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Evolution of enduring contacts and stress relaxation in a dense granular medium
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Particle contacts in a granular material are formed at different times and have different contact ages, the
differences between current time and the times when the contacts were formed. The probability distribution of
the contact ages is one of the important statistical properties of particle interactions. The rate of the probability
relaxation is proved to be closely related to the stress evolution in the dense granular system. While all particle
contacts contribute to the stress, the major contribution is from the contacts with long contact ages compared
to the binary collision time of the particles in a dense and slow granular flow, in which particle inertia can be
neglected. There is a spectrum of relaxation times in the probability distribution of contact ages. These
relaxation times result in different time scales of stress relaxation. As an example, the relations among stress,
strain, and the strain rate are studied for a dense granular material undergoing an oscillatory simple shear. The
interaction of the time scales determines the fluidlike or solidlike behavior of the material.
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I. INTRODUCTION plicitly carry information about the evolution of the

Kinetic theories have been used successfully for the studgpnt_at‘)c“ng pair. In dthe dpresenlt (\j/vo[)k, r? ﬁontact_ pl)robé;\bility
of granular flows in which particle interactions are primarily distribution Is introduced to include both the spatial and tem-
instantaneous binary collisiofig—4]. The assumption of in- porgl correlauons_ of particle contacts. Particle contact age,
stantaneous binary collisions hampers the application of thgef'ned as the difference between t_he current time and _the
theory to many practical problenf§]. Attempts have been UMe when the contact was formed, is explicitly included in
made to amend this deficiency in the kinetic thefy. In the contact probability distribution. Without multiparticle in-
that work the binary contact time is added to the mean frederactions, the age of a contact cannot exceed the binary

: - : . collision time. For a dense granular flow the durations of
flight time to reduce the particle collision frequency. Only ontacts can be much Ionge?than the binary collision time.

ﬁg::;y ;:SAI;]SI;QS ?arr?ulcsrnﬁfvsrgg\}vlnn ;:]ai?%li%gdgj:ﬁgraar?malcrhe significant disparity between the binary collision time
! 9 ’ P nd the particle contact age carries information about multi-

lt'de mttra]ractlk?ni.are cor|r|1.mlon gnd t():ontact tlr?es Iare mulcﬁarticle interactions. In the present paper we show the im-
onger than the binary collision time because of multiparticle, tant relationship between the relaxation of the contact

interactions. Particle interactions dissipate a large amount (gtress and the probability distribution of contact ages.

energy and prevent many practical granular systems from Although finding closures is one of the main objectives of
becoming rapid granular flows. Recent work of CampB&ll  granular flow research, the primary intention of the present
and Lougd 7] indicates that a dense granular flow model hasyork is focused on interactions of time scales in dense
to account for enduring multiparticle contacts. The presengranular flows and the development of proper statistical tools
paper studies the statistical behavior of enduring multiparto describe these interactions. To find closures for dense
ticle or cluster interactions and their effects on the evolutiongranular flow, not only the interactions of time scales, but
of the granular stress in dengapproaching to the close- also the interactions of length scales and the interactions
packed volume fractiongranular systems consisting of de- among the time and length scales are important. There are
formable particles. many other works devoted to the study of length scales in
Interactions among particles result in a contact stress in granular flows, including particle clusters, force chains and
granular material. This stress is the major stress in a densaystallizationd 11]. Little attention has been paid to interac-
granular material and the stress resulting from fluctuations itions of time scales of dense granular flows.
particle velocities is negligible because the confinement pro- In Sec. Il, we study the probabilities that are important to
vided by neighboring particles significantly reduces velocitythe time scales of particle interactions. The relaxation time of
fluctuations. The contact stress can be calculated from thearticle contacts is introduced. Although these equations are
average interaction force between a pair of contacting pamnclosed, they relate various quantities important to particle
ticles and the pair distribution functid®,9]. The use of pair interactions. These relations represent many interesting phys-
distribution function does not imply binary interactions. Theics of various particle interactions, ranging from binary col-
evolution of the pair distribution depends not only on thelisions to cluster interactions.
interaction between the pair of particles but also depends on The quantities introduced in Sec. Il are studied numeri-
their interactions with other particles surrounding the pair.cally in Sec. Ill. In the case of steady simple shear flow, the
Microstructures, including particle clusters and force chainsevolution equation for the probability distribution of contact
affect the evolution of the pair distribution function. How- ages introduced in Sec. Il can be solved for long-term con-
ever, the pair distribution function itself only explicitly car- tacts. The solution is in good agreement with numerical re-
ries information about spatial correlations and does not exsults. The equations obtained in Sec. Il are used in Sec. IV to
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derive an evolution equation for the contact stress. The re=Vg-(vgPs)dVedt, and P/ 7dVdt the probable number of
laxation times of the age probability distribution are showncontacts that break during the time duratidin
to be the stress relaxation times. Many observed properties
of the stress can be explained by the behavior of the prob- ‘9_Psd\/6dt: — V5 - (VgPdVedt - Px.6.4.a0
ability distribution of ages, which is a result of multiparticle ot (X, 0,¢,a,t)
interactions at different time scales. 2)
Although the statistical description of particle interactions ] . o
introduced in the present paper is applicable to polydisperséhere is no term representing contact generation in this equa-
systems, to emphasize the physics in the description and #n because no contact can be generated withaag®. In
avoid unnecessary mathematical complications, we restricther words, the contribution of contact generation is repre-
ourselves to a granular system consisting of identical desented by the probabilitPy(x, 6, ¢,a,t) with agea=0. The
formable spherical particles. divergence of the contact flux in the six-dimensional space
can be calculated as

dV,dt.

