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We study the intermittent dynamics and the fluctuations of the dynamic correlation function of a simple
aging system. Given its sizeL and its coherence lengthj, the system can be divided intoN independent
subsystems, whereN=sL /jdd, and d is the dimension of space. Each of them is considered as an aging
subsystem which evolves according to an activated dynamics between energy levels. We compute analytically
the distribution of trapping times for the global system, which can take power-law, stretched-exponential or
exponential forms according to the values ofN and the regime of times considered. An effective number of
subsystems at agetw, Neffstwd, can be defined, which decreases astw increases, as well as an effective
coherence length,jstwd, tw

s1−md/d, wherem,1 characterizes the trapping times distribution of a single sub-
system. We also compute the probability distribution functions of the time intervals between large decorrela-
tions, which exhibit different power-law behaviors astw increasessor N decreasesd, and which should be
accessible experimentally. Finally, we calculate the probability distribution function of the two-time correlator.
We show that in a phenomenological approach, whereN is replaced by the effective number of subsystems
Neffstwd, the same qualitative behaviour as in experiments and simulations of several glassy systems can be
obtained.
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I. INTRODUCTION

The dynamics of glassy materials such as spin-glasses,
structural glasses or amorphous soft materials like gels,
pastes or foams has been a subject of considerable study
f1–3g. Considerable effort has been made in order to under-
stand and quantify the out-of-equilibrium character of their
temporal relaxation, in particular the absence of time trans-
lational invariancesagingd, through the study of dynamic
correlation functions. On the theoretical side, global dynamic
correlations have been described at a mean-field level in dis-
ordered systems such as spin-glassesf4g, or at a phenomeno-
logical level in models such as the random energy model
f5,6g. Both approaches neglect all spatial properties of the
system, and are therefore likely to miss any spatial correla-
tions that arise during the dynamics. Alternatively, a phe-
nomenological picture, the droplet model, has been pro-
posed, that focuses on the spatial properties as a key to
understand the slow dynamics and the critical properties of
spin-glassesf7,8g.

In recent years, interest in the spatial properties of glassy
systems has been growing. The size of excitations in finite-
dimensional spin-glasses has been studied numericallyf9g.
In simulations of kinetically constrained glassy systems
f10,11g, and of supercooled liquidsf12,13g, cooperativity
lengths have been identified, and related to the presence of
heterogeneities in the dynamicsf14,15g.

More generally, a lot of physical questions remain; a cru-
cial one being: in what manner, at a microscopic level, does
a glassy system evolve, both spatially and temporally? What
are the spatial configurations of the typical rearrangements
experienced by a glassy system during its relaxation and how
are they affected by aging? Are there any common relaxation
mechanisms of glassy systems, though there also exist speci-
ficities to given materials? Recently, new results have been

obtained in this direction. Focusing on the spatial aspect of
glassy relaxation, cooperative rearrangements events have
been evidenced, both experimentallyf16,17g and through
computer simulationsf18g, stimulating new research on the
challenging question of coherence lengths and cooperativity
in glasses. On the temporal side, beautiful experiments have
shown evidence of temporal intermittency in colloidal gels
and micellar polycrystalsf19g, and in polycarbonate glasses
f20g. It seems now well established that in glasses and gels,
relaxation takes place in a discontinuous way, involving sud-
den rearrangements followed by periods of arrest where al-
most nothing happens. The precise experimental determina-
tion of the distribution of time lags between rearranging
events will give insight into the characterictic “trapping
times” of the system. In experiments on glasses, this distri-
bution seems to be close to a power lawf20g, which is con-
sistent with a trap model with an exponential distribution of
energiesf6g, whereas it has been found in simulations of
supercooled glasses to correspond to a model of traps with
either an exponential distribution of energies, or Gaussian
distribution of energiesf21,22g. Therefore, quantities of in-
terest are not just average quantities, but also fluctuations,
and in particular the full probability distributions of correla-
tions. The study of fluctuations in glassy systems may con-
tain subtle information, as was already realized by Israeloff
and Weissmanf23g, who analyzed carefully mesoscopic
noise in spin-glasses in an attempt to discriminate between a
model of droplets, and a scenario of hierarchical dynamics.

Recently, probability distributions of two-time correlation
functions in gels and glasses have been shown to exhibit a
non-Gaussian behaviourf19,20g. These non-Gaussian fea-
tures have been found also in numerical simulations of dis-
ordered systems and kinetically constrained modelsf24–26g.
They have been tentatively explained using the analogy be-
tween glassy dynamics and critical dynamicsf24g, for which
universal, non-Gaussian features can be expectedf27g.
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In this study, we will not advocate any similarity with
critical dynamics, but we will rather try to deduce the non-
Gaussian behavior merely from finite-size effects in a simple
out-of-equilibrium glassy model.

We will consider a system that can be divided intoN
independent subsystems. Each subsystem is supposed to rep-
resent an independent model of glassy relaxation between
energy traps. Such a model of traps has been studied exten-
sively f6,28g. We will show that the superposition of theN
subsystems will have the same average dynamical correla-
tion as one individual subsystem; however, its probability
distribution function will depend strongly onN; in the limit
N→`, one has to recover the Gaussian distribution, accord-
ing to the central limit theorem. Moreover, the distribution of
time intervals between relaxation events or between decorre-
lations will depend crucially on the number of subsystems,
i.e., on the value of the internal coherence length.

The paper is organized as follows. In Sec. II, we introduce
the model and recall the main results off6g. In Sec. III, we
calculate the distribution of time intervals between succes-
sive events in the whole system. In Sec. IV, we calculate the
distribution of time intervals between successive decorrela-
tions in the system, the same way they can be measured in
time resolved correlation experiments on soft glassy materi-
als f19g. Section V is devoted to the probability distribution
of the two-time correlation function. Finally, in Sec. VI, we
summarize and discuss our results.

II. DEFINITION OF THE MODEL

Let us consider a simple model of dynamics of a system
between energy levels. In a generic disordered system, it is
reasonable to assume that low-lying energy levels are expo-
nentially distributed: this is the case for example for the low-
est energy levelssnonextensive corrections to the ground
state energyd of the random energy modelsREMd f5,29g or in
spin-glassesf30g. Experimental determination of energy bar-
riers in low-temperature glasses also seem to support this
exponential distributionf31g.

More precisely, let us callE an energy barrier, which is
the difference between a reference energy level which is
taken as the origin for the energies, and a negative energy
level. E is hence a positive quantity. We choose the distribu-
tion of barriers asrsEd=s1/E0de−E/E0.

Changes in configurations in a disordered or glassy sys-
tem are often attributed to thermally activated events over
energy barriersf21,22g, although other mechanisms exist,
such as kinetically constrained modelsf10g, which do not
require an energy landscape, and are able to reproduce some
of the features of glassy materials. In the language of acti-
vated events, a trapping timet corresponding to a barrierE
can be defined ast=t0e

E/kBT, wheret0 is a microscopic time
scale,kB the Boltzmann constant, andT the temperature. For
an exponential distribution of barriers, the distribution of
trapping times is equal tocstd=mst0

m /t1+md, where m
=kBT/E0.

