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A simple phenomenological numerical model of a binary granular mixture is developed and investigated
numerically. We attempt to model a recently reported experimental system where a horizontally vibrated binary
monolayer was found to exhibit a transition from a mixed to a segregated state as the filling fraction of the
mixture was increased. This numerical model is found to reproduce much of the experimentally observed
behavior, most importantly the transition from the mixed to the segregated state. We use the numerical model
to investigate granular segregation mechanisms and explain the experimentally observed behavior.
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I. INTRODUCTION

Granular systems exhibit a wide range of intriguing and
often counterintuitive phenomena. Segregation of two or
more species of grains due to vibration or shearing is one
such examplef1,2g. Many mechanisms, including buoyancy,
temperature gradients, differing angles of repose, and differ-
ing roughness of particles, have been proposedf2–5g. Re-
cently, segregation of a vibrated binary monolayer has been
demonstrated in a series of experimentsf1,6,7g that imply/
suggest the existence of a segregation critical point as the
filling fraction is varied, with associated growth of fluctua-
tions and time scales in the vicinity of that point.

In this paper we propose a phenomenological numerical
model of the experimental system which captures its essen-
tial features. We show that there is qualitative agreement
between the numerical model and the experiment and, in
particular, that the quantitative measures reported inf6,7g are
of the same form in both cases. We then use the numerical
model to study segregation mechanisms, giving one definite
mechanism and demonstrating that a second may also play a
role.

The experimental system used inf6,7g consists of a
smooth horizontal tray of dimensionsLx=180 mm by Ly
=90 mm vibrated sinusoidally parallel to its major axis at a
frequency off =12 Hz and amplitude ofA=1.74±0.01 mm.
The grains are high-precision phosphor-bronze spheressde-
noted byc in the followingd of radiusRc=0.75 mm and mass
mc=16.8 mg and poppy seedssdenoted byp in the follow-
ingd of average radius and massRp=0.54 mm andmp
=0.52 mg respectively. The poppy seeds are rough, non-
spherical polydispersef8g particles.

Particles placed on the oscillating tray predominantly
move periodically with the driving. They also have some
quasirandom component to their motion, caused in the case
of the p’s by their nonsphericity which means that they do

not roll smoothly but instead “stick and slip” and scatter. The
c’s are affected less by the driving since they roll as the tray
moves beneath them. However they too, when placed indi-
vidually on the tray, are seen to have some quasirandom
component to their motion. The overall impression is of a
granular bed of agitated particles with the predominant mo-
tion being parallel to the driving.

The control parameter used in the experiments was the
two-dimensional filling fraction, termed the compacityC
=sNcpRc

2+NppRp
2d / sLxLyd, with Nc fixed. The value ofNc is

also important but for simplicity the experiments focussed on
Nc=1600 and variedNp. The system was quasi-two-
dimensional in that 0.49,C,1.12, highC being achieved
by poppy seeds “riding up” and overlapping each other to
some extent, although never so much that they were above
and overlapping thec’s.

Starting from a uniformly mixed initial distribution, the
final state reached by the system varies withC. For C
&0.65 the system remains mixed while above that value
small mobile segregated clusters ofc’s form. AsC increases,
these clusters grow in size and become anisotropic, forming
stripes perpendicular to the direction of driving forC large.
For C*0.93 thec’s within these stripes crystallize to form a
dense close-packed hexagonal lattice. These three phases
were termed binary gas, segregation liquid, and segregation
crystal. The existence of a phase transition from the binary
gas to segregation liquid, with an associated critical value of
C, was reported inf7g. The details of these results are given
in f6,7g.

The experimental system has several appealing properties
from the point of view of studying granular matter: except at
high compacities where stripes form, the final state reached
is a function only of the compacity, i.e., the initial conditions
are not relevant. The particles are always in contact with the
tray and hence are always effectively “thermalized.” This is
in contrast to the behavior of particles in granular systems
such as sandpiles where the grains spend most of their time
locked in position, or some vertically vibrated systems where
much of the time is spent in free flightf9g. The constant
“thermalization” of the particles, their ability to explore
many possible states, and the irrelevance of initial conditions
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suggests that the system might be a good choice for studying
the “statistical mechanics” of granular matter. However de-
tailed balance, equipartition of energy and other rigourous
features of equilibrium statistical mechanics are of course not
obeyed in this systemf10g.

II. DESCRIPTION OF THE NUMERICAL MODEL

We here develop a phenomenological numerical model of
the experimental system. The aim is to capture the essential
features of the experiment in the numerical model, thereby
discovering what those features are and in particular what the
segregation mechanismssd issared.

The following features are, we believe, necessary: there is
a tray of dimensionsLx3Ly whose base moves with sinu-
soidal velocity A sinsvtd. There are two particle species,
namedc and p. The particles moving relative to the tray
surface are subject to a frictional force. The particles feel a
randomisation of their velocity caused by their stick-slip mo-
tion with the oscillating tray and their nonsphericitysther-
malizationd. The particles collide inelastically.

