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The two-dimensional steady-state Boltzmann equation for hard-disk molecules in the presence of a tempera-
ture gradient has been solved explicitly to second order in density and the temperature gradient. The two-
dimensional equation of state and some physical quantities are calculated from it and compared with those for
the two-dimensional steady-state Bhatnagar-Gross-Krook equation and information theory. We have found that
the same kind of qualitative differences as the three-dimensional case among these theories still appear in the
two-dimensional case.
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I. INTRODUCTION

The behaviors of gases in nonequilibrium states have re-
ceived considerable attention from the standpoint of under-
standing the characteristics of nonequilibrium phenomena
f1–9g. The kinetic theory has contributed not only to the
understanding of nonequilibrium transport phenomena in
gases but also to the development of general nonequilibrium
statistical physics. It is well accepted that the Boltzmann
equation is one of the most reliable kinetic models for de-
scribing nonequilibrium phenomena in gas phases. In the
early stages of studies of the kinetic theory, great effort has
been paid for solving kinetic model equations such as the
Boltzmann equation and deriving nonequilibrium velocity
distribution functions and macroscopic nonequilibrium trans-
port equations in terms of microscopic molecular quantities.
These attempts were strongly related to the development of
general nonequilibrium statistical physics such as linear non-
equilibrium thermodynamics, Onsager’s reciprocal theorem,
and the linear response theoryf10,11g.

Among various methods which give normal solutions of
the Boltzmann equation, the Chapman-Enskog method has
been widely accepted as the most reliable method. It had
been believed that Burnett determined the complete second-
order solution of the Boltzmann equation by the Chapman-
Enskog methodf1,12,13g. The physical importance of the
second-order coefficients has been also demonstrated for de-
scriptions of shock-wave profiles and sound propagation
phenomenaf14–16g. However, it was reported that Burnett’s
solution is not complete, and Schamberg derived the precise
velocity distribution function of the Boltzmann equation to
second order for Maxwell moleculesf17g. On the other hand,
because of its mathematical difficulty, the complete second-
order solution of the Boltzmann equation for hard-core mol-
ecules has been derived quite recentlyf18g. Its validity has
been also demonstrated by numerical experiments of both a
molecular dynamics simulation and a direct simulation
Monte Carlo methodf19,20g. Other kinetic models like the
Bhatnagar-Gross-KrooksBGKd equationf21–28g have been
proposed mainly to avoid the mathematical difficulties in

dealing with the collision term of the Boltzmann equation.
Although it was believed that its results approximately
agreed with those of the Boltzmann equation, some qualita-
tive disagreements have been found in the second-order so-
lutions f18g.

Following its success and usefulness, the Boltzmann
equation is widely used in order to describe various gas-
phase transport phenomena such as granular gasesf29–32g,
plasma gasesf33,34g, polyatomic gasesf35g, relativistic
gasesf36g, and chemically reacting gases. Chemical reac-
tions in gas phases have been studied with the aid of gas
collision theory. For the differential cross section of chemical
reactions, the line-of-centers model proposed by Present has
been accepted as a standard model to describe the chemical
reaction in gasesf37–44g. This model can be derived explic-
itly using a collision law of hard-core molecules, and the
diameter of hard-core molecules is regarded as a distance
between centers of monatomic molecules at contact
f37,38,42g. In equilibrium states, experimental results includ-
ing the temperature dependence can be fitted by the results
from the line-of-centers modelf37,40,41g. Under nonequilib-
rium situations such as gases under a heat flux or a shear
flow, their pure nonequilibrium contributions to the rate of
chemical reaction have also attracted much attention
f39,43–49g Since nonequilibrium correction terms of the
chemical reaction rate are quadratic functions of nonequilib-
rium fluxes, the explicit nonequilibrium velocity distribution
function of the Boltzmann equation for hard-core molecules
to second order is needed to derive it based on the line-of-
centers modelf39,43,45,46g. The pure effect of a heat flux on
the chemical reaction rate has been recently calculated using
the second-order velocity distribution function of the Boltz-
mann equation for hard-core moleculesf46g In the Letter, a
thermometerto measure a relation between a kinetic tem-
perature of gases under a heat flux and a temperature of a
heat bath has been also proposed.

It is one of the most significant subjects in modern statis-
tical physics to construct the nonlinear nonequilibrium statis-
tical mechanics and thermodynamics for a strongly nonequi-
librium state beyond the local equilibrium state, called the
local nonequilibrium state. Zubarevf50,51g has developed
nonequilibrium statistical mechanics and obtained the gen-
eral form of a nonequilibrium velocity distribution function
with the aid of the maximum entropy principle. It is ex-*Electronic address: kim@kuchem.kyoto-u.ac.jp
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panded to first order under some constraints to obtain the
first-order nonequilibrium velocity distribution functionf52g
Jou and co-workers have derived the nonequilibrium velocity
distribution function to second order by expanding it to sec-
ond order under some constraints, which is called informa-
tion theoryf53,54g. Information theory has attracted interest
in the development of a general framework for nonlinear
nonequilibrium statistical mechanics which can describe the
local nonequilibrium state. The nonequilibrium velocity dis-
tribution function from information theory has been applied
to nonequilibrium systems, and some predictions were made.
For example, in dilute gas systems under nonequilibrium
fluxes, an anisotropic pressure and a nonequilibrium tem-
perature which is not identical with the kinetic temperature
have been predictedf55–58g. There are also several applica-
tions of information theory to chemically reacting gases
f39,43g. However, some qualitative differences between in-
formation theory and the Boltzmann equation have been re-
cently reported, and the invalidity of information theory as
universal nonlinear nonequilibrium statistical mechanics has
been demonstratedf59g.

