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Electro-osmotic flow of a model electrolyte
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Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system
chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing con-
tinuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged
walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately
describes simple pressure-drivé®oiseuille flow in this model. However, Poisson-Boltzmann theory fails to
describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the
Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of
Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced
solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory,
agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that
repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite
effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the
results conform well to our conclusions for the model system.
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[. INTRODUCTION limited at some point to make the computations tractable.
_ ) ) However, even modeling at this level poses a challenge to
When chemically functionalized walls of a channel carry o gjitative understanding, mainly because of the complexi-
a net charge, electrolyte entering the channel acquires a cofjag of the polar, hydrogen-bonded aqueous solvent.
pensating charge. Fluid flow can thereby be induced with In this work we study a simplified electrolyte model to

applied electric fields. Electro-osmotic flow, that is, flow delve further into the issue of the applicability of hydrody-

drlvend by gpplylngfaln el?]Ct.”C f'?ld tohz?\ Char%eqdﬂfll“d' hasyamic theory at the nanoscale. Both the ions and solvent are
proved to be a useful technique for achieving fluid flow In g harica) nonpolar particles interacting via Lennard-Jones

controlled manner on the nanometer scale, which is requireffyi otentials. Use of a simplified model is justified for the
In a variety of new technolog!es, such as fuel cells an urpose of testing continuum theories, has precedent in sev-
micro- and nanoelectromechanical systems. These emerging, areas of condensed phase simulation, and can provide
technologies have spurred experimental and theoretical stu Lalitative conclusions that should be appli(’:able to real sys-
les aimed at understanding field-driven flow of electrolytesg s - gince continuum theory ignores molecular details, a
in terms of fluid properties gnd th_e chemical properties of the‘simplified model involving spherical solvent particles is ad-
char]nel walls. A common ISSue Is repeatedly raised in thes quate for testing such theories. With this simplification, the
studies: Does.hydrodyn.amm theory apply at the nanoscalegn,jations become more tractable while stil retaining a
Two computational studies have recently appeqled] and 1,46 with discrete solvent particles. Indeed, replacing water
Pholecules with spherical particles to gain computational con-

standard” hydrodynamic theory with a spatially uniform, yenience and theoretical simplicity has been done in other
linear constitutive relation between shear stress and strai

Hreas. For example, Klein and co-workers have recently de-
rate. The SPC/Eextended simple point changmodel for Pe, y

h S . del developed by B veloped a series of “coarse grain” models of biological sys-
water, a three-site Interaction model developed Dy Berigng ywhere biomolecules are simplified and water molecules
endsen, Grigera, and StraatsfBawas used in both studies,

d ch | I q ﬁre replaced with spherical “W” particldg—6], and there
and channel walls were_ constructed from an array Ol aqpjier instances where simplified models have been used
Lennard-Jones particles. These models incorporate S|gn|f{—

. ; o deepen understanding of complex biological systems
cant molecular detail, but of course the level of detail Wag7_g]. In other areas of statistical physics simple models

have provided insights that have applied quite generally. For

example, long time tails of the velocity autocorrelation func-
*Electronic address: singer@chemistry.ohio-state.edu tion were first discovered by Alder and Wainwright in their
"Electronic address: conlisk.1@osu.edu studies of hard spheres and hard digk8-12. A study of
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electro-osmotic flow in this spirit by Thompson has recentlyBoltzmann distribution for the ions in solution. The convec-
appeared13]. tive terms in the velocity momentum equation were assumed
Our simplified model is chosen to be appropriate for com-+o be negligible and the solution for the velocity and poten-
parison with existing continuum theory for electro-osmotictial was assumed to be symmetric about the centerline of the
flow. To date, continuum theory for electro-osmotic flow haSChanne|_ Additional work of a similar nature has also ap-
coupled Poisson-Boltzmann theory for the ionic distributionpeared[27-30. Conlisk et al. [31] have provided a con-
with a Navier-Stokes description of fluid flow. However, {inyum theory for electro-osmotic flow valid not only in the
comparison of this theory with numerical simulations of ioNSgmall channel limit but also for large channels. Combining
in a confined polar fluid is not entirely_ appropriate. lons .in acontinuum ion transport equations with hydrodynamics for

X : ; Ghe electrolyte, they find that, under steady state conditions,
tric response of the polar fluid when near the interface. Thig, . 00 distribution is given by Poisson-Boltzmann theory

effect is present in the molecular dynamics simulations usin , A : ;
a polar solvent, and on the continuum level would be incor—%md that the velocity flow profile is proportional to the dif

porated through image charges. Ordinary Poisson-BoItzmanfﬁ;ﬁg(Eg 13” the electrostatic potential from its value at the