The dynamics of a system evolving in such an energy
landscape has been studied by different authors, according to
which choice of transition rates between energy levels is

madef6,29,32,33g. In the following, we will consider only
the case where the transition rate from barrierE to any other
barrier E8 is WsE→E8d=s1/t0de−E/kBT f6,29g, which means
that the escape from the initial trap is the limiting process,
whatever the destination. Note that this family of models
does not include any kind of spatial structure, since energy is
not related here to spatial configurations, and that it is mean
field in nature since transitions to all levels are allowed with
the same probability. Extensions of these models to finite
dimensionalities have however been attempted inf34,35g.
We will see in the following that the superposition of several
of such systems can actually introducesthough rather artifi-
ciallyd a relevant length scale.

Dynamical properties of the model have been studied in
detail in f6g. In particular, whenm,1, the model exhibits
aging sabsence of time translation invariance of the correla-
tionsd, whereas it is time-translationally invariant form.1.
In this paper, we will focus on the casem,1. For a given
trajectory of the system, the two-time correlation function
Cstw,tw+td is defined asCstw,tw+td=1 if the system has
remained in the same energy trap betweentw and tw+t,
Cstw,tw+td=0 if betweentw and tw+t, the system has left
the energy trap it was in attw.

Averaging over all barrier configurationsswhich we de-
note by k ld, one obtains the average two-time correlation
function:

Pstw,tw + td = kCstw,tw + tdl.

It was shown inf6g that for largetw, this function is given
by the following formula:

Pstw,tw + td .
sinpm

p
E

st/twds1+t/twd

1

dvs1 − vdm−1v−m,

which we will use in Secs. III and V.

A. The sprinkling density S„t…

Another important quantity for our study is the sprinkling
density of events at timet, Sstd. An “event” has to be under-
stood as a jump from an energy level to another one. The
sprinkling density of eventsSstd is defined as the time den-
sity distribution of having an event at timet, whatever the
number of events beforet, and given that there was one
event att=0. This is a standard quantity defined in the con-
text of renewal theoryf36g. For any distribution of trapping
timescstd where the trapping times are independent random
variables—and given that it does not depend on the age, i.e.,
on the choice of the time origin—and independently of the
type of dynamics used, the following formula holds:

Sstd = cstd +E
0

t

dtlSstldcst − tld, s1d

where tl stands for the time of the last event to have taken
place beforet; the first termcstd corresponds to the special
casetl =0.

In the following, we will use the following trapping times
distribution: cstd=mt0

m / st0+td1+m, in order to ensure thatt
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can take values from 0 tò. We will also need the large time
behavior of the corresponding sprinkling densitySstd. Fol-
lowing the lines off37g, this can be easily computed using

Laplace transforms. Using the notationf̂szd to denote the
Laplace transform of a functionfstd, Eq. s1d is equivalent to

Ŝszd =
ĉszd

1 − ĉszd
.

The Laplace transformĉszd can be computed as

ĉszd =E
0

`

dt e−ztcstd = mt0
met0zzmE

t0z

`

dv
e−v

v−1−m .

Two cases have to be considered before taking the limit
t0z→0.

If m,1, ĉszd=1−Gs1−mdst0zdm+f1/s1−mdgt0z+ost0zd.
Then Ŝszd.f1/Gs1−mdgf1/st0zdmg, and for t@t0, Sstd
.csmdstm−1/t0

md; with csmd=1/Gs1−mdGsmd=sinspmd /p. In
this regime,Sstd decreases with time; the decrease in time of
the density of events results in the aging of the correlation
function Pstw,tw+td, which characteristic time scale is pro-
portional to the agetw.

On the other hand, ifm.1, ĉszd=1+f1/s1−mdgt0z

+ost0zd. This implies thatŜszd.sm−1d /t0z, and that fort
@t0, Sstd.sm−1d /t0=1/ktl. In this nonaging regime, the
sprinkling density is uniform in time and simply equal to the
inverse trapping timektl=e0

`dt tcstd=t0/ sm−1d.

B. Definition of the system of study as a superposition
of N subsystems

Let us now turn to our system of interest. This new sys-
tem is defined as the superposition ofN subsystems, identical
to the one introduced previously, each of which is defined by
the same trapping times distribution:cstd=mt0

m / st0+td1+m.
The subsystems are assumed to be independent of each other.
One can give an interpretation of such a model in a real
space representation: given a system of sizeL in d dimen-
sions, we assume that one can divide this system intoN
independent subsystems of lengthj, whereN=sL /jdd. j is
the typical coherence length of the system, and is considered
constant during the time relaxation. However, we will see
that this quantity is susceptible to evolve during aging.

During the dynamical evolution, each system relaxes in-
dependently, and hence contributes to some extent to the
relaxation of the whole system. We will make the following
assumptions:sid all events occurring in a subsystem are also
defined as individual events for the whole system;sii d all
events contribute equally to the relaxation of the whole sys-
tem.

This translates into the following definitions:
sid The analog for the whole system ofcstd will be de-

noted asPNstd: it is the distribution of time intervals between
all eventssi.e., trapping timesd. We will see in the next sec-
tion that this quantity depends in general on the agetw; we
will then call it PNst ,twd.

sii d The correlation function of the whole system is de-
fined as

Cstw,tw + td =
1

N
o
i=1

N

Cistw,tw + td,

whereCistw,tw+td is the correlation function of subsystemi.
Before turning to a detailed calculation ofPNst ,twd, we

can invoke an argument of statistics of extremes. Ift is a
trapping time of the whole system, then it seems natural to
say thatt=minhtiji=1,. . .,N, whereti is a trapping time of each
subsystemi. However, this is true only if all subsystems
undergo one event at some time origin, and that one com-
putes the first trapping time of the whole system from this
time origin. Hence this argument definitely excludes aging
effects, because it neglects any memory effects in the dy-
namics of the subsystems.

Having made this approximation, one can follow a stan-
dard calculation of statistics of extremes, and one can find
the distribution of time intervalsPNstd:

PNstd = NcstdFE
t

`

dt8cst8dGN−1

= Nm
t0

mN

st0 + td1+mN .

By expanding around the most probable valuet=0, and
settingu=mNt /t0, one finds the limiting exponential distri-
butionPsud=e−u for u!1 si.e.,t!t0/mNd. This corresponds
in fact to the convergence of the probability distribution of
extremes towards the Weibull distribution, in the case where
the elementary distributioncstd has a finite value for its
minimum timet=0 f38g.

In this approximation, the time distribution of events of
the whole system simply follows a Poisson process, with a
rate proportional to the number of subsystems. In a Poisson
process, the conditions of the experiment are supposed to
remain constant in time, and all events are independent of
each other. However, in this model, although single events in
all subsystems are indeed independent of each other, the dy-
namics is not invariant under time translationsfas can be
inferred from the sprinkling densitySstdg. As we shall see in
the next section, this will give rise to more complicated laws
for PNst ,twd.