There have been no efforts to solve two-dimensional ki-
netic models to second order and discuss the two-
dimensional second-order nonequilibrium phenomena,
though two-dimensional transport phenomena have created
great interestf60–66g The main aims of this paper are to
reconstruct all the results obtained in Refs.f18,46,59g in the
case of two dimensions and to discuss properties of the two-
dimensions nonlinear nonequilibrium phenomena which re-
flect the local nonequilibrium state. In Secs. II and III, we
derive the explicit velocity distribution function of the two-
dimensional steady-state Boltzmann equation for hard-disk
molecules to second order by the Chapman-Enskog method.
In order to achieve that, we have extended the method we
developed in Ref.f18g to the two-dimensional case. We also
obtain the nonequilibrium velocity distribution functions to
second order for the two-dimensional steady-state BGK
equation and information theory in Secs. IV A and IV B,
respectively. All the nonlinear nonequilibrium velocity distri-
bution functions are graphically compared in Sec. V. Using
the two-dimensional nonequilibrium velocity distribution
functions to second order, we discuss differences among
those theories appearing in the two-dimensional nonlinear
nonequilibrium transport phenomena in Sec. VI. In Sec. VII,
we explain how to calculate the effect of steady heat flux on
the rate of chemical reaction based on the line-of-centers
model in the two-dimensional case and apply the two-
dimensional nonequilibrium velocity distribution functions
to second order to calculate it. We have also investigated the
dimensional dependence appearing in the nonlinear nonequi-
librium phenomena which reflect the local nonequilibrium
state. Our discussion and conclusion are given in Sec. VIII.

II. CHAPMAN-ENSKOG METHOD FOR SOLVING THE
TWO-DIMENSIONAL STEADY-STATE BOLTZMANN

EQUATION

Let us introduce the Chapman-Enskog method to solve
the two-dimensional steady-state Boltzmann equation in this

section. Assume that we have a system of dilute gases in a
steady state, with velocity distribution functionf1= fsr ,v1d.
The appropriate steady-state Boltzmann equation is

v1 · = f1 = Jsf1, f2d, s1d

where the collision integralJsf1, f2d is expressed as

Jsf1, f2d ; E E sf18f28 − f1f2dgdbdv2, s2d

with f18= fsr ,v18d and f28= fsr ,v28d: v18 and v28 are postcolli-
sional velocities ofv1 andv2, respectively. The relative ve-
locity of two molecules before and after an interaction has
the same magnitudeg= uv1−v2u; the angle between the direc-
tions of the relative velocity before and after the interaction
is represented byx. The relative position of the two mol-
ecules is represented byb, called the impact parameterssee
Fig. 1d. The impact parameterb depends on kinds of the
interaction between molecules, and one should specify the
intermolecular interaction so as to explicitly determine the
impact parameterb in the collision termJsf1, f2d. Note thatx
can be expressed as a function ofb for a central force.

Suppose that the velocity distribution functionf1 can be
expanded as

f1 = f1
s0d + f1

s1d + f1
s2d + ¯ = f1

s0ds1 + f1
s1d + f1

s2d + ¯ d,

s3d

where the small expansion parameter will turn out the Knud-
sen numberK= l /L, which means that the mean free path of
molecules l should be much less than the characteristic
length L for changes in macroscopic variables.f1

s0d is the
local Maxwellian distribution function, written as

f1
s0d =

nsr dm
2pkTsr d

expF−
mv1

2

2kTsr dG , s4d

with m mass of the molecules andk the Boltzmann constant.
nsr d andTsr d will be identified later as the density and tem-
perature at positionr , respectively. Substituting Eq.s3d into
the two-dimensional steady-state Boltzmann equations1d, we
arrive at the following set of equations which we will solve
completely in this paper:

Lff1
s0dgf1

s1d = v1 · = f1
s0d s5d

to first order and

Lff1
s0dgf1

s2d = v1 · = f1
s1d − Jsf1

s1d, f2
s1dd s6d

to second order. The linear integral operatorLff1
s0dg is defined

as

FIG. 1. Schematic description of an interaction in two
dimensions.
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Lff1
s0dgX1 ;E E f1

s0df2
s0dsX18 − X1 + X28 − X2dgdbdv2. s7d

The solubility conditions of the integral equations5d are
given by

E Fiv1 · = f1
s0ddv1 = 0, s8d

whereFi are collisional invariants:

F1 = 1, F2 = mv1, F3 =
1

2
mv1

2. s9d

Substituting Eq.s4d into the solubility conditionss8d, it is
seen thatnkT is uniform in the steady state. We use this
result in our calculation to second order. Similarly, the solu-
bility conditions of the integral equations6d are given by

E Fiv1 · = f1
s1ddv1 = 0, s10d

which will be considered in Sec. III C 2.
To construct solutions of the integral equationss5d ands6d

definite, four further conditions must be specified; we iden-
tify the density

nsr d ; E f1dv1 =E f1
s0ddv1, s11d

the temperature

nsr dkTsr d ; E mv1
2

2
f1dv1 =E mv1

2

2
f1

s0ddv1, s12d

and the mean flow

C0 ;E mv1f1dv1 =E mv1f1
s0ddv1. s13d

Here we assume that no mean flow—i.e.,C0=0—exists in
the system. The introduction of these conditions distin-
guishes the Chapman-Enskog adopted here from the Hilbert
method in which the conserved quantities are also expanded
f2g. We assert that conditionss11d–s13d do not affect all our
results in this paper. It should be noted that, to solve the
integral equationss5d and s6d, we should consider only the
case in which the right-hand sides of Eqs.s5d ands6d are not
zero: if the right-hand sides of Eqs.s5d ands6d are zero, the
integral equationss5d and s6d become homogeneous equa-
tions which do not have any particular solutionsf2g.