theory does not include image effects, although imagé(" L
charges have been introduced in extensions of Poisson- EVEN though our solvent model is simplified, the conclu-
Boltzmann theory and more sophistical statistical mechanications we reach in this work should be applicable to real
treatments of the double layEr4—20. Hence, the simplified Systems as long as they do not depend explicitly on the sol-
model we simulate is more appropriate than more realisti¥€nt molecular structure. The link we suggest between de-
models of an aqueous solvent for comparison with existing/iations of the ion density from Poisson-Boltzmann theory
continuum theories of electro-osmotic flow. Also, because ofnd flow rate is one such conclusion. By studying a range of
its simplified nature, extensive simulations are possible an§oncentrations and interactions strengths, we extract qualita-
interpretation is less complicated. We are able to study a#Ve trends that were not apparent from earlier simulations.
electrolyte containing both cations and anions with concenés discussed in our concluding section, this link seems to
trations typical of experiments, whereas previous simulation§XPlain simulations of other, more realistic, models. Of
included only ions of just one chardd,2]. The physical —course, there is also great va_llue in very realistic mod.els with
properties of the Lennard-Jones fluid, including the viscosiigh levels of molecular detail. We feel that progress is made
[21,22, has been very well characterized, aiding the comby re_latlng trends extracted fr_om qualitative models to more
parison with hydrodynamic theory. Even though the solvenfletailed models and to experiment.
is nonpolar, strong short range solvation forces are still re- N Sec. Il we define the model system. Results for large
quired to keep ions in solution. We show that these solvationd small ionic interactions, compared to other interactions
forces strongly affect electro-osmotic flow because they afin the fluid, are presented in Sec. lll. In Sec. IV we confirm
fect the ion distribution, an effect that can be understoodhat our simulations fall in the regime where the steady state
with a simple qualitative theory. We then apply our findingselocity depends linearly on the driving field. Finally, we
to reanalyze previous numerical work on electro-osmoticconclude by analyzing previous work and discussing some of
flow [2]. We determine that “standard” hydrodynamic theory, the implications of our study.
when appropriately applied as guided by our findings for the
model system, accurately fits those results.
Electro-osmotic flow has been examined theoretically on Il. THE MODEL SYSTEM
many occasions in the past. The channel width is generally
assumed to be much larger than the Debye screening Ieng{n
of the electrolyte. Under these conditions, most of the fluid
in the channel can be treated as an ordinary, uncharged fluid (1)=4 [<g>12 (0_)6:|
v =4€| | — - .

All particles of our nanochannel flow model interact via
e Lennard-Jones potential

[23]. Since electrokinetic effects are confined to a small re- T 1)
gion near the charged walls, a narrow region near each wall
can be treated separately from other charged walls in thtn addition, there are Coulomb interactions between ions.
system(for example, the walls on the opposite side of theFor the most part we will use standard Lennard-Jones re-
channel. Electro-osmotic phenomena in wide channels af-duced units in this paper, measuring length in units@ind
fect overall fluid flow by altering the hydrodynamic bound- energy in units ofe. Physical quantities are reduced by e
ary conditions at the outer edge of the double layer. and o parameters of the solvent-solvent interactions. Re-
In contrast, the channel dimensions are of the order of guced quantities are indicated with an asterisk. For example,
Debye length for the case of nanochannel flow considerethe solvent-solvent interaction in reduced unitsvigr’)
here, and inclusion of electro-osmotic effects does not sim=4[(r")"*?-(r")"6]. The walls are a single triangular close-
plify into a single-wall problem. Early treatments of overlap- packed layer of Lennard-Jones particles with a nearest neigh-
ping double layers from walls within a Debye length of eachbor distance of 1.462 The wall particles are identical to
other date back to the 193024,25. The first work on the solvent except for being stationatig. 1). In all cases, the
electro-osmotic flow problem for overlapping double layerswall-fluid particle Lennard-Jones parameters are the same as
appears to have been done by Burgeen and Nakigflle the fluid-fluid parameters. Adding further wall layers beyond
They produced results for the velocity field and potential forthe first layer would add an overall cohesive background
two equally charged ions of valengeassuming a Poisson- potential, as it has been shown that th& repulsive poten-
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Ywall oo YOOI wm? recently estimated for silica gla§86]. Other workers
v o T — simulated a system with just ions of a single charge, and

S @ overall solvent charge density of 4.7] to 6[2] times larger
® than ours. Their wall charge densities were [A]lor 3.1[2]

" © o ® ®) ® times larger.

© o The volume of the confined fluid is not well defined if the

, * © ® ® ® walls are soft. Following the procedure of Travis and Gub-
® o bins for Poiseuille flow of a Lennard-Jones flJi@7], we

) ® @ @ estimated an effective channel width by subtractingrom

y Y0 oo the distance between the wall particles on either side of the
~Yuwall - S S SO ES O channel. We defing, as the effective distance that particles

extend from the center of the channel. Throughout this work,
FIG. 1. Schematic depiction of the simulation cell. For clarity, we Usey*lzy;vau_% (Fig. 1). As shown below, this value of,
only wall particles and ions, but not solvent, are shown. Periodigorovides an excellent match to continuum theory for our sys-
boundary conditions are enforced in tkend z directions. Close- tem when tested for Poiseuille flow. Based on this volume
packed layers of stationary wall particles are locateg=aty, .  estimate, the overall number density of the fluid particles,
An effective volume for the fluid is defined by =ywai—o/2. Un-  including both solvent and ions, was closepte pa®=0.8 in
der some conditions, we find that ions are excluded from a regiom|| our simulations. As seen below in Figs. 3, 4, and 7, our
near the walls. We usg, to characterize the region available to the channels are sufficiently wide so that a region with flat num-
ions, and defindy;on=y1 - Yo- ber density equal to the overall density is present at the cen-
ter of the channel. The reduced temperature WaskgT/ e
tial from deeper layers is negligible and the attraction =1, which puts our model fluid in the liquid region of the
from deeper layers is well approximated by a lateral averageennard-Jones phase diagram.
[32], which leads to a slowly varying attractive potential be-  The Coulombic part of the interaction between iored
having like r™3 at large separation. The fact that the wall j in reduced units is
particles are fixed might have some effect on our results.
Sokhanet al. compared rigid and flexible walls in simula- v =10 = e 44 _ ¢ LLE ?)
tions of Lennard-Jones patrticles near a graphite suffa@e i €eo|r; - rJ-| Iri—r:|’
and within a carbon nanotuljg&4]. They found a large de-

J

gree of slip, and observed that wall flexibility increased theV1er€€ is the magnitude of the electron chargeandz are

fluid velocity at a graphite wall by-10% the ionic charges measured in unitsepfinde, is the dielec-
The ions and wall particles have the éame diameter as tH ic constant of the medium. In reduced units, the ratio of the

solvent. Al particles have the same masg, Strong ion- oulomb to Lennard-Jones interaction energy.ighe ex-

solvent attractions are needed to dissolve ions in solutiont.ernal electric field produced a constant force of