We therefore model the system as two-dimensional with
the particles behaving as hard disks of massma and radius
Ra, where a denotes the speciessc or pd. Except during
collisions, each particlei of typea obeys the Langevin equa-
tion

mav̇ai = − gasvai − vtrayd + haistd, s1d

where vtray= ivA sinsvtd and g provides a linear damping.
hastd is Gaussian white noise of mean zero and standard
deviation khastd ·hast8dl=2sa

2dst− t8d and this provides the
“thermalization.” Note that thevtray term provides a collec-
tive forcing while the noise term,hai is unique to each par-
ticle. The particles interact through smooth hard-disk inelas-
tic collisions with coefficient of restitutionra,b. Thus, in the
centre of mass frame, a particlei of type a, undergoing a
collision with a particlej of typeb, has its velocity changed
according to:vii →−ra,bvii , v'i →v'i, wherevii andv'i are
the velocity components parallel and perpendicular to the
line joining the centres of the particlesi and j . For simplicity,
the disks have been taken to be smooth sided so that angular
momentum can be ignored. A similar model has been used in
f11g to describe colloidal particles driven by an external elec-
trical field. Alsof12g has used a similar model without noise
to model granular particles driven by a vertically oscillating
air columnf13g. There exists many other models for driven
granular systems, for examplef14g gives a general class of
stochastic multiplicative driving terms which includes our
snonmultiplicatived driving term as a special case, the refer-
ences given here are in no way intended to be a complete list.

These are the essentials. We have also kept the walls of
the box stationary for simplicity but modeled the motion of
the end walls by considering that in collisions they have a
velocity i maxsvA1sinsvtd ,0d for the left wall and
i minsvA1sinsvtd ,0d for the right wall. We felt that this was
necessary in order to model the low-density region near each
end wall caused by the vigorous collisions with the end
walls. The width of the low-density region is independent of

the system size, thus we usedA1=A/10 rather thanA1=A in
the results described here in order to reduce the “finite size
effect” of this region as the system size is changed.

There are many approximations of the real system made
here, the most significant ones are: the friction termgv is
only an approximation, it is chosen as being the simplest
possible form. The noise is in fact due to the stick and slip
interactions between the particles and the oscillatory surface,
and also their non-sphericity when interacting with each
other and with the tray. We do not try to directly model this
since it would require detailed specification of the shape of
each particle and its actual interaction with the tray, which is
not known. Even a single high-precision phosphor-bronze
sphere conducts a quasirandom walk when placed on the
oscillating tray, indicating that the randomness can depend
on very small imperfections of the particles and the traysand
possibly also in the drivingd. Both because of this immense
difficulty and in order to have a reasonably simple numerical
model whose behavior we can understand, we instead choose
to include the noise phenomenologically. We assume that the
noise the particles receive is independent of their neighbors
and of the phase of the tray cycle, both of which are unlikely
to be accurately what happens in the experiments. The as-
sumption that the noise is Gaussian and white is an approxi-
mation. For simplicity we are using a two-dimensional nu-
merical model, which ignores the overlapping ofp’s and the
rolling of particles. The particles and walls are assumed to be
smooth and so angular momentum is not considered. We
have ignored the polydispersity of thep’s. Polydispersity
was included to check its importance and was found to leave
the qualitative behavior unchanged. The final approximation
is that the coefficients of restitution are constant which is a
commonly made onef15g. Despite these simplifications and
approximations, in Sec. III we show that our phenomeno-
logical numerical model captures much of the behavior ob-
served experimentally.

A. Parameter values

Static parameter values such as mass and size can be mea-
sured reasonably accurately, for the poppy seeds we have
used the mean values of a sample of measurementsf16g.
Dynamic parameters were less accurately known,ga was
estimated from the distances traveled by single particles
striking the moving end walls. Using the result for the noise-
less case,

xs`d = xs0d + vxs0dm/g s2d

and estimatingvxs0d to be equal to the maximum velocity of
the end wall gives approximate values forga. The value for
the noise is the hardest to determine since no velocity or
accurater std path measurements were available. We merely
estimated that the mean square velocity due to the noise,
kva

2l=sa
2 /maga should be equal to<svA/Fd2 where the fac-

tor F=3 for thep case andF=13 for thec case.
Clearly these last estimates are rather crude. However,

extensive study of a wide range of these parameters has
shown that the qualitative features are robust to variation of
these estimates.
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The coefficients of restitution,ra,b=rb,a, are estimated to
be: rc,c=0.9, rc,p=0.2, rp,p=0.1, rc,w=0.9, rp,w=0.2 where
w denotes a side wall. Other values have been studied, but
the qualitative behavior is unchanged. The main effect of
increasingsdecreasingd ra,b is to increasesdecreased the
granular temperature which in general merely moves the on-
set of segregation to slightly higherslowerd compacity values.