Il. CONTACT PROBABILITY AND ITS RELAXATION Ve (VgPo) = Ps v (WP + 1 {&(v_(, sin 6Py)
TIME 6 e ga % Tsing 96
To study enduring contacts in a dense granular flow, we . a(v_éPS) 3
need to know the ages of contacts in the granular system. aip | 3

The age in a contact is defined as the difference between the _

current time and the time when the contact was formed. Conwherew is the averaged velocity of the particle locatecat
tact formations are random events in a granular systend; iS the averaged distance between the contacting particles,
therefore, the contact age is a random variable. We now in@ndv, andv 4 are the polar and azimuthal components of the
troduce a contact probability densiBy(x, 6, $,a,t) to de- averaged _relative ve_locity between the contacfcir?g particles in
scribe its distribution. This probability density is a function the Spherical coordinate system with the originxatThe

of the positionx in space, the orientation represented by the0verbars in this equation denote the average under the con-
polar angled and the azimuthal angle in the spherical dition that at timet there is a particle centered>atontacting
coordinate system centeredsatthe contact age, and the ~another particle in the directiofd, ¢) with contact age. In
time t. This probability is defined in such a way that, at time Ed. (2), 1/7 is the contact breakage rate per contact. For

t, P(X, 6, ¢,a,t)dxdydzsin ddéd¢da s the probable number  conyenience, we use the relative angular velocidend ¢

of contacts in the volumeixdydzabout the spatial point, instead of the relative velocity componentgandvy in the
with orientations of the contacts in the solid angle . =
=singdéd¢ about the direction represented by the polar'®St of the paper. These velocities are related pyr 6 and

angle ¢ and the azimuthal angleé and with contact ages V=1 sin 6cp.

betweena anda+da. This probability density is normalized  Using the relative angular velocities, one can rewrite the
to the number of contacts in the system instead of one. Theyolution equation 2 foPg as

integration of this probability density over all possible angles

and ages yields the contact densiyx,t), the number of IPs  IPs . 1 a(gsm 6P, a(gps)
contacts per unit volume: RS (WP + sno a0 T o0
Nne(X,t) :f 36 P4(X, 6, ¢,a,t)dwda. (1) __ M @)
0 7(X, 6, $,a,t)
The definition of the probability densitls introduces a Before this equation can be used to solve for the contact

six-dimensional parameter space. There are three dimensiopgobability densityP,, closures for these conditionally aver-
associated with the center of one of the particles in the paitaged velocities and a closure for the relaxation tinmeed to

two dimensions associated with the orientation of the conpe found. Finding general closure relations for these quanti-
tact, and one dimension associated with the contact age. Wies is not the purpose of the current paper. Instead, in the
note that along the dimension of age we always haveurrent work we study properties of the contact probability
da/dt=1. Following the usual procedures for the derivationdensity P, for the case of simple shear flow by directly cal-
of the continuity equation in fluid dynamics or the similar culating the probability from the results of numerical simu-
procedureg10] for the derivation of the Liouville equation |ations. Despite the obvious importance of the relative angu-
in a parameter space, we can derive the evolution equation o o . .
for the probability densityPg as follows. For a small control !ar veIQC|t|es 6 and ¢ to the understanding of partlcle.
volumedVg=dxdydzsin Adédeda in the six-dimensional pa- interactions, the present work focuses on the understanding

rameter space during a short time duratitn the increase of the effects of the relaxation timein the case of simple
(3P4 t)dVydt in the probable number of contacts in the shear flows and leaves the study of the influence of averaged
S —

small control volume equals the difference between the probrelative angular velocitied and ¢ to future work. Priority is
able number of contacts moving into the control volumegiven to the study of the relaxation time because this relax-
through the enclosing surfaces, which can be calculated astion time corresponds to the stress relaxation time as shown
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in Sec. 1V, and the effects of pertinent time scales in granular 20 s ) AL LA I ELIULLL LR
flow have rarely been studied. i N\ i
The probability densityPg is a function of seven vari- i \ ]
ables. To facilitate the study of its properties we decompose i \\ ]
it into conditional probabilities as follows: %1_5 = \ -
Pyx, 6,430 =X OP@x OP(6.¢x ta), (5) 8 | \\ ]
wheren, is the contact density as defined in Ef), Py is the g‘ | \\ _
probability distribution of contact ages, regardless of contactg 1.0} \ -
angular orientations but conditional on the event of one of-g - \ .
the contacting particles being located at the positi@h time a |
t, and Py is the probability distribution of contact directions g i
conditional on one of the contacting particles being located@ 05
at positionx at timet and with the contact aga. In these e |
definitions, the probabilitie®, and P4 normalize to 1. | ——— - LinearSpring and Dashpot
In the next section we calculated these conditional prob- - Hertzian Contact -
abilities in numerical simulations of statistically steady T T T
simple shear flows in a statistically homogeneous medium. %9 == 0.001 0.01 o1 1
In this case the contact densityis a constant, and all of the ' ' Contact Age '

probabilities are independent of positigrand timet.