Since our solvent is nonpolar, we sgt, the ion-solvent well ZE' (3)
depth in units of the solvent-solveatto a sufficiently large o o o
value to keep our ions from “precipitating” out of solution. ©N theith ion in thex direction. The reduced electric field is
The value of €5 depended on the Coulomb interaction . oe
strength. Explicit values of, are given in Table I. E = ?E. (4)

The molarities in Table | were estimated on the basis of a
particle diameter ofr=2.8818 A, which would make the whereE is the magnitude of the electric field. The Coulomb
total solution molarity equal to that of water, 5515 The  energy and force were calculated using a two-dimensional
concentrations of ions were chosen to be those estimated Bwald sun{38,39. We employed the method of Kawata and
biomedical devices under developm¢Bb]. Assuming the Mikami [40] to turn the reciprocal space portion of the two-
same value ofr, the wall charge density in our system is dimensional Ewald expression into a factorized form resem-
2.4X 10 electron charges pexm?, which is considerably bling the three-dimensional expression. This also removes
larger than the range of2—8) X 10° electron charges per the error function evaluations from the reciprocal space sum.

TABLE |I. Summary of nonequilibrium molecular dynamics simulations performed. In all cases, the
system was periodically replicated in tRedirection, the direction of flow, and thedirection, with dimen-
sionsL;:21.77 and_;:21.83, respectively. In thg direction, wall particles were placed wt= iy;,a” and
the volume available to particles, used to calculate the ion mola¢Megiven in the rightmost columns, was
estimated on the basis of an effectivelimension oﬂ_:,=2y;va"—l and a fluid particle diameter of 2.8818 A.
The parametet is defined in Eq(2).

Run Total Cation Anions Solvent Wall y,,, { €5 M(cation M(anion

A 8638 31 12 7757 836 10.76 5 7 0.2206 0.08538
B 8638 31 12 7757 836 1076 1 14 0.2206 0.08538
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Whereas Kawata and Mikami only perform this transforma-  °[T
tion for nonzero reciprocal lattice vectors, we were able tc

transform the zero reciprocal lattice vector term as W&, 25~ .
thereby completely eliminating error function evaluations - v 1%
from the reciprocal space part of the Ewald energy and force |- \

In our simulations the direction is perpendicular to the - 1
walls. We induce flow in the direction. The simulation cell p* 5| v
will rapidly heat up unless we remove energy from the sys-
tem. We use the Gaussian isokinetic thermofi&43 to b
maintain the system temperature. Zhang's integriddt is
used to solve the non-Hamiltonian equations of motion. We .|
used a time step aft"=0.01, where the reduced unit of time | p*
is V\my,/ eo. This value ofAt" yielded excellent preservation . , | , | ‘ .
of the isokinetic conditions, which would be exactly con- -10 -5 0 5 10
served without round-off error and force discontinuities
caused by the cutting off of the Lennard-Jones force at2.5 g, 2. steady state density and velocity distributions estab-
The time stepAt’ was chosen to be well within the range of jished under conditions of planar Poiseuille flow for a pure

acceptable values reported by Zhang for a Lennard-Jongsnnard-Jones fluid ap*=0.8, T'=1.0. Flow was induced by a
system[44], and was verified to give converged particle po- constant forcd” =0.005 applied to all particles. The velocity profile
sitions after shortreduced time~1) runs. Only they andz  from molecular dynamics is compared with hydrodynamic theory
components of the velocity are thermostated because there[isqg. (5)] for planar Poiseuille flow(smooth curve The reduced
a nonzero streaming velocity in the direction. In thex viscosity used to calculate the continuum theory velocity profile
direction, what has to be thermostated is the so-called “pewas taken as;" =2.13, reported for simulations of a pure Lennard-
culiar” velocity [43], the velocity relative to the streaming Jones fluid22] at p"=0.8, T"=1.0. Wall particles were located at
velocity. Therefore, thermostating thevelocities in prin-  Yyq=%10.76. We tooky,=Y,,,—1/2 as thepoint where stick
ciple involves first finding the average or streaming velocityboundary conditions were enforced.
profile, although other workers have neglected the streaming
velocity when it was small compared to the peculiar velocitystructure near the walls, continuum theory provides a quan-
[1,2]. When the flow velocity is comparable to the thermaltitative description of the velocity profile in all regions of the
velocity, it is more rigorous, and also avoids the necessity othannel, including near the walls. In Fig. 2 our velocity pro-
tracking the peculiar velocity, to thermostat only thandz  file from simulations of Poiseuille flow is compared with the
directions. Heat flow between themotion and othefther-  profile calculated from Eq(5) with reduced viscosityy"
mostatedl degrees of freedom keeps the total system at con=2.13, as reportef22] for simulations of a Lennard-Jones
stant temperature. We have verified that energy flow betweefid at p*=0.8, T°=1.0, andy’i:y;/a”-%: 10.26. Almost the
the x direction and the other two directions is very rapid. same values of; and YL 1.96 and 10.28, respectively, are
Because of the qualitative differences between our modeptained from a least squares fit to the data in Fig. 2. For
solvent and a realistic model of water, it is impossible topgjseuille flow in our system, continuum theory with stick
choose a value of [Eq. (2)], the relative Coulomb interac- phoyndary conditions imposed 3t =y,u—3 is evidently
tion strength, that will approximately map the behavior of gyite successful.
aqueous electrolytes onto the model system. For example, The validity of stick boundary conditions has been exam-
vastly different values ofe are inferred by a typical jned recently, through both simulations and experiment. Slip
hydrogen-bond strength, or alternatively by choosingo  has been observed in simulations under a variety of condi-
that the Lennard-Jones solvent has triple and critical teMgons: nonwetting fluidg45,46), fluids with weak interac-
peratures near those of water. Instead, we investigated Wyns with walls [47-49, low-density fluids[50-55, mo-
values of¢, 1 and 5, that we will see span the range fromjecylar fluids[48,49,58, large shear rate7], and fluids in
small to large interaction strengths. . which the corrugation length scale of the wall departs sig-
We verified that hydrodynamics with no-slip boundary pjficantly from that of the fluid particleE58]. While a variety
conditions enforced at, provides a good description of or-  of conditions will generate slip, it is not clear that a signifi-
dinary Poiseuille flow in our model system. Figure 2 showscant amount of slip is a generic phenomenon. In the absence
the density and velocity profile for a system with no ions, of the conditions listed above, very small slip lengths have
and a constant force =0.02 on solvent particles. The veloc- peen reported47,59. Gaoet al. have shown that a root-
ity profile obtained from simulations is compared with the mean-square wall roughness of 1.6 particle diameters was
standard result for an incompressible fluid with overall num-gyfficient to suppress all evidence of slip in simulations of
ber densityp and stick boundary conditions enforcedyat  n.hexadecand59]. For the Poiseuille flow conditions that
0 e s gave rise to the data shown in Fig. 2, the corrugation wave-
2—7]*[()/1) —-(y)7]. (5  length of the walls is comparable to the fluid particle size and
the interactions between fluid particles and fixed wall par-
Layering of the fluid near the walls is quite pronounced atticles is identical to fluid-fluid particle interactions. Hence
the density and temperature of our simulations. Despite thithe absence of slip in this case is to be expected. Since these