III. METHOD FOR SOLVING THE INTEGRAL
EQUATIONS

A. General form of the velocity distribution function

To solve the integral equationss5d and s6d, we assume a
general form of the velocity distribution function:

f1 = f1
s0dFo

r=0

`

r!B0rS0
r sc1

2d + o
k=1

` S m

2kT
Dk/2

o
r=0

`

r!Ykrsc1dSk
rsc1

2dG ,

s14d

with c1;sm/2kTd1/2v1 the scaled velocity.Sk
psXd is a Sonine

polynomial, defined by

s1 − vd−k−1e−Xv/s1−vd = o
p=0

`

Gsp + k + 1dSk
psXdvp s15d

and

Ykrsc1d ; BkrYksc1d + CkrZksc1d, s16d

whereBkr and Ckr are coefficients to be determined. Intro-
ducing the polar coordinate representation forc1, i.e., c1x
=c1 cosu, c1y=c1 sinu,

Yksc1d = S2kT

m
Dk/2

c1
k coskf s17d

and

Zksc1d = S2kT

m
Dk/2

c1
k sinkf. s18d

The assumption of the velocity distribution function of Eq.
s14d has some mathematical advantages in our calculation.
First, it is sufficient to determine the coefficientsBkr, because
Ckr can be always determined fromBkr by transformations of
axes. Second, some important physical quantities are related
to the coefficientsBkr and Ckr: e.g., the densitys11d, the
temperatures12d, and the zero mean flows13d with f1 in Eq.
s14d lead to the four equivalent conditions

B00 = 1, B10 = C10 = 0, B01 = 0. s19d

Similarly, the pressure tensorPij defined by

Pij = S2kT

m
D2E

−`

`

dc1mc1ic1j f1, s20d

for i , j =x andy, is related toB20 andC20.
The coefficientsBkr except for those in Eq.s19d can be

calculated as follows. Multiplying the two-dimensional
steady-state Boltzmann equations1d by

Qkrsc1d ; 4S m

2kT
Dk/2Yksc1dSk

rsc1
2d

Gsk + r + 1d
s21d

and then integrating overs2kT/md1/2c1, it is found that

− S2kT

m
D1/2

kc1 · = Qkrlav + = ·FS2kT

m
D1/2

kc1QkrlavG
= S2kT

m
D2E E E sQkr8 − Qkrdf1f2gdbdc2dc1, s22d

where GsXd is the gamma function, kXlav

=s2kT/mdeXf1dc1, and Qkr8 represents the postcollisional
Qkr. We should calculate both sides of Eq.s22d for everyk
and r, because Eq.s22d leads to simultaneous equations to
determineBkr.
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For convenience, we introduceVkr and Dkr as the left-
hand and right-hand sides of Eq.s22d, respectively:

Vkr ; − S2kT

m
D1/2

kc1 · = Qkrlav + = ·FS2kT

m
D1/2

kc1QkrlavG
s23d

and

Dkr ; S2kT

m
D2E E E sQkr8 − Qkrdf1f2gdbdc2dc1. s24d

We will calculateVkr andDkr separately. From Appendix A,
the result ofVkr becomes

Vkr = nS2kT

m
D1/2FSr +

k

2
−

1

2
DSDk,r

]xT

T
+ Ek,r

]yT

T
D

− SDk,r−1
]xT

T
+ Ek,r−1

]yT

T
D + ]xDk,r + ]yEk,rG , s25d

where ]iX denotes]X/]i for i =x and y. Dk,r and Ek,r are
functions ofBkr andCkr, as is written in Appendix A.

B. Collision term Dkr

Next we calculate the collision termDkr in Eq. s24d. We
should specify the kind of the interaction of molecules so as
to perform the calculation of the collision termDkr. For hard-
disk molecules, the impact parameterb is given by the rela-
tion

b = d cos
x

2
, s26d

whered is the hard-disk molecular diameter. The collision
differential cross section is obtained by

db = −
d

2
sin

x

2
dx. s27d

Therefore,Dkr for hard-disk molecules,Dkr
H, becomes

Dkr
H =

d

2
E

0

2p

fFkr
1 sxd − Fkr

1 s0dgsin
x

2
dx, s28d

whereFkr
m sxd is defined as

Fkr
m sxd ; S2kT

m
D2E E Qkr8 f1f2g

mdc2dc1, s29d

and we have usedFkr
m s0d=s2kT/md2eeQkrf1f2g

mdc2dc1.
Note thatx=0 if b.d.

From Eq.s28d, it is sufficient to calculateFkr
1 sxd for de-

riving Dkr
H . The details ofFkr

1 sxd are written in Appendix B 1.
Several explicit forms ofDkr

H are also demonstrated in Ap-
pendixes C and D. From the definitionss23d and s24d, both
sides of Eq.s22d for arbitraryk and r can be calculated for
hard-disk molecules via

Vkr
H = Dkr

H , s30d

which produces a set of simultaneous equations determining
the coefficientsBkr, as is explained in Appendixes C and D.
HereVkr

H denotesVkr for hard-disk molecules.

C. Determination of Bkr

We will determine the first-order coefficientsBkr
I and the

second-order coefficientsBkr
II in accordance with the previous

two subsections, which corresponds to solving the integral
equationss5d ands6d, respectively. Here the upper suffices I
and II are introduced to specify the order ofK.

1. First order

We show the results of the first-order coefficientsBkr
I of

which the solution of the integral equations5d, f1
s1d, is com-

posed. They can be written in the form

Bkr
I = dk,1b1r

2]xT
Î2pdnT

. s31d

Values of the constantsb1r are given in Table I. The calcu-
lation of Bkr

I is explained in Appendix C. It is seen thatBkr
I is

of the order of the Knudsen numberK. Though Bkr
I was

derived only to the lowest-order approximationf62g—i.e.,
Bkr

I for r =1—we have obtainedBkr
I for r ø7 in this paper.

This ensures the convergence of all the physical quantities
which will be calculated in this paper. It should be mentioned
that our value ofBkr

I for the lowest Sonine approximation—
i.e., r =1—is identical with Sengers’s valuef62g. OnceBkr

I

have been calculated,Ckr
I can be written down directly by

replacing]xT by ]yT by symmetry. Substituting all the first-
order coefficients derived here into Eq.s16d, we can finally

TABLE I. Numerical constantsb1r in Eq. s31d.

r r ø1 r ø2 r ø3 r ø4 r ø5 r ø6 r ø7

1 1 1.026 1.029 1.030 1.030 1.030 1.030

2 - 5.263310−2 5.657310−2 5.720310−2 5.734310−2 5.738310−2 5.739310−2

3 - - 4.335310−3 4.820310−3 4.920310−3 4.946310−3 4.954310−3

4 - - - 3.671310−4 4.188310−4 4.313310−4 4.349310−4

5 - - - - 2.966310−5 3.452310−5 3.583310−5

6 - - - - - 2.241310−6 2.651310−6

7 - - - - - - 1.576310−7
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obtain the first-order velocity distribution functionf1
s1d.