Note finally that we have not been able to find a suitable
argument of statistics of extremes forCstw,tw+td sthe statis-
tics of this quantity in the framework of nonequilibrium dy-
namics have been related to the Gumbel distributions
f24,27g, which are one of the “universal” families of prob-
ability distributions of extremesd. Instead, we will gain infor-
mationssee Sec. Vd by studyingCstw,tw+td as the sum ofN
random variables, reinforcing the idea that it is not an ex-
tremal quantity, but rather originates in the contribution of
many individual eventssas was already pointed out inf27gd.

III. DISTRIBUTION OF TIME INTERVALS BETWEEN
ALL EVENTS

Let PNst ,twd be the probability that an event takes place
at tw+t if one took place attw, in the system composed ofN
independent subsystems.
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In this section, it will be more practical for the computa-
tion to work with the cumulative probability distribution
PN

Cst ,twd=et
`dt8PNst8 ,twd. By definition, it is the probability

that the time difference between two successive events is
larger than t. Similarly, we will use Qstd=et

`dt8cst8d
=t0

m / st0+tdm, which is the probability for a trapping time of
a subsystem to be larger thant, i.e., the probability for a
subsystem not to change trap during the period of timet.

We now calli the subsystem in which one event has taken
place attw. Then let htjj jÞi be thesN−1d times of the last
events beforetw in the other subsystemsj . The next event to
take place in the whole system will either happen in sub-
systemi or in any other subsystem. In order for this next
event to occur after a timet, one requires the following
conditions:sid subsystemi has to remain trapped betweentw
and tw+t, with probability Qstd, and sii d the other sub-
systemsj have to remain trapped betweentj and tw+t, with
probability Qstw+td+e0

twdtjSstjdQstw+t− tjd, Qstw+td being
the contribution for the special casetj =0. This last probabil-
ity is in fact equal toPstw,tw+td, the probability for a sys-
tem to remain trapped between timestw and tw+t ssee Sec.
II d.

Hence

PN
Cst,twd = QstdfPstw,tw + tdgN−1,

PNst,twd = −
]

]t
fQstdfPstw,tw + tdgN−1g.

In the following, we will always consider the case of large
tw: tw@t0. We now treat separately two different regimes for
t: sid t,t0, andsii d x=t / tw finite and smaller than 1.

A. CasetÈt0

In the regime of interest wheretw@t0, Sstwd.s1/t0
md

3fcsmd / tw
1−mg ssee Sec. IId, so that the leading term intw is

Pstw,tw + td . 1 − tSstwd . e−tSstwd.

Then, we get the result

PN
Cst,twd . Qstde−sN−1dfcsmdt/t0

mtw
1−mg s2d

and

PNst,twd . fcstd + sN − 1dSstwdQstdge−sN−1dtSstwd.

We note that forN=1 the resultPNst ,twd=cstd is recov-
ered. AsN increases, the exponential part ins2d becomes
dominant, introducing a rate that is dependent on the waiting
time: r=csmdsN−1d /t0

mtw
1−m.

This can be interpreted as an effective Poisson process,
where the number of instancesN is replacedsfor largeNd by

Neffstwd = NS t0

tw
D1−m

.

In other words, the scaling ofs2d suggests that computing
at agetw the distribution of events of a system composed
initially of N subsystems is the same as computing the dis-
tribution of events of a “young” system composed ofNeffstwd

subsystems. In the case ofs2d, one can see thatNeffstwd de-
creases explicitly with the age; in the limiting case where
aging disappearssm→1d, Neff is simply a constant equal to
N. The idea of a number of independent subsystems decreas-
ing with the age in nonequilibrium systems is not new. It is
intimately related to the concept of a growing lengthscale in
an aging system. If one defines a typical lengthj of a sub-
system byN=sL /jdd, one hasjef f=LNef f

−1/d, and the depen-
dence ofNeff on tw induces the following power law forjef f:

jef fstwd = LN−1/dS tw
t0
Ds1−md/d

.

B. Casex=t / tw™1

In the regime most accessible experimentally,x=t / tw
!1, andPstw,tw+td.1−csmdst / twd1−m, which leads to the
result

PN
Cst,twd . Qstde−sN−1dcsmdst/twd1−m

s3d

and

PNst,twd . Fcstd +
sN − 1dcsmds1 − md

tw
1−mtm

QstdG
3e−sN−1dcsmdst/twd1−m

.

Again the limiting casePN
Cst ,twd=cstd for N=1 is recov-

ered. In this regime, whenN increases, the distribution
PN

Cst ,twd evolves towards a stretched exponential int, with a
characteristic time proportional to the agetw. But as in the
case ofs2d, the scaling ofs3d suggests that the system attw is
equivalent to a “young” system composed ofNeffstwd sub-
systems withNeffstwd=Nst0/ twd1−m.

Let us now be more precise concerning the relevance of
the quantityNeffstwd. The physical meaning of the effective
number of subsystems and of the effective coherence length
is the following. Consider the system at timet1, with a co-
herence lengthj1. This system is hence made ofN1 indepen-
dent subsystems of sizej1, by definition of the model; and
each subsystem is a trap model that can hop in different
states in time, with average hopping rateSst1d. Each sub-
system ages, so that at some later timet2, the hopping rate
decreases and is equal toSst2d. This also means that per unit
time, less subsystems have hopped than at aget1. In a real
space picture, the subsystems that hop are then more sparse
and far away from each other. This induces some kind of
enhanced spatial correlation. Then one can make a coarse
graining of subsystems and define bigger subsystems, of size
j2, in such a way that the hopping rate of these new sub-
systems is the same as at timet1, which is possible, precisely
because they are bigger. Hence the total system at timet2 is
now a collection ofN2 subsystems of sizej2, each of which
hops at the same rate as theN1 subsystems of sizej1 at time
t1. This can actually be quantified by a simple argument. The
average hopping rate of one subsystem at timet1 is Sst1d. At
time t2, one defines a coarse-grained subsystem as composed
of N1/N2 of the former subsystems. Then the average hop-
ping rate of one coarse-grained subsystem at timet2 is
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Sst2dN1/N2. The hopping rates are chosen to be equal, which
leads toN2=N1Sst2d /Sst1d. In the special case oft1=t0 and
t2= tw, one finds:Nstwd=Nst0/ twd1−m, which is exactly the
relation forNeffstwd found from the previous calculations.

To conclude this section, the study of the two cases inves-
tigated above show that for a small system,PN

Cst ,twd fand
PNst ,twdg will still be very close to the power law character-
izing one single subsystem. For a very large system,
PN

Cst ,twd crosses over from an exponential form to a
stretched exponential form at largert.

In general, there will be a crossover inPNst ,twd from an
exponential times a power-law, to a stretched exponential
times a power-law, ast increases. In all cases, the distribu-
tions become fatter with the age, which allows one to define
an effective number of subsystemsNeffstwd=Nst0/ twd1−m, or
equivalently an effective coherence lengthjef fstwd
=LN−1/dstw/t0ds1−md/d.

For illustration, we plot on Fig. 1 the cumulative probabil-
ity distribution PN

Cst ,twd in the two regimes studied for dif-
ferent values ofN; the values of the parameters aret0=1,
m=0.5, andtw=100.