IIl. CONTACT AGE PROBABILITY UNDER SIMPLE
SHEAR FLOW

Simple shear flows have been studied extensively; many,

macroscopic properties, such as stresses, are well known.
this section, we use simple shear flows as examples to stu

results in this section are obtained from three-dimension
numerical simulations of an assembly of monodispers
spheres using a scheme described in earlier papedk

For steady simple shear flows in a statistically uniform

medium,n,, Py, andPy are independent of andt. By inte-
grating 6 and ¢ over an entire sphere, the probability evolu-
tion equation(4) becomes

P P

Pyg___Pg
g @’ ©®
where
1 Pd( 0, ¢|a)d0)
- 7
@ T Aoba @

is the contact breakage rate averaged over all directions.

Randomness of particle interactions results in the loss otfh

memory and therefore the rate of contact breakingrgpis
independent of the age for long contactd9]. Under this

condition, Eq.(6) can be solved to find that the contact age

distribution P, approaches an exponential distribution for
large contact ages. The reasoning used to reach this conc
sion is independent of the force models. To demonstrate th
conclusion we simulate a simple shear flow using the follow
ing force model. The normal fordg, is modeled as a paral-
lel connection of a spring and a dashpot:

AL \P
Fn:_Kn<E> + Ry, (8

FIG. 1. The probability distribution for short contact ages for
two different force models. In this example, the consténin Eq.
(8) is 2.0x 1(° and resistance of the dashpot is 20.04. For the case
of the linear spring and dashpot normal force model the correspond-

! g normal restitution coefficiers, is 0.902 in a binary collision.
n

poY . ) X dr}ﬁation of the contacting particle paR; is the resistance of
the probabilities introduced in the last section. Numerica gp paR

he dashpot, and, is the relative normal velocity. The power

can be set to be 1.0 to obtain the linear spring and dashpot
orce model and set to 3/2 to obtain the Hertzian force
model. Tangential forces are calculated according to the tan-
gential deformation built up during the particle contf@t.
Tangential slip is allowed when the tangential force exceeds
uFn, where u, the friction coefficient, is set to 0.3 in the
calculations.

In the numerical calculation, the mass is nondimensional-
ized by the mass of the particles and the length is nondimen-
sionalized by the particle radius. The mass and particle ra-
dius are set to unity. The time in the calculation is
nondimensionalized by considering the oscillator consisting
of two mass points with mass at both ends of a linear
spring with constanK,,/R, which has a periodry2mR/K,,.

A time unit in the calculation is set to be 100 periods.
The probability distributions for a simple shear flow with
e nondimensional shear rate 0.1 and the particle volume
fraction 0.6 are calculated usimg=1 andp=3/2. Forsmall
contact ages, the difference is evident as shown in Fig. 1.
The plateau of the age distribution is associated with the
binary collision time. When the normal force is modeled as a
arallel connection of a linear spring and a dashpot, the bi-
ary collision time is independent of relative velocity of the
‘interacting pair and is calculated to be %0073, about the
age that the plateau ends for the case plotted in the figure.
The binary collision time for the Hertzian force model de-
pends on the relative velocity of the colliding pair. If we
estimate the averaged relative velocity as the product of the
shear rate and the averaged distance between the particles,

whereK, is a constant related to the stiffness of the particlesthe binary collision time is about 2281072, which is in

R is the particle radiusA,=2R-r is the compressive defor-

agreement with the age that the plateau ends for the case
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W77 T T T T in the granular material. For a slow granular flow in which

particle inertia is not important, the time scale of breaking
— — — - Linear Spring and Dashpot contacts of the second type is determined by &ihce this is
Hertzian Contact the only time scale availab[®]. Therefore the breakage rate
of the second type of contact is controlled by the motion of
the clusters, and the relaxation time is of the order of the
macroscopic strain rate as shown in Fig. 2.

The direction in which one can find the most contacts
with a specified age is described by the probability distribu-
tion Py. Since finding a contact with specific age is a zero
possibility event, instead of evaluatiri®y directly from the
results of numerical simulation, we study its age average
[P4], defined as

e
=

Global Probability Density
(=)
<

0.001

Cc
jPS(X!0|¢1alt)da
0.0001"";"'Illlnulsu... b

10 =
Contact Age [Pa] ¢
n(x,t) | Pylax,t)da
b

o
-
n
o

FIG. 2. The probability distribution for long contact ages. For
long contact ages, the probability distributions for two different c
normal force models with the same friction coefficient are almost f Pq4(0, ¢|x,a,t)Pg(a|x,t)da
the same except for contact ages greater than 15. At these ages, the _Jb
number of samples becomes small and large statistical errors - c ! ©)

J Py(alx,t)da

appear.
b
plotted in the figure. These numerical examples show that th
rate of probability relaxation depends on the contact age an

the model of the particle interaction forces for contact age he probabilities in Eq(9) are independent of time. The av-

that are not significantly larger than the binary collision t'me'eraged probability P,] can be calculated by counting the

