relevance of
the quantityN(t,). The physical meaning of the effective
number of subsystems and of the effective coherence length

In the regime of interest wherg,> 75, S(t,)=(1/7%)
X[C(M)/t\}v”‘] (see Sec. )| so that the leading term i, is

(t,,t, + 1) =1-7t,) = e ™SW. is the following. Consider the.system at time w_ith a co-

herence lengtlf;. This system is hence made f indepen-

Then, we get the result dent subsystems of sizg, by definition of the model; and

- each subsystem is a trap model that can hop in different

PR(7.ty) = Q(n)e N Dlet 75t ] (2 states in ti)r/ne, with aver:ge hopping rad;). Er;ch sub-

and system ages, so that at some later titpethe hopping rate
decreases and is equal$(,). This also means that per unit

Pn(7ty) = [#(7) + (N = D)S(t,)Q(7)]e" NSt time, less subsystems have hopped than attage a real

space picture, the subsystems that hop are then more sparse
and far away from each other. This induces some kind of
nhanced spatial correlation. Then one can make a coarse
graining of subsystems and define bigger subsystems, of size
», in such a way that the hopping rate of these new sub-
ystems is the same as at titpewhich is possible, precisely
because they are bigger. Hence the total system atttinse
>1w now a collection ofN, subsystems of sizé,, each of which

We note that foN=1 the resultPy(7,t,)=(7) is recov-
ered. AsN increases, the exponential part (B becomes
dominant, introducing a rate that is dependent on the waitin
time: p=c(u)(N-1)/ 7ts*,

This can be interpreted as an effective Poisson proces
where the number of instanchkis replacedfor largeN) by

hops at the same rate as tResubsystems of sizg at time

t;. This can actually be quantified by a simple argument. The
In other words, the scaling @¢2) suggests that computing average hopping rate of one subsystem at tifrie S(t;). At

at aget,, the distribution of events of a system composedtimet,, one defines a coarse-grained subsystem as composed

initially of N subsystems is the same as computing the disef N;/N, of the former subsystems. Then the average hop-

tribution of events of a “young” system composed\t(t,,) ping rate of one coarse-grained subsystem at tigmés

70
Neri(ty) = N(t_

W
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to compute the probability distribution af;, P(c), for a
given 7 and a given agg,. This is exactly what we compute
in Sec. V, if we assume that the functi@tt,,,t,,+7) of our
model can be identified witb(t,,, 7). The main experimental
finding, namely thaP(c,) is a negatively skewed distribution
SN 1 for a valuer small compared td,, in a nonequilibrium sys-
I N=2 R tem (a colloidal ge), is recovered in Sec. V.
- E:?O In the analysis of the time series qft,,, 7), one can also
001 — N=lI 3 compute the distribution of time intervals between significant
S decorrelations of the system, i.e., big downward jumps of
¢ (ty, 7), which is accessible experimentally. Note that these
0.001 L b_ig jumps do not n_eces_sarily correspond to the same indi-
0.1 1 10 100 vidual “events” studied in Sec. Il and Sec. Ill, and actually
T correspond to the superposition of several of them. However
these jumps are the only visible manifestation of the indi-
FIG. 1. (Color onling P{(,t,) in the two regimes studied for yidual “events” from an experimental point of view, unless
N=1,2,5,10; thevalues of the parameters arg=1, ©=0.5, and  new techniques allow one to visualize in detail and record
tw=100. AsN is increased, the departure from the power-law isthe spatial rearrangements of the particles in real space.
observed. Typically one would like to compute the distribution of
time intervals between the smallest valuescgt,,, 7)—or
S(tz)N1/N,. The hopping rates are chosen to be equal, whiclgt,,,t,+7) in our model—, a threshold valu€,, being
leads toN,=N;S(t,)/S(ty). In the special case df=7 and  fixed. One can write thaiC(t,,t,+n=1-n(t,,t,+ /N,
t,=t,, one finds:N(t,)=N(7o/t,)* ™, which is exactly the wheren(t,,t,+7) is the number of subsystems that changed
relation for Nes(t,) found from the previous calculations.  trap betweert, andt,+ . In this section, we will keep the
To conclude this section, the study of the two cases invesaotationN for the number of subsystems, since we will al-
tigated above show that for a small systeﬁﬁ(ﬂtw) [and  ways place ourselves at a given ageThe influence of the
Pn(7,1,)] will still be very close to the power law character- dependence of the number of subsystems,owill be dis-
izing one single subsystem. For a very large systemg¢ussed in the conclusion and is not crucial here.