IV. DISTRIBUTIONS OF TIME INTERVALS BETWEEN
DECORRELATIONS. APPLICATION TO
EXPERIMENTALLY ACCESSIBLE DATA

A. Definition of the quantities of interest

When one is not able experimentally to identify individual
rearrangement events, it may be easier to turn to the study of
the fluctuations of global quantities such as correlation func-
tions. More precisely, in the scattering experiments off19g,
nonaveraged correlation functions calledcIstw,td are com-
puted.cIstw,td represents the degree of correlation between
the speckle field scattered by the sample at timetw, and the
one scattered at timetw+t. The time lagt can be given a
fixed value during the analysis of the data, and one computes
the time series ofcIstw,td as a function of time, starting from
time tw fsee, for example, Fig. 3sad in f19gg. This allows one

to compute the probability distribution ofcI, PscId, for a
givent and a given agetw. This is exactly what we compute
in Sec. V, if we assume that the functionCstw,tw+td of our
model can be identified withcIstw,td. The main experimental
finding, namely thatPscId is a negatively skewed distribution
for a valuet small compared totw in a nonequilibrium sys-
tem sa colloidal geld, is recovered in Sec. V.

In the analysis of the time series ofcIstw,td, one can also
compute the distribution of time intervals between significant
decorrelations of the system, i.e., big downward jumps of
cIstw,td, which is accessible experimentally. Note that these
big jumps do not necessarily correspond to the same indi-
vidual “events” studied in Sec. II and Sec. III, and actually
correspond to the superposition of several of them. However
these jumps are the only visible manifestation of the indi-
vidual “events” from an experimental point of view, unless
new techniques allow one to visualize in detail and record
the spatial rearrangements of the particles in real space.

Typically one would like to compute the distribution of
time intervals between the smallest values ofcIstw,td—or
Cstw,tw+td in our model—, a threshold valueCth being
fixed. One can write thatCstw,tw+td=1−nstw,tw+td /N,
wherenstw,tw+td is the number of subsystems that changed
trap betweentw and tw+t. In this section, we will keep the
notationN for the number of subsystems, since we will al-
ways place ourselves at a given agetw. The influence of the
dependence of the number of subsystems ontw will be dis-
cussed in the conclusion and is not crucial here.

The thresholdCth can be chosen such that one selects only
the situations where at leastk subsystems have changed trap
betweentw and tw+t, so thatCth=1−k/N, and the values of
Cstw,tw+td considered will be less thanCth. The distribution
of time intervals between successive jumps of the correlation
of this kind will be denotedPskdst ,tw,Td, whereT is the time
interval variable.

Before considering the general case, we will first focus on
two simpler cases.

sid We will first computePsNdst ,tw,Td, which corresponds
to the distribution of times between successive decorrelations
of maximum intensitysk=Nd. We will see that the agetw
is not relevant for this quantity, and it will be denoted
PsNdst ,Td.

sii d We will also computePsk,kdst ,tw,Td, the distribution
of time intervals between successive decorrelations of the
same intensity, i.e., which correspond to the case wherek
subsystems have changed trap betweentw and tw+t, and k
subsystems have changed trap betweentw+T and tw+T+t,
for the first time sincetw.

B. Special case of the largest decorrelations

In this section we want to computePsNdst ,tw,Td. Since
we consider only the largest decorrelations, we say that an
event has occurred attw if Cstw,tw+td first reaches the value
0 at tw. We defineP0

sNdst ,tw,Td as the probability per unit
time t that such an event takes place at timetw+T, knowing
that such an event happened attw. This quantity will be help-
ful in all the following in order to calculatePsNdst ,tw,Td.

FIG. 1. sColor onlined PN
Cst ,twd in the two regimes studied for

N=1,2,5,10; thevalues of the parameters aret0=1, m=0.5, and
tw=100. As N is increased, the departure from the power-law is
observed.
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In the case ofPsNdst ,tw,Td, the decorrelations in the in-
tervals ftw; tw+tg and ftw+T; tw+T+tg are two successive
total decorrelations; whereas in the case ofP0

sNdst ,tw,Td,
they may not be successive in time. Formally speaking,
PsNdst ,tw,Td plays the role ofcsTd andP0

sNdst ,tw,Td the role
of SsTd, wherecsTd andSsTd have been introduced in Sec.
II.

Throughout the whole section, we will consider the re-
gime wheret!T. In this case, a good approximation is

P0
sNdst,tw,Td .

1

t
ftSsTdgN.

Therefore, this quantity does not depend on age, and, as in
Sec. II, one has the relation

P0
sNdst,Td = PsNdst,Td +E

0

T

dt8PsNdst,t8dP0
sNdst,T − t8d.

Equivalently, ifz is the Laplace variable conjugated toT,
the Laplace transforms are related according to

P̂sNdst,zd =
P̂0

sNdst,zd

1 + P̂0
sNdst,zd

.

In the case of interestsm,1d, we use the fact thatSsTd
.csmdsTm−1/t0

md for T@t0, so that

P̂0
sNdst,zd .

1

t
Fcsmdt

t0
m GN 1

zxE
t0z

`

du e−uux−1,

wherex=1−Ns1−md, and we have introduced the lower cut-
off t0 for the case where the integral is divergent at the
origin.

According to the value ofN, we will see below through
the study of the different cases thatPsNdst ,Td is a power law
with an exponent depending onN.

1. Case0,x,1: N„1−m…,1

In this case, the former integral converges whent0z→0;
therefore,

P̂0
sNdst,zd .

1

Gs1 − xd
1

sT0zdx ,

where we have definedT0
x=tft0

m /csmdtgNf1/GsxdGs1−xdg.
Hence, ifT0z!1, P̂sNdst ,zd.1−Gs1−xdsT0zdx, which leads
to

PsNdst,Td .
xT0

x

sT0 + Td1+x .

Note that in the special caseN=1, one hasx=m and T0
=t0, and one recovers the power law with the initial expo-
nent 1+m.

2. Case0,y,1: 1,N„1−m…,2

The integral is divergent at the origin in the case where
x,0, and instead ofx, we use for conveniencey=−x=Ns1
−md−1.0.

For 0,y,1, or 1,Ns1−md,2, we use the following
expansion whent0z→0:

E
t0z

`

du
e−u

u1+y .
1

y

1

st0zdy −
1

y
Gs1 − yd.

We define the timeT1 such thatT1
y=s1/tdfcsmdt /t0

mgN,

and we find thatP̂0
sNdst ,zd.s1/ydsT1/t0dy−s1/ydGs1−yd

3sT1zdy, and

P̂sNdst,zd .

1

y
ST1

t0
Dy

1 +
1

y
ST1

t0
Dy31 −

Gs1 − yd

1 +
1

y
ST1

t0
Dyst0zdy4 .

Hence,PsNdst ,Td is again a power law at largeT:

PsNdst,Td .

