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Particle contacts in a granular material are formed at different times and have different contact ages, the
differences between current time and the times when the contacts were formed. The probability distribution of
the contact ages is one of the important statistical properties of particle interactions. The rate of the probability
relaxation is proved to be closely related to the stress evolution in the dense granular system. While all particle
contacts contribute to the stress, the major contribution is from the contacts with long contact ages compared
to the binary collision time of the particles in a dense and slow granular flow, in which particle inertia can be
neglected. There is a spectrum of relaxation times in the probability distribution of contact ages. These
relaxation times result in different time scales of stress relaxation. As an example, the relations among stress,
strain, and the strain rate are studied for a dense granular material undergoing an oscillatory simple shear. The
interaction of the time scales determines the fluidlike or solidlike behavior of the material.
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I. INTRODUCTION

Kinetic theories have been used successfully for the study
of granular flows in which particle interactions are primarily
instantaneous binary collisionsf1–4g. The assumption of in-
stantaneous binary collisions hampers the application of the
theory to many practical problemsf5g. Attempts have been
made to amend this deficiency in the kinetic theoryf6g. In
that work the binary contact time is added to the mean free
flight time to reduce the particle collision frequency. Only
binary collisions are considered. In many practical granular
flows, such as granular flow down an inclinef7g, multipar-
ticle interactions are common and contact times are much
longer than the binary collision time because of multiparticle
interactions. Particle interactions dissipate a large amount of
energy and prevent many practical granular systems from
becoming rapid granular flows. Recent work of Campbellf5g
and Lougef7g indicates that a dense granular flow model has
to account for enduring multiparticle contacts. The present
paper studies the statistical behavior of enduring multipar-
ticle or cluster interactions and their effects on the evolution
of the granular stress in densesapproaching to the close-
packed volume fractiond granular systems consisting of de-
formable particles.

Interactions among particles result in a contact stress in a
granular material. This stress is the major stress in a dense
granular material and the stress resulting from fluctuations in
particle velocities is negligible because the confinement pro-
vided by neighboring particles significantly reduces velocity
fluctuations. The contact stress can be calculated from the
average interaction force between a pair of contacting par-
ticles and the pair distribution functionf8,9g. The use of pair
distribution function does not imply binary interactions. The
evolution of the pair distribution depends not only on the
interaction between the pair of particles but also depends on
their interactions with other particles surrounding the pair.
Microstructures, including particle clusters and force chains,
affect the evolution of the pair distribution function. How-
ever, the pair distribution function itself only explicitly car-
ries information about spatial correlations and does not ex-

plicitly carry information about the evolution of the
contacting pair. In the present work, a contact probability
distribution is introduced to include both the spatial and tem-
poral correlations of particle contacts. Particle contact age,
defined as the difference between the current time and the
time when the contact was formed, is explicitly included in
the contact probability distribution. Without multiparticle in-
teractions, the age of a contact cannot exceed the binary
collision time. For a dense granular flow the durations of
contacts can be much longer than the binary collision time.
The significant disparity between the binary collision time
and the particle contact age carries information about multi-
particle interactions. In the present paper we show the im-
portant relationship between the relaxation of the contact
stress and the probability distribution of contact ages.

Although finding closures is one of the main objectives of
granular flow research, the primary intention of the present
work is focused on interactions of time scales in dense
granular flows and the development of proper statistical tools
to describe these interactions. To find closures for dense
granular flow, not only the interactions of time scales, but
also the interactions of length scales and the interactions
among the time and length scales are important. There are
many other works devoted to the study of length scales in
granular flows, including particle clusters, force chains and
crystallizationsf11g. Little attention has been paid to interac-
tions of time scales of dense granular flows.

In Sec. II, we study the probabilities that are important to
the time scales of particle interactions. The relaxation time of
particle contacts is introduced. Although these equations are
unclosed, they relate various quantities important to particle
interactions. These relations represent many interesting phys-
ics of various particle interactions, ranging from binary col-
lisions to cluster interactions.

The quantities introduced in Sec. II are studied numeri-
cally in Sec. III. In the case of steady simple shear flow, the
evolution equation for the probability distribution of contact
ages introduced in Sec. II can be solved for long-term con-
tacts. The solution is in good agreement with numerical re-
sults. The equations obtained in Sec. II are used in Sec. IV to
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derive an evolution equation for the contact stress. The re-
laxation times of the age probability distribution are shown
to be the stress relaxation times. Many observed properties
of the stress can be explained by the behavior of the prob-
ability distribution of ages, which is a result of multiparticle
interactions at different time scales.

Although the statistical description of particle interactions
introduced in the present paper is applicable to polydisperse
systems, to emphasize the physics in the description and to
avoid unnecessary mathematical complications, we restrict
ourselves to a granular system consisting of identical de-
formable spherical particles.