The results for long contact ages are plotted in Fig. 2. As ber of tacts belonaing to th b th
predicted, for long ages, in both cases the probability distril'uMmoer of contacts belonging to the age _grcp C) on the
article surface. A spherical coordinate is imposed on the

butions of ages obey the exponential distribution indicatingp , ) . L
that the probability relaxation rate %/ is independent of particle surface with¢=0 in the upward(z) direction and
age. It is reportedi9] that the probability relaxation rate is a ¢=0 in the x direction, the direction of flow. The simple
function of the friction coefficient between particles. The two Shear flow is simulated in a cubic box with periodic bound-
cases plotted in Fig. 2 are calculated with the same frictior2y conditions. The origin of a Cartesian coordinate is set at
coefficient. The little difference between the two cases sugtn€ center of the cubic box. The mean velocity of the par-
gests that the probability distribution is insensitive to normalticles is in thex direction and is set tgz. The particle sur-

force models for long-term contacts. The small differencgf@Ce is divided into 18 36 regions with 18 equal rows along
seen for ages larger than 15 is due to the diminishing statidh® latitude and 36 equal columns along the longitude. After
tical samples at these contact ages. a steady state is reached, contacts are sorted according to

In a dense granular system, particles often form clusteriegion and age groups. For an age grébpr), the value of
and there are two different types of contacts. In the first typel,Pa] at the center of a surface region is calculated as the
particles do not belong to any cluster and bounce back an@umber of contacts with ages betweeandc in the surface
forth among particles. The time scale for this type of contacf€gion divided by total number of contacts within the age
to break is the binary collision time as shown in Fig. 1. In thegroup on the entire spherical surface, divided by the solid
second type of contact, particles belong to clusters that ar@ngle of the region. _
tightly squeezed. The force and thus the stress resulting from f the integrals in Eq(9) are over the age intervaD, ),
this type of contact are large compared to that in first type othe average@P] is the probability distribution over the par-
contact. To break such contacts, the neighboring particleicle surface regardless of age. The result of this probability
need to move in a correlated fashion to make space for thdistribution is shown in Fig. 3 for the case of a linear spring
particles. Therefore a contact of the second type is less likel{p=1) and dashpot force model with the nondimensional
to break and the contact ages of this type of contact are mucshear rate 0.1 and particle volume fraction 0.6. The maxi-
larger than the binary collision time. However, breaking suchmum of the probability densit}P,] on the particle surface is
a contact causes significant relaxation of the stress since thmt in the direction of principal compression, which is the
particle interaction forces in the second type of contact arelirection 6=3w/4, $=0 or 6=m/4, ¢= in spherical coor-
much larger than the forces in the first type of contact. Thelinates. The maximum appears near the two stagnation
time scale to make spaces available for contacts of the sepoints on the equator, which are in the directions éf
ond type to break is determined by the motion of the clusters 7/2, ¢=0 and6=m/2, ¢=1r. This is because, in a simple

ﬁ)r contacts with ages betweénandc. The second equality
S obtained by using Ed5). In the steady simple shear flow,
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FIG. 3. Probability density of particle contacts on the particle  FIG. 5. Probability density of particle contacts on the particle

surface regardless of age. Particle contacts are more likely to be isurface for contact ages between 2 and 3 time units.
the dark regions than the light regions.

shear flow, there is a tendency for particles to form layersP@ns. That is the probability distribution of contact age at
along the direction of shear so that particles can pass eadilich the contact breaks. L&f; be the probable number of
other with the least resistance. A similar probability distribu-Contacts in the system. For a steady system bitand Pg

tion of particle contact directions is observed in numerica/@re independent of time. The probable number of contacts
simulations performed in a two-dimensional domgda]. with ages betweem and a+éa is N.Py(a)da. As time ad-

For age groups 0 to 0.01, 2 to 3, and 4dpresults of the vances fromt to t+At, (At>0), the probable number of
averaged probabilityP4] are plotted in Figs. 4—6. The prob- contacts with age betweea+At and a+da+At is N.Py(a
ability distribution [P4] plotted in Fig. 4 for short contact +At)da. The probable number differenddPy(a)-Py(a
ages is quite different from the probability distributions plot- +At)]da between the age groups is the number of contacts
ted in Fig. 4 and 5, indicating that the probability distribution that break during that time perigtl, t+At]. The total number
P4(0, ¢|x,a,t) is a strong function of age for ages compa- of contacts that exist at time and break during the same
rable to the binary collision time. The local maxima appeartime period At, regardless of age, iN./o[Pgy(a)—Py(a
ing near(0, $)=(0.17,0) and (0.97,7) in Fig. 4 and near +At)]da:ch§tPg(a)da According to the definition of the
(0,¢)=(0.17,7) and(0.97,0) in Figs. 5 and 6 are the com- probability distribution of contact life spans, we have
bined results of the layered structure in the sheared granular NLPy(@) - Py(a+ Ap)]oa

material and the shear motion. Particles of neighboring lay- P.(a)da= = (10)
ers are located in directions abo@t0.17r and 0.97. The