1

y
ST1

t0
Dy

1 +
1

y
ST1

t0
Dy

yT2
y

sT2 + Td1+y ,

whereT2=t0/ f1+s1/ydsT1/t0dyg1/y.
Note that the constant in front of the power law is not

exactfone would need the expression for allT of SsTd to get
its exact expressiong. Moreover, this constant is smaller than
1, which means that the distributionPsNdst ,Td is not normal-
ized. This comes from the fact that the total number of events

fwhich is equal toP̂0
sNdst ,z=0dg is finite; therefore there is a

nonzero probability that the time interval between two events
is infinite, so thatPsNdst ,Td is not normalized to unity.

3. Case y.1: N„1−m….2

Now the expansion fort0z→0 of the integral reads

E
t0z

`

du
e−u

u1+y .
1

y

1

st0zdy −
1

y − 1

1

st0zdy−1 +
1

y

1

1 − y
Gs2 − yd

in the case where 1,y,2. In general, ifn=Esyd is the
integer part ofy, the constant part of the expansion is pro-
portional toGsn+1−yd and is followed by ast0zdn+1−y term.

Then, following the case 1,y,2, we find thatP̂0
sNdst ,zd

.s1/ydsT1/t0dy−f1/sy−1dgT1
yt0

1−yz+s1/ydf1/s1−ydgGs2−yd
3sT1zdy+osz2d. In general, there will always be a singular
term in zy in between two polynomial termszn and zn+1.
Again in the special case where 1,y,2, we find

P̂sNdst,zd .

1

y
ST1

t0
Dy

1 +
1

y
ST1

t0
DyS1 −

1

y − 1
yT2

yt0
1−yz

+
1

y − 1
Gs2 − ydsT2zdy + osz2dD .

As a reminder, let us note that the Laplace transform for
smallz of a power-law distributioncstd introduced in Sec. II

is, for 1,m,2, ĉszd=1−f1/sm−1dgt0z+f1/sm−1dgGs2
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−mdst0zdm+o(st0zd2). HenceP̂sNdst ,zd cannot be mapped ex-
actly on this type of function, and one can for example add
an exponential function to a power law in order to recover
the correct expansion up to orderz2. This introduces some
indeterminacy in the determination ofPsNdst ,Td. However,
the behavior at very largeT will be

PsNdst,Td .
a

T1+y ,

wherea is an indetermined coefficient. This final power-law
behavior might be in fact rather hard to observe in reality.

C. Special case of the decorrelations with same value

In this section we compute the quantityPsk,kdst ,tw,Td.
Like for the previous case, we defineP0

sk,kdst ,tw,Td corre-
sponding toPsk,kdst ,tw,Td, which measures the probability
that k subsystems change traps in the intervalftw+T; tw+T
+tg, knowing thatk subsystemssnot necessarily the samed
have changed traps in the intervalftw; tw+tg. More precisely,
in this section, we say that an event has occurred attw
if Cstw,tw+td first reaches the value 1−k/N at tw. Then
P0

sNdst ,tw,Td is the probability per unit timet that such an
event takes place at timetw+T, knowing that an event hap-
pened attw. In this caseskÞNd, all quantities will depend on
tw and a relation of the type ofs1d is a priori not correct.
However, in the limit that we consider, where bothT andt
are small compared totw, and if k is not too far fromN
sexperimentally, the threshold will be taken low enough in
order to get rid of experimental noised, we will assume that
such a relation can still be valid. We will write

P0
sk,kdst,tw,Td = Psk,kdst,tw,Td +E

0

T

dt8Psk,kdst,tw,t8d

3P0
sk,kdst,tw,T − t8d. s4d

As in the previous section, we will first compute
P0

sk,kdst ,tw,Td and deducePsk,kdst ,tw,Td from its Laplace
transform thanks to the relation

P̂sk,kdst,tw,zd =
P̂0

sk,kdst,tw,zd

1 + P̂0
sk,kdst,tw,zd

. s5d

In order to computeP0
sk,kdst ,tw,Td, we call n the number

of subsystems that changed traps in the intervalftw,tw+tg,
but stayed trapped in the intervalftw+T,tw+T+tg. Hencek
−n subsystems change traps both in the intervalsftw,tw+tg
andftw+T,tw+T+tg; n subsystems change traps in the inter-
val ftw+T,tw+T+tg but where trapped in the interval
ftw,tw+tg; finally, N−k−n subsystems were trapped in both
the intervalsftw,tw+tg and ftw+T,tw+T+tg.

Therefore, ifksup=minsk,N−kd,

P0
sk,kdst,tw,Td =

CN
k

t
o
n=0

ksup

Ck
nCN−k

n ftSsTdgk−nf1 − tSsTdgn

3ftSstw + Tdgnf1 − tSstw + TdgN−k−n.

Such a finite sum being analytically untractable, we will
take its continuous limit, by definingx=k/N andy=n/N, and
by replacingon=0

ksup by Ne0
xsup in the limit whereN is large.

First, if we consider the lowest order int only, we reduce
the expression to

P0
sk,kdst,tw,Td =

CN
k

t
o
n=0

ksup

Ck
nCN−k

n ftSsTdgk−nftSstw + Tdgn.

Then by using the Stirling formulaN! ,NNe−NÎ2pN, and
taking the continuous limit, we get

P0
sk,kdst,tw,Td .

tk−1

s2pd3/2N1/2E
0

xsup

dy expf− Nhsx − ydlnsx − yd

+ 2y ln y + s1 − x − ydlns1 − x − yd

− sx − ydln SsTd − y ln SsT + twdjg. s6d

By using a saddle point method, we find that the former
integral is maximized fory* such that

sx − y*ds1 − x − y*d = y*2gstw,Td, s7d

wheregstw,Td=SsTd /SsT+ twd.
We keep the positive solution, having checked that we

have bothy* øx andy* ø1−x:

y* =
1

2sg − 1d
f− 1 +Î1 + 4xs1 − xdsg − 1dg.

Replacingy* in the last expression forP0
sk,kdst ,tw,Td leads

to a complicated expression that can be simplified in our
regime of interest,t0!T! tw.

First, by using the expression forSsTd at large times and
m,1, we find that, fort0!T! tw, gstw,Td.stw/Td1−m, and
y*sT,twd.fxs1−xd /gstw,Tdg1/2. Then, if tw/T is large
enough, we can always assume to havey* !minsx,1−xd, so
that Eq.s6d can be expanded iny* . Finally, we find the result

P0
sk,kdst,tw,Td .

CN
k

2pt
ftSsTdgke2ÎksN−kdsT/twds1−md/2

.

The Laplace transform with respect toT reads

P̂0
sk,kdst,tw,zd .

CN
k

2pt
Fcsmdt

t0
m Gk

Istw,zd,

where

Istw,zd =E
0

`

dT
e−zT

Ts1−mdk expFKskdS T

tw
Ds1−md/2G ,

and Kskd=2ÎksN−kd. Istw,zd is a convergent integral for
ks1−md,1, which is the first case we consider.

1. Case k„1−m…,1

Since we are interested in the caseT! tw, we will make
an expansion forztw@1.