II. CONTACT PROBABILITY AND ITS RELAXATION
TIME

To study enduring contacts in a dense granular flow, we
need to know the ages of contacts in the granular system.
The age in a contact is defined as the difference between the
current time and the time when the contact was formed. Con-
tact formations are random events in a granular system;
therefore, the contact age is a random variable. We now in-
troduce a contact probability densityPssx ,u ,f ,a,td to de-
scribe its distribution. This probability density is a function
of the positionx in space, the orientation represented by the
polar angleu and the azimuthal anglef in the spherical
coordinate system centered atx, the contact agea, and the
time t. This probability is defined in such a way that, at time
t, Pssx ,u ,f ,a,tddxdydzsinududfda is the probable number
of contacts in the volumedxdydzabout the spatial pointx,
with orientations of the contacts in the solid angledv
=sinududf about the direction represented by the polar
angle u and the azimuthal anglef and with contact ages
betweena anda+da. This probability density is normalized
to the number of contacts in the system instead of one. The
integration of this probability density over all possible angles
and ages yields the contact densityncsx ,td, the number of
contacts per unit volume:

ncsx,td =E
0

` R Pssx,u,f,a,tddvda. s1d

The definition of the probability densityPs introduces a
six-dimensional parameter space. There are three dimensions
associated with the center of one of the particles in the pair,
two dimensions associated with the orientation of the con-
tact, and one dimension associated with the contact age. We
note that along the dimension of age we always have
da/dt=1. Following the usual procedures for the derivation
of the continuity equation in fluid dynamics or the similar
proceduresf10g for the derivation of the Liouville equation
in a parameter space, we can derive the evolution equation
for the probability densityPs as follows. For a small control
volumedV6=dxdydzsinududfda in the six-dimensional pa-
rameter space during a short time durationdt, the increase
s]Ps/]tddV6dt in the probable number of contacts in the
small control volume equals the difference between the prob-
able number of contacts moving into the control volume
through the enclosing surfaces, which can be calculated as

−=6·sv6PsddV6dt, and Ps/tdVdt, the probable number of
contacts that break during the time durationdt,

]Ps

]t
dV6dt = − =6 · sv6PsddV6dt −

Pssx,u,f,a,td
tsx,u,f,a,td

dV6dt.

s2d

There is no term representing contact generation in this equa-
tion because no contact can be generated with agea.0. In
other words, the contribution of contact generation is repre-
sented by the probabilityPssx ,u ,f ,a,td with agea=0. The
divergence of the contact flux in the six-dimensional space
can be calculated as

=6 · sv6Psd =
]Ps

]a
+ =x · sw̄Psd +

1

r̄ sinu
F ]sv̄u sinuPsd

]u

+
]sv̄fPsd

]f
G , s3d

wherew̄ is the averaged velocity of the particle located atx,
r̄ is the averaged distance between the contacting particles,
andv̄u andv̄f are the polar and azimuthal components of the
averaged relative velocity between the contacting particles in
the spherical coordinate system with the origin atx. The
overbars in this equation denote the average under the con-
dition that at timet there is a particle centered atx contacting
another particle in the directionsu ,fd with contact agea. In
Eq. s2d, 1 /t is the contact breakage rate per contact. For

convenience, we use the relative angular velocitiesu̇
¯

and ḟ
¯

instead of the relative velocity componentsv̄u and v̄f in the

rest of the paper. These velocities are related byv̄u= r̄ u̇
¯

and

v̄f= r̄ sinuḟ
¯.

Using the relative angular velocities, one can rewrite the
evolution equation 2 forPs as

]Ps

]t
+

]Ps

]a
+ =x · sw̄Psd +

1

sinu

]su̇¯sinuPsd
]u

+
]sḟ¯Psd

]f

= −
Pssx,u,f,a,td
tsx,u,f,a,td

. s4d

Before this equation can be used to solve for the contact
probability densityPs, closures for these conditionally aver-
aged velocities and a closure for the relaxation timet need to
be found. Finding general closure relations for these quanti-
ties is not the purpose of the current paper. Instead, in the
current work we study properties of the contact probability
densityPs for the case of simple shear flow by directly cal-
culating the probability from the results of numerical simu-
lations. Despite the obvious importance of the relative angu-

lar velocities u̇
¯

and ḟ
¯ to the understanding of particle

interactions, the present work focuses on the understanding
of the effects of the relaxation timet in the case of simple
shear flows and leaves the study of the influence of averaged

relative angular velocitiesu̇
¯

andḟ
¯ to future work. Priority is

given to the study of the relaxation time because this relax-
ation time corresponds to the stress relaxation time as shown
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in Sec. IV, and the effects of pertinent time scales in granular
flow have rarely been studied.

The probability densityPs is a function of seven vari-
ables. To facilitate the study of its properties we decompose
it into conditional probabilities as follows:

Pssx,u,f,a,td = ncsx,tdPgsaux,tdPdsu,fux,t,ad, s5d

wherenc is the contact density as defined in Eq.s1d, Pg is the
probability distribution of contact ages, regardless of contact
angular orientations but conditional on the event of one of
the contacting particles being located at the positionx at time
t, andPd is the probability distribution of contact directions
conditional on one of the contacting particles being located
at positionx at time t and with the contact agea. In these
definitions, the probabilitiesPg andPd normalize to 1.

