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Two-dimensional nonlinear nonequilibrium kinetic theory under steady heat conduction
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The two-dimensional steady-state Boltzmann equation for hard-disk molecules in the presence of a tempera-
ture gradient has been solved explicitly to second order in density and the temperature gradient. The two-
dimensional equation of state and some physical quantities are calculated from it and compared with those for
the two-dimensional steady-state Bhatnagar-Gross-Krook equation and information theory. We have found that
the same kind of qualitative differences as the three-dimensional case among these theories still appear in the
two-dimensional case.
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I. INTRODUCTION dealing with the collision term of the Boltzmann equation.
] ) o Although it was believed that its results approximately
The behaviors of gases in nonequilibrium states have reagreed with those of the Boltzmann equation, some qualita-

ceived considerable attention from the standpoint of undertve disagreements have been found in the second-order so-
standing the characteristics of nonequilibrium phenomengutions[18].

[1-9]. The kinetic theory has contributed not only to the Following its success and usefulness, the Boltzmann
understanding of nonequilibrium transport phenomena irequation is widely used in order to describe various gas-
gases but also to the development of general nonequilibriurphase transport phenomena such as granular §a9e82,
statistical physics. It is well accepted that the Boltzmannplasma gase$33,34], polyatomic gased435], relativistic
equation is one of the most reliable kinetic models for de-gases[36], and chemically reacting gases. Chemical reac-
scribing nonequilibrium phenomena in gas phases. In théons in gas phases have been studied with the aid of gas
ear|y stages of studies of the kinetic theory’ great effort ha§0”iSi0n theory. For the differential cross section of chemical
been paid for solving kinetic model equations such as théeactions, the line-of-centers model proposed by Present has
Boltzmann equation and deriving nonequilibrium velocity P€en accepted as a standard model to describe the chemical
distribution functions and macroscopic nonequilibrium trans-"éaction in gaseg37—44. This model can be derived explic-
port equations in terms of microscopic molecular quantities!tly Using a collision law of hard-core molecules, and the
These attempts were strongly related to the development ameter of hard-core molecules. is regarded as a distance
general nonequilibrium statistical physics such as linear non[_etween centers of monatomic molecules at contact

S : : . 37,38,42. In equilibrium states, experimental results includ-
equilibrium thermodynamics, Onsager’s reciprocal theoremrng the t%mperqature dependence (F:)an be fitted by the results
and the linear response thedi}0,11].

Among various methods which give normal solutions ofrom the line-of-centers mod§87,40,43. Under nonequilib-

he Bol i he Ch Ensk hod h rium situations such as gases under a heat flux or a shear
the Boltzmann equation, the Chapman-Enskog metho w, their pure nonequilibrium contributions to the rate of
been WlQer accepted as the most reliable method. It ha hemical reaction have also attracted much attention
been believed that Burnett determined the complete secongaq 43-49 Since nonequilibrium correction terms of the
order solution of the Boltzmann equation by the Chapmangemical reaction rate are quadratic functions of nonequilib-
Enskog method1,12,13. The physical importance of the

d-ord e has b 5o d df rium fluxes, the explicit nonequilibrium velocity distribution
second-order coefficients has been also demonstrated for dfEl'nction of the Boltzmann equation for hard-core molecules
scriptions of shock-wave profiles and sound propagati

X ,Orﬂo second order is needed to derive it based on the line-of-
phen.om('an@14—lq. However, it was reported that Burnett S centers moddI39,43,45,46 The pure effect of a heat flux on
She chemical reaction rate has been recently calculated using

velocnc)j/ d'jt”t;u“%l” funclflon IOf trlmegoltozmz;nn e;]quaglondto the second-order velocity distribution function of the Boltz-
second order for Maxwell moleculgs7]. On the other hand, 1,25 equation for hard-core molecul@s$] In the Letter, a

because of its mathematical difficulty, the complete Secondthermometerto measure a relation between a kinetic tem-

ordtler s%lutlobn of tze Bolézma}nn equaglon 1;0r halr'(ctii?co[]e rnOI'perature of gases under a heat flux and a temperature of a
ecules has been derived quite receffig]. Its validity has oot path has been also proposed.

been also demonstrated by numerical experiments of both a It is one of the most significant subjects in modern statis-

molecular dynamics simulation and a direct simulationyeo| hhysics to construct the nonlinear nonequilibrium statis-

Monte Carlo method19,20. Other kinetic models like the .. ; ; :
’ . tical mechanics and thermodynamics for a strongly nonequi-
Bhatnagar-Gross-Krool8GK) equation[21-2§ have been. librium state beyond the local equilibrium state, called the

proposed mainly to avoid the mathematical difficulties iN|ocal nonequilibrium state. Zubare0,51 has developed
nonequilibrium statistical mechanics and obtained the gen-

eral form of a nonequilibrium velocity distribution function

*Electronic address: kim@kuchem.kyoto-u.ac.jp with the aid of the maximum entropy principle. It is ex-
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panded to first order under some constraints to obtain the

first-order nonequilibrium velocity distribution functids2]

Jou and co-workers have derived the nonequilibrium velocity

distribution function to second order by expanding it to sec-

ond order under some constraints, which is called informa- b
tion theory[53,54]. Information theory has attracted interest
in the development of a general framework for nonlinear
nonequilibrium statistical mechanics which can describe th%
local nonequilibrium state. The nonequilibrium velocity dis-

tribution function from information theory has been applied

to nonequilibrium systems, and some predictions were mad&€ction. Assume that we have a system of dilute gases in a
For example, in dilute gas systems under nonequilibriun?teady state_, with velocity distribution functld@_:f(r_,vl).
fluxes, an anisotropic pressure and a nonequilibrium temIhe appropriate steady-state Boltzmann equation is
perature which is not identical with the kinetic temperature Vi V= I(F. f 1

have been predictdd5-5§. There are also several applica- 1 V=it D

tions of information theory to chemically reacting gaseswhere the collision integral(f, f,) is expressed as

[39,43. However, some qualitative differences between in-

formation theory and the .Boltz_mann e.quation.have been re- I(f,f) = J f (14— £,f,)gdbdv, 2)
cently reported, and the invalidity of information theory as

universal nonlinear nonequilibrium statistical mechanics has ... ., _ , r_ N o , .
been demonstrateis9]. with f;=f(r,v;) and f,=f(r,v;): v; and v, are postcolli

There have been no efforts to solve two-dimensional ki_S|onal velocities ofv; andv,, respectively. The relative ve-

netic models to second order and discuss the twoliﬁgtga%(:vr\:qoan:]?tlﬁxgi ?TTF?hzn:nar(tael;e&:cvégtr?rtﬁglgi?eg?s
dimensional second-order nonequilibrium phenomenat g 12 9

though two-dimensional transport phenomena have creatalPns of the relative velocity before and after the interaction

great interes{60—64 The main aims of this paper are to IS reprgsented by. The relative pos_ition of the two mol-
reconstruct all the results obtained in Réfs8,46,59 in the ecules is represented iy called the impact parametésee

case of two dimensions and to discuss properties of the two:;]'t%r ;c):.ti(-)r:ebg\:\?;ecrtl ﬁfgﬂ&fg (11?1%62?12 Z?lolﬂlr:jdss (:citfr;/ethe
dimensions nonlinear nonequilibrium phenomena which re: . . ’ - PE
flect the local nonequilibrium state. In Secs. Il and IIl, we !ntermolecular interaction so as to explicitly determine the

derive the explicit velocity distribution function of the two- impact parametels in the coll|§|on termi(f,, f,). Note thaty
dimensional steady-state Boltzmann equation for hard-disk2" be expressed as a fur)ct|onb01_for a central _force.
molecules to second order by the Chapman-Enskog method. Suppose that the velocity distribution functiépcan be
In order to achieve that, we have extended the method ngpanded as

developed in Ref{18] to the two-dimensional case. We also f=fO+ Y+ 24 =01+ g+ g2+ o,
obtain the nonequilibrium velocity distribution functions to

second order for the two-dimensional steady-state BGK 3
equation and information theory in Secs. IV A and IV B, where the small expansion parameter will turn out the Knud-
respectively. All the nonlinear nonequilibrium velocity distri- sen numbeK=I/L, which means that the mean free path of
bution functions are graphically compared in Sec. V. Usingmolecules| should be much less than the characteristic
the two-dimensional nonequilibrium velocity distribution |ength L for changes in macroscopic variable‘g?) is the
functions to second order, we discuss differences amongcal Maxwellian distribution function, written as
those theories appearing in the two-dimensional nonlinear

nonequilibrium transport phenomena in Sec. VI. In Sec. VII, ©) _ n(rym _ mvi

we explain how to calculate the effect of steady heat flux on 1~ 27kT(r) 2kT(r) |’

the rate of chemical reaction based on the line-of-centers
model in the two-dimensional case and apply the two-With mmass of the molecules andthe Boltzmann constant.

dimensional nonequilibrium velocity distribution functions N(r) @ndT(r) will be identified later as the density and tem-
to second order to calculate it. We have also investigated theerature at positiom, respectively. Substituting E¢3) into
dimensional dependence appearing in the nonlinear nonequf?e two-dimensional steady-state Boltzmann equatiprwe
librium phenomena which reflect the local nonequilibrium arfive at the following set of equations which we will solve

state. Our discussion and conclusion are given in Sec. VIlIcompletely in this paper:

X

FIG. 1. Schematic description of an interaction in two
imensions.