Then we need to consider two separate cases for the

evaluation ofP̂sk,kdst ,tw,zd from relations5d. We report here
the main results, and refer to Appendix A for the calcula-
tions.
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2. Case0,k, „1+m… /2„1−m…

Psk,kdst ,tw,Td is a power law:

Psk,kdst,tw,Td .
CN

k

2pt
Fcsmdt

t0
m Gk Atw

a

Gs− bd
1

T1+b , s8d

with a=ks1−md2/ s1+md andb=2ks1−md / s1+md−1.

3. Case„1+m… /2„1−m…,k,1/„1−m…

Psk,kdst,tw,Td . ecos„p/s1+bd…fbKstw,tdg1/s1+bdsT/twdb/s1+bd
s9d

which is a stretched exponential since cos(p / s1+bd),0.

4. Case k„1−m….1

Psk,kdst ,tw,Td is simply an exponential, with a weak de-
pendence ontw swhich vanishes for largetwd:

Psk,kdst,tw,Td . Cstw,tde−Cstw,tdT s10d

where Cstw,td=sCN
k /2ptdfcsmdt /t0

mgkfeKskdst0/ twds1−md/2/
t0

s1−mdkg.
We note here that it is not possible to make a clear con-

tinuity between the casesk=N and the casek different from
N treated in this section. This is due to the fact that we use a
saddle-point approximation ofIstw,zd, which is defined only
if Kskd is different from 0, hencek is different fromN and 0.
In this section, the approximations are more numerous and
are susceptible to be valid only for some intermediate values
of k. Moreover, we are interested in the aging regime and
now the correct expansion is to be made forztw@1, and not
anymore forzt0!1.

D. Generalization

The most general case, as introduced in the beginning of
Sec. IV, consists in computingPskdst ,tw,Td the distribution
of time intervals between successive decorrelations larger
thank/N.

As before, we will use theP0 quantities relative to theP
quantities we are looking for, and we will assume that rela-
tions between them similar to Eq.s4d still hold.

Therefore, we will start by computing

P0
skdst,tw,Td = o

k8ùk

o
k9ùk

P0
sk8,k9dst,tw,Td, s11d

whereP0
sk8,k9dst ,tw,Td is the probability thatk8 subsystems

have changed traps in the intervalftw,tw+tg and k9 sub-
systems have changed traps in the intervalftw+T; tw+T+tg.
We refer the reader to Appendix B for technical details of the
computation, which is similar to the one explained in Sec.
IV C.

From the calculation, we get

P0
skdst,tw,Td = P0

sk* dst,tw,Td,

Pskdst,tw,Td = Psk* dst,tw,Td,

where k* is a growing function ofk, and is equal tok if
tSsTd,1 andk.N/2.

Therefore the results of the previous section can be used.
We conclude that, according to the value ofk* swhich will be
equal tok in most cases of interestd, Pskdst ,tw,Td can either
take a power-law formfEq. s8dg, a stretched exponential
form fEq. s9dg, or an exponential formfEq. s10dg, wherek
has to be replaced byk* .

V. PROBABILITY DISTRIBUTION OF THE TOTAL
CORRELATOR

In Sec. III, we used the notion of “events,” and calculated
their time distribution, because it was the most natural quan-
tity to compute in the framework of the model presented
here. However, it may be difficult in an experiment to iden-
tify such events, or even to find a reasonable definition of
individual events.

A well-defined quantity that is more readily accessible is
the distribution probability of a correlatorCstw,tw+td, as has
been recently investigated in numerical simulationsf24g.

In our model, each subsystemi is a two-level system,
where the correlationCistw,tw+td can only take the values 0
or 1. More precisely, the probability distribution of the cor-
relation of a subsystemi is

PsCid = fdsCi − 1d + s1 − fddsCid,

where the parameterf coincides with the average value of
the correlation for the values oftw and t considered:f
=Pstw,tw+td=kCistw,tw+tdl. In the following we will omit
temporarily the dependence off on tw andt, for simplicity in
the notations.

For the whole systemsthe superposition of theN indepen-
dent subsystemsd, the definition of Cstw,tw+td has been
given in Sec. II. One can actually rewrite this quantity as

Cstw,tw + td =
mstw,tw + td

N
= 1 −

nstw,tw + td
N

,

where mstw,tw+td is the number of subsystems that re-
mained in the same energy trap betweentw and tw+t, and
nstw,tw+td the number of subsystems that changed trap be-
tweentw and tw+t.

Then, in order to find the valueC for the correlation be-
tween timestw and tw+t, one has to drawm subsystems
amongN instances that are trapped during this time interval,
with probability f, and N−m subsystems that changed trap
during this time interval, with probability 1−f. Hence, the
probability distribution ofC, PsCd, is simply the binomial
distribution:PsCd=NPsmd, with

Psmd = CN
mfms1 − fdN−m,

andCN
m is the binomial coefficient.

Note that in the limit of a large number of subsystemsN,
the central limit theorem holds and the limiting distribution
is a Gaussian:

PsCd →Î N

2pfs1 − fd
expF−

NsC − fd2

2fs1 − fd G .

We show on Fig. 2 the distributionsPsCd for different
values of the average correlation:kCl=0.1,0.5,0.9. The full
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lines correspond toN=10 and the dotted lines toN=100,
showing a closer resemblance to a Gaussian distribution for
N=100.

For comparison with experiments or numerical simula-
tions, we computed the variances2sCd, the skewnessssCd
and the kurtosisksCd of the distributionPsCd. They can be
easily computed by noticing that the cumulants of indepen-
dent random variables are additive quantities:

s2sCd =
1

N
fs1 − fd,

ssCd =
1

ÎN

1 − 2f
Îfs1 − fd

,

ksCd =
1

N

6f2 − 6f + 1

fs1 − fd
.

At this stage, one would like to plot the previous quanti-
ties as a function oft for different values of the agetw, in
order to compare with existing results in the literature
f19,24,39g. For givent and tw, f =Pstw,tw+td is explicitly
defined using the relation of Sec. II. Moreover, we use the
results of Sec. III that suggest that at agetw, the system can
actually be considered as a superposition ofNeffstwd
=Nst0/ twd1−m independent subsystems. Hence in the preced-
ing formulae fors2sCd, ssCd, ksCd, we replaceN by Neffstwd.
We want to stress that it is not proved here that this mapping
can be applied to the case of the full probability of the cor-
relation functions, it is only a phenomenological attempt to
try to extend this coarse-graining to the calculation of other
quantities than the distribution of times. This argument actu-
ally leads to results compatible to what is found in experi-
ments.

In Figs. 3–5,s2sCd, ssCd, andksCd are shown as a func-
tion of t for different values oftw, for m=0.8 andN=10. As
observed in recent experiments on foamsf19,39g, one can
see that the variance is maximum at a timet of the order of

the relaxation timeswhich in our model is proportional to the
age twd, and goes to 0 at larget; this maximum increases
with the age. The skewness is negative at smallt, crosses the
origin at intermediate times whenPsCd becomes symmetric
and then becomes positive; the negative skewness is more
and more pronounced whentw increases. The kurtosis is
positive at small times, then negative, and positive again at
large t, while the negative part becomes more and more
pronounced with the age. All these results are compatible
with recent numerical simulationsf24g, and seem to be com-
patible with preliminary experiments on colloidal gelsf19g.
Note again that the use ofNeffstwd contains crucial informa-
tion: if N was kept constant, the curves would simply be
superimposed by at / tw rescaling, in particular, the maxima
and minima of the variance, skewness and kurtosis would
not depend on the age.