The parameters then are listed in Table I.

B. Simulation method

We have simulated the numerical model via an event
driven codef15g. The process is as follows:

s1d For each particle, predict when it will next collide.
s2d Identify the first collision to occur.
s3d Move the particlessd involved so that they touch.
s4d Update the velocities of the particlessd involved

schange in velocity due to damping and noise since they
were last updatedd.

s5d Collide the particlessd f17g.
s6d Repredict the next collisionssd of the particlessd and

their neighbors.
s7d Repeat from 2 until time has advanced bytminupdate/2
s8d Update all particles that have not been updated in the

last tminupdate/2 s.
s9d Repeat from 1 until time has advanced byttakedata.
s10d Record data.
s11d Repeat froms1d.
The prediction of collisions assumes that the particle’s

velocities do not change during their motion. The error
caused by this is small provided thattminupdate!minstad,
whereta=ma /ga is the time constant of the velocity decay.
We settminupdate=0.013minstad.

The hard sphere model with inelastic collisions can un-
dergo inelastic collapsef18g, where the particles undergo an
infinite number of collisions in a finite time. Clearly a simu-
lation that implements each collision will “stall” in these
circumstances. One way around this unphysical singularity is
the tc modelf19g which prevents the collapse by setting
ra,b=1 for any particle which collided within the last
ttcolmin seconds. We found that forttcolmin,1310−4 the re-
sults did not change. For the results presented here we chose
ttcolmin=5310−5. The time between consecutive collisions of
a particle follows a broad distribution which would diverge

for small times were it not for the “cutoff” due tottcolmin. For
times large compared tottcolmin the distribution is close to
exponential with a characteristic time of order 10−2 which
depends on the compacity. For comparison,tc=3.9 andtp
=5.2310−2.

The initial conditions were created by running a reduced
size systemNc/25, Np/25, of twice the aspect ratio with
particles initially placed randomly on a square lattice. An
external force was applied to compress the particles into an
area of sizeLx/53Ly/5. The particles were then allowed to
move in this box without the external force until equili-
brated. The initial condition was then created by tessellating
the full system size with 25 replicas of the reduced system.
To prevent long-range order the replicas were randomly in-
verted in both thex and y directions sthe differing noises
received by the particles in conjunction with the chaotic be-
havior of the particles would rapidly remove any correlations
in any cased. During this stage, both particle species had the
same properties, includingra,b=1, except for their radii. This
method produced initial conditions which appeared to be as
homogeneous as those for the experiment.

The simulations were run on standard PCs. For compari-
son with the experiments our results are for the same system
sizes18 cm39 cmd, except where stated otherwise. The as-
pect ratio is here 2:1 in all cases.

III. RESULTS

As with the experiments, we used the number ofps, Np as
our control parameter. The main quantities measured were
those found experimentallyf1,6,7g and related to thec’s
only: the mean stripe width,W, and the local density,ri, of
the ith particle. We also visualized the system and watched
its behavior. In addition, we also measured the area available
to the p’s, and the kinetic energy or “granular temperature”
of the particles.

W measures the mean width of the stripes in thex direc-
tion by pixellating an image of the system, deciding which
pixels Px,y are within ac domain, then running along each
pixel row Py and counting the width and number of domains.
All the rows Py are summed and the average domain width
found. WhetherPx,y is within a domain is decided by blur-
ring the image with a Gaussian smoothing function and then
setting a threshold. This measure was used inf6,7g even
when the domains had not formed into stripes since it pro-
vided a simple measure of the domain sizes in the longitudi-
nal direction.

The normalized local densityri was found by Voronoi
tessellationf20g of the c’s, such that eachci has around it a
polygonal area all points of which are closer toci than to any
other c. ri is then the minimum possible area, which is
2Î3Rc

2, divided by the polygonal area. Polygonal cells on the
edge of the system which are not bounded are discarded.

In addition toW as a measure of the amount of coarsen-
ing, we also measured the area available to thep’s. This
“available area” is just the fractional area of the system in
which a p could be placed without overlapping ac. Eachc
has a circular “excluded area” around it of radiusRc+Rp,
inside which the center of ap cannot be placed. If allNc c’s

TABLE I. The parameters used for the simulation results de-
scribed belowsSI units are used at all times unless stated other-
wised. sxa

andsya
are thex andy components ofs.