Pﬁ(r,tw) crosses over from an exponential form to a The thresholdCy, can be chosen such that one selects only
stretched exponential form at larger the situations where at ledstsubsystems have changed trap
In general, there will be a crossover y(,t,) from an  betweent, andt,+ 7, so thatCy,=1-k/N, and the values of

exponential times a power-law, to a stretched exponentia®(t,t,+ 7) considered will be less thady,. The distribution
times a power-law, as increases. In all cases, the distribu- of time intervals between successive jumps of the correlation
tions become fatter with the age, which allows one to definef this kind will be denoted®®(rt,,, T), whereT is the time

an effective number of subsystemg(t,)=N(7,/t,)*™, or  interval variable.

e
=
T

Cumulative probability

equivalently an effective coherence length.(t,) Before considering the general case, we will first focus on
= LNY(t, / 7p) L/ two simpler cases.
For illustration, we plot on Fig. 1 the cumulative probabil- (i) We will first computeP™(r,t,,, T), which corresponds

ity distribution Pﬁ(r,tw) in the two regimes studied for dif- to the distribution of times between successive decorrelations
ferent values ofN; the values of the parameters atg=1,  Of maximum intensity(k=N). We will see that the agg,

1=0.5, andt,=100. is not relevant for this quantity, and it will be denoted
PN(7,T).

IV. DISTRIBUTIONS OF TIME INTERVALS BETWEEN (i) We will also computeP“(r.t,,,T), the distribution
DECORRELATIONS. APPLICATION TO of time intervals between successive decorrelations of the
EXPERIMENTALLY ACCESSIBLE DATA same intensity, i.e., which correspond to the case wkere

subsystems have changed trap betwgeandt,+r, andk
A. Definition of the quantities of interest subsystems have changed trap betwgerTl andt,+T+7,

When one is not able experimentally to identify individual for the first time sincd,,.
rearrangement events, it may be easier to turn to the study of
the fluctuations of global quantities such as correlation func-
tions. More precisely, in the scattering experiments 1],
nonaveraged correlation functions calledt,,r) are com- In this section we want to computB™(r,t,,,T). Since
puted.c(t,,7) represents the degree of correlation betweerwe consider only the largest decorrelations, we say that an
the speckle field scattered by the sample at tigpeand the  event has occurred & if C(t,,,t,+7) first reaches the value
one scattered at timg,+ 7. The time lagr can be given a 0 att,. We definePE,N)(T,tW,T) as the probability per unit
fixed value during the analysis of the data, and one compute$ime 7 that such an event takes place at titpe T, knowing
the time series of(t,,, 7) as a function of time, starting from that such an event happenedatThis quantity will be help-
timet, [see, for example, Fig.(8 in [19]]. This allows one ful in all the following in order to calculat®™(r,t,,, T).

B. Special case of the largest decorrelations
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In the case ofPN(r,t,,T), the decorrelations in the in- For O<y<1, or 1<N(1-u)<2, we use the following
tervals [t,;t,+ 7] and [t,+T;t,+T+7] are two successive expansion whem,z— 0:
total decorrelations; whereas in the caseRﬁ,?‘)(r,tW,T), = et o1 1 1
they may not be successive in time. Formally speaking, =———— —-T(1-vy).
(N) 1+y y y
PN(7,t,,T) plays the role of(T) andPy (7,t,,T) the role w U y(r02)” 'y
of S(T), wherey(T) and S(T) have been introduced in Sec. We define the timeT; such thatTy=(1/7)[c(w)7/ %N,

I . A
Throughout the whole section, we will consider the re-2nd wye find thatPy"(7,2) = (1/y)(Ta/ 1)~ (11y)l'(1=y)
gime wherer<T. In this case, a good approximation is ~ <(T12)", and

) 1 N }<E>y
7)0 (TlthT) = ;[TgT)] . ~ (N) _ y TO 1"(1 _y) y
PN (1,2) = TV 1- /T y(TOZ) .
Therefore, this quantity does not depend on age, and, as in 1+ —<—1> 1+ —(—1>
Sec. Il, one has the relation Y\ 7o Y\ 7o

Hence,PN(7,T) is again a power law at large

;

P T) = PN T) + J dt PN ()P (7, T-t).
° i)

Y\ 7o yT3

Equivalently, ifz is the Laplace variable conjugatedTo PN(7,T) =
the Lapl i ’ 1T\ (T + DY
place transforms are related according to 1+ 2
- Y\ 7o
~ PN (7,2
PN(r,2) = % whereT,=7o/[1+(L1/y)(Ty/ 7)1V,
1+P5V(r,2) Note that the constant in front of the power law is not

exact[one would need the expression for albf S(T) to get
its exact expressignMoreover, this constant is smaller than
1, which means that the distributid?™ (7, T) is not normal-
cwr N[ ized. This comes from the fact that the total number of events
70 z_"ff Zd” e, [which is equal toP)"(7,z=0)] is finite; therefore there is a
nonzero probability that the time interval between two events

wherex=1-N(1-xu), and we have introduced the lower cut- s infinite, so thatP™N)(7,T) is not normalized to unity.
off r, for the case where the integral is divergent at the
origin. 3.Casey1l: N(A-p)>2