Finally, we computed the probability distributionPsCd for
a givent / tw ratio, i.e., a given value of the average correla-
tion kCl, at different ages, therefore for differentNeffstwd; the
system is made initially ofN=1000 independent subsystems.
Figure 6 shows such probability distributions, form=0.8, f

FIG. 2. sColor onlined Probability distributionPsCd for different
values of the average correlation:kCl=0.1scirclesd, 0.5sdiamondsd,
and 0.9sstarsd. The full lines correspond toN=10 and the dotted
lines toN=100.

FIG. 3. sColor onlined Variance of the probability distribution
PsCd for m=0.8 andN=10 independent subsystems initially, for
different values oftw.

FIG. 4. sColor onlined Skewness of the probability distribution
PsCd for m=0.8 andN=10 independent subsystems initially, for
different values oftw.
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=kCl=0.8, N=1000, plotting PsCdssCd versus sC
−kCld /ssCd. One can see that even forN=1000, systematic
deviations exist, though they may be hard to distinguish
when an experimental noise is present. Deviations are sys-
tematic astw increases, which is not surprising sinceNeffstwd
decreases with the age; the central limit theorem is less and
less valid astw increases. Note that we tried to fit these
curves with Gumbel distributions like inf24g, but we did not
find a very precise agreement in our case.

Finally, let us note that our results fail to reproduce the
expected zero limit of the skewness and kurtosis ofPsCd
whent / tw→`. These two quantities actually diverge in our
case for any finiteN, becausePsCd tends to a delta function
dsCd andssCd→0. However, the limitt / tw→` is formally
equivalent toNeffstwd→`, which restores the correct limit
because of the central limit theorem. This problem would be
absent ifPsCid for one individual system had a nonzero vari-
ance whenCi →0. In practice, this will be always the case,
because of the presence of white thermal noise.

VI. DISCUSSION AND CONCLUSION

We have studied a system made of the superposition ofN
subsystems characterized individually by a slow dynamics
and a power-law distribution of times between jumps. This
system can in turn be characterized by its distribution of time
intervals between eventsPNst ,twd. For smallN, the power-
law behavior of a single subsystem is the dominant behavior.
For largeN, at very small time intervals, this distribution is
exponential and crosses over at larger time intervals to a
stretched exponential. In the two regimes, a natural scaling
betweenN andtw appears, which allows one to define an age
dependent effective number of subsystemsNeffstwd which de-
creases withtw, or equivalently, an effective coherence
length which grows slowly with the age:jstwd, tw

s1−md/d. It
would be interesting to see whether experimental results also
display the different regimes calculated here. In particular,
one could observe an exponential or a stretched exponential
distribution for a young system, and a power-law distribution
for an aged system. As explained in Sec. III, the interpreta-
tion of jef fstwd comes from the aging of all individual sub-
systems: the systems that hop are more rare whentw in-
creases, and hence further apart from each other; this
introduces a relevant length scalejstwd that grows withtw.

We also computedPskdst ,tw,Td the distribution of time
intervals between successive decorrelations over an interval
t, larger thank/N. This quantity, likePsCd, is accessible
through scattering experiments. Although the derivation of
this quantity is a bit technical, the results can be summarized
in the following way. In the extreme case where one only
counts the largest decorrelationssk=Nd, the distribution of
time intervals between successive decorrelations crosses over
from a power law with a small exponent at smallN sor large
twd to a power law with a large exponent at largeN sor small
twd. It is hoped that in experiments these regimes will be
observed, when one varies the age or other parameters. For
example, if the temperature is decreased in a glass, or the
density is increased in a gel, or if one increases the quench
rate, one expects that the coherence length increases, i.e., the
number of independent subsystems decreases. ForkÞN, the
results are more difficult to obtain, due to technical compli-
cations, and are likely to be reliable only for intermediate
values ofk. If k is small si.e., one counts only the decorre-
lations corresponding to a few subsystemsd, the distribution
Pskdst ,tw,Td is a power law; ifk is larger, it is a stretched
exponential and fork large it is an exponential. Equivalently,
since one expects the number of subsystems to decrease with
the age,Pskdst ,tw,Td is typically an exponential at smalltw,
then a stretched exponential and finally a power law at large
tw, for a given value of the correlation thresholdCth=1
−k/N.

Finally, we also computed analytically the probability dis-
tribution of the correlatorPsCd, which reproduces many fea-
tures of the experimental findings off19g and of the numeri-
cal results off24g. We used the factsnot shown rigorouslyd
that at tw the system can be described as a collection of
Neffstwd independent subsystems. No rescaling to some time-
evolving Gumbell distribution seems to be relevant here.
Since the full probability is calculated here, it would be in-

FIG. 5. sColor onlined Kurtosis of the probability distribution
PsCd for m=0.8 andN=10 independent subsystems initially, for
different values oftw.

FIG. 6. sColor onlined Rescaled probability distributionsPsCd
for m=0.8,N=1000 independent subsystems initially,kCl=0.8, and
different values oftw.
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teresting to compare it more quantitatively to experimental
results. In particular, we find that the variance grows with the
age likes2,Neff

−1 , tw
1−m.

Although these results are derived from a simplified the-
oretical model, we think that such a description captures the
essential intermittent character of the relaxation of a realistic
glassy system, together with the existence of a coherence
length scale growing with the age, due to the decrease of the
rate of events in time. We hope that these findings will be
helpful in analyzing more quantitatively some experimental
results. In particular, the results of Sec. IV and Sec. V might
be of interest for the time resolved correlation experiments of
f19g. However, since the individual trap model is probably a
very crude model for the relaxation of realistic materials
fkCstw,tw+tdl is a priori unlikely to coincide with the ex-
perimental average relaxation function of colloidal gelsg, it
may be interesting in a further study to replace it with a more
realistic dynamical model for jammed colloidal gelsf40g.
Concerning the intermittency dynamics studied inf20g, the
quantities calculated in Sec. III are maybe the most relevant
ones to compare with the experimental results.

The model studied here has the major disadvantage that
the relevant coherence length of the system is introduced by
hand through the superposition of several subsystems. How-
ever, we were able to extract useful information from this
picture. It would be more satisfactory to solve a model where
an aging coherence length builds up during the dynamics,
resulting from microscopic dynamics. Candidates could be
special cases of kinetically constrained models, though ana-
lytical calculations will be quite hardf41g. However, numeri-
cal simulations provide now a useful alternative tool for the
precise investigation, in microscopic models of glasses, of
the quantities calculated in this paperf24g.
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APPENDIX A

1. Casek„1−m…,1

In this case, we can perform a saddle-point calculation in
order to evaluateIstw,zd, which leads to

Istw,zd . Atw
azbe−B/sztwdg

,

with A=fs1−mdKskd /2g−2ks1−md/s1+md, B=fs1−mdKskd /
2g2/s1+md, a=ks1−md2/ s1+md, b=2ks1−md / s1+md−1, and
g=s1−md / s1+md.