vi(y*)=
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v* FIG. 4. Density of(a) anions,(b) cations, andc) solvent as a

function of position between the channel walls for the simulation

FIG. 3. Density of(a) anions,(b) cations, andc) solvent as a  ¢onditions B described in Table I. The fluid is subjected to an elec-
function of position between the channel walls for the simulationyic fielg E*=2. The ion distribution predicted by Poisson-

conditions*A described in Table I. The fluid is subjected to an elecggjtzmann theory is also shown.
tric field E' =2. The smooth curves in panél and(b) are the ion
distributions predicted by Poisson-Boltzmann theory in which the The density profiles from runs A and B, as shown in Figs.
ions are confined to the regidyl| <y; - Ay, with Ay,,,=0, 1, 2. 3 and 4, respectively, are qualitatively different. The Cou-
The curves corresponding to different values/of,, are distin-  lomb interaction strengtliis five times larger in run A com-
guished by they value at which the densities fall to zero. pared to run B, and consequently the ion-solvent interaction
strengthe s is much larger as well to maintain ions in solu-
conditions also apply to our simulation of electro-osmotiction (see Table)L lons layer directly against the walls in run
flow, slip is not observed in the simulations reported in laterB, but they are completely absent from the wall layer in run
sections. Several studies have demonstrated the breakdown The different behavior near the walls originates from the
of hydrodynamics with a linear shear-stress—strain-rate relsstrong ion-solvent interactions in run A. For an ion to enter
tion in very narrow channels, channels in the range~&f the wall layer, it must shed several of its strongly stabilizing
fluid particle diameterg§2,37,56,60,61 Currently, electro- solvent neighbors. Hence, under conditions with strong ion-
osmotic flow devices are not commonly fabricated with thesdon and ion-solvent interactions, as in run A, there is a sig-
very small channel widthg52—65, and therefore we did not nificant energetic barrier for ions to enter the layer of fluid
probe this regime in this study. adjacent to the wall. The ion-solvent attractions in run B are
sufficiently reduced to allow ions in under these conditions
to enter the wall layer without significant energetic penalty.
Ill. RESULTS OF NONEQUILIBRIUM MOLECULAR However, a mild depletion of ions from the wall region still
DYNAMICS SIMULATIONS occurs for run B, as evidenced by the outermost peak in the
cation density being smaller than the adjacent peak in Fig.
We chose simulation conditions in which the ion concen-4(b).
trations(see Table)l are typical of experimental conditions. As mentioned in the Introduction, in a polar solvent ex-
The total number of ions in the simulation cell was conse-clusion of ions from an interface with a medium of low di-
quently quite low. The small number of ions required suffi- electric constant is a well known phenomenon. The proto-
ciently long simulations, typically on the order of®1@mes typical example is depletion of ions near an air-water
steps with the longest being2.5x 10° steps, to gather reli- interface[15]. Hence, it is a realistic possibility in some fab-
able statistics. Other workers simulated a system with justicated devices that ions may be excluded from nanochannel
ions of a single charge, and 2.7 to 6 times larger ionic conwalls, depending on the chemical nature of the ions and
centrationd 1,2]. functionalization of the walls. In our model system, the
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FIG. 5. Velocity distribution divided by the reduced field FIG. 6. Velocity distribution divided by the reduced field
strengthE” for (a) anions,(b) cations, andc) solvent as a function  strengthE”™ for (a) anions,(b) cations, andc) solvent as a function
of position between the channel walls for the simulation conditionsof position between the channel walls for the simulation conditions
A described in Table I. The fluid is subjected to an electric fieldB described in Table I. The fluid is subjected to an electric field
E"=2. In panel(c), molecular dynamics simulation results are com- E*=2.
pared with the velocity profile of Eq16) calculated with different

values ofAyjq, [Eq. (6)] as indicated in the figure. Boltzmann theory by lettingy,, the distance ions extend

simulation conditions A and B portray opposite regimes re[70m the center of the channel, depart frgm which we
garding the importance of ion exclusion from the interface_co_ntlnue to use 'go define the volume accessmle to the s_olvent
In our model system the effects are short range and confinédrig- 1). We defineAy;o, to be the width of the exclusion
to the layer adjacent to the wall. In a more realistic model r€gion.
the exclusion would be described by long range repulsions -
from image charges. Y Ong Tange Tep Aion = Y17 Yo ®