local maxima in Fig. 4 are in the downwind directions, NCJO Pg(a)da

where the shear motion carries contacting particles away and

contacts are loose. The contacts in these directions are likeks At approaches zerd becomes

to be short-term contacts and result in the local maxima in

Fig. 4 for short-term contacts. The local maxima in Figs. 5 P.(a)=- _1 dRy(@ (11)

and 6 are in the upwind directions in the shear flow, where P40) da

parti<_:le contacts are squeezed. In these directions, Cor.‘tacé‘?nce the probability distributio®, is always non-negative,
are likely to be long-terms ones and form the local maximg, . probability distributiorPy is a nonincreasing function of

in Figs. .5 and 6 for long-terms contacts. The. _simiI_ariFy b.e'age. Because the age distribution is exponential for contact
tween Figs. 5 and 6 suggests that the probability d|str|but|o% es long compared to the binary collision time in a steady

P4(0, %|x,a,t) becomes less dependent on the age as the ag ple shear flow9], according to Eq(11) the probability

increases. _ . of a contact life span is also an exponential distribution for
For a steady system one can obtain from the probab|llt3{0ng contacts in a steady simple shear flow.

distribution Py of ages the probability distributioR, of life

i Probability Density 1 Probability Density
‘ 0.13 ' 013
0.12 0.12
08 0.11 o 0.11
' 0.10 0.10
w 06 0.09 w 06 0.09
> 0.08 3 0.08
04 0.07 04 0.07
0.06 0.06
« 0.05 0.05
0.2 004 02 0.04
003 0.03
0.02 ! ! ! 0.02
%% 05 10 15 20 %0 05 10 15 2.0
P/n P/n
FIG. 4. Probability density of particle contacts on the particle  FIG. 6. Probability density of particle contacts on the particle
surface for contact ages less than 0.01 time unit. surface for contact ages larger than 4 time units.
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O T T T T T ] tacting particles. The overbar again denotes that the average
i ] is conditional on the specified positiof; the contact direc-
o . tion (6, ¢), and the age at timet.
Multiplying (4) by f,r leads to the equation
50| Formation Rate ] o
- - - - - BreskageRate 1 IfarPy | dfarPy vV . (WirPy+ _1 A(6'sin 6f o1 Py)
a0k . ot Ja sin @ 00
L T ] —
m - —_— — JR—
x [ ] A PfrPy)  d(f,r farP
30k _ + (¢a S): (a)PS_ a S , (13)
: ] dd dt 7(X, 6, p,a,t)
20| - where
i ] dfyy  ofr  ofr ofyr o . —
10F . S =g g2+ wW- V(). (14)
[ ] dt ot Ja a0 dop
o [ L L | I II L L | I T ' L L L Ll Ll H H
> 0 m 100 Equation(12) states that the total stress is the sum of the

Time stress componentéQPsdwda contributed by contacts at
. , different directions with difference ages. Multiplying Eq.
F_IG. 7. Rates of particle contact formation and breakage peE13) by %dwda, we find an evolution equation for these stress
particle. components. Each of these stress components has its relax-

In a statistically steady simple shear flow, the contact genation timer(x, 6, ¢,a,t) as in the last term of Eq13). This
eration rate and breakage rate reach a dynamical equilibriunis similar to the Prony series for a viscoelastic materia.
In Fig. 7 we show the time history of reaching the dynamicallnstead of having discrete stress components, here we have a
equilibrium. At the beginning of the numerical simulation, continuous spectrum of stress components with a continuous
particles are not in contact. Simple shear flow is imposed ospectrum of relaxation times.
the system at timé=0. The nondimensional shear rate is 0.1.  Integration over all possible directions and all possible
The contact formation rate per particle is plotted as the soli¢ontact ages leads to the evolution equation for the total
line and the contact breakage rate per particle is plotted agress:
the dashed line in the figure. As shown in the figure, large
numbers of contacts form and break shortly after the begin-  4(¢.¢) _ 1 Q
ning of the shear and the system is very dynamic during this _p_ﬁt +V - (0,Wo) = Ef at
time period. As the system reaches the statistically steady o
state the system becomes less dynamic and both contact for- 1 f fr P

) 7(X,6,$,a,t)

P.dwda

mation and breakage rates reduce. An interesting observation > dwda

from this figure is that the contact formation rate and break-
age rate follow each other closely. After a steady state is 1 o

reached, not only the mean values of the rates are the same, 5V f (w = W)fr Pdwda

but their fluctuations also follow each other closely. This is a

result of the difference between the binary collision time 1 — e

scale and the macroscopic time scale of the dense granular + 2 f [far Pslazgde, (19
flow. In a dense granular system it takes little time for a

particle to form another contact after it breaks from a previyhere{ is the unconditionally averaged velocity. The last
ous contact. For a time scale large compared to the binangrm in Eq.(15) is, in principle, zero, because at the begin-
collision time and the mean free flight time, the observedning(azo) of a contact the interaction fordgis zero and at

contact generation rate is almost the same as the contagt _ 4 o probabilityP, vanishes. However, in many numeri-
breakage rate. cal simulations, a dashpot is used in the model for particle

IV. STRESS RELAXATION AND THE PROBABILITY interaction forces. In those simulations this term is not
OF PARTICLE CONTACT AGES strictly zero, but can be neglected in most of the simulations.