Property c value p value

ma mass 1.68310−5 5.2310−7

Ra radius 7.50310−4 5.4310−4

ga damping term 4.4310−6 1.0310−5

sxa
noise term 8.2310−8 1.0310−7

sya
noise term 8.2310−8 1.0310−7

ra,b rc,c=rc,w=0.9 rc,p=rp,w=0.2

ra,b rc,p=0.2 rp,p=0.1
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are widely separated, the available area is 1−Nc psRc

+Rpd2/LxLy, while if all thec’s are hexagonally close-packed
in one domain the available area will be largers<1
−Nc 2Î3Rc

2/LxLyd since the excluded areas now overlap.
Thus the available area gives a measure of how segregated
thec’s are. In Sec. IV B we will show that the available area
is relevant to noise segregation.

The parameters used are given in Table I, the system sizes
used are the experimental size,Lx=0.18 m,Ly=0.9 m, or
1/4 of the experimental area,Lx=0.9 m,Ly=0.45 m.

Figure 1 shows 6 images of the evolution of a coarsening
system. It can be seen that the initial segregation into rela-
tively small domains is rapid. This is followed by slower
coarsening as domains merge and as larger domains grow at
the expense of smaller ones that “evaporate.” This growth
rate is also clearly seen in the time-series plots of Figs. 3 and
4. Figure 2 shows three images of the system at differing
compacities for late times, the lowest compacitysC=0.446d
shows a binary mixture, the secondsC=0.582d a segregated
“liquid” which has mobile and transient clusters and shows a
slight anisotropy, and the thirdsC=0.717d shows a system
that has coarsened into stripes. The first two are in a steady

state while the third is still evolving slowly due to the high
compacity sfor a strictly two-dimensional systemd which
causes particles to be “blocked” by other particles.

Figure 3 showsWCstd for several compacities. AsC in-
creases, thec’s, which were initially mixed with thep’s,
coarsen into domains whose size increases withC. The
early-time coarsening is rapid, followed by slower coarsen-
ing and then saturation at some relatively steady value. For
the lowest compacities, there is no coarsening, the system
remains in a mixed, disordered state. The highestC value
shown has not reached a final steady state, the stripes are still
moving and merging at a very slow rate compared to the
initial coarsening. At higher compacities, the system be-
comes blocked or jammed, the particles being unable to re-
arrange themselves in two dimensions, the slow time scales
of the top curve show the onset of this jamming. This jam-
ming does not occur to the same extent in the experimental
system since the particles do not always form a monolayer
andp’s can move out of the way ofc’s by “riding up” on top
of each other.

Figure 4 shows a plot of the value of the area available to
the p’s against time, it is similar to that forW. It is a more
repeatable measure thanW since it is less affected by stripes

FIG. 1. The time evolution of a simulation showing the coarsening into domains for a system of 1/4 the area of the experiment and
C=0.6721. The times are, top left:t=0.04 s, top right:t=4.18 s, middle left:t=8.37 s, middle right:t=16.75 s, bottom left:t=33.51 s,
bottom right:t=62.83 s. Thep’s are colored black.
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merging, for example, two runs with the same parameters
naturally differ due to the chaotic behavior of the particles.
This means that for high compacities merging of stripes in
two realisations at the same parameters may occur at differ-
ent times, causing theWCstd curves to differ between runs at
late timesfsinceWCstd is inversely proportional to the num-

ber of domainsg. The available area is less affected by this
and thus provides a “cleaner” measure of the coarsening.
Thus for later results we will use the available area, although
W provides similar, if more noisy, results. Experimentally,
the available area has not been measured since the experi-
mental system was only imaged in its central region, thus the
number ofc’s changes with time making the measure some-
what arbitrarysthe changes due toc’s entering or leaving the
system would be more significant than the coarseningd. We

FIG. 2. Examples of a binary mixture, segregated liquid, and segregated stripes. Compacities are 0.446, 0.582, and 0.717, respectively.
p’s are colored black. The pictures were taken after 100 s for the gas and 200 s for the liquid and crystal, by which time the first two have
reached a steady state while the third is still slowly evolving.

FIG. 3. Plots ofW against time for various compacities. From
the right, top to bottom, the compacities decrease fromC=0.717 to
C=0.401 in uniform increments. Thus it can be seen that for lowC
the system does not coarsen while whenC is increased, the system
coarsens to a roughly constant value which increases withC. For
the largest value ofC, the system has undergone rapid initial coars-
ening but then slowed as the large domains move more slowly,
especially at this high compacity where the system is becoming
somewhat “jammed.”W was measured every 0.0209 s.

FIG. 4. Plots of thesfractionald available area for thep’s against
time for various compacities. From the right, top to bottom, the
compacities decrease fromC=0.717 toC=0.401 in uniform incre-
ments. The conclusions are similar to those for Fig. 3 except that
the curves here always remain in the same order. The available area
was measured every 0.838 s.
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note that for the highest compacity curve, the area available
has increased by<0.15 while the maximum range of the
available area stated before is<0.30.