In the next section we calculated these conditional prob-
abilities in numerical simulations of statistically steady
simple shear flows in a statistically homogeneous medium.
In this case the contact densitync is a constant, and all of the
probabilities are independent of positionx and timet.

III. CONTACT AGE PROBABILITY UNDER SIMPLE
SHEAR FLOW

Simple shear flows have been studied extensively; many
macroscopic properties, such as stresses, are well known. In
this section, we use simple shear flows as examples to study
the probabilities introduced in the last section. Numerical
results in this section are obtained from three-dimensional
numerical simulations of an assembly of monodisperse
spheres using a scheme described in earlier papersf8,9g.

For steady simple shear flows in a statistically uniform
medium,nc, Pg, andPd are independent ofx and t. By inte-
gratingu andf over an entire sphere, the probability evolu-
tion equations4d becomes

]Pg

]a
= −

Pg

tgsad
, s6d

where

1

tgsad
= R Pdsu,fuaddv

tsu,f,ad
s7d

is the contact breakage rate averaged over all directions.
Randomness of particle interactions results in the loss of

memory and therefore the rate of contact breaking, ortg, is
independent of the agea for long contactsf9g. Under this
condition, Eq.s6d can be solved to find that the contact age
distribution Pg approaches an exponential distribution for
large contact ages. The reasoning used to reach this conclu-
sion is independent of the force models. To demonstrate this
conclusion we simulate a simple shear flow using the follow-
ing force model. The normal forceFn is modeled as a paral-
lel connection of a spring and a dashpot:

Fn = − KnSDn

R
Dp

+ Revr , s8d

whereKn is a constant related to the stiffness of the particles,
R is the particle radius,Dn=2R−r is the compressive defor-

mation of the contacting particle pair,Re is the resistance of
the dashpot, andvr is the relative normal velocity. The power
p can be set to be 1.0 to obtain the linear spring and dashpot
force model and set to 3/2 to obtain the Hertzian force
model. Tangential forces are calculated according to the tan-
gential deformation built up during the particle contactf9g.
Tangential slip is allowed when the tangential force exceeds
mFn, where m, the friction coefficient, is set to 0.3 in the
calculations.

In the numerical calculation, the mass is nondimensional-
ized by the mass of the particles and the length is nondimen-
sionalized by the particle radius. The mass and particle ra-
dius are set to unity. The time in the calculation is
nondimensionalized by considering the oscillator consisting
of two mass points with massm at both ends of a linear
spring with constantKn/R, which has a periodpÎ2mR/Kn.
A time unit in the calculation is set to be 100 periods.

The probability distributions for a simple shear flow with
the nondimensional shear rate 0.1 and the particle volume
fraction 0.6 are calculated usingp=1 andp=3/2. Forsmall
contact ages, the difference is evident as shown in Fig. 1.
The plateau of the age distribution is associated with the
binary collision time. When the normal force is modeled as a
parallel connection of a linear spring and a dashpot, the bi-
nary collision time is independent of relative velocity of the
interacting pair and is calculated to be 5.0310−3, about the
age that the plateau ends for the case plotted in the figure.
The binary collision time for the Hertzian force model de-
pends on the relative velocity of the colliding pair. If we
estimate the averaged relative velocity as the product of the
shear rate and the averaged distance between the particles,
the binary collision time is about 2.3310−2, which is in
agreement with the age that the plateau ends for the case

FIG. 1. The probability distribution for short contact ages for
two different force models. In this example, the constantKn in Eq.
s8d is 2.03105 and resistance of the dashpot is 20.04. For the case
of the linear spring and dashpot normal force model the correspond-
ing normal restitution coefficienten is 0.902 in a binary collision.
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plotted in the figure. These numerical examples show that the
rate of probability relaxation depends on the contact age and
the model of the particle interaction forces for contact ages
that are not significantly larger than the binary collision time.

The results for long contact ages are plotted in Fig. 2. As
predicted, for long ages, in both cases the probability distri-
butions of ages obey the exponential distribution indicating
that the probability relaxation rate 1/tg is independent of
age. It is reportedf9g that the probability relaxation rate is a
function of the friction coefficient between particles. The two
cases plotted in Fig. 2 are calculated with the same friction
coefficient. The little difference between the two cases sug-
gests that the probability distribution is insensitive to normal
force models for long-term contacts. The small difference
seen for ages larger than 15 is due to the diminishing statis-
tical samples at these contact ages.

In a dense granular system, particles often form clusters
and there are two different types of contacts. In the first type,
particles do not belong to any cluster and bounce back and
forth among particles. The time scale for this type of contact
to break is the binary collision time as shown in Fig. 1. In the
second type of contact, particles belong to clusters that are
tightly squeezed. The force and thus the stress resulting from
this type of contact are large compared to that in first type of
contact. To break such contacts, the neighboring particles
need to move in a correlated fashion to make space for the
particles. Therefore a contact of the second type is less likely
to break and the contact ages of this type of contact are much
larger than the binary collision time. However, breaking such
a contact causes significant relaxation of the stress since the
particle interaction forces in the second type of contact are
much larger than the forces in the first type of contact. The
time scale to make spaces available for contacts of the sec-
ond type to break is determined by the motion of the clusters

in the granular material. For a slow granular flow in which
particle inertia is not important, the time scale of breaking
contacts of the second type is determined by 1/g since this is
the only time scale availablef9g. Therefore the breakage rate
of the second type of contact is controlled by the motion of
the clusters, and the relaxation time is of the order of the
macroscopic strain rate as shown in Fig. 2.