As mentioned in the Introduction, in a dense granular rowThe velocityw is the averaged velocity conditional on_the
! 9 air of the contacting particles. The velocity differenwe

the major granular stress is the contact stress. FoIIowinB o . .
[8,9,17 the contact stress can be calculated as W is of the same order as the relative veloaitybetween

the contacting pair. The displaceméwt—w) r resulting from

the velocity fluctuation is of the order of the particle size—

that is, much smaller than the macroscopic length stale

(12) associated with the divergence in the third term on the right-
o hand side. Therefore, the third term in the right-hand side of

wheref,r is the averaged tensor product of the interactionEg. (15 can be neglected.

force f, and the distance vectar between the pair of con- Using the continuity equatiof8]

apa(x,t):%JQ(x,e,q&,a,t)PS(x,H,qS,a,t)dwda,
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&0 - 100 B T 1 1 1 I T T T T I 1 T 1 1 I T T T 1 ]

EM V - (6,W) =0, (16) i ]

_ 50| .

we can rewrite Eq(15) as )‘\/\'\/\/\’\/\/j\/\l\’\/ .

_ I i o ]

do 1 [ dfyr 1 far P ol — e — e

Op—— == Pdwda-—- | —————dwda, - *

P it zf dt 2 ) Ax 0,400 o | T e

(17) § sof % -

7] ! P ]

where ] { £ \ § 1

o0fkd vatyed 1R ahy .

d e He SRR CRHY 1 R —— ]

YWV (18) ZJ\; Y !\-_-}'i\."-_!"}:‘:.._..:.._...T..T..._..:.._...T..T.:

dt R RAIEE AT -

wsof & o W1 WYy .

is the material derivative of the stress. Equati®id) shows FoE s ]

that o, rather thang, o, is associated with the material point T T T T
of the granular material. _ -20200 250 300 350 400

For a pair with finite contact time, the value Bf can Time

change because of the rigid-body rotation of the pair even if

the deformation of the pair is held constant. The effect of FIG. 8. Stress variation before and after a simple shear is halted.

rigid-body rotation is a result of kinematics of the motion. In Before the nondimensional time 300, the granular material is under-

the development of the closure models for the Ifigh»[_hand;oing a simple shea_r flow with nondimensional shear rate_O.l. The

side of Eq.(17), it is usually more convenient to focus on the stress quct_uates during the she_ar motion. The shear _rate is brought
dynamics of particle interactions. To separate the kinematic® zero at _tlme 300. The stress introduced by the motion before the

effects from the dynamic effects one can introduce the coroSt°PPINg time stays nearly unchanged afterward.

tational invariantJaumanhtime derivative[8,9,13.

The relaxation timer(x, 8, ¢,a,t) in Eq. (17) for the
stress is the same relaxation time for the probability of the
contact age. Therefore the evolution of the contact age prob-
ability is closely related to the stress evolution in a dense
whereQ is the spin tensor: granular material.

For long contact ages, the relaxation time is independent
1 T of the agea and orientatiorn(8, ¢) [9]. Furthermore, for long
Q= E[VW_(VW) Ik (200 contact ages the relaxation time for the age probability is
inversely proportional to the shear ragg 9],

The evolution equatio(l7) for the stress can be written as

Jr  dfr
Jt - dt

—Q fr+fr-Q, (19)

o o Ty=Co ap) ) (23
p‘]_"':lf Jfar Psdwda—} deda, in a dense and slow simple shear flow, in which particle
Ju o 2J) g 2) (x6,¢,a1) inertia is not important. According to this relation, the relax-

(21)  ation time for long-term contacts increases as the shear rate
decreases. The rate that long-term contacts break also de-
where creases. Therefore, as the shear rate decreases, the portion of
long-term contacts increases and the fraction of contacts with
Jo_do  _ contact age comparable to the binary collision time de-
Jtoa W Vo-Q-oto-Q. (22 Creases. Sventual?y the contact stress ?/s dominated by long-
o term contacts. This analysis is supported by the results of a
In this form the Jaumann derivativd,r /Jtis independent of numerical experiment, shown in Figs. 8 and 9. In the numeri-
rigid-body rotation. Depending on the nature of interactioncal simulation, the particle volume fraction is 0.6. The sys-
forces between particles appropriated closures can be derivéem is sheared with nondimensional shear rate 0.1 for 300
to close the equatiof8,9]. time units and then the shear rate is suddenly reduced to
The appearance of the Jaumann derivative is a result afero. According to Eq(23) the stress relaxation time be-
changes in the directions of the particle interaction fdice comes infinity and the breakage rate for long age contacts is
and the relative distanaeduring the particle conta¢8]. If zero after the cessation of the shear. Therefore the stress
particle interactions are instantaneous, as assumed in kinetiesulting from long-age contacts does not relax. The shear
theories, the particles spend no time together and the rotatress and three normal stresses are plotted as functions of
tions in the directions of the force and the distance vector aréme in Fig. 8. Little stress reduction is observed in Fig. 8.
unimportant. Therefore rotation terms do not appear in a kiFigure 9 provides a close-up look at the stress variations
netic theory for granular flows. around the time when the shear motion is abruptly stopped.
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100 T 7] the probability relaxation and the Jaumann deriva(iv® of
- 1 far can be written as
50 —-_//__A - Jar _ df or _ cifr _ Cfor . (25)
- 1 Jgt dt a t-t,
or - By substituting Egs(24) and (25) into the stress evolution
» i Og ] equation(21), we have
] = =TT T O :
g sof . Sy - do c s t-t
- 3 (4 S
7] e e S ] Op——=- d far Ps——dty, 26
S~ ] Pdt 2(t—ty) f © o & St-t o (26)
- ..\"h.\'\-\ N
“oor '\'n:_: ':':\\__._._._._._._.___,_', wherec,=c,—c; andts is the time when the shear stopped. In
C T N O orlorlt writing this equation we have neglected the contributions
150 ] from the contacts formed after shearing is stopped because
[ ] the interaction forces in these contacts are small compared to
- 1 those of the contacts formed during the shear. During the
B . e T SO BT Ju slow stress relaxatiot>t, the factor(t-t.)/(t—t;) =1 and
299 300 301 the equation becomes
Time
. d(r C(ﬂ'
FIG. 9. A close-up look of the stress variation around the stop- a == : (27)
S