In Figs. 3 and 4 the simulation results are compared witHn Fig. 3, the distribution of ions in run A is compared with
Poisson-Boltzmann theory. The Debye lengtit [see Eq. Poisson-Boltzmann theory in whi(zh)/i*on is set equal to 0, 1,
(A6)] of Poisson-Boltzmann theory was 2d.é&nd 4.56-for  or 2. None of the modifications yield continuum distributions
the conditions of runs A and B, Figs. 3 and 4, respectivelyin quantitative agreement with simulations, even if the den-
The solution of the Poisson-Boltzmann equations is reviewedity oscillations near the walls are smoothed. However, it is
in the Appendix. Here we briefly mention that to relate theclear that confining the ions to a smaller volume does im-
continuum theory to molecular dynamics simulations, onlyprove the qualitative agreement between simulations and
the total number of cations and anions in the channel, and theontinuum theory, and that reducing the distance of closest
channel width accessible to iofly’| <y; with y’;:y\jva”—% approach byAy; =1 on either side of the channel produces
(see Fig. 1] must be specified. Poisson-Boltzmann theorythe best agreement for the anion density, and for the cation
gives a good representation of the ionic profile away fromdensity everywhere except close to the walls. Below, we will
the walls in run B, and the density from simulations seems talemonstrate that these modifications bring the continuum
oscillate about an average position described by the Poissotheory velocity profile in qualitative agreement with simula-
Boltzmann theory in the region of strong layering near thetions.
walls. Velocity profiles for ions and solvent are exhibited in Fig.

The agreement between Poisson-Boltzmann théthvg 5 for run A and Fig. 6 for run B. In both cases the cations
smooth curves in Fig. 3 foAyfon:O) and simulations is not flow substantially faster than the solvent, while the anions,
even qualitatively correct in run A because the continuumwhich are pulled by the electric field against the flow, have
theory does not describe ion exclusion from the walls. Al-an average velocity close to zero in run A or even negative in
though this effect arises from solvation forces, we can qualifun B. The continuum prediction for the flow profile is ob-
tatively incorporate the effect with a modified Poisson-tained from the Navier-Stokes equation with force density
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given byq(r)E, whereE is the electric field. Specializing to ) &E
fully developed flow of an incompressible fluid, the vly) = 47T7I¢ (v)
x-momentum Navier-Stokes equation reduces exactly to the

Stokes equation, and invoking standard electrostatic boundary conditions

11

aZv)( — Q(y)E (7)
ay? n :—r¢>’(y0) =3 (wall charge density=-y,q. (12
v

As noted by Conlislet al.[31], Eq. (7) for v,(y) is identical

potential¢(y) to within a constant factotThis conclusionis  second equality follows from overall charge neutrality. Com-
also implicit in equations for electro-osmotic flow developedpining the previous two equations, we find
earlier, for example by Cumminggt al.[23].) Consequently,

the velocity profile is related to the electrostatic potential as qEy,
CE v'(Yo) =~ . (13
oY) = L h(y) = p(y1)] (8) L _
4y Now that we have the derivative(yo) in hand, we can

when both the ion density and velocity distribution are as-OPtain an expression for the value of the velocitygt

sumed to vanish at;. In terms of reduced quantities, includ-

ing the reduced electrostatic potentiat (ze/kgT) ¢, AdEY(Y1— Yo)

veYo) =y (Yo Yo=Y ==~ —, (14
E*T* n
* * - - * _ * ) 9
oY) 47zi{n Lty) = vty ®) and throughout the excluded region,
Comparison of continuum theory velocity profil¢gqg.
(9)] with simulation results is made in Figs. 5 and 6. There oY) = quO(Yl_ VD, Vo< IVl < Vi. (15)
is only a slight disagreement for the conditions of rufFgy. 7

6), where the smaller ion-solvent interactions do not alter the
ion distribution radically from the Poisson-Boltzmann result.

However, in run A the steady state solvent velocity in mo- . .
lecular dynamics simulations exceeds the prediction of conl—’x(y )

Finally, we can set the whole solution in reduced units:

tinuum theory by roughly 50%. The question arises as to ET . . .. . .
whether the entire continuum approach fails for this situa- 47720’*[1#(3/ ) = Pyl +v(¥o), 1Y |<Yo

tion, or whether the disagreement in the velocity profile is = .

the result of ion exclusion from the wall region previously U*(y*)<)’1‘ y ) vi<ly'| <V,
noted for run A. In our discussion of the ion density distri- Ny -y ) 0 v
bution, we qualitatively modeled the effect of ion exclusion (16)

from the wall region by solving the Poisson-Boltzmann
equations for ions confined to a region smaller than Wha\t/vhere
would be expected from the hard core repulsions between

ions and the wall particles. Here we consider the velocity . x

profile expected from that modified Poisson-Boltzmann DY) = w_ 17)
theory. The Navier-Stokes equati¢n) can be easily solved X0
for the modified charge distribution that goes to zerymt
which is smaller than the distange at which stick boundary
conditions are imposed om,(y). In the region |y|
<YYo, Uy(y) and the electrostatic potentialy) satisfy, within
constant factors, the same second order differential equatio
and are linearly related to each other. g |y|<y,, the
velocity profile satisfies Eq.7) in which g(y)=0. Therefore