2. Solubility conditions forf1
„2…

Since the first-order velocity distribution functionf1
s1d has

been obtained, the solubility conditions for the integral equa-
tion s6d should be considered before we attempt to derive the
explicit second-order solutionf1

s2d. The solubility conditions
for f1

s2d, Eqs.s10d, lead to the condition

= ·Js1d = 0, s32d

whereJs1d—i.e., the heat flux forf1
s1d—can be obtained as

Js1d ; S2kT

m
D5/2E

−`

`

dc1
mc1

2

2
c1f1

s1d s33d

=− b11S kT

pm
D1/22k

d
= T, s34d

with the appropriate value forb11 listed in Table I. It must be
emphasized that, sinceJs2d—i.e., the heat flux forf1

s2d—does
not appear, the solubility conditions of the two-dimensional
steady-state Boltzmann equation forf1

s2d lead to the heat flux
being constant to second order. This fact is in harmony with
a general property that the total heat flux should be uniform
in the steady state. From Eqs.s32d and s34d, we also obtain
an important relation betweens=Td2 and¹2T,

s=Td2

2T
+ ¹2T = 0. s35d

Owing to the relations35d, terms of¹2T can be replaced by
terms ofs=Td2.

3. Second order

We write down the results of the second-order coefficients
Bkr

II of which f1
s2d is composed. Using the relations35d, we

can determine the second-order coefficientsB0r
II appearing in

Eq. s14d as

B0r
II =

b0r

pd2n2T2s=Td2. s36d

Values for the constantsb0r are summarized in Table II. The
calculation ofB0r

II is shown in Appendix D. We have calcu-
latedB0r

II to the seventh approximation—i.e.,B0r
II for r ø6 in

this paper.
The other second-order coefficientsBkr

II in Eq. s16d can be
written in the final form

Bkr
II =

dk,2

pd2n2T2hb2r
A fs]xTd2 − s]yTd2g + b2r

B Tf]x
2T − ]y

2Tgj.

s37d

Values for the constantsb2r
A andb2r

B are summarized in Table
III. The calculation ofBkr

II is explained in Appendix D. Ow-
ing to the properties of the trigonometrical function,Ckr

II can
be obtained by replacings]xTd2−s]yTd2 and]x

2T−]y
2T in Eq.

s37d by 2]xT]yT and 2T]x]yT, respectively, using an axis
change.

One can see that both ofB0r
II and Bkr

II are of the order of
K2. As is also found in the three-dimensional casef18g, we
have confirmed the fact thatBkr

II for k=4 and 6 do not appear.
This fact strongly suggests thatBkr

II for all k greater than 2 do
not appear, which was also expected in Ref.f18g and re-
cently confirmed in Ref.f19g. We finally obtainf1

s2d by sub-
stituting the second-order coefficients obtained here into Eqs.
s14d ands16d. Finally, we note that, though we have derived
all the constantsb1r, b0r, b2r

A , andb2r
B in the form of fractions,

we have written them in the form of four significant figures
in this paper, since the forms of those fractions are too com-
plicated.

4. Velocity distribution function to second order

The velocity distribution function for hard-disk molecules
which we have derived in this subsection valid to second
order is now applied to a nonequilibrium steady-state system
under the temperature gradient along thex axis. In this case,
the form ofB0r

II in Eq. s36d becomes

B0r
II =

b0r

pd2n2T2s]xTd2, s38d

and, using the relations35d, Bkr
II in Eq. s37d can be trans-

formed into a more simple form

Bkr
II =

dk,2b2r

pd2n2T2s]xTd2, s39d

where values for the constantsb2r are summarized in Table
IV. The other second-order termCkr

II becomes zero.
From Eqs.s14d ands16d, the velocity distribution function

of the steady-state Boltzmann equation for hard-disk mol-
ecules to second order in the temperature gradient along the
x axis can be written as

TABLE II. Numerical constantsb0r in Eq. s36d.

r r ø2 r ø3 r ø4 r ø5 r ø6

2 2.778 2.530 2.497 2.490 2.488

3 - −3.292310−1 −3.602310−1 −3.663310−1 −3.679310−1

4 - - −2.676310−2 −3.038310−2 −3.125310−2

5 - - - −2.294310−3 −2.670310−3

6 - - - - −1.882310−4
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f = f s0dH1 −
Jx

b11nkT
S m

2kT
D1/2

o
rù1

r!b1rcxS1
r sc2d

+
mJx

2

4b11
2 n2k3T3Fo

rù2
r!b0rS0

r sc2d

+ o
rù0

r!b2rscx
2 − cy

2dS2
r sc2dGJ , s40d

where the specific values forb1r, b0r, and b2r are found in
Tables I, II, and IV, respectively.Jx corresponds to thex
component of the heat flux in Eq.s34d. Note that we have
changedc1 to c. As can be seen from Eq.s40d, the explicit
form of the velocity distribution function for hard-disk mol-
ecules becomes the sum of an infinite series of Sonine poly-
nomials.

Figure 2 gives thefs2d in Eq. s40d scaled bymJx
2/n2k3T3

with the third, fourth, fifth, sixth, and seventh approxima-
tions b0r and b2r. It should be mentioned that, as Fig. 2
shows, the scaledfs2d in Eq. s40d seems to converge to the
seventh approximation. Figure 3 provides the explicit form
of the scaledfs2d for hard-disk molecules with seventh ap-

proximationsb0r and b2r. It is seen that the scaledfs2d for
hard-disk molecules is strained symmetrically.