ping time. Only a short period of stress relaxation is observed.
after the use of Eq12). The solution of this equation is

After stopping the externally driven shear motion the stress c

drops in a short amount of tim@bout 0.2 time unitsand o= (tb_ts) b

then reaches a steady state. During this short time period,

loose particle contacts, including those involving binary col- here ¢ andt, are the stress and time at the beginning of

lisions, break. Breaking of these contacts causes about a ZOXt%oe slow stresg relaxation

reduction in the shear stress and a less than 10% reduction in . assumption&24) and(25) lead to a power-law decay

the normal stresses, while the typical stress fluctuation in thigf the stress. This seems to contradict the logarithmic stress

case is more than 30% as shown in Fig. 8. A long stresae '

SRR . . cay observed in the experimga#]. However, in experi-
relaxation time is obseryed In experiments of a Couette fIOv\fnent the stress changes less than 2% during the slow relax-
[14] after the shear motion is stopped.

Although the time scale of the stress relaxation in theatlon' By writing Eq.(28) in component form and taking the

experiment[14] is much larger than the time scales in theloganthm of both sides, we have
numerical simulation described above, the stress relaxation i ~ git? t—
in the experiment is also related to the relaxation of contact In| 1 +—Lap =-¢ln
probability. For a sheared granular system, the slow stress !
decay observed in the experiments is related to slow reaifhe left-hand side of this equation can be expanded by a
rangements of particle contacts and settling of the granulafaylor’s series. Upon keeping the first term in the series for
material. After stopping the shear the major force in the syssmall (gj; —oﬁ)/oﬁ, we have
tem is carried by force chains. It seems reasonable to specu-

ax[l—cﬂn( ﬂ b (30)

. (28)

ts
; ) (29

th—1s

late that the sheared granular material is under constant small
perturbations from the environment. For a contact, the longer
it has existed, the less likely it is to break because, when i
has withstood perturbations in the past, it is more likely to

withstand similar perturbations in the future. Therefore it is o A
. . cay from a logarithmic decay. To distinguish these two decay
reasonable to assume that during the slow relaxation the re- : .
aws, higher-order terms in the stress, such [4s;

laxation rate is ~-oP)/ o} 1%, need to be measured accurately. If there is a time
scale during which the logarithmic stress decay law is
~%_ % (24) ~ obeyed, then there must exist another larger time scale at
a which the stress ceases to obey the logarithmic law. Other-
wise, as time increases, the stress will eventually change
wherec,, is a constant related to the probability relaxationsign, which of course cannot happen in a granular material
andty is the time when the contact is formed. Furthermore without a macroscopic maotion. If the stress obeys a power-
the contact age is the only relevant time scale in this case. law decay, no additional time scale is necessary. Clearly, to
Breaking a contact can result in rearrangement of particles iresolve these issues, experiments with a much longer obser-
force chains around the contact and results in a force changeation time are necessary, and the assumptigdsand(25)
therefore, the time scale for the force change is the same &sading to the power-law stress decay need to be checked

bts

II'his analysis implies that for small stress changes during the
slow relaxation, it is difficult to distinguish a power-law de-

041303-8



EVOLUTION OF ENDURING CONTACTS AND STRESS PHYSICAL REVIEW E 71, 041303(2005

39.0|||||||||||||||||||||||||||||||||| 42.0||||||||||||||||||||||||||||||||||

e oy
o

e o b b b b 320||||||||||||||||||||||||||||||||
0 0.5 1 1.5 2 25 3 3.5 -0 5 10 15 20 25 30 35

1 Osyxz 1 Osyxz

FIG. 10. After subjecting a granular material to steady shear, an FIG. 11. For a longer period.0~2 time unit or lower frequency
oscillatory shear is imposed on the material. For a short period of the oscillatory motion, the stress-strain relation forms not only
(1073 time unif or high frequency of the oscillatory motion, the loops but also is not monotonic during a shearing cycle while the
stress-strain relation is linear for each shearing cycle while thestress relaxes at a larger time scale than the period of the shear
stress relaxes at a larger time scale than the period of the shegafotion.
motion.