According to the value oN, we will see below through
the study of the different cases thaf¥(r, T) is a power law

In the case of interedfu<1), we use the fact tha®(T)
=c(w)(T# 1/ 74) for T> 7, so that

- 1
Pyl(r,2) = —{
;

[0}

Now the expansion foryz— 0 of the integral reads

with an exponent depending & et 11 1 1 11
du—y =—-—"5~ BT R re-y
1. Case0<x<1: N(1-p)<1 wz U y(12) y=1(702) yl-y
In this case, the former integral converges whgn—0;  in the case where $y<2. In general, ifn=E(y) is the
therefore, integer part ofy, the constant part of the expansion is pro-

. portional toI'(n+1-y) and is followed by &7y2)" term.
I(1-x (T2 Then, following the case €y<2, we find thatPf)N)(r,z)

W oz = (L1y)(Ty/ )= [1/(y- D)7 Y2+ (11y)[1/(1-y)][(2-y)
where we have defined?=17/c(u)7N1/T(X)I'(1-X)]. X (T,2)Y+0(Z%). In general, there will always be a singular

Hence, ifTez<1, @(N)(T,Z):1_F(1_X)(Toz)x, which leads term in 2 in between two polynomial termg” and z"*1.
Again in the special case where<ly <2, we find

:P(()N)(T, 7) =

to
/1 \
XT§ (3
'P(N)(T,T) -0 N ( ) 1
(To+ )™ PN (r,2) = — 1T0T V(l y- 1y-|12/7.(1)—yz

Note that in the special cag¢=1, one hasx=x and T, 1 +—<—1>
=15, and one recovers the power law with the initial expo- YA o
nent 1-+u.

1
+——T(2-y) (T2 + 0(22)) .
2. Case0<y<1: 1<N(1-m)<2 y-1
The integral is divergent at the origin in the case where AS @ reminder, let us note that the Laplace transform for
x<0, and instead ok, we use for conveniencg=—x=N(1  Smallz of a power-law distribution{7) introduced in Sec. Il
-w)—1>0. is, for 1<u<2, W2)=1-[1/(u—21)]7ez+[1/(n—21)I(2
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— 1)(12)*+0((752)?). HenceP™(r,2) cannot be mapped ex-  Such a finite sum being analytically untractable, we will
actly on this type of function, and one can for example addake its continuous I|m|tx, by defining=k/N andy=n/N, and
an exponential function to a power law in order to recoverPy replacing2 sg by Nfg»in the limit whereN is large.

the correct expansion up to ordgk This introduces some  First, if we consider the lowest order inonly, we reduce
indeterminacy in the determination &N(r,T). However, the expression to

the behavior at very larg€ will be k Ksup
u Pt T) = 2 CROLrSIrS(t + I
P(N)(T!T) = T1+yy n=0

Then by using the Stirling formultl! ~NNe™\27N, and

wherea is an indetermined coefficient. This final power-law taking the continuous limit, we get

behavior might be in fact rather hard to observe in reality. K1 Xsup
(k,K) - - - -

Py (14, T) = 372 1/2f dyexd— N{(x = y)In(x-y)

C. Special case of the decorrelations with same value (2m)*N 0

In this section we compute the quantiB*¥(r,t,,T). +2yIny+(1-x-y)n(l-x-y)

Like for the previous case, we defiﬂ@gk'k)(r,tw,T) corre- - (x=-yYINST) -yIn T+t,)}]. (6)

sponding toP*X¥(7,t,,T), which measures the probability

that k subsystems change traps in the interfught-T;t,+T

+7], knowing thatk subsystemsgnot necessarily the sarme

have changed traps in the interyg};t,+ 7]. More precisely, xX=y)A-x-y) =y?§t,,T), (7)

in this section, we say that an event has occurred,at

if C(t,,t,+7) first reaches the value ¥#N att, Then Wherexty, T)=SM/T+t,). _

Pf)N)(r,tW,T) is the probability per unit time- that such an We keep the positive solution, having checked that we

event takes place at timg+T, knowing that an event hap- have bothy’ <x andy <1-x:

By using a saddle point method, we find that the former
integral is maximized foy” such that

pened at,,. In this casdk # N), all quantities will depend on . )

t, and a relation of the type dfl) is a priori not correct. y = 2(y— 1)[_ 1A+ & -x(y- 1]
However, in the limit that we consider, where bdthand 7

are small compared tg,, and if k is not too far fromN Replacingy” in the last expression fd?f)k'k)(r,tw,T) leads