(4)

L[fP 1 =vy - V£ (5)
Il. CHAPMAN-ENSKOG METHOD FOR SOLVING THE o first order and
TWO-DIMENSIONAL STEADY-STATE BOLTZMANN
EQUATION L[FO1p? = v, - W £D - J(£, 1) (6)

Let us introduce the Chapman-Enskog method to solvéo second order. The linear integral operai[)ﬁ‘lo)] is defined
the two-dimensional steady-state Boltzmann equation in thias
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LIFP1X, = f f FOFPX] = Xy + X5 = Xp)gdbdvy.  (7)

The solubility conditions of the integral equatidb) are
given by

f Dy, - Vv, =0, (8)
where®; are collisional invariants:
1 2
q)l:]., (I)szvl, <I)3:§mvl. (9)

Substituting Eq.(4) into the solubility conditiong8), it is
seen thainkT is uniform in the steady state. We use this

result in our calculation to second order. Similarly, the solu-

bility conditions of the integral equatiof®) are given by
f dv, - ViYdv, =0, (10)

which will be considered in Sec. Il C 2.
To construct solutions of the integral equatigfsand(6)

PHYSICAL REVIEW E 71, 041203(2005

|

(14)

with ¢, = (m/2«T)Y?v, the scaled velocityS(X) is a Sonine
polynomial, defined by

ki2 *
2 1Y, (c)SUcd)

r=0

o0 o0 m
f= f&°>[2 rBySH(c) + 2, (—)
=0 k=1 \ 2T

(1-0) e = 3 Tpr ks DENP (19
p=0

and
Yir(C1) = By Y(Cy) + CieZi(Cy), (16

where B,, and C,, are coefficients to be determined. Intro-
ducing the polar coordinate representation égr i.e., ciy
=C, COS¥H), Cyy=Cy SiN G,

W2
Y(c)) = (%) ck coske (17)
and
W2
Zcy) = <%) ck sink. (18)

definite, four further conditions must be specified; we iden-The assumption of the velocity distribution function of Eq.

tify the density

n(r)szldvlszgo)dvl,

the temperature

(11

mv? mv?
n(r)«T(r) = f T1f1dv1:f 71f(1°)dvl, (12)
and the mean flow
CO = J mVlflde_ = f mVlfg_O)de_. (13)

Here we assume that no mean flow—i@q=0—exists in

the system. The introduction of these conditions distin-

(14) has some mathematical advantages in our calculation.
First, it is sufficient to determine the coefficiedg, because

C,, can be always determined froBy, by transformations of
axes. Second, some important physical quantities are related
to the coefficientsB,, and C,: e.g., the density11), the
temperatur€12), and the zero mean floyl3) with f; in Eq.

(14) lead to the four equivalent conditions

Boo=1, B1p=C10=0, Bp=0. (19
Similarly, the pressure tensé¥; defined by
2kT\? (™
Pij = <?> f dClmCliC]_jfl, (20)

for i,j=x andy, is related toB,, and Cy.
The coefficientsB,, except for those in Eq19) can be
calculated as follows. Multiplying the two-dimensional

guishes the Chapman-Enskog adopted here from the Hilbeft€ady-state Boltzmann equatidh by

method in which the conserved quantities are also expanded

[2]. We assert that conditionid1)—(13) do not affect all our

results in this paper. It should be noted that, to solve the

integral equationg5) and (6), we should consider only the
case in which the right-hand sides of E¢S). and(6) are not
zero: if the right-hand sides of Eq&) and(6) are zero, the
integral equationg5) and (6) become homogeneous equa-
tions which do not have any particular solutidrg.

IIl. METHOD FOR SOLVING THE INTEGRAL
EQUATIONS

A. General form of the velocity distribution function

To solve the integral equatior{§) and (6), we assume a
general form of the velocity distribution function:

m

2T

K2y, (cp)S(cd)
I'k+r+1)

|

and then integrating oveé2«T/m)*?c,, it is found that

K 1/2 K 1/2
- (£> <Cl' Vri>au +V. |:<2mT> <Cler>av}

< cxl
2kT\2
:(%> f f f (Qi, - Qu f1fgdbdc,dc;, (22)

where TI'(X) is the gamma function, (X),,
=(2«T/m) [ Xfidcy, and Qy, represents the postcollisional
Qx- We should calculate both sides of HEg2) for everyk
andr, because Eq(22) leads to simultaneous equations to
determineBy,.

Quelcy) = 4( (21)
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TABLE I. Numerical constant®,, in Eq. (31).

r r<1 r<2 r<3 r<4 r<5 r<o6 r<7

1 1 1.026 1.029 1.030 1.030 1.030 1.030
2 - 5.263x1072 5.657x102 5720102 5.734x102 5.738<10°2 5.739x1072
3 - - 4.335x10%  4.820x 1073 4.920x10° 4.946x103% 4.954x 1073
4 - - - 3.671X10* 4.188<10% 4.313x10* 4.349x10°*
5 - - - - 2.966x10°° 3.452<10° 3.583x107°
6 - - - - - 2.241x10% 2.651x10°®
7 - - - - - - 1.576x 1077

For convenience, we introdud®,, and A,, as the left- 2kT
hand and right-hand sides of E@2), respectively: Flelx) = ( ) f f Qi f1f2gdc,dey, (29

2kT\1? 2kT\1? “(0)= 2

= (27) e ¥ Qe ¥ | (2T) e | we pave used01=(2TIm Qut e
(23) From Eq.(28), it is sufficient to calculateFﬁr(x) for de-
riving A . The details oF ( ) are written in Appendix B 1.

and Several epr|C|t forms ofA are also demonstrated in Ap-
pendixes C and D. From the definitiof®@3) and (24), both

2
Ay = (E) f f J QL - Q) f1f,gdbdc,dc,. (24) sides of Eq.(22) for arbitraryk andr can be calculated for
' m ke ek hard-disk molecules via

We will calculateQ),, andA,, separately. From Appendix A, QE, = A,t'r, (30)

the result ofQ),, becomes . . : -
which produces a set of simultaneous equations determining

24T \12 k 1 oT T the coefficientB,,, as is explained in Appendixes C and D.
Qe =n\ =~ r+5-3 Dkr? S Here Q) denotes),, for hard-disk molecules.
T aT I
= | D1 T +Eq 1 T + 3Dy + By, |, (25 C. Determination of By,

_ _ We will determine the first-order coefficienB, and the
where ¢ X denotesdX/di for i=x andy. Dy, and E,, are  second-order coefficienBy, in accordance with the previous

functions ofBy, andC, as is written in Appendix A. two subsections, which corresponds to solving the integral
equationg5) and(6), respectively. Here the upper suffices |
B. Collision term Ay, and Il are introduced to specify the order kf

Next we calculate the collision termy,, in Eq. (24). We

should specify the kind of the interaction of molecules so as 1. First order

to perform the calculation of the collision terfy,. For hard- We show the results of the first-order coeff|C|eB{§ of
disk molecules, the impact parameleis given by the rela-  which the solution of the integral equati¢8), ¢(l), is com-
tion posed. They can be written in the form
X 24,T
b=dcosZ, 26 kr = 9c1b 31
2 (26) it (3D)

whered is the hard-disk molecular diameter. The collision Values of the constants;, are given in Table |. The calcu-

differential cross section is obtained by lation of Bkr is explained in Appendix C. It is seen tHB\'I, is
of the order of the Knudsen numbét. Though B}, was

_d X derived only to the lowest-order approximatipd2l—i.e.,
do= -2 sindx. 27 B}, for r=1—we have obtaine®), for r<7 in this paper.
This ensures the convergence of all the physical quantities
Therefore A, for hard-disk molecules);!, becomes which will be calculated in this paper. It should be mentioned
4 (2 that our value oB,, for the lowest Sonine apprOX|mat|0n—
H_U 1,y _pl X i.e., r=1—is identical with Sengers’s valy&2]. OnceB
Ba 2]0 [Fiab0 = Fie(0)Jsin 5 dx. @8 ave been calculated;, can be written down dlrectly by
replacingd, T by 4, T by symmetry. Substituting all the first-
whereF{,(x) is defined as order coefficients derived here into E4.6), we can finally
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TABLE II. Numerical constant®g, in Eq. (36).

r r<2 r<3 r<4 r<»5 r<6

2 2.778 2.530 2.497 2.490 2.488
3 - -3.292x 1071 -3.602x 1071 -3.663x 1071 -3.679x 1071
4 - - -2.676x 1072 -3.038x 1072 -3.125x 1072
5 - - - -2.294x 1078 -2.670x 1073
6 - - - - -1.882x 104

obtain the first-order velocity distribution functio‘r(lll). S.2

7d?n’T

By = S5 (0T)? = (4T)%]+ bR TIAT - 4TI}
2. Solubility conditions for¢(12)

Since the first-order velocity distribution functigf’ has (37

been obtained, the solubility conditions for the integral equa-
tion (6) should be considered before we attempt to derive th
explicit second-order solution&(lz). The solubility conditions
for ¢, Egs.(10), lead to the condition

alues for the constants, andb5. are summarized in Table
IIl. The calculation ofBy, is explained in Appendix D. Ow-
ing to the properties of the trigonometrical functi(ﬂﬂr can
be obtained by replacing,T)*~(d,T)? and T~ ;T in Eq.

v.JY =0, (32 (37) by 24,To,T and 2I4,4,T, respectively, using an axis
hange.
whereJV—i.e., the heat flux fof{"—can be obtained as ¢ %rg]g: can see that both & andB!! are of the order of
24T \52 = me2 K2. As is also found in the three-dimensional c{$8], we
J0 = (—) f de;— ¢, f (33)  have confirmed the fact th&{), for k=4 and 6 do not appear.
m o 2 This fact strongly suggests thEE, for all k greater than 2 do
not appear, which was also expected in Hé&8] and re-
_ KT \Y22k cently confirmed in Ref[19]. We finally obtainf\? by sub-
= RS VT, (34) stituting the second-order coefficients obtained here into Egs.