IV. OTHER NONEQUILIBRIUM VELOCITY
DISTRIBUTION FUNCTIONS TO SECOND ORDER

A. Chapman-Enskog solution of the two-dimensional steady-
state BGK equation to second order

For comparison, we also derive the velocity distribution
function for the two-dimensional steady-state BGK equation
to second order by the Chapman-Enskog method.f25–28g.
Suppose a nonequilibrium system subject to a temperature
gradient along thex axis in a steady state whose velocity
distribution function is expressed asf = fsx,vd. The steady-
state BGK equation is written as

vx]xf =
fLE − f

t
, s41d

where the relaxation timet is dependent on the positionx
through the densitynsxd and temperatureTsxd. fLE is the
usual local equilibrium velocity distribution function

TABLE III. Numerical constantsb2r
A supperd andb2r

B slowerd in Eq. s37d.

r r ø2 r ø3 r ø4 r ø5 r ø6

0 −1.277310−2 −1.784310−3 2.073310−4 6.982310−4 8.380310−4

1 −1.007 −9.775310−1 −9.721310−1 −9.708310−1 −9.704310−1

2 3.363310−1 3.701310−1 3.758310−1 3.772310−1 3.775310−1

3 - 3.262310−2 3.643310−2 3.729310−2 3.753310−2

4 - - 2.584310−3 2.986310−3 3.089310−3

5 - - - 2.091310−4 2.461310−4

6 - - - - 1.557310−5

r r ø2 r ø3 r ø4 r ø5 r ø6

0 4.052310−1 4.041310−1 4.039310−1 4.038310−1 4.038310−1

1 −4.261310−1 −4.297310−1 −4.304310−1 −4.306310−1 −4.306310−1

2 −4.452310−2 −4.886310−2 −4.968310−2 −4.987310−2 −4.993310−2

3 - −4.594310−3 −5.174310−3 −5.304310−3 −5.340310−3

4 - - −4.315310−4 −4.961310−4 −5.125310−4

5 - - - −3.688310−5 −4.311310−5

6 - - - - −2.881310−6

TABLE IV. Numerical constantsb2r in Eq. s39d.

r r ø2 r ø3 r ø4 r ø5 r ø6

0 −2.154310−1 −2.038310−1 −2.017310−1 −2.012310−1 −2.011310−1

1 −7.943310−1 −7.626310−1 −7.569310−1 −7.555310−1 −7.551310−1

2 3.586310−1 3.945310−1 4.006310−1 4.021310−1 4.025310−1

3 - 3.492310−2 3.902310−2 3.994310−2 4.020310−2

4 - - 2.800310−3 3.234310−3 3.346310−3

5 - - - 2.276310−4 2.677310−4

6 - - - - 1.701310−5
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fLEsx,vd=fmnsxd /2pkTsxdgexpf−mv2/2kTsxdg. It should be
mentioned that, for the conservation laws, the collision term
for the steady-state BGK equation, the right-hand side of Eq.
s41d, must satisfy

E Fi fLEdv =E Fi fdv, s42d

with the four collision invariantsFi introduced in Eq.s9d.
The velocity distribution functionf can be expanded as

f = f s0d + f s1d + f s2d + ¯ , s43d

with f s0d; fLE. Substituting Eq.s43d into the steady-state
BGK equations41d, we arrive at the following set of equa-
tions:

−
f s1d

t
= vx]xf

s0d s44d

to first order and

−
f s2d

t
= vx]xf

s1d s45d

to second order. It is found that Eq.s44d with the requirement
s42d leads tonkT being uniform and that Eq.s45d with the
requirements42d leads to heat fluxJx calculated from Eq.
s33d being uniform. Using these facts, from Eqs.s44d and
s45d, the velocity distribution function to second order for
the the two-dimensional steady-state BGK equation becomes

f = f s0do
n=0

2 H−
Jx

nkT
S m

2kT
D1/2Jn

n!cx
nS1

nsc2d, s46d

with the uniform heat fluxJx=−2nk2Tt]xT/m.

B. Two-dimensional information theory

Let us construct two-dimensional information theory
f53,54g. The Zubarev form for the nonequilibrium velocity
distribution function under a heat flux can be obtained by
maximizing the nonequilibrium entropy, defined as

Ssxd ; − kE f ln fdv, s47d

under the constraints of the density

nsxd ; E fdv s48d

and temperature

nsxdkTsxd ; E mv2

2
fdv. s49d

We assume no mean flow:

FIG. 2. The scaledfs2d’s for
hard-disk molecules. The dash-
dotted line, the dotted line, the
short-dashed line, the long-dashed
line, and the solid line correspond
to the scaledfs2d for hard-disk
molecules with the third, fourth,
fifth, sixth, and seventh approxi-
mationsb0r and b2r, respectively.
Note that we putcy=0.

FIG. 3. The scaledfs2d for hard-disk molecules with the seventh
approximationsb0r andb2r.
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E mvfdv = 0, s50d

where 0 denotes the zero vector. Furthermore, we adopt the
heat flux as a constraint:

Jx ;E mv2

2
vxfdv. s51d

It should be emphasized thatnkT and the heat fluxJx are
now assumed to be uniform by contrast with the case for the
steady-state Boltzmann equation where its solubility condi-
tions lead tonkT andJx being constant to second order.

We have finally derived the nonequilibrium velocity dis-
tribution function to second order in the heat fluxJx by ex-
panding the Zubarev’s nonequilibrium velocity distribution
function to second order as

f = f s0dH1 −
Jx

nkT
S m

2kT
D1/2

cxS1
1sc2d +

mJx
2

n2k3T3S1

2
−

3c2

4
D

+
mJx

2

n2k3T3cx
2F1 − c2 +

c2

4
GJ . s52d

In Eq. s52d, we have expanded thenonequilibrium tempera-
ture which has been obtained asQ=Ts1−3mJx

2/4n2k3T3d for
two dimensions. Such amodifiedvelocity distribution func-
tion has been also obtained and used in three dimensions
f43,46g. We note that, in all the macroscopic quantities cal-
culated in this paper, there are no differences between the
results from the modified velocity distribution function and
Jou’s velocity distribution function where thenonequilibrium
temperatureis not expandedf53,54g. Actually, the identifica-
tions of the density, the temperature, and the mean flow in
Eqs. s11d–s13d do not affect the physical properties of the
velocity distribution function for the two-dimensional
steady-state Boltzmann equationf18g, and those identifica-
tions must be satisfied for the conservation laws in the case
for the two-dimensional steady-state BGK equationfsee Eq.
s42dg.