In Figs. 5 and 6 we plot the late time values ofW and
available area as a function of the compacity. This was done
by fitting exponentials to the time series of the type shown in
Figs. 3 and 4 and using the late-time values. We do not claim
that the time series are exponential, but the fits provide us
with a reasonable measure of the late-time values. TheW vs
C curve is the same measure as that used experimentally in
f7,21g to claim a mixed state to segregated state phase tran-

sition for the experimental system. Inf7g a square root curve
was fitted to the right-hand side of the data, the data to the
left of the transition being taken to be roughly constant, i.e.,
WsatsCd=B for C,Ctransition and WsatsCd=B
+DÎC−Ctransition for C.Ctransition, whereB and D are con-
stants. From Fig. 5 we see that this is not the case for the
simulation data, which, asC is increased, initially rises
slowly, then increasingly rapidly before slowing again for
largeC. There is no indication of a discontinuity in the gra-
dient of the order parameter, merely a rapid increase. Inf21g
the same experimental data is presented with a sigmoid
shaped “guide to the eye” curve rather than a square root. In
our opinion the simulation data is similar to the experimental
data but not to the square root form suggested inf7g. The
main conclusion from both the experimental and simulation
WsatsCd curves is thatWsatsCd has a roughly sigmoid shape,
with WsatsCd increasing rapidly withC in the central region.

The simulation value ofC at which the rapid increase
occurs s<0.58d differs somewhat from the experimental
value s0.647±0.049d f7g. In the next section we show how
this value changes continuously as we vary the noise strength
or other parameters. Thus, by increasing the noise strength
we can increase the value ofC at which the rapid increase
occurs.

Figure 7 shows histograms of the local Voronoi density
for various compacities, the results are qualitatively similar
to the experimentally reported onesf6g. At the lowestC val-
ues, corresponding to the mixed state, the distribution is
peaked at low densities as one would expect for unclustered
c’s. At high C the distribution is peaked at large densities as
one would expect for clusteredsi.e., segregatedd c’s. There is
a crossover between these two cases, with Fig. 7sdd showing
a broad histogram due to almost the full range of densities
being present in almost equal weights. Unlike the experimen-
tal results however, the highC distribution also has a peak at
low density caused by a small fraction of isolatedc’s which
are not present in the experiment. There is a crossover be-
tween these two extremes asC is increased, the central 4
figuressb–ed show this crossover. Followingf6g, we plot the
location of the peakssd and their widths as a function of com-
pacity in Fig. 8. Inf6g the peak width used was the full width
3/4 maximum since the peak did not extend far enough
above the rest of the distribution for a full width 1/2 maxi-
mum to be meaningful. Here we did the same although a full
width 3/4 maximum also does not exist in one case. Figure 8
is qualitatively different from its experimental equivalent and
we conclude that although the histograms are qualitatively
similar, the results derived from them are not.

The results presented here show that our numerical model
reproduces the segregation and its qualitative behavior with
C of binary gas, segregated liquid, and segregated stripes as
seen experimentally. This behavior is not immediately obvi-
ous from the model rules—it emerged from the set of rules
which we believed contained the important microscopic fea-
tures of the experiment. We have also shown thatW as a
function of time and its saturated value as a function of com-
pacity behave in a qualitatively similar manner to the experi-
ment. These reproductions of experimentally observed be-
havior lead us to conclude that the “necessary features” listed

FIG. 5. Plot of the saturatedslate timed mean stripe width as a
function of compacity. The saturated values were found by fitting
exponentials to theWstd curves. Two runs were done at each com-
pacity, and the results averaged. The error bars are based on the
difference between these two runs. Inset: the fitted curve ofW
against compacity for the experimental results, as reported in Ref.
f7g.

FIG. 6. Plot of the saturatedsi.e., late timed sfractionald area
available to thep’s as a function of compacity. The saturated values
were found by fitting exponentials to the available-areastd curves.
Two runs were done at each compacity, and the results averaged.
The error bars are based on the difference between these two runs.
Note that the error bars are smaller than for theW vs C plot since,
as stated in the text, the available area is a “cleaner” measure.
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in Sec. II capture the essential behavior of the system. None-
theless, our phenomenological numerical model does not
quantitatively reproduce the experimentsit was never ex-
pected to do sod, in particular the Voronoi histograms differ

from the experimental ones sufficiently that the data derived
from themsFig. 8d is qualitatively different.

IV. SEGREGATION MECHANISMS

Having shown that our numerical model is relevant to the
experiment, we now use it to investigate segregation mecha-
nisms.

A. Segregation due to oscillatory driving

That the domains are anisotropic and indeed form stripes
at highC indicates that the anisotropy of the driving is sig-
nificant. Experimentally the stripes form perpendicular to the
driving even for aspect ratios greater than 1, e.g.,Ly/Lx=2.