(experimentally, the threshold will be taken low enough into a complicated expression that can be simplified in our
order to get rid of experimental nojseve will assume that regime of interestr,<T<t,,

such a relation can still be valid. We will write First, by using the expression f&T) at large times and
T w<1, we find that, forry<T<t,, t,,T)=(t,/T)'™*, and
Pe(1,t,,T) = PRR(7,1,, T) + J dt' PeN (7, Y (Tt =[X(1-X)/ y(ty, T)I*2 Then, if t,/T is large
0 enough, we can always assume to hgv& min(x,1-x), so
><7?8"k>(r,tw,T— . 4) that Eq.(6) can be expanded i . Finally, we find the result
k
As in the previous section, we will first compute PER(7.1,,T) = &[TS(T)]keZ\fk(N—kﬂT/tw)(l"‘)’z,
ng’k)(r,tW,T) and deduceP®¥(r t,,T) from its Laplace 2wt
transform thanks to the relation The Laplace transform with respect Toreads
. PR (7,2 - Cy | e |
PRI (1. t,,2) :M_ (5) PER(7,t,,2) = 2—” e |(ty,2)
1+PF¥(7,1,,2) L To

where
In order to computé?gk'k)(r,tW,T), we calln the number

of subsystems that changed traps in the intefyalt,,+ 7], (e T\Awr2
but stayed trapped in the intervidl,+T,t,+ T+ 7]. Hencek (tw,2) = fo dTT(l—u)k expl K(k) av '

-n subsystems change traps both in the inter{g)st,,+ 7]

and([t,+T,t,+T+7]; n subsystems change traps in the inter-and K(k)=2\k(N-K). I(ty,2) is a convergent integral for
val [t,+T,t,+T+7] but where trapped in the interval k(1-u)<1, which is the first case we consider.

[tW,§W+ 7]; finally, N—k-n subsystems were trapped in both 1. Case Kl-p) <1

the intervaldt,, t,+ 7] and[t,+T,t,+T+7].

Therefore, ifky,;= min(k, N=K), Since we are interested in the cab&t,, we will make
an expansion fort,> 1.
0 h"sup ) Then we need to consider two separate cases for the
, — _N ne~n —N| _ n . ~. .
Pt T) = — 2 CRCRd 7SI - 7S(T)] evaluation ofP*K(7.t,,,2) from relation(5). We report here
T n=0 . .
the main results, and refer to Appendix A for the calcula-
X[7S(t, + L - 7S¢, + TN K, tions.
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2. Case0<k<(1+m)/2(1-pw)

Pk (7,t,,T) is a power law:
C(M)T]k A 1

{Tg‘ I'(-p T
with a=k(1-w)2/(1+u) and B=2k(1-u)/ (1 +u)-1.

S

27T

PRIt T) = (8)

3. Case(1+u)/2(1-p) <k<1l/(1-m)

PrO(7t, T) = oSl (1+B)[ B (ty, D 1HIHA)(T1t, ) A LHH) (9)
1 YW
which is a stretched exponential since @51+3))<O0.

4. Case k1-p)>1

Pk (7,t,,T) is simply an exponential, with a weak de-
pendence o, (which vanishes for largg,):

P(kYk)(T! tW! T) = C(tW1 T)e_C(tW'T)T (10)

where  C(t,, 7=(CK/2mn[c(w) 7/ ] W (ol t,) 172/
(1-p)k
o
We note here that it is not possible to make a clear con
tinuity between the casds=N and the casé& different from
N treated in this section. This is due to the fact that we use
saddle-point approximation oft,,,z), which is defined only

if K(k) is different from 0, hencé is different fromN and 0.

In this section, the approximations are more numerous an

are susceptible to be valid only for some intermediate valu
of k. Moreover, we are interested in the aging regime an
now the correct expansion is to be made Zg>1, and not
anymore forzry<<1.

D. Generalization

The most general case, as introduced in the beginning of

Sec. IV, consists in computing®(,t,,,T) the distribution

PHYSICAL REVIEW E71, 041504(2009

Therefore the results of the previous section can be used.
We conclude that, according to the valuekdfwhich will be
equal tok in most cases of interastP™(r,t,,T) can either
take a power-law fornTEq. (8)], a stretched exponential
form [Eq. (9)], or an exponential fornjiEq. (10)], wherek
has to be replaced by .

V. PROBABILITY DISTRIBUTION OF THE TOTAL
CORRELATOR

In Sec. lll, we used the notion of “events,” and calculated
their time distribution, because it was the most natural quan-
tity to compute in the framework of the model presented
here. However, it may be difficult in an experiment to iden-
tify such events, or even to find a reasonable definition of
individual events.

A well-defined quantity that is more readily accessible is
the distribution probability of a correlat@tt,,,t,,+ 7), as has
been recently investigated in numerical simulati®24].