(14) and(16). Finally, we note that, though we have derived
with the appropriate value fdr, listed in Table I. It mustbe || the constants,,, by, by, andbS, in the form of fractions,
emphasized that, sinc¥”—i.e., the heat flux fof”—does  we have written them in the form of four significant figures
not appear, the solubility conditions of the two-dimensionalin this paper, since the forms of those fractions are too com-
steady-state Boltzmann equation iﬁff) lead to the heat flux plicated.
being constant to second order. This fact is in harmony with

a general property that the total heat flux should be uniform 4. Velocity distribution function to second order
in the steady state. From Ed82) and(34), we also obtain S _ _
an important relation betweeiVT)? and V2T, The velocity distribution function for hard-disk molecules

which we have derived in this subsection valid to second
(VT)? L V2T=0 (35) order is now applied to a nonequilibrium steady-state system
2T o under the temperature gradient along xhexis. In this case,

_ _ the form of By, in Eq. (36) becomes
Owing to the relatior(35), terms of V2T can be replaced by

terms of (VT)2.

b
[ — Or 2
3. Second order Bor = Wd2n2T2(a"T) ’ (38)
We write down the results of the second-order coefficients _ _ .
BY, of which ¢ is composed. Using the relatiq85), we ~ @nd, using the relationi35), By, in Eq. (37) can be trans-
can determine the second-order coefficieBl}sappearing in formed into a more simple form
Eqg. (14) as
b gl = Sz ;g2 (39
n_ or 2 kr — 2. 2-—2\0x 1)
By = wdznsz(VT) . (36) " omd®ntT
Values for the constants,, are summarized in Table Il. The where values for the constaritg, are summarized in Table
calculation ofB}, is shown in Appendix D. We have calcu- IV. The other second-order ter@,, becomes zero.

lated B{)', to the seventh approximation—i.(Bgr forr<6in From Eqgs(14) and(16), the velocity distribution function

this paper. of the steady-state Boltzmann equation for hard-disk mol-
The other second-order coefficierBF,ér in Eq.(16) can be ecules to second order in the temperature gradient along the

written in the final form X axis can be written as
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TABLE IIl. Numerical constantd), (uppeb andb5. (lowen in Eq. (37).

r r<2 r<3 r<4 r<5 r<6

0 -1.277x 1072 -1.784x 1073 2.073x 104 6.982x 1074 8.380x 1074
1 -1.007 -9.77% 101 -9.721x 101 -9.708x 107t -9.704x 1071
2 3.363x 1071 3.701x 101 3.758x 107! 3.772x 101 3.775x 1071
3 - 3.262x 1072 3.643x 1072 3.729x 1072 3.753x 1072
4 - - 2.584x 1073 2.986x 1073 3.089x 1073
5 - - - 2.091x 1074 2.461x 1074
6 - - - - 1.557x 107
r r<2 r<3 r<4 r<»5 r<6

0 4.052< 1071 4.041x 101 4.039x 101 4.038x 101 4.038x 101
1 -4.261x 1071 -4.297x 1071 -4.304x 107t -4.306x 107t -4.306x 1071
2 -4.452x 1072 -4.886x 1072 -4.968x 1072 -4.987x 1072 -4.993x 1072
3 - -4.594x 1073 -5.174x 1073 -5.304x 1073 -5.340x 1073
4 - - -4.315x 104 -4.961x 104 -5.125x 1074
5 - - - -3.688<107° -4.311x10°°
6 - - - - -2.881x 1076

0 J m 12 , proximationsby, and b, It is seen that the scaled® for
f=f"11- b T\ 2T 2 r1bycSi(c?) hard-disk molecules is strained symmetrically.
11 r=1
+ W[ > riby Sy () IV. OTHER NONEQUILIBRIUM VELOCITY
R r=2 DISTRIBUTION FUNCTIONS TO SECOND ORDER

+ 2 rlby (¢~ ¢))S)(c?)

r=0

where the specific values fdr;,, by, andb,, are found in
Tables I, Il, and IV, respectivelyd, corresponds to the
component of the heat flux in EG34). Note that we have
changedc; to c. As can be seen from E@40), the explicit
form of the velocity distribution function for hard-disk mol-
ecules becomes the sum of an infinite series of Sonine pol

nomials.

Figure 2 gives thep'® in Eq. (40) scaled bymE/n?«>T®

A. Chapman-Enskog solution of the two-dimensional steady-
state BGK equation to second order

} , (40)

For comparison, we also derive the velocity distribution
function for the two-dimensional steady-state BGK equation
to second order by the Chapman-Enskog metli28-2§.
Suppose a nonequilibrium system subject to a temperature
gradient along the axis in a steady state whose velocity
distribution function is expressed dsf(x,v). The steady-
Y%tate BGK equation is written as

_ fLE_f

with the third, fourth, fifth, sixth, and seventh approxima- UxOxf , (41)
tions by, and b,,. It should be mentioned that, as Fig. 2

shows, the scale@® in Eq. (40) seems to converge to the where the relaxation time is dependent on the position
seventh approximation. Figure 3 provides the explicit formthrough the densityn(x) and temperaturd(x). f g is the
of the scaledy? for hard-disk molecules with seventh ap- usual local equilibrium velocity distribution function

T

TABLE IV. Numerical constant®,, in Eq. (39).

r r<2 r<3 r<4 r<5 r<6

0 -2.154x 107! -2.038x 107! -2.017x 101 -2.012x 101 -2.011x 101t
1 -7.943x 1071 -7.626x 107! -7.569x 1071 -7.555x 107t -7.551x 1071
2 3.586x 107! 3.945x 1071 4.006x 1071 4.021x 101 4.025x 101
3 - 3.492x 1072 3.902x 1072 3.994x 1072 4.020x 1072
4 - - 2.800x 1073 3.234x 1073 3.346x 1073
5 - - - 2.276x107* 2.677x 10
6 - - - - 1.701x 10°®
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(2)
Scaled (I)

15

05
FIG. 2. The scaledy'®’s for

hard-disk molecules. The dash-
dotted line, the dotted line, the
short-dashed line, the long-dashed
line, and the solid line correspond
to the scaled¢® for hard-disk

molecules with the third, fourth,

fifth, sixth, and seventh approxi-

1 mationshby, and by, respectively.
2 Note that we puty,=0.
25
_3 1 1 1 1 1 1 1
1.5 1 0.5 0 05 1 15
Cx
fLe(x,v)=[mn(X)/ 27« T(x) Jexd —mv2/ 2«T(x)]. It should be @ W
mentioned that, for the conservation laws, the collision term - T = vy (45)
for the steady-state BGK equation, the right-hand side of Eq.
(41), must satisfy to second order. It is found that E@4) with the requirement

(42) leads tonkT being uniform and that Eq45) with the
requirement(42) leads to heat fluxJ, calculated from Eq.
(33) being uniform. Using these facts, from Edd44) and
(45), the velocity distribution function to second order for
with the four collision invariantsd; introduced in Eq(9).  the the two-dimensional steady-state BGK equation becomes
The velocity distribution functiorf can be expanded as

2 J m \¥2|n
f=fO+fD 4§D ... (43) f=fO0> - (—) nicgSi(c?),  (46)
o | NkT\2«T

f cI)ifLEdV = J (I)ifdv, (42)

with fO=f . Substituting Eq.(43) into the steady-state _

BGK equation(41), we arrive at the following set of equa- With the uniform heat flux,=-2n«*T74,T/m.
tions:

B. Two-dimensional information theory

ey
- — =0,f© (44) Let us construct two-dimensional information theory
T [53,54. The Zubarev form for the nonequilibrium velocity
to first order and distribution function under a heat flux can be obtained by
maximizing the nonequilibrium entropy, defined as
S(x) = - KJ f In fdv, (47)
under the constraints of the density
n(x) = f fdv (48)
and temperature
mv2
N(X)«T(X) = f dev. (49
FIG. 3. The scale@'? for hard-disk molecules with the seventh
approximationd, andb,. We assume no mean flow:
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(2)
Scaled q)

f mvfdv =0, (50)

where 0 denotes the zero vector. Furthermore, we adopt the
heat flux as a constraint:

2
3= f mVTUdev. (51)

It should be emphasized thakT and the heat flux, are . !
now assumed to be uniform by contrast with the case for the VA
steady-state Boltzmann equation where its solubility condi-
tions lead tonkT andJ, being constant to second order. FIG. 4. Direct comparison of the scaled® for hard-disk mol-

We have finally derived the nonequilibrium velocity dis- ecules with those for the steady-state BGK equation and informa-
tribution function to second order in the heat flixby ex- tion theory. The solid line, the dashed line, and the dash-dotted line
panding the Zubarev’s nonequilibrium velocity distribution correspond to the scalet? for hard-disk molecules with the sev-

function to second order as enth approximation®, and by, the steady-state BGK equation,
and information theory, respectively. Note that we py#0.
f= f(°>{1 —i<£)mc SiH(c?) + m—‘ﬁ(} - 3—C2>
nkT\2«T) N’ T3\ 2 4 scopic models. For example,is calculated as 1/2 for hard-
2 2 disk molecules, ands is determined aslgx/d(x/7m 12
+ nszTgci{l -2+ Z] (52 with b;;=1.030 for hard-disk moleculdsee Eq(34)]. Note

that ¢ andw cannot be determined explicitly from the BGK

In Eq. (52), we have expanded thenequilibrium tempera- equation and information theory. From E§3), the tempera-
ture which has been obtained @s=T(1-3mF/4n?«3TS) for ~ ture profile T(x) in the nonequilibrium steady state can be

two dimensions. Such modifiedvelocity distribution func- ~determined as

tion has been also obtained and used in three dimensions 3. e

[43,46. We note that, in all the macroscopic quantities cal- T(x) = [T(O)<°+1— (p+ 1)—xx] . (54
culated in this paper, there are no differences between the w