The direction in which one can find the most contacts
with a specified age is described by the probability distribu-
tion Pd. Since finding a contact with specific age is a zero
possibility event, instead of evaluatingPd directly from the
results of numerical simulation, we study its age average
fPdg, defined as

fPdg =

E
b

c

Pssx,u,f,a,tdda

ncsx,tdE
b

c

Pgsaux,tdda

=

E
b

c

Pdsu,fux,a,tdPgsaux,tdda

E
b

c

Pgsaux,tdda

, s9d

for contacts with ages betweenb andc. The second equality
is obtained by using Eq.s5d. In the steady simple shear flow,
the probabilities in Eq.s9d are independent of time. The av-
eraged probabilityfPdg can be calculated by counting the
number of contacts belonging to the age groupsb,cd on the
particle surface. A spherical coordinate is imposed on the
particle surface withu=0 in the upwardszd direction and
f=0 in the x direction, the direction of flow. The simple
shear flow is simulated in a cubic box with periodic bound-
ary conditions. The origin of a Cartesian coordinate is set at
the center of the cubic box. The mean velocity of the par-
ticles is in thex direction and is set togz. The particle sur-
face is divided into 18336 regions with 18 equal rows along
the latitude and 36 equal columns along the longitude. After
a steady state is reached, contacts are sorted according to
region and age groups. For an age groupsb,cd, the value of
fPdg at the center of a surface region is calculated as the
number of contacts with ages betweenb andc in the surface
region divided by total number of contacts within the age
group on the entire spherical surface, divided by the solid
angle of the region.

If the integrals in Eq.s9d are over the age intervals0,`d,
the averagedfPdg is the probability distribution over the par-
ticle surface regardless of age. The result of this probability
distribution is shown in Fig. 3 for the case of a linear spring
sp=1d and dashpot force model with the nondimensional
shear rate 0.1 and particle volume fraction 0.6. The maxi-
mum of the probability densityfPdg on the particle surface is
not in the direction of principal compression, which is the
directionu=3p /4, f=0 or u=p /4, f=p in spherical coor-
dinates. The maximum appears near the two stagnation
points on the equator, which are in the directions ofu
=p /2, f=0 andu=p /2, f=p. This is because, in a simple

FIG. 2. The probability distribution for long contact ages. For
long contact ages, the probability distributions for two different
normal force models with the same friction coefficient are almost
the same except for contact ages greater than 15. At these ages, the
number of samples becomes small and large statistical errors
appear.
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shear flow, there is a tendency for particles to form layers
along the direction of shear so that particles can pass each
other with the least resistance. A similar probability distribu-
tion of particle contact directions is observed in numerical
simulations performed in a two-dimensional domainf11g.

For age groups 0 to 0.01, 2 to 3, and 4 to`, results of the
averaged probabilityfPdg are plotted in Figs. 4–6. The prob-
ability distribution fPdg plotted in Fig. 4 for short contact
ages is quite different from the probability distributions plot-
ted in Fig. 4 and 5, indicating that the probability distribution
Pdsu ,f ux ,a,td is a strong function of age for ages compa-
rable to the binary collision time. The local maxima appear-
ing nearsu ,fd=s0.1p ,0d and s0.9p ,pd in Fig. 4 and near
su ,fd=s0.1p ,pd ands0.9p ,0d in Figs. 5 and 6 are the com-
bined results of the layered structure in the sheared granular
material and the shear motion. Particles of neighboring lay-
ers are located in directions aboutu=0.1p and 0.9p. The
local maxima in Fig. 4 are in the downwind directions,
where the shear motion carries contacting particles away and
contacts are loose. The contacts in these directions are likely
to be short-term contacts and result in the local maxima in
Fig. 4 for short-term contacts. The local maxima in Figs. 5
and 6 are in the upwind directions in the shear flow, where
particle contacts are squeezed. In these directions, contacts
are likely to be long-terms ones and form the local maxima
in Figs. 5 and 6 for long-terms contacts. The similarity be-
tween Figs. 5 and 6 suggests that the probability distribution
Pdsu ,f ux ,a,td becomes less dependent on the age as the age
increases.