In our model, each subsystemis a two-level system,
where the correlatio;(t,,,t,+ 7) can only take the values 0
or 1. More precisely, the probability distribution of the cor-
felation of a subsysteris

P(C) =f8(C -1+ (1-1)8Cp),

where the parametdr coincides with the average value of
g1e correlation for the values df, and 7 considered:f
=II(ty, ty+ 7 =(Ci(ty,ty+ 7). In the following we will omit

a

ecfemporarily the dependence bbnt, andr, for simplicity in

he notations.

For the whole systertthe superposition of thi indepen-
dent subsystems the definition of C(t,,t,+7) has been
given in Sec. Il. One can actually rewrite this quantity as

m(t,,ty+7) 1- N(ty,ty+ 7)

C(t,,ty+ 7=
(ww 7') N N

of time intervals between successive decorrelations larger

thank/N.
As before, we will use thé, quantities relative to th@

where m(t,,,t,+7) is the number of subsystems that re-
mained in the same energy trap betwegrandt,+r, and

quantities we are looking for, and we will assume that relaM(tw,tw* 7) the number of subsystems that changed trap be-

tions between them similar to E¢4) still hold.
Therefore, we will start by computing

PRt T = > > PYE(nt,,T),
k' =k K'=k

(11

whereng"k")(r,tW,T) is the probability thatk’ subsystems
have changed traps in the intend),,t,+7] and k" sub-
systems have changed traps in the intefygdT;t,+T+7].

We refer the reader to Appendix B for technical details of the

tweent,, andt,+ 7.

Then, in order to find the valu€ for the correlation be-
tween timest, andt,+7, one has to drawn subsystems
amongN instances that are trapped during this time interval,
with probability f, and N—m subsystems that changed trap
during this time interval, with probability 1 Hence, the
probability distribution ofC, P(C), is simply the binomial
distribution: P(C)=NP(m), with

P(m) = CRf™1 - f)N™,

computation, which is similar to the one explained in Sec-andcﬁ is the binomial coefficient.

IV C.
From the calculation, we get

Pt T) = PE (7, T),

PR(7,t,,T) =P (7, T),

wherek” is a growing function ofk, and is equal tc if
7(T)<1 andk>N/2.

Note that in the limit of a large number of subsystels
the central limit theorem holds and the limiting distribution
is a Gaussian:

N(C - f)Z}

P(C) = A —N p[
©=\oma-n ¥ 2111

We show on Fig. 2 the distributionB(C) for different
values of the average correlatiof€)=0.1,0.5,0.9. The full
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FIG. 2. (Color onling Probability distributionP(C) for different FIG. 3. (Color onling Variance of the probability distribution

values of the average correlatidi@)=0.1(circles, 0.5 (diamond$, P(C) for ©=0.8 andN=10 independent subsystems initially, for
and 0.9(starg. The full lines correspond tdl=10 and the dotted different values ot,,.
lines toN=100.
the relaxation timéwhich in our model is proportional to the

lines correspond tdN=10 and the dotted lines th=100, aget,), and goes to O at large; this maximum increases
showing a closer resemblance to a Gaussian distribution foith the age. The skewness is negative at smaitosses the
N=100. origin at intermediate times whe(C) becomes symmetric

For comparison with experiments or numerical simula-and then becomes positive; the negative skewness is more
tions, we computed the variane&(C), the skewness(C) and more pronounced whely, increases. The kurtosis is
and the kurtosis«(C) of the distributionP(C). They can be Positive at small times, then negative, and positive again at

easily computed by noticing that the cumulants of indepenlarge 7. while the negative part becomes more and more
dent random variables are additive quantities: pronounced with the age. All these results are compatible

with recent numerical simulatiorig4], and seem to be com-
patible with preliminary experiments on colloidal g¢lk9].
Note again that the use d¥.(t,) contains crucial informa-
tion: if N was kept constant, the curves would simply be

A(C)=f(1-1),

_ superimposed by a&/t,, rescaling, in particular, the maxima
1 1-2f L h . .
s(C) = =7——, and minima of the variance, skewness and kurtosis would
VN VF(1-1) not depend on the age.
Finally, we computed the probability distributié{C) for
1 6f2—6f+ 1 a givenr/t,, ratio, i.e., a given value of the average correla-
w(C) = N f(1-f) tion (C), at different ages, therefore for differeNf(t,,); the

system is made initially oN=21000 independent subsystems.