Jou’s velocity distribution function where tlmnequilibrium except fore=0.

temperaturds not expande@53,54]. Actually, the identifica- Using Eq.(20), the equation of state in the nonequilib-
tions of the density, the temperature, and the mean flow ip;;m steady state can be obtained as
Egs. (11)—(13) do not affect the physical properties of the
velocity distribution function for the two-dimensional
steady-state Boltzmann equatiph8], and those identifica-
tions must be satisfied for the conservation laws in the case B
for the two-dimensional steady-state BGK equafisee Eq.  with the unit tensors; and the tensor component$ given
(42)]. in Table V. The values ok} for the seventh approximation
by, by, andb,, for hard-disk molecules seems to be con-
verged to three significant figures, as can be seen from Table
V. Note that the off-diagonal components)df are zero, and
Figure 4 exhibits the direct comparison of the scaled\g'=—-\Y is satisfied. Equatio(65) shows that the equation
¢?’s for hard-disk molecule&t0) to the seventh approxima-
tion with those for the steady-state BGK equatid®) and TABLE V. Numerical constants for the macroscopic quantities:
information theory(52). We have found that, as Fig. 4 ex- the ith approximation quantities for hard-disk molecules and the
plicitly shows, the second-order velocity distribution func- exact values for the steady-state BGK equation and information
tion for hard-disk molecule$40) definitely differs from the theory.
others. We emphasize that such a difference never appears=te

mi
Pij = nKT|: 5” + )\gnzKaT3:| y (55)

V. DIRECT COMPARISON OF THE SCALED ¢

first order. ith A \s
3th -5.085< 1072 -2.549x 10!
VI. NONLINEAR Ngﬁiggt?&w TRANSPORT 4th —4.807 10°2 2 551x 10t
5th -4.757< 1072 -2.551x 10!
We can introduce the general form of the heat flux as 6th -4.744< 1072 -2.552x 10!
— 2 — 1
3= —wT9,T, (53) 7th . 4741 107 2.552;< 100
BGK equation 0 i

where ¢ indicates temperature dependence of the thermal |htormation
conductivity andw is a constant that depends upon micro-

ENENN

1
2
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of state in the nonequilibrium steady state is not modified to A+ A — products, (60)

first order. We indicate that the second-order pressure tensorq ¢ chemical ) be aff d bv th
Pi@ should be uniform from the solubility conditions for the the rate of chemical reaction may not be affected by the
th{rd—order solutiong®: existence of products, and the reverse reaction can be ne-

glected[67]. From the viewpoint of kinetic collision theory,

@ the chemical reaction ra{®0) can be described as
(I)ivl -V fl dVl =0. (56)

Therefore, the pressure tendgy in Eq. (55 becomes uni- R:J dvf dv1J dﬂf ff190(9), (61)

form sincenkT is constant from the solubility conditiori8).
We find that\} for hard-disk molecules differs from that
for the steady-state BGK equation and information theor
not only quantitatively but also qualitativelyg'<\} for
hard-disk molecules, whiles‘=\}’ for the steady-state BGK

for two dimensions. Her€) denotes the solid angle for two

imensions. For the differential cross section of chemical
reactiono(g), we have derived the line-of-centers model for
the case of two dimensions. Its form becomes

equation and\p*>\Y for information theory. This kind of AE
difference has been also found in the three-dimensional case 0, g<\ >
(18] - | a(g) = 1 * (62)
Each component of the kinetic temperature in the non- d 4E 4E
equilibrium steady state; i.€T; for i=x andy is calculated as ;( _m_92> Y m’
nkT; _ (@'ch d m’zf (57  With mthe mass of molecules aife] the threshold energy of
2 " \'m . c 2 a chemical reaction.
We calculate the rate of chemical reacti@i) with the
which leads to two-dimensional line-of-centers modé62) using the ex-
‘15 plicit velocity distribution function of the two-dimensional
T; :T[l +AL >3 3], (58)  steady-state Boltzmann equation for hard-core molecules to
n“x°T second order(40). Substituting the expanded form of the

for i=x andy. Values for the constants in the second-orderV€loCity distribution function to second order in Hg) into
Eq. (61), we obtain

term A}, are the same as), for i=j given in Table V. For
hard-disk moleculesT, becomes smaller thaf, regardless R=RO + RV + R? (63)
of the sign ofJ,, which means that the motion of hard-disk

molecules along the heat flux becomes dull. We note That Up to second order. The zeroth-order ternRpf

for hard-disk molecules is isotropic to first order; that is, the
equipartition law of energy holds. R(O):Jdvfdvlf dﬂf fOf g0 (g)
The Shannon entropy in the nonequilibrium steady s$ate
is defined via meT\Y2
P — 2n2d< ) e—E /KT, (64)
2T (7 nm m m
S=-—| dcfInf=-n«lIn +NK+Ns5 3. ) . -
m J_. 27K nk“T corresponds to the rate of chemical reaction of the equilib-
(59) rium theory. Similarly, the first-order term & is obtained as
Values for the constantg are given in Table Vg for the R(l)zjdvf dv fde FO£OF 4D 4 4D
seventh approximatiob,,, by, andb,, for hard-disk mol- ! 1147+ ¢17190(9),
ecules seems to converge to four significant figures. It is (65)

found that\ g for hard-disk molecules is close to that for the

steady-state BGK equation and information theory. This isvhereRY does not appear becaugé is an odd functions
because the second-order correction term in the Shannon e@f ¢, as is shown in Eq(40). The second-order term of
tropy is determined only by the square of the first-order soR—i.e., R?—is divided into

lution Y where no important difference dependent on the

kinetic equations or information theory appears. We note that R(ZA):deJdvlf dQJ fOF0 D Vga(g) (66)
the Shannon entropy in the nonequilibrium steady state is not

modified to first order. an

d
VII. CONTRIBUTION OF THE STEADY HEAT R2®= [ av [ av, [ do [ 10014 + 6@ go(e).
CONDUCTION TO THE RATE OF CHEMICAL REACTION

A. Calculation of the rate of chemical reaction (67)

In the early stage of a chemical reaction between monwhich exhibit the local nonequilibrium effect. Since the in-
atomic gas molecules, tegrations(66) and (67) have the cutoff form as in Eq62),
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TABLE VI. Numerical constantsy, in Eq. (68).

PHYSICAL REVIEW E 71, 041203(2009

TABLE VII. Numerical constantg3, in Eq. (69).

r Boltzmann eq. BGK eg. and information theory r Boltzmann eq. BGK eq. Information theory

0 -2.758< 1072 -1 0 -1.284x 107! - i

1 -1.761x 107! -= 1 -4.721x 107" -2 =&

2 4.015< 107! > 2 3.372x 10! = 5

3 -1.310<10°* -i 3 7.086x 1072 5 i

4 1.326x 1072 - 4 -3.874x 1078 - -

5 -1.368< 1072 - 5 1.536x 1074 - -

6 1.260x 1074 - 6 -2.774x10°8 - -

7 -9.809x 10°6 -

8 6.290< 1077 -

9 ~3.249¢ 10°8 i state Boltzmann equatio_n i_s determined only by the terms of

10 1 306¢10°9 ] bor in ¢@ of Eq. (40). This is bec.ausR?’B) of ng: (67) has
: “ X-y symmetry, so that the terms mcludn(lgf—cy) in ¢@ of

1 —3.90x 100 - Eq. (40) do not contribute tdR®#®),

12 8.256< 107" - The graphical results &2 compared with those d?24

13 -1.160< 1071 - are provided in Fig. 5. BotlR® and R?" in Fig. 5 are

14 9.645¢ 10717 - scaled bym2dm/232/ k52152, Note thatR® is the sum of

15 ~3.576< 10710 R2A andR?® in Egs.(68) and(69). As Fig. 5 shows, it is

the explicit forms of¢Y and ¢ of the steady-state Boltz-

clear thatR?® plays an essential role for the evaluation of
R®. We have found that there are no qualitative differences
amongR® and R?A for the steady-state Boltzmann equa-

mann equation for hard-disk molecules are required to caltion and those for the steady-state BGK equation and infor-

culateR?» andR?®), respectively.
In Fig. 2, we have confirmed that® seems to converge

mation theory, while they exhibit slight deviations from each
other. The quantitative deviation R>~ would not be ob-

to the seventh Sonine approximation, so that we will showserved if we adopteds” of the steady-state Boltzmann

only the results calculated fromd™ and ¢ for the seventh

equation for the lowest Sonine approximation, because that

approximation of Sonine polynomials. In order to compareis identical with the preciseﬁ(l) of the steady-state BGK
the results from the steady-state Boltzmann equation witlequation and information theory.
those from the steady-state BGK equation and information

theory, we also use the explicit forms @Y and ¢ ob-
tained in Eq.(46) for the steady-state BGK equation and in
Eq. (52) for information theory.