The side-to-side driving causes the two species to move at
different rates due to their differing masses and friction co-
efficients. A single particle will oscillate withkxastdl
=sA/Î1+v2sma /gad2dsinsvt+fd where the average is over
the noise andf is a phase shift relative to the driving. Thus
kxcstdl=6.0310−6 sinsvtd and kxpstdl=4.3310−4 sinsvtd.
Thus thep’s would “like” to move a distance of order their
radius during a cycle while thecs hardly move. Consider a
state of onlyp’s, if we remove the noise then all thep’s
move in the same sinusoidal way, if we transfer to thesnon-
inertiald reference frame in which they are at rest, we see that
this is identical to the state with no sinusoidal drivingsapart
from edge effects at the wallsd for which the dissipation
causes the particles to be stationary. The same can be said of
a state of onlyc’s. In a mixed state, however, thep’s will
collide with thec’s and the system will “scatter” into a dif-
ferent state. Stable states, i.e., those that do not undergo fur-
ther scatterings, will be those for which thec’s are separated
from the p’s in the x direction by distances of at least the

FIG. 7. Normalized histograms of the Voronoi
densities plotted against normalised density, for
C=0.401sad, 0.559sbd, 0.582scd, 0.604sdd,
0.627sed, and 0.740sfd. Note the crossover with
increasingC from a single peak on the left to two
peaks, then a larger peak on the right. For each
compacity the data was measured in the steady
state from 45 frames of 1600c’s each.

FIG. 8. Plots of data derived from the Voronoi histograms as
shown in Fig. 7. Squares show the position of the peakssd in the
histograms, representing the “most probable” densities, the lower
curve is for the leftmost peak and the upper curve is for the right-
most peak. Filled circles show the full width of each peak at 3/4
maximumswhere the peak does have a distinct 3/4 maximumd. The
curves differ from their experimental equivalents where there was
only one maximumsthus just two single curvesd which moved
steadily to the right and where the width was peaked at an interme-
diate compacity. These differences are due mainly to the presence in
the simulation density histograms of a second peak at low density
which is always present and is caused by a small number of isolated
c’s, something not observed in the experiment.
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amplitude of thep’s oscillations. For the packing fractions
considered here, this can only happen by the two species
segregating into domains. The fact that the area available to
the p’s increases with time is consistent with this interpreta-
tion. This argument only holds when the driving is not too
large compared to the dissipation. For example if the ampli-
tude of oscillation were of order the system size then it
would not be valid. An argument similar to this was also
given in f12g.

We have studied systems with very low noise and the
results obtained agree with the heuristic argument given
above. The addition of noise, which causes particles to dif-
fuse, will tend to cause mixing. Thus there is a competition
between the periodic driving which causes segregation and
the noise which prevents it. This is shown in the results
presented below.

For the standard parameters but withsa→0.1sa, the sys-
tem segregates for all the compacities studied in Sec. IIIssee
Fig. 9d, indicating that, as expected, the noise acts to prevent
segregation. To confirm this we then gave the two species
identical parameterssthe p parametersd and set allra,b=1.
The only difference was that thep’s experienced the periodic
driving term gvtray while the c’s did not. The results are
shown in Fig. 10 and demonstrate that a difference in the
periodic driving alone can cause segregation.

For C=0.498 with the same parameters exceptga→2ga

sto reduce the granular “temperature” which is higher than
usual due to ther =1d we varieds and, as shown in Fig. 11,
the system segregates for lows and remains mixed for high
s.

These results confirm that the state of the system is a
result of a competition between the periodic driving which

causes segregation and the noise or “granular temperature”
which prevents it. Varying our control parameter,Np, causes
us to go from a mixed to a segregated state because increas-
ing Np both reduces the granular temperaturessince it in-
creases the number of collisions which are highly inelasticd
and also increases the “pressure” that thec’s feel due to
collisions with a greater number of oscillatingp’s. Figure 12
shows results for all properties set top values including all

FIG. 9. Plot of the areasfractionald available to thep’s at late
times as a function of compacity. The curve shows standard param-
eters but with low noisessa→0.1sad results, the two box points
are the equivalent results for the standard parameters. Thus it can be
seen that all compacities have segregated. For highC a few large
domains form while at lower compacities there is enough space for
a larger number of small domains to be stable. Note that the area of
the system is 1/4 that of the experimental system. The late-time
results were found by fitting an exponential to the available area vs
time curves.

FIG. 10. Plot of the areasfractionald available to thep’s at late
times as a function of compacity. The data is for a system where
both particle types are the samesstandardp parametersd except that
only thep’s feel the periodic driving. We get a mixed state for low
C and a segregated state for highC, as we did for the standard
parameters. Note that the area of the system is 1/4 that of the
experimental system. The late-time results were found by fitting an
exponential to the available area vs time curves.