[19,24,39. For given7 andt,, f=II(t,,t,+7) is explicitly
defined using the relation of Sec. Il. Moreover, we use the

At this stage, one would like to plot the previous quanti- Figure 6 shows such probability distributions, f@=0.8, f
results of Sec. Il that suggest that at dgethe system can -
actually be considered as a superposition Mf(t,)

ties as a function of- for different values of the agg,, in
T T T
=N(7o/t,)* ™ independent subsystems. Hence in the preced- //

order to compare with existing results in the literature 2 1 1 1

ing formulae foro?(C), s(C), x(C), we replaceN by Ne(t,)-

We want to stress that it is not proved here that this mapping Q/Zxaﬁ:;%

can be applied to the case of the full probability of the cor- (/‘/e o—o tw=1

skewness(C)
=)

relation functions, it is only a phenomenological attempt to -1 i’;{&:}go N
try to extend this coarse-graining to the calculation of other Hth}gggo
quantities than the distribution of times. This argument actu- zm;looooo
ally leads to results compatible to what is found in experi- 2 : : : : : : : ' :
mgnts P P 0% 107 107 100 10° 100 100 100 10° 100 10°
In Figs. 3-5,6%(C), s(C), and k(C) are shown as a func- '
tion of r for different values ot,, for .=0.8 andN=10. As FIG. 4. (Color online Skewness of the probability distribution

observed in recent experiments on foaft89,39, one can P(C) for ©=0.8 andN=10 independent subsystems initially, for
see that the variance is maximum at a timef the order of  different values ot,,.
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5 / VI. DISCUSSION AND CONCLUSION

4r :.?Eg:}o ‘ 7 We have studied a system made of the superpositidsh of

5L f_‘;xjiggo ] subsystems characterized individually by a slow dynamics
L s— tw=10000 ; and a power-law distribution of times between jumps. This

2r > tw=100000 8 system can in turn be characterized by its distribution of time

intervals between evenf®(r,t,). For smallN, the power-
law behavior of a single subsystem is the dominant behavior.
For largeN, at very small time intervals, this distribution is
exponential and crosses over at larger time intervals to a
l stretched exponential. In the two regimes, a natural scaling
. betweenN andt,, appears, which allows one to define an age
I dependent effective number of subsystegg(t,) which de-
10* 100 10?7 10" 10° 100 100 1000 10" 100 10° creases witht,, or equivalently, an effective coherence
T length which grows slowly with the aggf(tw)~t\(ﬂ}_")’d. It

would be interesting to see whether experimental results also
display the different regimes calculated here. In particular,
one could observe an exponential or a stretched exponential
distribution for a young system, and a power-law distribution
for an aged system. As explained in Sec. lll, the interpreta-
=(C)=0.8, N=1000, plotting P(C)o(C) versus (C tion of &(t,) comes from the aging of all individual sub-
—-(C))/ o(C). One can see that even fi=1000, systematic systems: the systems that hop are more rare wtpeim-
deviations exist, though they may be hard to distinguistcreases, and hence further apart from each other; this
when an experimental noise is present. Deviations are sy#atroduces a relevant length scaié,,) that grows witht,,.
tematic ag,, increases, which is not surprising sindgi(t,,) We also computed®¥(r,t,,T) the distribution of time
decreases with the age; the central limit theorem is less andtervals between successive decorrelations over an interval
less valid ast,, increases. Note that we tried to fit these 7, larger thank/N. This quantity, likeP(C), is accessible
curves with Gumbel distributions like {r24], but we did not  through scattering experiments. Although the derivation of
find a very precise agreement in our case. this quantity is a bit technical, the results can be summarized

Finally, let us note that our results fail to reproduce thein the following way. In the extreme case where one only
expected zero limit of the skewness and kurtosisPO€) counts the largest decorrelatiofis=N), the distribution of
when 7/t,,—oc. These two quantities actually diverge in our time intervals between successive decorrelations crosses over
case for any finitdN, becausd®(C) tends to a delta function from a power law with a small exponent at smidl(or large
&8(C) ando(C) — 0. However, the limitr/t,,— o is formally ~ t,) to a power law with a large exponent at lafgéor small
equivalent toNg(t,) — %, which restores the correct limit t,). It is hoped that in experiments these regimes will be
because of the central limit theorem. This problem would beobserved, when one varies the age or other parameters. For
absent ifP(C;) for one individual system had a nonzero vari- €xample, if the temperature is decreased in a glass, or the

ance wherC;— 0. In practice, this will be always the case, density is increased in a gel, or if one increases the quench
because of the presence of white thermal noise. rate, one expects that the coherence length increases, i.e., the
number of independent subsystems decreasek ¥, the
results are more difficult to obtain, due to technical compli-

kurtosis(C)
T
|

FIG. 5. (Color online Kurtosis of the probability distribution
P(C) for ©=0.8 andN=10 independent subsystems initially, for
different values ot,,.