B. Local nonequilibrium effect on the rate of chemical
reaction

Inserting ¢V and ¢ of Eq. (40) for the steady-state
Boltzmann equation for hard-core molecules, &) for the
steady-state BGK equation, and E&?2) for information
theory into Eqs(66) and (67), and performing the integra-
tions with the chemical reaction cross sect{6g), we finally

obtain the local nonequilibrium effect on the rate of chemical
reaction based on the line-of-centers model. The expression

of R2A and RZ® become

dmZ ([ meT\¥2 _. E\
o= () {E o) } °
r=0
and
dmd( mxT\¥2 . E\
R(ZVB) - _(_) e—E /T - , 69
s 2 | ©

respectively. The numerical values fer and 3, are listed in

Tables VI and VII, respectively. As well as the three-

dimensional case, the two-dimensiof&}® for the steady-

VIIl. DISCUSSION AND CONCLUSION

Fushiki has recently demonstrated that our analytical
three-dimensional second-order solution of the steady-state
Boltzmann equation for hard-core molecules agrees well

Scaled Péz)
0.2

0.1

8 10 E/xT

-0.1

-0.2

FIG. 5. ScaledR® compared to scale®?” as a function of
E’/ kT for the two-dimensional case. The solid line, the long-dashed
line and the dotted line show®® for hard-disk molecules, the
steady-state BGK equation, and information theory, respectively.
The dashed line and the dash-dotted line repreB&Y for hard-
disk molecules and both the steady-state BGK equation and infor-
mation theory, respectively.
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with results of his numerical experiment using both a mo-equilibrium state; that is, nonlinear nonequilibrium transport
lecular dynamics simulation and a direct simulation montephenomena are sensitive to differences of kinetic models, so
carlo method 19,20. Using the method developed in Ref. rather realistic models are needed when one investigates
[18], we have derived the velocity distribution function of them. We can conclude that, though quite a few statistical
the two-dimensional steady-state Boltzmann equation fophysicists have believed in the existence of a universal ve-
hard-disk molecules explicitly to second order in the tem-ocity distribution function in the nonequilibrium steady state
perature graqient,_ as was shown explicitly in E40) and by maximizing the Shannon-type entrofid,47,48,50-5pB
graphically in Fig. 3. We have calculated the two- 5y ynjversal nonlinear nonequilibrium velocity distribution

dimensional equation of state for hard-disk molecules to seqq,nction does not seem to exist in the two-dimensional case
ond order from it. We believe that the second-order solutior, g \,oil as the three-dimensional case. even when it is ex-

of the steady-state Boltzmann equation is physically impor

tant in that it reflects a nonequilibrium state far from equi- . , : .
librium, called the local nonequilibrium state. that the_gnt.ropy defined in E@7) is not appropriate as the
nonequilibrium entropy to second order, though it is appro-

We have found that there are qualitative differences be- . ) L )
tween hard-disk molecules and the steady-state BGK equ riate to first order, and that some nonequilibrium corrections

tion in the nonlinear nonequilibrium transport phenomenal€Pendent on microscopic models are needed for the non-
based on the local nonequilibrium state: the second-ordefauilibrium entropy to second order.

corrections appear for hard-disk molecules in the pressure 1he second-order solution of the steady-state Boltzmann
tensorP; and the kinetic temperaturE, while no correc- equation for hard—dlsk_mo!ecules is indispensable for the.cal-
tions to these quantities appear for the steady-state BGRuIat[on of_the nonequilibrium effects on the' rate of chemical
equation, as Table V shows. This kind of qualitative differ- "€action, sinceRY does not appear a.rﬁ!(z'B? is remarkably
ences was detected also in the three-dimensional [de larger thanR?” as Fig. 5 shows_. _Th|s indicates the_ signifi-
This discrepancy is due to the fact that thedependence cance of the secp_nd_—order coefficients as terms which reflect
cannot be absorbed in the single relaxation time of the BGKhe local nonequilibrium state.

equation, which leads to the conclusion that the steady-state
BGK equation neither captures the essence of hard-disk mol-
ecules nor possesses the characteristics of any other models

of molecules which interact with@dependence. We suggest | thank H. Hayakawa for useful discussions. This research

that microscopic models which possess the property that itgas partially supported by the Japan Science Society.
relaxation to the local equilibrium state is described only by

a single relaxation time could not be applied to describe the
nonlinear nonequilibrium transport phenomena. This sugges- APPENDIX A: CALCULATION OF = €,
tion may mean that the steady-state BGK equation could

capture the essence of hard-disk molecules if one made the From th_e definition.ori, L can be calcglated using the
relaxation time depend og or if one developed the steady- mathematical properties of the trigonometrical functions and

state BGK equation with multirelaxation times. We note thatSonine polynomials. For exampleQy, can be rewritten as

the qualitative differences mentioned above still appear no

matter which boundary condition is adopted; that is, the isot- (E)m =St 1 (i)m S(c)

ropy and the anisotropy of the pressure tensor in(&6).and CuQkr =280+ ) 2«T) TI'(k+r+1)

the kinetic temperature in Eq458) are not affected by any

kinds of boundary conditions. _ _ % |:Yk+l(cl) + EciYk—l(Cl):|- (A1)
We have examined information theory by the microscopic m

kinetic theory mentioned above and consider the possibility

of the existence of a nonequilibrium universal velocity dis- Integrating Eq(A1) over (2«T/m)¥?c, with f, from Eq.(14)

tribution function. The first-order velocity distribution func- can be performed by using the following orthogonality prop-

tion for the steady-state Boltzmann equation for hard-dislerties. For Sonine polynomials,

molecules—i.e., the first-order terms in E40)—is consis-

tent with that derived by expanding Zubarev’s velocity dis- *

tribution function[50-52. On the other hand, the explicit f Xe*P_ (X SI(X)dX =

form of the second-order term in EGA0) definitely differs 0

from the precise form for the steady-state BGK equaltit8) (A2)

or information theory(52), as Fig. 4 shows. Although infor-

mation theory has been applied to nonequilibrium dilutefor p=q andp=q+1, and is zero otherwise. For the trigono-

gased39,43,55-58 we have found that information theory metrical functions,

contradicts the microscopic kinetic models: all the macro-

scopic quantities for information theory except for the Shan- fzw

pressed only in terms of macroscopic quantities. We suggest

ACKNOWLEDGMENTS

(DT (q+k+1)
! ;

non entropyS in Eq. (59 are qualitatively different from
those for the steady-state Boltzmann equation and the
steady-state BGK equation. These results indicate that char-
acteristics of microscopic models appear in the local nonand

cosng sinmgd¢p =0 (A3)
0
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2 2
f cosng cosm¢d¢=f sinng sinmgde = 76,
0

0
(A4)

with the Kronecker deltad),, for m# 0. We can calculat®,,
andEy, defined as

. 1
r= HClXQkh

1—
Dy, B, = Hclkar- (A5)

The results can be written as

kr = (8o+ DI(K+ 1+ 1)Byigr = Byigr-1+ (8ot 1)Byry

= (S0t D(r + 1)Byg 4] (AB)
and
kr = (S0t DI(K+r1+1)Cri1p = Cusgp-1— Crry
+(r+1)Cyg a1l (AT)

Additionally, ¢;,0,Q,; can be rewritten as

T k
Cax kar f?T Clx|:ri 1(01) ( E)ri:| (AB)

Therefore, by integrating EA8) over (2«T/m)Y%c,, with
f, from Eq. (14), it is found that

aT k
T Dyr-1~ r+5 Dy |-

Similarly ¢,,3,Qy, is obtained by replacing the differential
coefficients with respect tg by the corresponding differen-
tial coefficients with respect tg, the Dy,'s by the corre-

C1x‘9kar = (A9)

spondingEy ,, respectively. Substituting these results into Eq.

(23), Q, finally becomes Eq(25).
APPENDIX B: CALCULATION OF F&r()()

1. Details of F,(x)

The details ofF1 (x) are written in this appendix. Substi-
tuting the general forms offy, f2 in Eq. (14) andQy, in Eq.
(21) into F r()() in Eq. (29), Fkr(X) can be written as

_ =Y,
Fe0= 2 WRiEx (0B n, Bin,
Np.N2.Ky,kp
+ il ™(0) Cign, Cigny) (B1)
where E ,(12’”2()() is the characteristic integral defined as

Bk = f f expl— (cf + ) 1Yi(C) Vi (¢1) Vi, (co)

xS(c;?) Sli(cf) Sﬂ;(Cg)gdCdel (B2)
and
B0 = f f ex - (cf + H)IYi(cDZ (c)Z,(c)

XS (e S 2 gdeydey (B3)
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the former by a transformation of axes and th{to e nz()()
—”2’1”1”2()() 0 from Eq. (18). The integral contamlng
Ykl(cl)Zkz(cz)+Zkl(c1)Yk2(c2) becomes zero, owing to the
symmetry of the trigonometrical functions. The factor
Wdi2 in Eq. (B1) is defined as

an2 m \ (ko2
S
ik, 7L (k+r1+ 1)\ 2T

which is obtained from the prefactors and the coefficients in
the general form of, f, in Eq. (14) andQy, in Eq. (22).