FIG. 11. Plot of the areasfractionald available to thep’s at late
times as a function of the noise strengths /sstandard, for C=0.498.
Increasing the noise strength brings us from a segregated to a mixed
state. Note that the area of the system is 1/4 that of the experimen-
tal system. The late-time results were found by fitting an exponen-
tial to the available area vs time curves.
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r =0.1 but with only thep’s feeling the periodic driving,
showing that the results remain of the same form forr ,1.

Finally, we find that the system with standard parameters
does not segregate if the oscillatory motion is turned off.

These results show that the differential oscillatory driving
can cause segregation and present good evidence that it is the
responsible mechanism in the system in conjunction with the
noise which acts to prevent segregation. The transition from
a mixed to a segregated state asC is varied is due to the
compacity changing the relative strengths of these two com-
peting effects.

B. Noise segregation

It was suggested inf6,7g that the segregation mechanism
might be similar to the depletion interaction in equilibrium
binary systemsf22g. As an example consider a colloidal sus-
pension containing non-adsorbing polymers. In the ideal case
where there are no forces present, the free energy depends
only on the entropy of the system. Treating the polymers as
spheresf23g, it is clear that each colloidal particle has an
“excluded volume” around it of radiusRcolloid+Rspherewhich
the center of the polymer cannot enter. Thus the volume
available to the polymers is the volume of the system less the
excluded volumes around the colloidal particles and the sys-
tem edges. However, the excluded volumes overlap when
colloidal particles are closer than 2sRcolloid+Rsphered, thus the
volume available to the polymers, and hence their entropy, is
larger if the colloidal particles are close to each other. This
entropic “effective potential” can be large enough to cause
the colloid to coagulate. This mechanism was one reason for
measuring the area available to thep’s in our simulations.
Segregation has been observed in simulations of hard
spheres of two different sizesf24g for large size ratios, e.g.,
R1/R2=10, and also experimentally in binary mixtures of
hard sphere colloidsf25g.

We may equivalently view the entropy argument from the
kinetic point of view. Two particles which are close to each
other such that no third particle may fit in the space between
them will feel a pressure on all sides due to collisions with
other particlesexcepton their neighboring sides. Thus the
particles feel an effective attractive force. This pressure ar-
gument may be extended to systems that are not in equilib-
rium, for example the granular experiment studied here. The
size ratioRc/Rp is much closer to unity than for simulated
equilibrium segregating systemsf24g, implying that the dif-
ference in size alone does not cause segregation.

In our out-of-equilibrium system there are several pos-
sible differences between the two species besides a differ-
ence in size. For our system, it seemed possible that the
lighter, faster movingp’s might, through the differential
pressure mechanism, cause thec’s to coagulate even in the
absence of periodic driving. As stated before, this was not
observed for the standard parameters. We therefore increased
the noise of thep’s and/or reduced the noise of thec’s in
order to increase thep to c temperature and hence pressure
ratio. Noticeable segregation occurred over a wide range of
compacity values forsp→10sp, for sp→2sp and sc
→0.1sc, and also forsc→0.05sc. While the first of these
cases is outside the reasonable parameter range, the second
and third are at parameters which might be physical. Figure
13 shows an example for the third case. Notice that many of
the c’s have coagulated at the walls as one would expect
since the pressure argument for two-particle attraction also
applies to the particle-wall case. Although this marked con-
gregation at the walls is observed in experiments with col-
loids, it is not observed in the experiments off6,7g. Reintro-
ducing the periodic driving of the end walls prevented
congregation at thex=0,Lx walls whose large momentum
transfer to the particles, as stated earlier, gives rise to low-
density regions next to them. However, for all parameter
values studied that displayed segregation with no driving, the
c’s still congregated at they=0,Ly walls when the driving
was turned on. Since stripes that touch the top and bottom
walls are stable in the experiment, it seems unlikely that
agitation due to the motion of the top and bottom walls is
what prevents the liquid domains from coagulating there. It
is possible to remove this experimentally unobserved effect
by giving sx and sy differing values such thatsxc is lower

FIG. 12. Plot of the areasfractionald available to thep’s as a
function of compacity, the parameters are as for Fig. 10 except that
here the coefficients of restitution are all 0.1 rather than 1. It can be
seen that this does not qualitatively change the results. Note that the
area of the system is 1/4 that of the experimental system.

FIG. 13. Segregation ofc’s for the standard parameters but with
no periodic driving andsc→0.05sc. Notice the domains ofc’s at
the edges of the system. Note that the area of the system is 1/4 that
of the experimental system.p’s are colored black.

SEGREGATION MECHANISMS IN A NUMERICAL MODEL… PHYSICAL REVIEW E 71, 041301s2005d

041301-9



and syc is higher than that needed to produce segregation.
while we had previously keptsx=sy for simplicity, it is rea-
sonable thatsx.sy since random motion caused by sticking
and slipping is likely to be larger in the direction of driving.
This extra modification produces segregation withoutcs con-
gregating on the wallssprovided that thex=0,Lx walls are
“driving” d whether there is periodic driving of the tray base
or not. Figure 14 shows an example.