V. DIRECT COMPARISON OF THE SCALED f„2…

Figure 4 exhibits the direct comparison of the scaled
fs2d’s for hard-disk moleculess40d to the seventh approxima-
tion with those for the steady-state BGK equations46d and
information theorys52d. We have found that, as Fig. 4 ex-
plicitly shows, the second-order velocity distribution func-
tion for hard-disk moleculess40d definitely differs from the
others. We emphasize that such a difference never appears to
first order.

VI. NONLINEAR NONEQUILIBRIUM TRANSPORT
PHENOMENA

We can introduce the general form of the heat flux as

Jx = − ÃTw]xT, s53d

where w indicates temperature dependence of the thermal
conductivity andÃ is a constant that depends upon micro-

scopic models. For example,w is calculated as 1/2 for hard-
disk molecules, andÃ is determined as 2b11k /dsk /pmd1/2

with b11.1.030 for hard-disk moleculesfsee Eq.s34dg. Note
that w andÃ cannot be determined explicitly from the BGK
equation and information theory. From Eq.s53d, the tempera-
ture profile Tsxd in the nonequilibrium steady state can be
determined as

Tsxd = FTs0dw+1 − sw + 1d
Jx

Ã
xG1/sw+1d

. s54d

It is seen that the temperature profileTsxd becomes nonlinear
except forw=0.

Using Eq. s20d, the equation of state in the nonequilib-
rium steady state can be obtained as

Pij = nkTFdi j + lP
ij mJx

2

n2k3T3G , s55d

with the unit tensordi j and the tensor componentslP
ij given

in Table V. The values oflP
ij for the seventh approximation

b1r, b0r, and b2r for hard-disk molecules seems to be con-
verged to three significant figures, as can be seen from Table
V. Note that the off-diagonal components oflP

ij are zero, and
lP

xx=−lP
yy is satisfied. Equations55d shows that the equation

FIG. 4. Direct comparison of the scaledfs2d for hard-disk mol-
ecules with those for the steady-state BGK equation and informa-
tion theory. The solid line, the dashed line, and the dash-dotted line
correspond to the scaledfs2d for hard-disk molecules with the sev-
enth approximationsb0r and b2r, the steady-state BGK equation,
and information theory, respectively. Note that we putcy=0.

TABLE V. Numerical constants for the macroscopic quantities:
the ith approximation quantities for hard-disk molecules and the
exact values for the steady-state BGK equation and information
theory.

ith lP
xx lS

3th −5.085310−2 −2.549310−1

4th −4.807310−2 −2.551310−1

5th −4.757310−2 −2.551310−1

6th −4.744310−2 −2.552310−1

7th −4.741310−2 −2.552310−1

BGK equation 0 −1
4

Information 1
2 −1

4
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of state in the nonequilibrium steady state is not modified to
first order. We indicate that the second-order pressure tensor
Pij

s2d should be uniform from the solubility conditions for the
third-order solutionfs3d:

E Fiv1 · = f1
s2ddv1 = 0. s56d

Therefore, the pressure tensorPij in Eq. s55d becomes uni-
form sincenkT is constant from the solubility conditionss8d.

We find thatlP
ij for hard-disk molecules differs from that

for the steady-state BGK equation and information theory
not only quantitatively but also qualitatively:lP

xx,lP
yy for

hard-disk molecules, whilelP
xx=lP

yy for the steady-state BGK
equation andlP

xx.lP
yy for information theory. This kind of

difference has been also found in the three-dimensional case
f18g.

Each component of the kinetic temperature in the non-
equilibrium steady state; i.e.,Ti for i= x andy is calculated as

nkTi

2
; S2kT

m
D2E

−`

`

dc
mci

2

2
f , s57d

which leads to

Ti = TF1 + lP
ii mJx

2

n2k3T3G , s58d

for i= x and y. Values for the constants in the second-order
term lP

ii are the same aslP
ij for i = j given in Table V. For

hard-disk molecules,Tx becomes smaller thanTy regardless
of the sign ofJx, which means that the motion of hard-disk
molecules along the heat flux becomes dull. We note thatTi
for hard-disk molecules is isotropic to first order; that is, the
equipartition law of energy holds.

The Shannon entropy in the nonequilibrium steady stateS
is defined via

S; −
2k2T

m
E

−`

`

dcf ln f = − nk lnF nm

2pkT
G + nk + lS

mJx
2

nk2T3 .

s59d

Values for the constantlS are given in Table V:lS for the
seventh approximationb1r, b0r, and b2r for hard-disk mol-
ecules seems to converge to four significant figures. It is
found thatlS for hard-disk molecules is close to that for the
steady-state BGK equation and information theory. This is
because the second-order correction term in the Shannon en-
tropy is determined only by the square of the first-order so-
lution fs1d where no important difference dependent on the
kinetic equations or information theory appears. We note that
the Shannon entropy in the nonequilibrium steady state is not
modified to first order.

VII. CONTRIBUTION OF THE STEADY HEAT
CONDUCTION TO THE RATE OF CHEMICAL REACTION

A. Calculation of the rate of chemical reaction

In the early stage of a chemical reaction between mon-
atomic gas molecules,

A + A → products, s60d

the rate of chemical reaction may not be affected by the
existence of products, and the reverse reaction can be ne-
glectedf67g. From the viewpoint of kinetic collision theory,
the chemical reaction rates60d can be described as

R=E dvE dv1E dVE f f1gssgd, s61d

for two dimensions. HereV denotes the solid angle for two
dimensions. For the differential cross section of chemical
reactionssgd, we have derived the line-of-centers model for
the case of two dimensions. Its form becomes

ssgd =50, g ,Î4E*

m
,

d

p
S1 −

4E*

mg2D1/2

, g ùÎ4E*

m
,6 s62d

with m the mass of molecules andE* the threshold energy of
a chemical reaction.