For a steady system one can obtain from the probability
distributionPg of ages the probability distributionPL of life

spans. That is the probability distribution of contact age at
which the contact breaks. LetNc be the probable number of
contacts in the system. For a steady system bothNc and Pg
are independent of time. The probable number of contacts
with ages betweena and a+da is NcPgsadda. As time ad-
vances fromt to t+Dt, sDt.0d, the probable number of
contacts with age betweena+Dt and a+da+Dt is NcPgsa
+Dtdda. The probable number differenceNcfPgsad−Pgsa
+Dtdgda between the age groups is the number of contacts
that break during that time periodft ,t+Dtg. The total number
of contacts that exist at timet and break during the same
time period Dt, regardless of age, isNce0

`fPgsad−Pgsa
+Dtdgda=Nce0

DtPgsadda. According to the definition of the
probability distribution of contact life spans, we have

PLsadda =
NcfPgsad − Pgsa + Dtdgda

NcE
0

Dt

Pgsadda

. s10d

As Dt approaches zero,PL becomes

PLsad = −
1

Pgs0d
dPgsad

da
. s11d

Since the probability distributionPL is always non-negative,
the probability distributionPg is a nonincreasing function of
age. Because the age distribution is exponential for contact
ages long compared to the binary collision time in a steady
simple shear flowf9g, according to Eq.s11d the probability
of a contact life span is also an exponential distribution for
long contacts in a steady simple shear flow.

FIG. 5. Probability density of particle contacts on the particle
surface for contact ages between 2 and 3 time units.

FIG. 6. Probability density of particle contacts on the particle
surface for contact ages larger than 4 time units.

FIG. 3. Probability density of particle contacts on the particle
surface regardless of age. Particle contacts are more likely to be in
the dark regions than the light regions.

FIG. 4. Probability density of particle contacts on the particle
surface for contact ages less than 0.01 time unit.
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In a statistically steady simple shear flow, the contact gen-
eration rate and breakage rate reach a dynamical equilibrium.
In Fig. 7 we show the time history of reaching the dynamical
equilibrium. At the beginning of the numerical simulation,
particles are not in contact. Simple shear flow is imposed on
the system at timet=0. The nondimensional shear rate is 0.1.
The contact formation rate per particle is plotted as the solid
line and the contact breakage rate per particle is plotted as
the dashed line in the figure. As shown in the figure, large
numbers of contacts form and break shortly after the begin-
ning of the shear and the system is very dynamic during this
time period. As the system reaches the statistically steady
state the system becomes less dynamic and both contact for-
mation and breakage rates reduce. An interesting observation
from this figure is that the contact formation rate and break-
age rate follow each other closely. After a steady state is
reached, not only the mean values of the rates are the same,
but their fluctuations also follow each other closely. This is a
result of the difference between the binary collision time
scale and the macroscopic time scale of the dense granular
flow. In a dense granular system it takes little time for a
particle to form another contact after it breaks from a previ-
ous contact. For a time scale large compared to the binary
collision time and the mean free flight time, the observed
contact generation rate is almost the same as the contact
breakage rate.

IV. STRESS RELAXATION AND THE PROBABILITY
OF PARTICLE CONTACT AGES

As mentioned in the Introduction, in a dense granular flow
the major granular stress is the contact stress. Following
f8,9,12g the contact stresss can be calculated as

upssx,td =
1

2
E far sx,u,f,a,tdPssx,u,f,a,tddvda,

s12d

where far is the averaged tensor product of the interaction
force fa and the distance vectorr between the pair of con-

tacting particles. The overbar again denotes that the average
is conditional on the specified positionx, the contact direc-
tion su ,fd, and the agea at time t.

Multiplying s4d by far leads to the equation

]sfar Psd
]t

+
]sfar Psd

]a
+ = · sw̄far Psd +

1

sinu

]su̇¯sinufar Psd
]u

+
]sḟ¯far Psd

]f
=

dsfar d
dt

Ps −
far Ps

tsx,u,f,a,td
, s13d

where

dfar

dt
=

]far

]t
+

]far

]a
+ u̇

]̄far

]u
+ ḟ

]̄far

]f
+ w̄ · = sfar d. s14d

Equations12d states that the total stress is the sum of the
stress components12far Psdvda contributed by contacts at
different directions with difference ages. Multiplying Eq.
s13d by 1

2dvda, we find an evolution equation for these stress
components. Each of these stress components has its relax-
ation timetsx ,u ,f ,a,td as in the last term of Eq.s13d. This
is similar to the Prony series for a viscoelastic materialf12g.
Instead of having discrete stress components, here we have a
continuous spectrum of stress components with a continuous
spectrum of relaxation times.

Integration over all possible directions and all possible
contact ages leads to the evolution equation for the total
stress:

]supsd
]t

+ = · supw̃sd =
1

2
E dfar

dt
Psdvda

−
1

2
E far Ps

tsx,u,f,a,td
dvda

−
1

2
= ·E sw̄ − w̃dfar Psdvda

+
1

2
E ffar Psga=0

a=`dv, s15d

where w̃ is the unconditionally averaged velocity. The last
term in Eq.s15d is, in principle, zero, because at the begin-
ning sa=0d of a contact the interaction forcefa is zero and at
a=` the probabilityPs vanishes. However, in many numeri-
cal simulations, a dashpot is used in the model for particle
interaction forces. In those simulations this term is not
strictly zero, but can be neglected in most of the simulations.
The velocitywp is the averaged velocity conditional on the
pair of the contacting particles. The velocity differencew̄
−w̃ is of the same order as the relative velocityvr between
the contacting pair. The displacementsw̄−w̃dt resulting from
the velocity fluctuation is of the order of the particle size—
that is, much smaller than the macroscopic length scaleL
associated with the divergence in the third term on the right-
hand side. Therefore, the third term in the right-hand side of
Eq. s15d can be neglected.