We find that it is necessary only to evaluate the character-
istic integral :H "L"%2(y) in order to calculateFi (y). Our
calculation ofHkkl "2(y) is written in the next subsection.
Once the characteristic integral, ""(x) has been de-
rived, F,(x) is now calculated from Eo[Bl) with Wbz in
Eq. (B4).

n!'n,!, (B4)

=Y,r,n1,No
2. Calculation of Zy y ' &*(x)

We shall explain how to calculafEHi”‘klz'”Z(x) which ap-

pears in Eq.(B2). The calculation has been performed
mainly based on the method developed in R&8].

a. Introduction of @, Ky ko

Using Eq.(15), the characteristic mtegraYr TB"(x) cor-
responds to the coefficient gft"u" in

Ouk ky = Vikyk, f f ?k(ci)?kl(cl)?kz(cz)exp{_ (act + Bc;
+yci?)lgdeydey, (B5)
that is,
Oppk, = a2 S, (B6)
r,Nq,No 12
In Eq. (B5), a, B, andy are defined as
1 1 S
i PRy T @7

and Vick, ky is given by

2xT k+kq+ko)/2
Vil = (L =97 ML -t (1 -u)™ ( )

(B8)

and

Yi(c)) = c;¥ coske, ?kl(cl) =cf cosky ¢y,

Yidco) = 52 coskod,. (B9)

Finally, we need only to evaluate the characteristic integral
Ok, k, iN Order to calculate, " (x).

b. Derivation of the inductive equation

In order to evaluat®y x, in Eq. (B5), let us derive an

We note that values of the latter are obtained from those oihductive equation f06k,k1,k2, which is related tc@k,krkz by
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Okkyk, = V;,il,kze)k,kl,kz- (B10)

By replacingc;, andc,, by c,—w andc,,—w, respectively,
¢y, andc,, will be changed t@;, —w andc,, —w. At the same
time, the relative speed is not modified, and the value of
®k,k1,k2 is unchanged. Thereforé)kvklyk2 is independent ofv
and differentiation of@kykrk2 with respect tow gives zero.
After this differentiation has been performed amdhas been
set to zero, it is found that

f f exp{~ (aci + Bcs + 7C12)}gdCchl{aYkYkz(Ykl+l

+ Cﬁkl—1)(5kl,o +1)+ B?k?kl(?kfl + Cg?kz—l)(%,o +1)

+ 7?k1?k2(?k+1 + V) (8o + 1) - kl’?k?kl—th‘kz

- k2?k?k1?k2—1 - k?k—l?(kl?kz} =0, (B11)
by using the formulas
~ (Got1) -
Gk (6) = ———{Yi1(G) + Vi a(c)}  (B12)
and
&AY‘ki(Ci) ~
P kiYi-1(Ci) (B13)

fori=1 and 2. From Eq¥B5) and(B10), Eq. (B11) leads to
the inductive equation

t?.kk -1k,
a(d, 0+ DO B

Ok, k-1

+ (5,0t 1)@k,kl,k2+1 = B(S,0* 1) P

MOk-1k, k,

+ Yot 1)ék+1,kl,k2 - Aot 1)

- kék—l,kl,kz - klék,kl—l,k - k2k,k k-1=0 (B14)

for G)kk - Because of this inductive equation, once the ini-|ate pothw/ M ny

tial value ®0k Ky is known for allk; andks,, then the values

of the mtegral.kvklli<2 for anyk, k;, andk, can be obtained,
and G)k,kl,kz is then obtained from EqB10).

c. Calculation of the initial value

PHYSICAL REVIEW E 71, 041203(2005

firmed that the initial value(?)o,kllk2 becomes zero fok;

#k,. Note that@oyklvk2 is obtained byVo,kl,kZ@o,kl,kz from Eq.
(B10).

d. Evaluation of:l\:&"l "2(x)

Using the inductive equatiofB14) and the initial value
@Ok Kk calculated in AppendiB 2 c, thevalues of the inte-
gral 0kk K for any k, ki, andk,, can be obtained with the
relation (BlO) The result is that®yy , vanishesk= ky
—k,|+2q, whereq is a positive mteger or zero. In order to
obtain E “12”2()() it is sufficient to have®y x, only for
Ky =k,. ThIS is because the value :rfyr TE2(X), "with k, and
ko, n; and n, interchanged, corresponds to the value of
=vai“12”2(x) with y replaced bym—y. Thus, if k;#k, or
Ny # Ny, HYr W “Z(X) for any set ofk; andk,, n; andn, cor-
responds to

=Y,r,ny,ny

=M K200 + Eci™(m—x) - (B19)

() =E

for k;=ky; if kj=k, andn;=n,, thenE
required value at once.

”1 n2( X) gives the

APPENDIX C: CALCULATION OF THE FIRST-ORDER
COEFFICIENTS By,

Let us explain how to obtain the first-order coefficients—
that is, how to solve the integral equati®). To begin with,
we calculateQ)f} in Eq. (25) to first order;Qf! for first order
corresponds to the right-hand side of E§). It can be cal-
culated only by substitutin@y,,=1 into the expressions of
Dy, and Ey; in Eqs (A6) and (A7): the coefficientByy=1
corresponds tdlzf1 , and no higher-order terms appear in
Qf to first order. It finally becomes

2n( 2kT\ 25T
“Tr:‘?<?) R €D
Now Q! for first order is found to vanish unlegs 1, so
that we need calculate only!! for first order; as was men-
tioned in the end of Sec. I, we do not need to consider the
case in which the right-hand side of E¢) becomes zero
[2]. To denveA in Eq. (28) for first order, we must calcu-
R and_rlﬂl © in F1,(x) of Eq. (BY) for first
order, as was shown in Append9<8 1 and B 2. The result

for A[‘r to first order can be written finally in the form

ATr = BOOE BllnllvI

Ny

Y,r,n,,0
1,1

1o (C2)

where the set of the coefﬁuenﬁln Boo is obtained from

In pr|nC|pIe the initial value of the inductive equation ernllgm Eq. (B4). To first orderf; in Eq (29) contains only
(B14), ®0k Kk, €an be obtained and written explicitly from Bg=1 and the first-order coefﬂmentﬂ< n. and Ck ny f20N

Eq. (B5), changmg the variables; andc, to V= (cl+c2 )2
and g=c;—c,. Though we have directly calculate(d()k K

Eq. (29) also containdBy,=1, B, , and Ck n, 1O f|rst order.
Thus, we obtain only the terr‘n‘s’.1n Boo from vv;"llg to first

only fork;=k,=0, 1, 2, 3, 4, 5, 6, 7, and 8, they are sufficient order using the fact thaF,(y)= 0 unlessk= |ky—ko| +29.

to get all the results shown in Appendixes C and D. We ddNote that it is sufficient to consider only the case fqr
not show the explicit expressions of the initial values in this=k, as is explained in Appendix B 2 and that we get0.
paper because they are too complicated. We have also comhe matrixMI;rl'y%l'o is thus obtained,
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MYr n,0 — dmr? n fzw ﬁ—ranlo
LLO T 2T +2) ), L
- ZY5m(0)Jsin 2 d (c3)
~1,1,0 29X

using Egs(298), (B1), and(B4).

For k=1, Eq. (30) gives a simultaneous equation deter-

mining the first-order coefficienlB'lnl, ie.,

05 = 2 B, M{1E"

n;=1

(C4)

from Egs.(C1) and(C2). Note that we need only to obtain
the first-order coefficient®), for n,;=1, becauseB,,=0
from Eq. (19). We have calculated the matriy 5 for
1<r<7 and l=n;<7 from Eq.(C3), and we have also
confirmed thatMy?5° for 1<n,<7 calculated from Eg.
(C3) vanishes. Our result foM} 7 for 1<r<7 and 1
=n;<7 is given in Appendlx E. At last, we can determine
the first-order coe1‘f|0|ent81nl by solving the simultaneous

equation(C4); that is,B},, can be obtained as
1

By, = 2 Q4(M

r=1

Ny

r,ng,0\-1
13"

My’ (C5)

where X! represents the inverse matrix of a matkx Fi-
nally, the results of the first-order coefficieerlnl—i.e., the
first-orderBy, in Eq. (16)—can be calculated as in E(B1).

APPENDIX D: CALCULATION OF THE SECOND-ORDER
COEFFICIENTS B,

PHYSICAL REVIEW E 71, 041203(2009

2 [ 2kT\V?
ﬁ(%) {T(VZT)[(l’ + )by =y 4]

1 1 1
+ (VT)Z{ (rz *or- E)blr - (Zr - E)bl,r—l + bl,r—21|}

(D3)

H_ _
QOr_

for r=3. Note that values for the constaittg are summa-

rized in Table I. Fok=2, Q4 becomes

7 ( 26T\ b
Q5= de< m) {“[(anz (3,T)°]
+ by TIET = T ¢, (D4)
7 (2kT\"? 5
b=~ ﬁ(%) {[((9XT)2 - ((9yT)2]{5b11‘ 3b12]

+ T[T = ETos1 ~ 2blﬂ}, (D5)

2kT\ Y2 1
<?) {[(&XT)Z - (5yT)2]|:_ <r + 5)

X(r+1)blr+1+<2r+ )blr blrl]*'T[ﬁzT 192T]

and

Kl
dT?

H_ _
2r

X[=(r+1)by g + blr]} (D6)

for r=2. Fork=1 andk=3, we find thatQf! for second
order becomes

Q=0 (D7)

We explain how to obtain the second-order coefficients—

that is, how to solve the mtegral equati¢d). The coeffi-
cients of first order—i.e B,, andC,,—have been obtained as
are given in Eq(31), so that we can employ them to deter-
mine the second-order coefficients.

To begln with, we calculaté) in Eq. (25 for second

was shown in Appendlx B 1. Fde=0, A

for any value ofr.