The solvent velocity profile predicted by E@.6) is com-
pared with molecular dynamics results in Fig. 5. The series
of continuum theory curves with different values A¥i,,
confirm that exclusion of ions from the wall region increases
flow in response to an applied field. In fact, the velocity
profile for Ay, =1 is in best agreement with simulations.
The fact that the simulated velocity profile is slightly above

the entire velocity profile is given by the continuum theory profile for run BFig. 6) can also be
eE traced to the small amount of ion exclusion near the walls in
——[h(y) = d(yo)]+vi¥o), Iy < Yo, run B. In the following section, more evidence is presented
oY) =) 477 that corrections to continuum theory enter principally
v (Yo (lyl = Y1), Yo<I|y| <va, through the charge density. The theory presented in this sec-

(10) tion predicts a qualitative trend that should be useful in the

design of nanochannels: shifting the charge density toward

whereu,(y,) is they derivative ofv,(y) at yo. the center of the channel increases the flow rate, while a shift
We can derive an expression fof(y,) using toward the walls decreases the flow.
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FIG. 7. Density of(a) anions,(b) cations, andc) solvent as a
function of position between the channel walls for the simulation

o . . . FIG. 8. Velocity distribution divided by the reduced field
conditions A described in Table I. Results are presented for eIe(:trlgtren thE" for (a) anions(b) cations, andc) solvent as a function
field strengthsE"=2, 5, 10, and 20. With increasing field strength g ’ '

and flow rate, the ions move progressively toward the center of thn%\f posmqn be_tween the channel walls for the simulation co_ndlt_lons
. o . . described in Table I. Results are presented for electric fields
channel. The ion densities f& =10 are seen to match well with

the ion densities for the modified Poisson-Boltzmann theory Withzgegg:jhesrie: in ?ieﬁjogterlgr? tzho.fo-lr—hk?i Elogellgﬂa}ufxe)t:iia? §/u§*rai2near
Ay;.,=2, which is the smooth curve plotted in pané and (b). P 9 g v

The solvent density is virtually independent of applied field andplotteo!) The SO'V‘?”t velocity _proflle .fOE =10 is seen to match_
flow rate, so the various curves in pargel are not labeled well with the continuum velocity profLIe calculated from the modi-
' ' fied Poisson-Boltzmann theory withy;,,=2, which is the smooth

curve plotted in pang(c).
IV. LINEAR AND NONLINEAR FLOW RESPONSE

Our field strengths are chosen to be quite large compared "

— = A" 52
to real experiments in order to enhance the signal-to-noise g *_0—0-0223”6-8:“ 10°E" +5.760x 10(E')*.
ratio in the accumulation of velocity profiles. As reported in Y=
this section, care was taken to verify that data reported in (18)

Figs. 5 and 6 are in the regime dominated by linear response.

At larger field strength, we observed pronounced nonlinearThis relation permits an extrapolationof/E" to the limit of

ity in the flow response. The fields at which nonlinearity setsvanishing fieldE". The ratio(v"/E’) - reported forE™ =2

in are quite large, as are the induced velocities. The induceith Fig. 5 is 0.024. The value departs by roughly 7% from its

flow was 10% or less of a typical thermal velocity for the extrapolation to zero field strength, 0.0223, according to the

conditions discussed in the previous section. A series of trial§t in Eq. (18).

at varying driving fieldE" presented here allows us to esti-  The theory introduced in the previous section shows that

mate how close the data of the previous section are to ththe flow rate increases when ions are shifted away from the

linear response limit. wall region. In fact, the supralinear high-field artifacts arise
In Fig. 7 the density of ions and solvent is shown for from the shift in ion density depicted in Fig. 7. After correc-

several values of field strengffi. As the driving force on tion for the shifted density, the hydrodynamic equations still

the ions is increased, they leave the slow-moving region neapply in this regime. In Fig. 7 the modified Poisson-

the walls in favor of the central part of the channel where theBoltzmann ion density foAyTon:Z qualitatively matches the

flow rate is larger. The"/E" data presented in Fig. 8 indi- simulation results for E'=10. The modified Poisson-

cates that the flow response increases supralinearly whedoltzmann theory tracks the enhanced density near the cen-

large fields are applied. The maximum of the velocity profileter of the channel, and follows the average of the density

at the center of the channel can be fitted to the form oscillations near the walls. The close agreement of the veloc-
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ity profile arising fromAy,,=2 with simulation results for o ' ' ' ]
E"=10 in Fig. 8 confirms that correction of the ion density is | stick BC at 17.45A H

the major nonlinear effect. " i
s N e

stick BC at 15.0A

V. DISCUSSION

Electro-osmotic flow of an aqueous electrolyte has beel
examined in two recent simulation studig,2]. In these
studies, the ion distribution obtained from simulations dis-#
agreed with Poisson-Boltzmann theory. An attempt was
made to extract the shear stress and strain rate as a functi
of position in the channel, and to test the validity of a linear
constitutive relation. In both studies, the the linear constitu- © 0 o : m
tive relation was judged to fail because the viscosity was ¢ position (A)
function of position within the channel, and found to rise
steeply near the walls. Qiao and Aluf@] concluded that FIG. 9. The soli_d curves are the velocity distributions for the
continuum theory with a spatially uniform, linear constitu- case 1 system studied by Qiao and Alli2lk The three steady state

tive relation between shear stress and strain, even when Cdf@locity profiles were calculated using the Navier-Stokes equation
rected for the failure of Poisson-Boltzmann theory to de_with stick boundary condition8C) enforced at three different sur-

scribe the ion distribution, still gave a velocity profile more faces. The distance of the boundary surface from the channel center
than twice that of simulat}ons. They traced this error to theiS indicated in the figure. The charge density used in the hydrody-

. . L namic calculations was the chloride ion distribution from the simu-
departure of the viscosity from the bulk liquid value near thfalations of Qiao and Aluru kindly supplied to us by the authors, and

channel walls. In this section we will discuss these results INhown as the dashed line in the figure. There was only one type of

the light of 'the findings presgnted in tlhlS paper. ion in these simulations. The parameters employed for the fluid in
Several issues must be discussed in relation to tests mage, ontinuum calculations werg=300 K =81, and =7.43

by Freund[1] and Qiao and AIu_rL[Z] of the linear relation . 1574 pas. We use the viscosity determined for their system by
between shear stress and strain. We have verified that sugflag and Aluru[2], which is higher than the viscosity 6.6
tests, which involve integrating the charge density and dif-x 104 pa's reported for pure SPC/E wale7] because of the

ferentiati.on Of_ the veloc.ity profile, are very sensitive to thesomewhat high concentration of ions used in those simulations.
manner in which numerical data from simulations is treated.