For a sinusoidal shear with a period larger than the binary

carefully against the experiments. For a compressed SysteM, ision time we expect a significant phase delay in the

Ik?a\tlzlgx:shffoargl(t:rl]?eanr\?irsoqnurﬁzﬁtegrtzlagglsystl(i)lgsth?c:’csgazg ICEﬁg;li'gtress—strain relation. To demonstrate this, we simulate an
Y oscillatory shear of the same amplitude but with perioc?10
age of contacts and the stress does not rgldk

Since the stress relaxation is closely related to the agtlme unit. The resulting stress-strain relation is plotted in Fig.

robability distribution function and Fig. 1 shows a spectrum 1. The stress-strain relation not only forms loops but also
gf the a Z robability relaxation timesg.we expect topsee dif-has a phase delay as the stress and strain reach their peaks at
gep y ' P . different times. The decay of the peak stresses in Fig. 11 is a

ferent stress relaxation behaviors when different frequencieg, " ¢ - claxation time longer than the period of the os-

of_oscnlatory shea_r are imposed on the granular system. Foéillatory shear in the spectrum of the relaxation times indi-
this purpose, we simulate a granular medium undergoing 0% ted in Fig. 1
cillatory shear motion. An osqllatory s.helar motion is Im- The num.eri.cal simulations mentioned in this paper are
E%S;dd 22 e?remggggﬁl?ér rggée:;ra]lqleastsiislta;s dsehsierlirbeg d k; {);C%erformed using nondimensional numbers. To provide a con-
Accor)(/jing to Fig. 1, the probability of the contact age does 'ection between these numerical simulations and real experi-
not relax and 14x,0,$,a,t)~0 for contacts with age ments, let us now suppose the particles are sand grains about

) - X . 100 um in size. It is estimate] that the binary collision
smaller than the binary collision time. For an oscillatory K ] y

time of the grains is of order 1s. As mentioned in Sec. Il,

shear with a period less than the binary collision time, thea time unit in this simulation is 100 periods of the mass-

stress relaxation can be neglected and the material behav?ﬁring system or about 2 ms for the sand. The non dimen-

e_Ias_tl_caIIy during a shear cycle. Also a_c_cord_lng_ to .F'g' L %ional shear rate 0.1 simulated above corresponds to shear
significant relaxation of the age probability distribution hap-

sl
pens when the age is close to the binary collision time 5.6ate 50 s for the sand.
X 1073 for the linear spring and dashpot force model used in
the sm_1ulapon. We therefore predwt that S|gn|f.|ca}nt.stress V. CONCLUSIONS
relaxation is observable in that time scale. This is indeed
true, as shown in Fig. 10 where the shear stress is plotted as The evolution of the probability distribution of particle
a function of shear deformation. The amplitude of the sinu-contact ages is found to be important to the evolution of the
soidal shear rate is 0.1 and the period is21(Figure 10 stresses in a dense granular system. The age of a particle
shows that there is no phase delay and the stress-strain relzntact is defined as the difference between the current time
tion is almost linear for each of the ten cycles that are plot-and the time when the contact was formed. The relaxation
ted. The decrease in the peak stress is mainly due to thrate of the probability distribution is the contact breakage
stress relaxation at the binary collision time scale as prerate and is directly related to stress relaxation in the system.
dicted. In a dense and slow granular flow in which particle inertia
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can be neglected, particle contact formation rate is small anthe binary collision time because particle contacts have no
most contacts have ages that are long compared to the binatijne to break. For a finite strain rate, the dense granular
collision time. Interaction forces in long-age contacts arematerial has a finite relaxation time and behaves as a vis-
larger than that in short-age contacts. Therefore the stress goelastic fluid. A flow of granular material causes dilation
a dense and slow granular flow is mostly due to long-agehat reduces the particle volume fraction and the relaxation
contacts. time if the material is not well confined. When the relaxation
For a dense and slow granular flow, numerical simulationgime is reduced, the material behaves more like fluid. How-
show that the relaxation time of the probability distribution ever, for the slow simple shear flow simulated in this paper,
of long contact ages is inversely proportional to the macrowhere the material is well confined in the directions perpen-
scopic strain rate. There is a spectrum of time scales for thdicular to the flow, the dense granular material behaves like a
relaxation of the contact-age probability distribution. Thesolid as the strain rate approaches zero. This is because the
smallest time scale is the binary collision time. This spec+elaxation time in the dense granular material increases as
trum of relaxation rates results in different stress relaxatiorthe strain rate decreases, while the relaxation time for a typi-
time scales that lead to different behaviors of the phase delagal polymer is independent of or a weak function of the
in the stress-strain relations under dynamic loadings. Whilenacroscopic strain rate.
the constitutive relation for the granular material can be writ-
ten in a form[9] similar to many viscoelastic materials such ACKNOWLEDGMENTS
as polymers, the stress relaxation as a result of contact break-
ing behaves differently from a typical polymer. A typical  The author would like to acknowledge many important
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