Using the continuity equationf8g

FIG. 7. Rates of particle contact formation and breakage per
particle.
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]up

]t
+ = · supw̃d = 0, s16d

we can rewrite Eq.s15d as

up
ds

dt
=

1

2
E dfar

dt
Psdvda−

1

2
E far Ps

tsx,u,f,a,td
dvda,

s17d

where

ds

dt
=

]s

]t
+ w̃ · = s s18d

is the material derivative of the stress. Equations17d shows
that s, rather thanups, is associated with the material point
of the granular material.

For a pair with finite contact time, the value offar can
change because of the rigid-body rotation of the pair even if
the deformation of the pair is held constant. The effect of
rigid-body rotation is a result of kinematics of the motion. In
the development of the closure models for the right-hand
side of Eq.s17d, it is usually more convenient to focus on the
dynamics of particle interactions. To separate the kinematic
effects from the dynamic effects one can introduce the coro-
tational invariantsJaumannd time derivativef8,9,13g.

Jfar

Jt
=

dfar

dt
− V · far + far · V, s19d

whereV is the spin tensor:

V =
1

2
f=w̃ − s=w̃dTg. s20d

The evolution equations17d for the stress can be written as

up
Js

Jt
=

1

2
E Jfar

Jt
Psdvda−

1

2
E far Ps

tsx,u,f,a,td
dvda,

s21d

where

Js

Jt
=

]s

]t
+ w̃ · = s − V · s + s · V. s22d

In this form the Jaumann derivativeJfar /Jt is independent of
rigid-body rotation. Depending on the nature of interaction
forces between particles appropriated closures can be derived
to close the equationf8,9g.

The appearance of the Jaumann derivative is a result of
changes in the directions of the particle interaction forcefa
and the relative distancer during the particle contactf8g. If
particle interactions are instantaneous, as assumed in kinetic
theories, the particles spend no time together and the rota-
tions in the directions of the force and the distance vector are
unimportant. Therefore rotation terms do not appear in a ki-
netic theory for granular flows.

The relaxation timetsx ,u ,f ,a,td in Eq. s17d for the
stress is the same relaxation time for the probability of the
contact age. Therefore the evolution of the contact age prob-
ability is closely related to the stress evolution in a dense
granular material.

For long contact ages, the relaxation time is independent
of the agea and orientationsu ,fd f9g. Furthermore, for long
contact ages the relaxation time for the age probability is
inversely proportional to the shear rateg f9g,

tg = cssupd, s23d

in a dense and slow simple shear flow, in which particle
inertia is not important. According to this relation, the relax-
ation time for long-term contacts increases as the shear rate
decreases. The rate that long-term contacts break also de-
creases. Therefore, as the shear rate decreases, the portion of
long-term contacts increases and the fraction of contacts with
contact age comparable to the binary collision time de-
creases. Eventually the contact stress is dominated by long-
term contacts. This analysis is supported by the results of a
numerical experiment, shown in Figs. 8 and 9. In the numeri-
cal simulation, the particle volume fraction is 0.6. The sys-
tem is sheared with nondimensional shear rate 0.1 for 300
time units and then the shear rate is suddenly reduced to
zero. According to Eq.s23d the stress relaxation time be-
comes infinity and the breakage rate for long age contacts is
zero after the cessation of the shear. Therefore the stress
resulting from long-age contacts does not relax. The shear
stress and three normal stresses are plotted as functions of
time in Fig. 8. Little stress reduction is observed in Fig. 8.
Figure 9 provides a close-up look at the stress variations
around the time when the shear motion is abruptly stopped.

FIG. 8. Stress variation before and after a simple shear is halted.
Before the nondimensional time 300, the granular material is under-
going a simple shear flow with nondimensional shear rate 0.1. The
stress fluctuates during the shear motion. The shear rate is brought
to zero at time 300. The stress introduced by the motion before the
stopping time stays nearly unchanged afterward.
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After stopping the externally driven shear motion the stress
drops in a short amount of timesabout 0.2 time unitsd and
then reaches a steady state. During this short time period,
loose particle contacts, including those involving binary col-
lisions, break. Breaking of these contacts causes about a 20%
reduction in the shear stress and a less than 10% reduction in
the normal stresses, while the typical stress fluctuation in this
case is more than 30% as shown in Fig. 8. A long stress
relaxation time is observed in experiments of a Couette flow
f14g after the shear motion is stopped.