Next let us calculaté . in Eq. (28) for second order. In
order to derlveA for second order, we have to calculate
Wi ey in FL.(x) of Eq.(B1) to second order, as

and_,kk Ky
. to second order

order; Q! for second order corresponds to the first term onresults in

the nght hand side of Ed6). It can be calculated by substi-
tuting B andCkr into the expressions difkr andE, in Egs.
(AB) and (A7); no other terms appear ﬂkr for second or-
der. The results of the tedious calculatlon(oﬁ'r to second
order finally become as follows. Fé&=0, Q becomes

Qb =0 (D1)
forr=0 and 1,
272 2kT\ Y2 9 7
Ofh=- de( m ) (VT)? Eblz‘ébn
+ T(V?T)(3by, - bll)} (D2)

forr=2, and

Il Y,r,ny,0 Y,r,ng,ny
or =Boo 2 By n,Moog" * > BlnlBln2M01l

n;=2 ny,Np
Zr,ny, N2
+ 2 ClnlclnzMO 11 (D8)
N1.N2

B'1n from f; and B1n from f, of the set of the coefficients
B'1n Bln are the first-order coefficients obtained in E81),
so thatB'ln By, is second order. SimilarlyCy, Ci, is also
second order The second and third terms on the right-hand
side of Eq.(D8) correspond td(f4,f,) in the integral equa-
tion (6). To second orderf; of Eq. (29) contains onlyBy,
=1, By, andCy,, obtained in Eq(31), andB, to be deter-
mined here foi=1 and 2. Therefore, we can only obtain the
sets of the terms in EqD8) for second order by using the
fact thatFp,(x)=0 unlessk=|k,—ko|+2q. We should derive
the second order coeffrcrenB{) only for ny=2, because
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Bgo=1 andBy;=0 from Eq.(19). Note that it is sufficient to mén2 (%™

cc(;%sider onl(i/1 the case firlz k,, as is explained in Appen- M35%°= 2:172K2T2 [E35%5°00 ~ E55%(0)Isin )E(d)(:

dix B 2, and thatB}, Cy, +Ci, B, does not appeafsee 0

Appendix B 1. (D13)
The matrixMJ 5% in Eq. (D8) is obtained as

using Egs.(28), (B1), and (B4). Similarly, the matrices
MYP™ in Eq. (D12) are derived as

2dr? (27
i o= 220 [ it - 2 o sintoy, o
O d nz 2

Y,r,n;,no =Y,r,ng,
09) e I
using Egs.(28), (B1), and (B4). Similarly, the matrices
Mg L™ in Eq. (D8) are derived as - E;{jrl'f‘ll'”Z(O)]sin)—z(dx, (D14)
dmr? (27 _ _ X
Mg 1" = 2T ) [Eo1 100 - Egit™(0)lsinZdx,  while we have confirmedZ,"2=-MY5m", Thus, Egs.

(D12) and(D4)~(D6) lead to a simultaneous equation to de-
(D10)  termine the second-order coefficierﬁgﬁllz

while we have confirmedi§ i "2=MJ} ", Equations ’ y . .
(D8) and (D1)«D3) lead to a simultaneols equation to de- B, = 2 {er - 2 (B, By~ Ciy Ch) ML 2}
termine the second-order coefficierss, : r=0 Ny
I H I pl | 1 | Y X (M350 (D15
BOnl = E {QOr - 2 (BlnlBln2+ Clnlclnz)Mojiqulvnz}

r=2 Ny, In order to derive the second-order coefﬁcielaiz‘;‘ql for ng

< (MY .0~ D11) =0, we have calculated the mati};%° for 0<r<6 an

(MyEm0)1 (D12) 0, we h Iculated th ay 550 for 0<r<6 and
- Vi 0=<n, <6 from Eq.(D13) and also the matriceld """ for

We have calculated the matridygs” for 2<r<6 and 2 g<r<g, 1<n,<7 and 1=n,<7 from Eq. (D14). Those

s Y,r,nq,0 ! . . - ) ’ .

<n; <6 from Eq.(D9) and also confirmed thlly'3" van-  results are given in Appendix E. The second-order coeffi-

ishes forr=0,1, and 2<n; <6 or f0f3$f$6 andn=0,1.  ¢jentsB] , in f;—i.e., the second-ordd, in Eq.(16)—can

We have calculated the matriMoy "™ for 2<r<6, o \yritten in the final form shown in Eq37).

1=n,=7 and 1=n,<7 from Eq. (D10) and confirmed We need to consider Eq30) only for k=0 and 2 for

Y,r,nq,n : —_
Mo van\;srqiag for=0,1, Isn <7 and I=n,</. SH; second order: it is not necessary to consider(86). for even
result<s f°<rM0,'02' f<or 2<r<<6 arf 2sm=6andMg7 "™ | fyrthermore, which was first expected in RéL8] and
for2<r<6, 1<n, <7 and I=n,<7 are given in Appendix  ocently confirmed in Ref[19]. For oddk, O to second
E|'| Finally, we can determine the second-order coefficienty jqor is found to be zero. and no terms corresponding to
B, in f;—i.e., the second-ordeBy, in Eq. (14) as in Eq. J(f;,f,) in the integral equatio6)—i.e., the second and

(36)-_ ) H ) third terms on the right-hand side of E@11) or (D15—
Similarly, for k=2, Ay, for second-order results in appear, so that any second-order teBfjsdo not appear for
dd k [18].
Mj= S Bl misp S ey S
n=0 v L) v e
APPENDIX E: MATRIX ELEMENTS
+ 2 Cy, Chy MZTT™, (D12)
S 1. MYl for 1<r<7 and 1<n;<7
Ny, 1,1,0 1
using the fact thaF},(x) =0 unlessk=|k,—k,|+2q. Note that The matrix elementd!} 3% for 1<r<7 and =m <7
we have confirmedMY5%° becomes zero. The matrix divided by My}¢°=~2dn’(w«T/m)*? calculated from Eq.
MY5%%in Eq. (D12) is obtained as (C3) are given as follows:
|
1 -8.333x 102 -2.604%x 10°% -1.302x 10* -6.782x 10°® -3.391x 107 -1.589% 1078

-5.000x 10°% 1.625 -1.185< 10! -3.451x 103 -1.648x 10* -8.308x 10°® -4.053x 107/

-1.875x 10t -1.422 2.165 -1.32% 10! -3.466x 10° -1.531x 10* -7.279x 10

-1.875x 10! -8.281x 10t -2.654 2.645 -1.38% 10! -3.234x 10° -1.314x 10°*

-2.930x 10t -1.187 -2.079 -4.148 3.081 -1.398101 -2.947x 10°3

-6.152x 101 -2.512 -3.859 -4.074 -5.873 3.483 -1.39530"

-1.615 -6.864 -1.02% 10 -9.273 -6.932 -7.810 3.858
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2. M0 for 2<r=<6 and 2<n;<6 and M{"1*"2 for 2<r=<6, 1<n;<7, and 1<n,<7

The matrix elementdy5° for 2<r=<6 and 2<n;<6 divided byMy 55 %=-4dr?(7«T/m)*2 calculated from Eq(D9)

are given as

1 -8.333x 102 -2.604%x 103 -1.302x 10* -6.782x 10"
-7.500x 10t 1.688 -1.152< 10' -3.223x 10°% -1.495x 10°*
-3.750x 10t -1.844 2.251 -1.28% 10! -3.204x 1072
-4.688x 10t -1.289 -3.217 2.741 -1.342101
-8.789x 10! -2.153 -2.883 -4.833 3.182
The matrix elementd/y 29" for 1<n;<7 and 1=n,<7 divided by My ?1'=-[ 4(VT)2/4dT2](7-n<T/m)2 calculated
from Eq.(10) are given as
1 5.000x 107! 0.000 -9.375< 101 -4.102 -1.661x 10 -7.106x 10
5.000x 101 3.750x 10! 9.375x 10! 8.203x 10? -1.846 -2.030< 10 -1.320X 107
0.000 9.375< 10t 1.230 5.537 1.01% 10 0.000 -1.856¢ 107
-9.375x 10! 8.203x 10! 5.537 1.015< 10  6.598x 10 1.856X 10° 2.629x 107
-4.102 -1.846 1.01% 10 6.598< 10  1.547x 10 1.315x 10° 4.995% 10°
-1.661x 10 -2.030x 10* 0.000 1.856< 10* 1.315x 10° 3.746x 10° 3.934x 10*

-7.106X 10 -1.320x 10 —-1.856X 10 2.629x 10* 4.995% 10° 3.934x 10* 1.319x 10°

The matrix elementd1g 37" for 1<n,<7 and 1=<n,<7 divided byMy? 1" are given as

-2.500x 10°* 1.125 5.000< 10t -4.688x 102 -2.490 -1.48210 -7.913x 10
1.125 2.813< 101 7.969x 107! 1.436 2.000 -4.153 -7.369010
5.000x 101 7.969x 10! 7.471x 10! 3.845 1.130< 100 3.045x 10" 2.990x 10
-4.688% 1072 1.436 3.845 5.768 418710 1.681x 10 6.534x 107
-2.490 2.000 113 10  4.187x 10 8.506x 10 7.926x 10* 4.009x 1C°
-1.482x 10 -4.153 3.045 10  1.681x 10? 7.926x 10? 2.021x 10° 2.295x 10*

-7.913x 10 -7.360< 10 2.990x 10  6.534x 10 4.009x 10° 2.295% 10* 7.027x 10*
The matrix elementd1g 17" for 1<n,<7 and 1<n,<7 divided byMy?1"are given as

-1.302x 102 -2.305X 101 7.813x 10! 4.946x 10! -8.331x 102 -4.567 -3.443<10

-2.305x 10! 2.295x 10! 3.960x 10! 7.784x 10t 1.869 3.623 -6.020
7.813x 101 3.960x 10 3.062x 10t 1.513 4,918 1.81X 10 6.396x 10
4.946X 101 7.784x 101 1.513 2.111 1.52% 10  6.642x 10 3.216x 107