We calculate the rate of chemical reactions61d with the
two-dimensional line-of-centers models62d using the ex-
plicit velocity distribution function of the two-dimensional
steady-state Boltzmann equation for hard-core molecules to
second orders40d. Substituting the expanded form of the
velocity distribution function to second order in Eq.s3d into
Eq. s61d, we obtain

R= Rs0d + Rs1d + Rs2d s63d

up to second order. The zeroth-order term ofR,

Rs0d =E dvE dv1E dVE f s0df1
s0dgssgd

= 2n2dSpkT

m
D1/2

e−E* /kT, s64d

corresponds to the rate of chemical reaction of the equilib-
rium theory. Similarly, the first-order term ofR is obtained as

Rs1d =E dvE dv1E dVE f s0df1
s0dffs1d + f1

s1dggssgd,

s65d

whereRs1d does not appear becausefs1d is an odd functions
of c, as is shown in Eq.s40d. The second-order term of
R—i.e., Rs2d—is divided into

Rs2,Ad =E dvE dv1E dVE f s0df1
s0dfs1df1

s1dgssgd s66d

and

Rs2,Bd =E dvE dv1E dVE f s0df1
s0dffs2d + f1

s2dggssgd,

s67d

which exhibit the local nonequilibrium effect. Since the in-
tegrationss66d and s67d have the cutoff form as in Eq.s62d,
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the explicit forms offs1d andfs2d of the steady-state Boltz-
mann equation for hard-disk molecules are required to cal-
culateRs2,Ad andRs2,Bd, respectively.

In Fig. 2, we have confirmed thatfs2d seems to converge
to the seventh Sonine approximation, so that we will show
only the results calculated fromfs1d andfs2d for the seventh
approximation of Sonine polynomials. In order to compare
the results from the steady-state Boltzmann equation with
those from the steady-state BGK equation and information
theory, we also use the explicit forms offs1d and fs2d ob-
tained in Eq.s46d for the steady-state BGK equation and in
Eq. s52d for information theory.

B. Local nonequilibrium effect on the rate of chemical
reaction

Inserting fs1d and fs2d of Eq. s40d for the steady-state
Boltzmann equation for hard-core molecules, Eq.s46d for the
steady-state BGK equation, and Eq.s52d for information
theory into Eqs.s66d and s67d, and performing the integra-
tions with the chemical reaction cross sections62d, we finally
obtain the local nonequilibrium effect on the rate of chemical
reaction based on the line-of-centers model. The expressions
of Rs2,Ad andRs2,Bd become

Rs2,Ad =
dmJx

2

k3T3 SpkT

m
D1/2

e−E* /kTHo
rù0

arS E*

kT
DrJ s68d

and

Rs2,Bd =
dmJx

2

k3T3 SpkT

m
D1/2

e−E* /kTHo
rù0

brS E*

kT
DrJ , s69d

respectively. The numerical values forar andbr are listed in
Tables VI and VII, respectively. As well as the three-
dimensional case, the two-dimensionalRs2,Bd for the steady-

state Boltzmann equation is determined only by the terms of
b0r in fs2d of Eq. s40d. This is becauseRs2,Bd of Eq. s67d has
x-y symmetry, so that the terms includingscx

2−cy
2d in fs2d of

Eq. s40d do not contribute toRs2,Bd.
The graphical results ofRs2d compared with those ofRs2,Ad

are provided in Fig. 5. BothRs2d and Rs2,Ad in Fig. 5 are
scaled byp1/2dm1/2Jx

2/k5/2T5/2. Note thatRs2d is the sum of
Rs2,Ad andRs2,Bd in Eqs.s68d and s69d. As Fig. 5 shows, it is
clear thatRs2,Bd plays an essential role for the evaluation of
Rs2d. We have found that there are no qualitative differences
amongRs2d and Rs2,Ad for the steady-state Boltzmann equa-
tion and those for the steady-state BGK equation and infor-
mation theory, while they exhibit slight deviations from each
other. The quantitative deviation inRs2,Ad would not be ob-
served if we adoptedfs1d of the steady-state Boltzmann
equation for the lowest Sonine approximation, because that
is identical with the precisefs1d of the steady-state BGK
equation and information theory.

VIII. DISCUSSION AND CONCLUSION

Fushiki has recently demonstrated that our analytical
three-dimensional second-order solution of the steady-state
Boltzmann equation for hard-core molecules agrees well

TABLE VI. Numerical constantsar in Eq. s68d.

r Boltzmann eq. BGK eq. and information theory

0 −2.758310−2 − 3
128

1 −1.761310−1 − 9
64

2 4.015310−1 9
32

3 −1.310310−1 − 1
16

4 1.326310−2 -

5 −1.368310−3 -

6 1.260310−4 -

7 −9.809310−6 -

8 6.290310−7 -

9 −3.249310−8 -

10 1.306310−9 -

11 −3.902310−11 -

12 8.256310−13 -

13 −1.160310−14 -

14 9.645310−17 -

15 −3.576310−19

TABLE VII. Numerical constantsbr in Eq. s69d.

r Boltzmann eq. BGK eq. Information theory

0 −1.284310−1 − 9
64 − 17

128

1 −4.721310−1 −30
64 −31

64

2 3.372310−1 3
16

11
32

3 7.086310−2 1
8

1
16

4 −3.874310−3 - -

5 1.536310−4 - -

6 −2.774310−6 - -

FIG. 5. ScaledRs2d compared to scaledRs2,Ad as a function of
E* /kT for the two-dimensional case. The solid line, the long-dashed
line and the dotted line showRs2d for hard-disk molecules, the
steady-state BGK equation, and information theory, respectively.
The dashed line and the dash-dotted line representRs2,Ad for hard-
disk molecules and both the steady-state BGK equation and infor-
mation theory, respectively.
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with results of his numerical experiment using both a mo-
lecular dynamics simulation and a direct simulation monte
carlo methodf19,20g. Using the method developed in Ref.
f18g, we have derived the velocity distribution function of
the two-dimensional steady-state Boltzmann equation for
hard-disk molecules explicitly to second order in the tem-
perature gradient, as was shown explicitly in Eq.s40d and
graphically in Fig. 3. We have calculated the two-
dimensional equation of state for hard-disk molecules to sec-
ond order from it. We believe that the second-order solution
of the steady-state Boltzmann equation is physically impor-
tant in that it reflects a nonequilibrium state far from equi-
librium, called the local nonequilibrium state.