10 ' ' ' ' ' cations, and are likely to be reliable only for intermediate
10" — tw=l N values ofk. If k is small(i.e., one counts only the decorre-
102k o :xjgo H lations corresponding to a few subsysténtke distribution
i - tw=1000 || PW(7,t,,T) is a power law; ifk is larger, it is a stretched
. B %388880_ exponential and fok large it is an exponential. Equivalently,

since one expects the number of subsystems to decrease with
- the age,P¥(r,t,,T) is typically an exponential at smaij,
- then a stretched exponential and finally a power law at large
t,, for a given value of the correlation threshold},=1
—-k/N.
Finally, we also computed analytically the probability dis-
. tribution of the correlatoP(C), which reproduces many fea-
tures of the experimental findings 9] and of the numeri-
cal results off24]. We used the factnot shown rigorously
that att,, the system can be described as a collection of
FIG. 6. (Color onling Rescaled probability distributionB(C)  Nefi(ty) independent subsystems. No rescaling to some time-
for £=0.8,N=1000 independent subsystems initia{lg)=0.8, and  evolving Gumbell distribution seems to be relevant here.
different values oft,,. Since the full probability is calculated here, it would be in-

P(C)#6(C), <C>=0.8
S
T

10 50— 5 ' 0 ' s 10
(C-<C>)/o(C)
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teresting to compare it more quantitatively to experimental Since we are interested in the cafet,, we expand

results. In particular, we find that the variance grows with thel(t,,,z) for zt,>1: 1(t,,2) =Atz*[1-B/(zt,)”]. Then we

ageAIHrITeoth ';Iw;flfwt\}v_'u'l derived | S need to consider two separate cases for the evaluation of
though these results are derived from a simplified the-pkk ;

oretical rr?odel, we think that such a description cgptures thg( '(7,tw,2) from relation(s).

essential intermittent character of the relaxation of a realistic

glassy system, together with the existence of a coherence 2. Case O<k<(1+m)/2(1-p)

length scale growing with the age, due to the decrease of the .

raté:J of event% in tin%e. We hop% that these findings will be For O<k<(1+p)/2(1-p) (i.e,, B<0), one gets foz,

helpful in analyzing more quantitatively some experimental>1: P*¥(,t,,2) =A(CK/2m7[c(w) 7/ T]45z8. Therefore,

results. In particular, the results of Sec. IV and Sec. V mightP®¥(z,t,,,T) is a power law:

be of interest for the time resolved correlation experiments of

[19]. However, since the individual trap model is probably a PRR( g, T) = Oy | cwr | Aty 1

very crude model for the relaxation of realistic materials W 2wT| T I'(-pB) T
[(C(ty,ty+ 7)) is a priori unlikely to coincide with the ex-

perimental average relaxation function of colloidal dels

may be interesting in a further study to replace it with a more 3. Case(1+m)/2(1-p) <k<1/(1-p)

realistic dynamical model for jammed colloidal g€gi40]. R

Concerning the intermittency dynamics studied 20], the In this case, we find that P®¥(r t,,2)=exp
quantities calculated in Sec. Ill are maybe the most relevank[-K(t,,, 7)/(zt,)?], with IC(tW,T):(Zwrlch)[fg’“/c(mﬂk
ones to compare with the experimental results. X(l/t\j’v'[”).

The model studied here has the major disadvantage that The evaluation of the inverse Laplace transform leads to
the relevant coherence length of the system is introduced by
hand through the superposition of several subsystems. How-  P&K(r,t,, T) = e oL LB Bty )P (T HEH)
ever, we were able to extract useful information from this = .
picture. It would be more satisfactory to solve a model whergVhich is a stretched exponential since (@o41+4)) <0.
an aging coherence length builds up during the dynamics,
resulting from microscopic dynamics. Candidates could be 4. Casek(1-p)>1
special cases of kinetically constrained models, though ana-
lytical calculations will be quite harf##1]. However, numeri-
cal simulations provide now a useful alternative tool for the
precise investigation, in microscopic models of glasses, of *  du (o2
the quantities calculated in this pagée#]. I(t,,2) = 21wkt f We-ueﬂk)(u/zw s

T0Z

Finally, we consider the cas&l —u) > 1: then we have to
introduce the lower cutoffy in I(t,,2), which leads to
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ous and fruitful discussions on related experiments. L. Buis- lue: — (1/2)(1 ) e ozk Wm0/t T2 g
son and S. Ciliberto have to be acknowledged for usefuf@'Uue: I(tw,2=(1/2)(1 "o )e - Since T
discussions. | would like to thank L. Berthier and W. Kob for >, we finally get P*¥(r.t,,2)=C(t,,7)/z where
useful comments and suggestions on this paper. This work(t,,, 7)=(CK/27n[c(u) 7/ 7-6‘]k(eK(k)(To/tw)(l_“)/2/Tgl‘l’v)k)'
has been supported in part by the European Community’s Finally, P*¥(r,t,,T) is simply an exponential, with a
Human Potential Program under Contract No. HPRN‘CT‘\Neak dependence dw (Wh|Ch vanishes for |argeN):
2002-00307 “DYGLAGEMEM,” the European Communi-
ty’s Marie Curie Research and Training Network on Dy- PRY(7,1,,T) = C(ty, Ve O 7T,
namical Arrest of Soft Matter and Colloids: MRTN-CT-
2003-504712, and ACI “Jeunes chercheuses et jeunes