Although the time scale of the stress relaxation in the
experimentf14g is much larger than the time scales in the
numerical simulation described above, the stress relaxation
in the experiment is also related to the relaxation of contact
probability. For a sheared granular system, the slow stress
decay observed in the experiments is related to slow rear-
rangements of particle contacts and settling of the granular
material. After stopping the shear the major force in the sys-
tem is carried by force chains. It seems reasonable to specu-
late that the sheared granular material is under constant small
perturbations from the environment. For a contact, the longer
it has existed, the less likely it is to break because, when it
has withstood perturbations in the past, it is more likely to
withstand similar perturbations in the future. Therefore it is
reasonable to assume that during the slow relaxation the re-
laxation rate is

1

t
=

cp

a
=

cp

t − t0
, s24d

wherecp is a constant related to the probability relaxation
and t0 is the time when the contact is formed. Furthermore,
the contact agea is the only relevant time scale in this case.
Breaking a contact can result in rearrangement of particles in
force chains around the contact and results in a force change;
therefore, the time scale for the force change is the same as

the probability relaxation and the Jaumann derivatives19d of
far can be written as

Jfar

Jt
=

dfar

dt
=

cffar

a
=

cffar

t − t0
. s25d

By substituting Eqs.s24d and s25d into the stress evolution
equations21d, we have

up
ds

dt
= −

c,

2st − tsd
E dvE

0

ts

far Ps
t − ts
t − t0

dt0, s26d

wherec,=cp−cf andts is the time when the shear stopped. In
writing this equation we have neglected the contributions
from the contacts formed after shearing is stopped because
the interaction forces in these contacts are small compared to
those of the contacts formed during the shear. During the
slow stress relaxationt@ ts, the factorst− tsd / st− t0d<1 and
the equation becomes

ds

dt
= −

c,s

t − ts
s27d

after the use of Eq.s12d. The solution of this equation is

s = S tb − ts
t − ts

Dc,

sb, s28d

wheresb and tb are the stress and time at the beginning of
the slow stress relaxation.

The assumptionss24d ands25d lead to a power-law decay
of the stress. This seems to contradict the logarithmic stress
decay observed in the experimentf14g. However, in experi-
ment the stress changes less than 2% during the slow relax-
ation. By writing Eq.s28d in component form and taking the
logarithm of both sides, we have

lnS1 +
si j − si j

b

si j
b D = − c, lnS t − ts

tb − ts
D . s29d

The left-hand side of this equation can be expanded by a
Taylor’s series. Upon keeping the first term in the series for
small ssi j −si j

bd /si j
b, we have

s < F1 − c, lnS t − ts
tb − ts

DGsb. s30d

This analysis implies that for small stress changes during the
slow relaxation, it is difficult to distinguish a power-law de-
cay from a logarithmic decay. To distinguish these two decay
laws, higher-order terms in the stress, such asfssi j

−si j
bd /si j

bg2, need to be measured accurately. If there is a time
scale during which the logarithmic stress decay law is
obeyed, then there must exist another larger time scale at
which the stress ceases to obey the logarithmic law. Other-
wise, as time increases, the stress will eventually change
sign, which of course cannot happen in a granular material
without a macroscopic motion. If the stress obeys a power-
law decay, no additional time scale is necessary. Clearly, to
resolve these issues, experiments with a much longer obser-
vation time are necessary, and the assumptionss24d ands25d
leading to the power-law stress decay need to be checked

FIG. 9. A close-up look of the stress variation around the stop-
ping time. Only a short period of stress relaxation is observed.
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carefully against the experiments. For a compressed system
in which particles are squeezed tightly together, small pertur-
bations from the environment are less likely to cause break-
age of contacts and the stress does not relaxf14g.

Since the stress relaxation is closely related to the age
probability distribution function and Fig. 1 shows a spectrum
of the age probability relaxation times, we expect to see dif-
ferent stress relaxation behaviors when different frequencies
of oscillatory shear are imposed on the granular system. For
this purpose, we simulate a granular medium undergoing os-
cillatory shear motion. An oscillatory shear motion is im-
posed on the granular material after it is sheared by the
steady shear motion for 300 time units as described above.
According to Fig. 1, the probability of the contact age does
not relax and 1/tsx ,u ,f ,a,td<0 for contacts with age
smaller than the binary collision time. For an oscillatory
shear with a period less than the binary collision time, the
stress relaxation can be neglected and the material behaves
elastically during a shear cycle. Also according to Fig. 1, a
significant relaxation of the age probability distribution hap-
pens when the age is close to the binary collision time 5.0
310−3 for the linear spring and dashpot force model used in
the simulation. We therefore predict that significant stress
relaxation is observable in that time scale. This is indeed
true, as shown in Fig. 10 where the shear stress is plotted as
a function of shear deformation. The amplitude of the sinu-
soidal shear rate is 0.1 and the period is 10−3. Figure 10
shows that there is no phase delay and the stress-strain rela-
tion is almost linear for each of the ten cycles that are plot-
ted. The decrease in the peak stress is mainly due to the
stress relaxation at the binary collision time scale as pre-
dicted.

For a sinusoidal shear with a period larger than the binary
collision time we expect a significant phase delay in the
stress-strain relation. To demonstrate this, we simulate an
oscillatory shear of the same amplitude but with period 10−2

time unit. The resulting stress-strain relation is plotted in Fig.
11. The stress-strain relation not only forms loops but also
has a phase delay as the stress and strain reach their peaks at
different times. The decay of the peak stresses in Fig. 11 is a
result of a relaxation time longer than the period of the os-
cillatory shear in the spectrum of the relaxation times indi-
cated in Fig. 1.