We therefore conclude that this differential pressure seg-
regation mechanism may play a role in the experiment. We
had to “tune” the parameters which implies that the mecha-
nism is less robust than the oscillatory driving mechanism.
Accurate experimental measurements of the parameters
would help to resolve whether this mechanism is indeed
present. Directly distinguishing the two mechanisms men-
tioned would require accurate tracking of all particles and
their collisions, coupled with investigations of other binary
mixtures in order to get readings for different noise to side-
to-side movement ratios. This is likely to prove a difficult
task and at present all we can conclude is that differential
pressure segregation may play a role in the experiment in
addition to the differential driving discussed above.

To demonstrate that different temperatures alone can
cause segregation we have studied two species with standard
p parameters but allra,b=1. The temperature difference is
produced bysp→40s and also setting allg→100g so that
the time constantst=m/g are sufficiently small that particles
remember the temperature of their heat baths rather than only
the temperature of their previous collision partners. This im-
posed temperature difference causes coagulation of the lower
temperature particles as shown in Fig. 15. While these pa-
rameters are very different from the standard ones, they
clearly show another segregation mechanism in a nonequi-
librium system and that the heuristic arguments regarding
pressure differences out of equilibrium are valid.

C. Further mechanisms

One further possible mechanism is that the noise of the
particles is correlated among the particles but differently for
thec’s and thep’s. This could cause segregation in the same

way as the periodic driving since it also would produce dif-
ferent collective motions for the two species. The correlation
could be caused by, for example, thep’s all changing from
sticking to the tray base to slipping at the same time in the
periodic cycle. While this mechanism is at least plausible,
the collective motions due to correlated noise and due to
periodic driving swhich would have caused the correlated
noise in the first placed would not be clearly distinguishable.
At the level of this phenomenological numerical model
which breaks the driving into a periodic and a noise compo-
nent, any such mechanism is, therefore, not meaningful.

It is possible that there are other segregation mechanisms
not discussed here, however we believe that we have consid-
ered the ones most likely to be relevant in the experiment.

V. CONCLUSION

In this paper we have introduced and numerically studied
a srelativelyd simple phenomenological numerical model of a
recently reported granular segregation experiment. We have
measured the same quantities as measured experimentally
and shown that our numerical model reproduces most of the
features of the experiment, the most important being a tran-
sition from a mixed to a segregated state as the compacity is
increased. This behavior is nota priori built into the numeri-
cal model—it emerges from the simple rules governing the
motion of the particles. This is significant as it shows that we
have a set of basic features necessary for an explanation of
the experimentally observed behavior.

We then used our numerical model to investigate and
identify segregation mechanisms and elucidate the experi-
mental behavior. We showed that the transition from mixed
to segregated state in the numerical model is caused by com-
petition between the different driving felt by thec’s andp’s,
which acts to cause segregation, and the noise, which acts to
prevent segregation. We are led to conclude that this is also
the main mechanism present in the experiment. We have also
considered and demonstrated segregation due to different
pressures and shown that it is possible that this might play a
role in the experiment. The differential driving segregation
mechanism is applicable to many binary driven systems
f11,13g.

FIG. 14. Segregation ofc’s for standard parameters but with
scx→0.05scx andspx→2spx and no driving of the tray base. Thus
we get segregation but without coagulation at the top and bottom
walls. The left and right walls are oscillating and prevent coagula-
tion there. Note that the area of the system is 1/4 that of the ex-
perimental system.p’s are colored black.

FIG. 15. Coagulation ofc’s after 96 s due only to temperature
differenceTp=1600Tc. The system is still evolving, the groups of
c’s in the center will eventually attach to the sides of the system.
Note that the area of the system is 1/4 that of the experimental
systemp’s are colored black.
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This work goes some way to explaining the intriguing
experimental results off1,6,7g; Experiments with other par-
ticle types in conjunction with more accurate experimental
measurements, particularly with regard to particle positions
and velocities, should allow more accurate comparisons with
our numerical model and also refinements of the model. In
particular more accurate values for the parameters used.

Now that we have shown our numerical model to be rel-
evant to the experimental system, it is possible to use it fur-
ther to investigate the “granular statistical mechanics” of this
type of system. In particular, it may be of use in developing
and testing theories for agitated granular mixtures before at-
tempting the more difficult task of accurately comparing
with experiments.

Note added in proof:Recently, we learned of work by
Pooley and Yeomansf26g in which, analytically, they show
stripe formation for binary fluids where one fluid is driven by
an external periodic force, and suggest as here that the same
mechanism causes stripe formation in horizontally driven bi-
nary granular mixtures.
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