Freund first smoothed the velocity profile, and then fitted thehe oscillations reported in the simulations of the SPC/E wa-
profile to a combined exponential ansatz and Fourier serieser model, prevented us from completing a detailed analysis
He found that the ratio of shear stress to strain rate was ratheff the effective viscosity near the walls. Continuum theory
close to the experimental dynamical viscosity of waterusing the bulk Lennard-Jones liquid viscosity provided an
through most of the channel. An increase in the effectiveaccurate description of Poiseuille flow in our systdi®ee
viscosity was observed within 10 A of the channel walls.Fig. 2 and the discussion in Sec.)IPresumably, the true
Regardless of the numerical treatment of the simulation datsiscosity also rises under Poiseuille flow near the channel
to obtain a viscosity profile, there is a clear rise in viscositywalls, yet the variation of viscosity near the channel walls
near the walls. However, the extent to which hydrodynamiadoes not affect the accuracy of continuum theory in this case.
predictions are affected by increased viscosity in this narrow Qiao and Aluru calculated that continuum theory with the
region where velocity is near zero is not clear. actual ion distribution from their simulatio§6], eliminat-

Our analysis in Sec. Ill using the modified Poisson-ing the error introduced with the Poisson-Boltzmann ion
Boltzmann theory can be regarded as a similar attempt to fidensity. They predicted a velocity profile more than twice
shear stress and strain rate from simulations, and test thghat they found in simulations. However, much of this dis-
validity of a linear constitutive relation. Although we never crepancy arises because Qiao and Aluru enforced stick
attempted to apply the modified Poisson-Boltzmann theorypoundary conditions at a location far from a point that rep-
as a least squares fit, the success with which we can simutesents furthest penetration of solvent toward the walls. In
taneously describe the charge densities and velocity profilesur model system, applying boundary conditions ﬁt
with the modified Poisson-Boltzmann theory indicates that:y;m—% was found to produce optimal results. In our lan-
linear hydrodynamics with constant viscosity performs ad-guage, Qiao and Aluru enforced boundary conditiong,af,
equately for our model system, provided that an accurateot y*l. In other words, their continuum fluid extended into
charge density is input into the hydrodynamic theory. In ourthe walls to the point where solvent particles were moving
analysis, the stress-strain ratio was fixed at the reported visverthe first layer of wall particles. We will now explore the
cosity for a bulk Lennard-Jones fluid. Indeed, there may be&onsequences of Qiao and Aluru’s choice of boundary sur-
local variations in this ratio, especially near the walls, asface. The analytic theory introduced in this paper explains
found by Freund[1], even though neglect of these local why their placement of the boundary too far into the wall
variations in our analytic theory evidently does not spoil theleads to an overestimate of the velocity profile.
overall predicted velocity profile. Pronounced charge density In Fig. 9, we present our calculations of the velocity pro-
oscillations near the walls in our system, much stronger thafile using the Navier-Stokes equatiffaqg. (7)] and the charge

olvent velocity (m/s)

201 stick BC at 14.5A

CI concentration (M)

10~
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density for the conditions of Qiao and Aluru’s case 1 simu-the walls more than Poisson-Boltzmann predicts. There can
lation [2,66]. The charge density from Qiao and Aluru’s be many reasons why the ion distribution in our model sys-
simulations, also shown in Fig. 9, was kindly supplied to ustem deviates from Poisson-Boltzmann theory in a different
by the authors. Three different surfaces for enforcement offirection compared to the simulations of SPC/E water, over-
stick boundary condition_s are explored. Placement of the SUI’CQming image Charge repu|5ion to enhance the ion concen-
face at +17.45 A, as Qiao and Aluru have done, yields &ration near the walls. In both of the water studies, the
continuum velocity profile in agreement with the one dis-| ennard-Jones well depth for the ion-wall particle interaction

played in their Fig. 6, a profile that is more than twice that,y 45 the most attractive pair interaction in the system. The
found in their molecular dynamics simulations. However, for nique structure of the aqueous solvent could play a role in
solvent to penetrate as far as +17.45 A, fluid particles woul nhancing the ion concentration near the walls. Also, it is

gié/leu (;z doc\f;l5¥nteh?n?:rrggtigﬁzltlgigt:tseV\{[ﬁgtpaerr;[:‘glrecse.nl]r:esr:f% nown that polarizable ions in water are attracted to an in-
erface with a material of low dielectric constai@8—70,

stick boundary conditions at a smaller distance from the cen- . . o )
ter of the channel is more reasonable. The two other choice%lthoggh this wguld_not explain a similar discrepancy for Ies_s
for the boundary surface illustrated in Fig. 9 are physiCa”ypolanzable sodium ions. Whatever the reason, further studies

reasonable: +15.0 A, where the solvent distributirot &€ warranted for model systems, where trends are best elu-