The numerical simulations mentioned in this paper are
performed using nondimensional numbers. To provide a con-
nection between these numerical simulations and real experi-
ments, let us now suppose the particles are sand grains about
100 mm in size. It is estimatedf9g that the binary collision
time of the grains is of order 10ms. As mentioned in Sec. III,
a time unit in this simulation is 100 periods of the mass-
spring system or about 2 ms for the sand. The non dimen-
sional shear rate 0.1 simulated above corresponds to shear
rate 50 s−1 for the sand.

V. CONCLUSIONS

The evolution of the probability distribution of particle
contact ages is found to be important to the evolution of the
stresses in a dense granular system. The age of a particle
contact is defined as the difference between the current time
and the time when the contact was formed. The relaxation
rate of the probability distribution is the contact breakage
rate and is directly related to stress relaxation in the system.
In a dense and slow granular flow in which particle inertia

FIG. 10. After subjecting a granular material to steady shear, an
oscillatory shear is imposed on the material. For a short period
s10−3 time unitd or high frequency of the oscillatory motion, the
stress-strain relation is linear for each shearing cycle while the
stress relaxes at a larger time scale than the period of the shear
motion.

FIG. 11. For a longer periods10−2 time unitd or lower frequency
of the oscillatory motion, the stress-strain relation forms not only
loops but also is not monotonic during a shearing cycle while the
stress relaxes at a larger time scale than the period of the shear
motion.
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can be neglected, particle contact formation rate is small and
most contacts have ages that are long compared to the binary
collision time. Interaction forces in long-age contacts are
larger than that in short-age contacts. Therefore the stress in
a dense and slow granular flow is mostly due to long-age
contacts.

For a dense and slow granular flow, numerical simulations
show that the relaxation time of the probability distribution
of long contact ages is inversely proportional to the macro-
scopic strain rate. There is a spectrum of time scales for the
relaxation of the contact-age probability distribution. The
smallest time scale is the binary collision time. This spec-
trum of relaxation rates results in different stress relaxation
time scales that lead to different behaviors of the phase delay
in the stress-strain relations under dynamic loadings. While
the constitutive relation for the granular material can be writ-
ten in a formf9g similar to many viscoelastic materials such
as polymers, the stress relaxation as a result of contact break-
ing behaves differently from a typical polymer. A typical
polymer behaves like solid if the macroscopic time scale is
small compared to the stress relaxation time of the material
and like a fluid if the macroscopic time scale is large. Similar
to a typical polymer, a dense granular material behaves like a
solid when the macroscopic time scale is small compared to

the binary collision time because particle contacts have no
time to break. For a finite strain rate, the dense granular
material has a finite relaxation time and behaves as a vis-
coelastic fluid. A flow of granular material causes dilation
that reduces the particle volume fraction and the relaxation
time if the material is not well confined. When the relaxation
time is reduced, the material behaves more like fluid. How-
ever, for the slow simple shear flow simulated in this paper,
where the material is well confined in the directions perpen-
dicular to the flow, the dense granular material behaves like a
solid as the strain rate approaches zero. This is because the
relaxation time in the dense granular material increases as
the strain rate decreases, while the relaxation time for a typi-
cal polymer is independent of or a weak function of the
macroscopic strain rate.

ACKNOWLEDGMENTS

The author would like to acknowledge many important
discussions with Dr. F. H. Harlow, Professor J. T. Jenkins at
Cornell University, Dr. R. M. Rauenzahn, Professor H. Shen
at Clarkson University, and Dr. X. Ma. The Joint DOD/DOE
Munitions Technology Development Program provided the
financial support for this work.

f1g J. T. Jenkins and S. B. Savage, J. Fluid Mech.130, 187
s1983d.

f2g C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, J.
Fluid Mech. 140, 223 s1984d.

f3g J. T. Jenkins and M. W. Richman, Phys. Fluids28, 3485
s1985d.

f4g J. T. Jenkins and Cao Zhang, Phys. Fluids14, 1228s2002d.
f5g C. Campbell, J. Fluid Mech.465, 261 s2002d.
f6g H. Hwang and K. Hutter, Continuum Mech. Thermodyn.7,

357 s1995d.
f7g M. Louge, Phys. Rev. E67, 061303s2003d.

f8g D. Z. Zhang and R. M. Rauenzahn, J. Rheol.41, 1275s1997d.
f9g D. Z. Zhang and R. M. Rauenzahn, J. Rheol.44, 1019s2000d.

f10g C. Cercignani,The Boltzmann Equation and its Applications
sSpringer-Verlag, New York, 1988d.

f11g M. Alam and S. Luding, Phys. Fluids15, 2298s2003d.
f12g D. Z. Zhang, C. Liu, and F. H. Harlow, Phys. Rev. E66,

051806s2002d.
f13g D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids

sSpringer-Verlag, New York, 1990d.
f14g R. R. Hartley and R. P. Behringer, NaturesLondond 421, 928

s2003d.

DUAN Z. ZHANG PHYSICAL REVIEW E 71, 041303s2005d

041303-10