chercheurs” JC2076. APPENDIX B
APPENDIX A For the computation on)k”k")(r,tW,T), we will proceed
1. Casek(1-m) <1 in the same way as in the last section fBg"k)(r,tW,T).
In this case, we can perform a saddle-point calculation if/SiNg @gain combinatorial arguments, we can write that
order to evaluaté(t,,,z), which leads to K' Nsup
(K" K") — =N n ~K'-k’+n K'=n
A BBy Pty == 2 CLC S ST
|(ty,2) = AtiZPe B 0 w el k' ~N-k
with  A=[(1-w)K(k)/2] @I+ - B=[(1-w)K(K)/ <1 = 7SI 7S 4 T) K0
2]2/(l+,u), a:k(l—/.L)z/(1+,LL), ,8:2|((1—/.L)/(1+/.L)—1, and [ 7 )] [TS( W )]
y=(1-u)/ (1+u). x[1- Ts(tw_,_T)]N—k’—n,
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wheren;,;=suf0,k’ —k") andng,=inf(k’,N-K"). oy Yy (X' =X +y)y (T+t,)(1-X"-Yy")
As before, we keep only the leading order7imnd go to o' n (1-x"—y)X =y =In X =X +y :
the largeN limit by introducing x’=k’/N, X"=k"/N, andy
=n/N. This leads to (B2)
o _q Xsup Here, (dy"/dx')|x+x) and (dy"/dx")|x+ x) can be cal-
PEF(t,,T) = Tyzf dy eNSK' X"y culated using the expression fgr.
(2m)™*N Xin At this point, taking therl/t,,<<1 limit enables us to make

simplifications in Eqs(B1) and (B2). A rather lengthy cal-
culation leads to the conclusion that there is no couple of
S X' y)=ylny+ (X' =x+y)n(x"-x" +y) solutions(x"*,x"") compatible with Eqs(B1) and(B2), and
+(X' —y)Inx' -y)+(1-x"-y)In(1-x"-y) such thaix” 7 X"
Consequently, we keep only the terms such tkiatk”
-X'=yInST)-X"=-x"+y)In Y, +T). in the sum of Eq.(11), and try to find the value fok’
that maximizes this sum, knowing the expression of

Pg‘,’k')(r,tw,T) from Sec. IV C:

where

We use a saddle-point approximation to minimize
S(X',x",y): (aS/ay)|,=0 leads to

I\ _//_*:*//_/ 1
(X y )(1 X -y ) Yy (X X +y)7(tw;T)n ng)(T,tW,T) o f dx’ eXp{N[—X’ Inx - (1 _X/)ln(l _X/)
which is the generalization of Eq7). X
The positive solution is therefore X' (1-x')\ 12
+X'INnSM)+2| ————
* 1 7 ’ ’)/(tW1T)
y =3 1[—1—(~y—1)(>< -x') , , L
(y-1 The saddle-point equation fo¢™ is now
A1+ (y= DO =3P+ ax' (1 -x)(y - D] : e
| =] = 1-X +In[7S(T
and it is easy to check thaqnfsy*sxsup Note that in this n 1-x")" \/x’*(l —X )ty T) n[rS(T)].
equation and in the following, we drop tHg,,T) depen- .
dence ofy(t,, T) for convenience. If 7S(T)=1, this equation has the only solutigh =5. For
We now come back to the calculation @(,t,,T)  7S(T)>1,thereisa solution’* > 2, and for7S(T) <1, there
through Eq.(11). For largeN, we have is a solutionx’*<%. In general,x"=supx,x’") will maxi-
1 1 mize the expression fon)k)(T,tW,T), and can be estimated
PR(7t,,T) = NZJ dx'f dX'PX (7., T). numerically. In particular, ifrS(T) <1 andk>N/2, we have
X X X*:X.
Finally,

Direct integration is not possible here, so we use again a
saddle point treatment of the double integral. The saddle
pointsx’* andx”" are solutions of the set of equations formed
by (ﬂSlﬁX')er*’xn*):O and ((98/(9X")|(Xr*,xu*)=0, or

7D(Ok) ( T! th T) = ,P(Ok*) ( T! th T) ’

(K) — pK)
WYX yY)y X=Xy PRt =P D),

Py 1-X'-y)x' -y) x'-y) (B1) wherek’ =sugk, k).
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