shown in Fig. 9 begins to rise from zero, and +14.5 A, close cidated, and also more realistic simulations.
to the peak of the solvent distribution. Setting the fluid ve-
locity to zero at +14.5 A gives a velocity profile that peaks at
almost the same value as Qiao and Aluru’s simulation data.
Enforcing boundary conditions at +15.0 A yields a distribu-  From our study of a model electrolyte, the qualitative fea-
tion that peaks at a value roughly 16% larger. Qiao and Aluriure that emerges is that atomic level breakdown of con-
did, in fact, notice that moving the boundary surface inwardtinuum theory affects the ion distribution, but once this is
improved the agreement between continuum theory andorrected linear hydrodynamics provides a good description
simulations, but did not appreciate the justification for thisof electro-osmotic flow. In our model, the principal failure of
procedure and regarded the upper velocity profile in Fig. 9 asontinuum theory is neglect of the exclusion of ions from the
the prediction of continuum theory. In Sec. Il we justified our wall region. Consequently, Poisson-Boltzmann theory under-
choice ofy; by analyzing the Poiseuille velocity profile, and estimates the charge density in the middle of the channel.
in Sec. Il showed that continuum theory based on thisHydrodynamics based on the unmodified Poisson-Boltzmann
choice could be modified to treat electro-osmotic flow. Whilecharge density contains an error in the driving force and, as
a corresponding analysis for Qiao and Aluru’s system is bewould be expected, leads to inaccurate predictions of the
yond the scope of this paper, it is clear that the choice oflow properties. We developed a theory based on exclusion
boundary surface for stick boundary conditions is the princi-of ions from the wall region which shows that accounting for
pal source of the discrepancy between simulation and corthe modified ion density predicts an increased velocity pro-
tinuum theory in their work, not failure of a spatially uni- file, in agreement with our simulations. This analytic theory
form, linear constitutive relation between shear stress andlso predicts an important qualitative trend: Shifting the ion
strain, as they suggest. Of course, as the channel width distribution toward the center of the channel increases the
pushed to smaller values there will be other situations wherélow rate, while drawing the ions to the walls decreases the
hydrodynamic theory will completely break down. flow. This principle should be useful in the design of
The analytic theory presented in Sec. Il explains whynanochannel devices, where chemical functionalization of
placing the boundary surface too far into the wall regionthe walls can be used to modify the ion distribution.
leads to an overestimate of the flow velocity. Our analytic The physical origin of ion exclusion from the walls in our
theory predicts that shifting the charge density away from thenodel is the loss of part of the solvation shell when an ion
boundary surface and toward the middle of the channel wilenters the fluid layer adjacent to the wall. In the wall layer,
increase the flow rate. This is the effect of enforcing stickan ion loses some of the strong attractive ion-solvent inter-
boundary conditions too far from the channel center. Itactions required to bring ions into solution, thereby creating
makes the channel width in continuum theory too wide, andan energy penalty for entering the wall layer. This effect was
places the charge away from the walls and toward the centerbserved to varying degrees in both sets of simulation con-
of the channel. ditions we explored, and changing the ion-wall interaction
Until this point, we have examined how accurately con-would further modulate this effect. In more realistic simula-
tinuum theory predicts the velocity distribution using the ac-tions with explicit surface charge groups, the nature of ion-
tual charge density from simulations as input. Now we ex-surface interactions will be more complex. We expect to see
plore the consequences of using the ion distribution froma range of behavior encompassing both tightly bo(Sigrn
Poisson-Boltzmann theory. When Poisson-Boltzmann theorlayen and diffuse double-layetGouy layej ions. Surface
with a physically reasonable channel width is used to calcuroughness is also an important factor which needs to be in-
late the charge density for Qiao and Aluru’s system, thecorporated in a realistic treatment of electro-osmotic flow. In
charge density in the center of the channel is overestimatedhis work we identified a qualitative relationship between
As predicted by the analytic theory of Sec. lll, the velocity shifting of the charge density closer to or away from the
profile based on the Poisson-Boltzmann charge density is towalls and the overall electro-osmotic flow rate, and were able
large. It appears that Freund also finds that ions are drawn o use this relationship to understand simulation results by

VI. CONCLUSIONS
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others with conditions quite different from our own. We ex- ze
pect that these qualitative ideas will apply in more realistic Plr) = k_Td)(r)’ (Ad)
models as well. B
and specializing to an electrolyte confined between planar
ACKNOWLEDGMENTS walls [26], the Poisson-Boltzmann equation becomes
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2/k? — 1 - sri(t/k, k)

(A6)

APPENDIX: SOLUTION OF THE POISSON-BOLTZMANN

t) = cosh! , A7
EQUATIONS vV Ccré(t/k, k) (A7)
In Poisson-Boltzmann theory the average electrostatic powheret=r«y,
tential ¢(r) controls the number density of electrolytgr1], 5
2 —
(1) = emeoeT, (A1) 7 Tecosityo) A%
The constantpi0 is the density whereg(r)=0. Poisson’s and i, is the value of the potential in the middle of the
equation for the electrostatic potential is channel. The two constantg and ¢, are chosen to make the
overall ionic number and charge densities equal to those of
V2¢(r) = - Airq(r), (A2) the simulations:
Er 1 (Yo
where | p()=pon (overalliondensity,  (A9)
2y0 )
zed(r
qr)=> Zipo,ie_z‘e¢(r)/kBT:2P05inh< ek(ﬁ.(l.)> (A3) 1 (Yo
i B J q(y) =g, (overall charge densily (A10)
0

The last equality is appropriate for a symmetrical electrolyte. o

The constantpg; (po for a symmetrical electrolyjeare fixed The integrals in the two preceding equations can be ex-
by boundary conditions, as explained below. After introduc-pressed in terms of special functions, and the two equations

ing a dimensionless electrostatic potentjt ), solved for the two unknowng, and .
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