-8.331x 1072 1.869 4.918 1.52% 10 2.971x10 2.782x 10 1.502x 1C°

- 4.567 3.623 1.81¥ 10 6.642<10 2.782x 10* 6.882x 10 7.871x 1C°

-3.443x 10 -6.020 6.396< 100 3.216x 10° 1.502x 10° 7.871x 10° 2.355x 10*

The matrix elementd1g77" for 1<ny<7 and 1=n,<7 divided byMy?1"are given as

-9.115% 10* -1.074X 10° -1.289x 10! 5.948x 10! 4.914x 10! -1.037x 10 -7.105

-1.074x 102 -4.272x 102 2.509x 10! 3.006x 10! 7.575%x 107! 2.279 5.713
-1.289x 10!t 2.509x 10! 1.104x 10 4.718x 10! 1.484 5.886 2.62X 10
5.948x 101 3.006x 10* 4.718x 10! 6.042x 10 4.226 1.845 9.46% 10
4.914x 10t 7.575x 10t 1.484 4.226 7.918 7.32610 4.000x 107
-1.037x 10! 2.279 5.886 1.84% 10 7.326x 10 1.772x 10* 2.017x 10
-7.105 5.713 2.62k 10  9.461x 10° 4.000X 10  2.017x 10° 5.941x 10°

The matrix elementd!§$7" for 1<n,<7 and 1<n,<7 divided byMy?1"are given as
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-6.104X 10° -6.978x 10* -5.046X 10° -8.158x 102 4.782x 10! 4.898x 10! -1.087x 10*
-6.978x 104 -1.976x 10° -3.976x 102 1.575x 10! 2.407x 10! 7.397x 10! 2.678
-5.046x 10° -3.976xX 102 5.664x 102 1.387x 10! 3.788x 107! 1.450 6.802
-8.158x 102 1.575x 10! 1.387x 10! 1.505x 10! 9.806% 107! 4.159 2.137x 10
4.782x 101 2.407x 10! 3.788x 10! 9.806x 10! 1.749 1.579x 10  8.557x 10
4.898x 10t 7.397x 107! 1.450 4.159 1.57% 10 3.727x 10  4.194x 107
-1.087x 10t 2.678 6.802 2.13%¥ 10  8.557x 10 4.194x 10* 1.217x 1C°

3. M550 for 0=<r=6 and 0<n;<6 and M}%"1*"2 for 0=<r=6, 1<n;<7, and 1<n,<7

The matrix element#1} 5% for 0<r<6 and 0<n,<6 divided byM}55%= —4dr?(mxT/m)7 calculated from Eq(D13)
are given as

1 -8.333x 102 -2.604%x 103 -1.302x 10+ -6.782x 10°® -3.391x 10’ -1.589% 10°8
-2.500% 107t 1.063 -8.008< 102 -2.376X 103 -1.149x 10* -5.849%x 10°® -2.874x 107/
-6.250% 102 -6.406x 107! 1.232 -7.93% 102 -2.143x 103 -9.707x 10° -4.706%x 10°°
-4.688%x 102 -2.852x 107! -1.191 1.420 -7.82% 102 -1.900x 10°% -7.953x 10°
-5.859x 102 -3.311x 10! -7.713x 107! -1.878 1.607 -7.67& 102 -1.680x 1073
-1.025x 10 -5.896x 107t -1.223 -1.596 -2.687 1.787 -7.5%010°?
-2.307x 10t -1.391 -2.846 -3.207 -2.822 -3.605 1.961

1
The matrix element$/y{7+" for 1<n;<7 and I<n,<7 divided by M3 ?1"'=~(7*/16dT?)(mxT/m)2{(3,7)%~ (4,T)%}
calculated from Eq(D14) are given as

1 1.500 1.875 3.281 7.383 2.03010 6.598x 10
1.500 9.375x 10!  3.281 7.383 2.03% 10 6.598< 10 2.474x 107
1.875 3.281 3.691 2.03010 6.598< 10 2.474x 10> 1.052x 10°
3.281 7.383 2.03 10" 3.299x 10' 2.474x 107 1.052X 10° 4.995x 10°
7.383 2.030< 10 6.598< 10 2.474x 10 5.258x 10? 4.995x 10° 2.622x 10*
2.030x 10 6.598x 10 2.474x 10? 1.052x 10° 4.995x 10° 1.311x 10* 1.508x 10°
6.598X 10 2.474x 10 1.052x 10° 4.995x 10° 2.622x 10* 1.508x 10° 4.712x 10°
The matrix element1)171" for 1<n,<7 and 1<n,<7 divided byM}?1"are given as
2.250 2.125 3.094 6.680 1.82510 5.952x 10 2.246X 107
2.125 7.969% 10t 2.930 8.408 2.99% 10 1.231x 10 5.650x 107
3.094 2.930 2.563 152810 6.218x 10 3.011X 10 1.624X 1(?
6.680 8.408 15.2% 10 2.094x 10 1.691x 10? 8.815% 10° 5.324x 10°
1.825xX 10 2.999x 10 6.218< 10 1.691x 10? 3.170x 10 3.221x 10 2.029x 10°
5.952x 100 1.231x 10° 3.011x 10 8.815x 107 3.221x 10° 7.649x 10° 9.343x 10*
2.246X 10° 5.650x 107 1.624x 10° 5.324x 10° 2.029x 10* 9.343x 10" 2.686% 10°
The matrix element1} 27" for 1<n,<7 and 1<n,<7 divided byM}?1"are given as
-3.211 3.855 2.370 4.590 1.36810 5.090x 10 2.199x 10?
3.855  8.413x 10!  2.059 4.478 1.52% 10 6.873< 10 3.660%x 107
2.370 2.059 1.799 8.862 2.9%410 1.351x 10° 7.762X 107
4.590 4.478 8.862 1.26810 9.068x 10 4.030x 10 2.253% 10°
1.368x 10 1.522x 10 2.974x 10 9.068x 10 1.778x 10 1.650% 10° 9.068x 10°
5.090X 10 6.873< 10 1.351x 10? 4.030x 10° 1.650x 10° 4.090x 10° 4.651x 10*
2.199x 10° 3.660% 107 7.762x 10 2.253x 10° 9.068X 10° 4.651x 10* 1.391x 10°

The matrix elementd1}341" for 1<n;<7 and I=n,<7 divided byM} {1 are given as
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2.493x 101 -3.585 3.119 2.456 5.985 2.2%110 1.070X 1C?
—-3.585 1.265 1.474 2.290 5.928 2.3400 1.257x 10
3.119 1.474 9.89& 10! 4.274 1.257< 10 4.831X 10 2.443x 107
2.456 2.290 4.274 5.626 3.80010 1.565x 10? 7.774x 1C?
5.985 5.928 1.25% 10 3.800x 10 7.156x 10 6.429x 10 3.357x 10°

2.271x 10 2.340x 10 4.831x 10 1.565x 10 6.429x 10? 1.557x 10° 1.733x 10*
1.070X 10?7 1.257X 10?7 2.443X 10? 7.774X 10* 3.357x 10° 1.733x 10* 5.108x 10"

The matrix element1)' 171" for 1<n,<7 and 1<n,<7 divided byM} 1" are given as

2,11
7.719x 10° 2.301x 10! -2.277 2.579 2.484 7.307 3.36910
2.301x 10! -8.267x 10! 1.678 1.262 2.404 7.292 3.28510
-2.277 1.678 5.25% 101  1.778 4.645 1.60% 10  7.049x 10
2.579 1.262 1.778 2.037 1.2%610 5.015x 10 2.363x 107
2.484 2.404 4.645 1.27610 2.262x 10 1.960x 10? 9.990% 107
7.307 7.2919 1.60% 10 5.015x 10 1.960x 10 4.589x 10 5.000x 10°

3.369% 10 3.285x 10 7.049x 10 2.363x 10? 9.990x 1(* 5.000x 10° 1.442x 10

The matrix elementd1}241" for 1<n;<7 and I=n,<7 divided byM}?1" are given as

2,11
3.858x 10* 6.369x 10° 1.235x 10! -1.567 2.185 2.488 8.576
6.369% 10° 4.532x 102 -8.947x 107t 1.178 1.088 2.463 8.595
1.235x 101 -8.947x 10! 4.736x 10! 7.623x 107! 1.573 4.855 1.94% 10
-1.567 1.178 7.62% 101 6.743x10*  3.723 1.366x 10 6.171x 10
2.185 1.088 1.573 3.723 6.063 49910 2.467x 107
2.488 2.463 4.855 1.36810 4.991x 10 1.119x 10 1.186% 10°
8.576 8.595 1.94 10  6.171x 10 2.467x 10 1.186x 10° 3.331x 10°
The matrix element1$+" for 1<n,<7 and 1=n,<7 divided byM} 1" are given as
2.012x 10° 2.953x 10* 2.997x 102  7.361x 1072 -1.141 1.888 2.482
2.953x 10*% 1.169x 10° 4.239x 10?2 -5.364x 10! 8.671x 10* 9.507x 107! 2.494
2.997x 10° 4.239x 102 -2.109x 10! 5.791x 10! 5.711x 10! 1.395 4.977
7.361x 102 -5.364x 10 5.791x 10!  2.404x 107! 1.035 3.364 1.42% 10
-1.141 8.671x 10! 5.711x 10! 1.035 1.473 1.12X 10 5.291x 10
1.888 9.507 10t 1.395 3.364 112X 10 2.374x 10 2.425% 107
2.482 2.494 4.977 142210 5.291x 10 2.425x 10 6.591% 107
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