Since we are interested in the caseT! tw, we expand
Istw,zd for ztw@1: Istw,zd.Atw

azbf1−B/ sztwdgg. Then we
need to consider two separate cases for the evaluation of

P̂sk,kdst ,tw,zd from relations5d.

2. Case 0,k, „1+m… /2„1−m…

For 0,k, s1+md /2s1−md si.e., b,0d, one gets forztw
@1: P̂sk,kdst ,tw,zd.AsCN

k /2ptdfcsmdt /t0
mgktw

azb. Therefore,
Psk,kdst ,tw,Td is a power law:

Psk,kdst,tw,Td .
CN

k

2pt
Fcsmdt

t0
m Gk Atw

a

Gs− bd
1

T1+b .

3. Case„1+m… /2„1−m…,k,1/„1−m…

In this case, we find that P̂sk,kdst ,tw,zd.exp
3f−Kstw,td / sztwdbg, with Kstw,td=s2pt /CN

k dft0
m /csmdtgk

3s1/tw
a−bd.

The evaluation of the inverse Laplace transform leads to

Psk,kdst,tw,Td . ecos„p/s1+bd…„bKstw,td…1/s1+bdsT/twdb/s1+bd
,

which is a stretched exponential since cos(p / s1+bd),0.

4. Casek„1−m….1

Finally, we consider the caseks1−md.1: then we have to
introduce the lower cutofft0 in Istw,zd, which leads to

Istw,zd . zs1−mdk−1E
t0z

` du

us1−mdke−ueKskdsu/ztwds1−md/2
.

The saddle point solution isu* =fs1−mdKskd /2g2/s1+md

3sztwdsm−1ds1+md. In the limit of very largeztw, one will at
some point reach the situation whereu* ,t0z. Hence, for
ztw@1, the integral will be best evaluated by its lower cutoff
value: Istw,zd.s1/zds1/t0

s1−mdkde−t0zeKskdst0/ twds1−md/2
. Since T

@t0, we finally get P̂sk,kdst ,tw,zd.Cstw,td /z, where

Cstw,td=sCN
k /2ptdfcsmdt /t0

mgkseKskdst0/ twds1−md/2
/t0

s1−mdkd.
Finally, Psk,kdst ,tw,Td is simply an exponential, with a

weak dependence ontw swhich vanishes for largetwd:

Psk,kdst,tw,Td . Cstw,tde−Cstw,tdT.

APPENDIX B

For the computation ofP0
sk8,k9dst ,tw,Td, we will proceed

in the same way as in the last section forP0
sk,kdst ,tw,Td.

Using again combinatorial arguments, we can write that

P0
sk8,k9dst,tw,Td =

CN
k8

t
o

n=ninf

nsup

Ck8
n CN−k8

k9−k8+nftSsTdgk8−n

3f1 − tSsTdgnftSstw + Tdgk9−k8+n

3f1 − tSstw + TdgN−k9−n,
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whereninf =sups0,k8−k9d andnsup=infsk8 ,N−k9d.
As before, we keep only the leading order int and go to

the largeN limit by introducing x8=k8 /N, x9=k9 /N, and y
=n/N. This leads to

P0
sk8,k9dst,tw,Td .

tk9−1

s2pd3/2N1/2E
xinf

xsup

dy e−NSsx8,x9,yd,

where

Ssx8,x9,yd = y ln y + sx9 − x + ydlnsx9 − x8 + yd

+ sx8 − ydlnsx8 − yd + s1 − x9 − ydlns1 − x9 − yd

− sx8 − ydln SsTd − sx9 − x8 + ydln Sstw + Td.

We use a saddle-point approximation to minimize
Ssx8 ,x9 ,yd: us]S /]yduy* =0 leads to

sx8 − y*ds1 − x9 − y*d = y*sx9 − x8 + ydgstw,Td,

which is the generalization of Eq.s7d.
The positive solution is therefore

y* =
1

2sg − 1d
†− 1 − sg − 1dsx9 − x8d

+ Îf1 + sg − 1dsx9 − x8dg2 + 4x8s1 − x9dsg − 1d‡

and it is easy to check thatxinf øy* øxsup. Note that in this
equation and in the following, we drop thestw,Td depen-
dence ofgstw,Td for convenience.

We now come back to the calculation ofP0
skdst ,tw,Td

through Eq.s11d. For largeN, we have

P0
skdst,tw,Td . N2E

x

1

dx8E
x

1

dx9P0
sk8,k9dst,tw,Td.

Direct integration is not possible here, so we use again a
saddle point treatment of the double integral. The saddle
pointsx8* andx9* are solutions of the set of equations formed
by us]S /]x8dusx8* ,x9* d=0 and us]S /]x9dusx8* ,x9* d=0, or

]y*

]x8
ln

y*sx9 − x8 + y*dg
s1 − x9 − y*dsx8 − y*d

= ln
gsx9 − x8 + y*d

sx8 − y*d
, sB1d

]y*

]x9
ln

y*sx9 − x8 + y*dg
s1 − x9 − y*dsx8 − y*d

= ln
tSsT + twds1 − x9 − y*d

x9 − x8 + y* .

sB2d

Here, us]y* /]x8dusx8* ,x9* d and us]y* /]x9dusx8* ,x9* d can be cal-
culated using the expression fory* .

At this point, taking theT/ tw!1 limit enables us to make
simplifications in Eqs.sB1d and sB2d. A rather lengthy cal-
culation leads to the conclusion that there is no couple of
solutionssx8* ,x9*d compatible with Eqs.sB1d and sB2d, and
such thatx8* Þx9* .

Consequently, we keep only the terms such thatk8=k9
in the sum of Eq.s11d, and try to find the value fork8
that maximizes this sum, knowing the expression of

P0
sk8,k8dst ,tw,Td from Sec. IV C:

P0
skdst,tw,Td ~ E

x

1

dx8 expHNF− x8 ln x8 − s1 − x8dlns1 − x8d

+ x8 ln SsTd + 2Sx8s1 − x8d
gstw,Td D1/2GJ .

The saddle-point equation forx8* is now

lnS x8*

1 − x8* D =
1 − 2x8*

Îx8*s1 − x8*dgstw,Td
+ lnftSsTdg.

If tSsTd=1, this equation has the only solutionx8* = 1
2. For

tSsTd.1, there is a solutionx8* .
1
2, and fortSsTd,1, there

is a solutionx8* ,
1
2. In general,x* =supsx,x8*d will maxi-

mize the expression forP0
skdst ,tw,Td, and can be estimated

numerically. In particular, iftSsTd,1 andk.N/2, we have
x* =x.

Finally,

P0
skdst,tw,Td = P0

sk* dst,tw,Td,

Pskdst,tw,Td = Psk* dst,tw,Td,

wherek* =supsk,k8*d.
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