We have found that there are qualitative differences be-
tween hard-disk molecules and the steady-state BGK equa-
tion in the nonlinear nonequilibrium transport phenomena
based on the local nonequilibrium state: the second-order
corrections appear for hard-disk molecules in the pressure
tensorPij and the kinetic temperatureTi, while no correc-
tions to these quantities appear for the steady-state BGK
equation, as Table V shows. This kind of qualitative differ-
ences was detected also in the three-dimensional casef18g.
This discrepancy is due to the fact that theg dependence
cannot be absorbed in the single relaxation time of the BGK
equation, which leads to the conclusion that the steady-state
BGK equation neither captures the essence of hard-disk mol-
ecules nor possesses the characteristics of any other models
of molecules which interact with ag dependence. We suggest
that microscopic models which possess the property that its
relaxation to the local equilibrium state is described only by
a single relaxation time could not be applied to describe the
nonlinear nonequilibrium transport phenomena. This sugges-
tion may mean that the steady-state BGK equation could
capture the essence of hard-disk molecules if one made the
relaxation time depend ong or if one developed the steady-
state BGK equation with multirelaxation times. We note that
the qualitative differences mentioned above still appear no
matter which boundary condition is adopted; that is, the isot-
ropy and the anisotropy of the pressure tensor in Eq.s55d and
the kinetic temperature in Eq.s58d are not affected by any
kinds of boundary conditions.

We have examined information theory by the microscopic
kinetic theory mentioned above and consider the possibility
of the existence of a nonequilibrium universal velocity dis-
tribution function. The first-order velocity distribution func-
tion for the steady-state Boltzmann equation for hard-disk
molecules—i.e., the first-order terms in Eq.s40d—is consis-
tent with that derived by expanding Zubarev’s velocity dis-
tribution function f50–52g. On the other hand, the explicit
form of the second-order term in Eq.s40d definitely differs
from the precise form for the steady-state BGK equations46d
or information theorys52d, as Fig. 4 shows. Although infor-
mation theory has been applied to nonequilibrium dilute
gasesf39,43,55–58g, we have found that information theory
contradicts the microscopic kinetic models: all the macro-
scopic quantities for information theory except for the Shan-
non entropyS in Eq. s59d are qualitatively different from
those for the steady-state Boltzmann equation and the
steady-state BGK equation. These results indicate that char-
acteristics of microscopic models appear in the local non-

equilibrium state; that is, nonlinear nonequilibrium transport
phenomena are sensitive to differences of kinetic models, so
rather realistic models are needed when one investigates
them. We can conclude that, though quite a few statistical
physicists have believed in the existence of a universal ve-
locity distribution function in the nonequilibrium steady state
by maximizing the Shannon-type entropyf11,47,48,50–53g,
any universal nonlinear nonequilibrium velocity distribution
function does not seem to exist in the two-dimensional case
as well as the three-dimensional case, even when it is ex-
pressed only in terms of macroscopic quantities. We suggest
that the entropy defined in Eq.s47d is not appropriate as the
nonequilibrium entropy to second order, though it is appro-
priate to first order, and that some nonequilibrium corrections
dependent on microscopic models are needed for the non-
equilibrium entropy to second order.

The second-order solution of the steady-state Boltzmann
equation for hard-disk molecules is indispensable for the cal-
culation of the nonequilibrium effects on the rate of chemical
reaction, sinceRs1d does not appear andRs2,Bd is remarkably
larger thanRs2,Ad as Fig. 5 shows. This indicates the signifi-
cance of the second-order coefficients as terms which reflect
the local nonequilibrium state.
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APPENDIX A: CALCULATION OF Vkr

From the definition ofQkr, Vkr can be calculated using the
mathematical properties of the trigonometrical functions and
Sonine polynomials. For example,c1xQkr can be rewritten as

S2kT

m
D1/2

c1xQkr = 2sdk,0 + 1dS m

2kT
Dk/2 Sk

rsc1
2d

Gsk + r + 1d

3FYk+1sc1d +
2kT

m
c1

2Yk−1sc1dG . sA1d

Integrating Eq.sA1d overs2kT/md1/2c1 with f1 from Eq.s14d
can be performed by using the following orthogonality prop-
erties. For Sonine polynomials,

E
0

`

Xke−XSk−1
p sXdSk

qsXddX=
s− 1dp−qGsq + k + 1d

q!
,

sA2d

for p=q andp=q+1, and is zero otherwise. For the trigono-
metrical functions,

E
0

2p

cosnf sinmfdf = 0 sA3d

and
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E
0

2p

cosnf cosmfdf =E
0

2p

sinnf sinmfdf = pdnm,

sA4d

with the Kronecker deltadpq for mÞ0. We can calculateDk,r
andEk,r defined as

Dk,r ;
1

n
c1xQkr, Ek,r ;

1

n
c1yQkr. sA5d

The results can be written as

Dk,r = sdk,0 + 1dfsk + r + 1dBk+1,r − Bk+1,r−1 + sdk,0 + 1dBk−1,r

− sdk,0 + 1dsr + 1dBk−1,r+1g sA6d

and

Ek,r = sdk,0 + 1dfsk + r + 1dCk+1,r − Ck+1,r−1 − Ck−1,r

+ sr + 1dCk−1,r+1g. sA7d

Additionally, c1x]xQkr can be rewritten as

c1x]xQkr =
]xT

T
c1xFQk,r−1sc1d − Sr +

k

2
DQk,rG . sA8d

Therefore, by integrating Eq.sA8d over s2kT/md1/2c1, with
f1 from Eq. s14d, it is found that

c1x]xQkr = n
]xT

T
FDk,r−1 − Sr +

k

2
DDk,rG . sA9d

Similarly c1y]yQkr is obtained by replacing the differential
coefficients with respect tox by the corresponding differen-
tial coefficients with respect toy, the Dk,r’s by the corre-
spondingEk,r, respectively. Substituting these results into Eq.
s23d, Vkr finally becomes Eq.s25d.

APPENDIX B: CALCULATION OF Fkr
1
„x…

1. Details ofFkr
1
„x…

The details ofFkr
1 sxd are written in this appendix. Substi-

tuting the general forms off1, f2 in Eq. s14d andQkr8 in Eq.
s21d into Fkr

1 sxd in Eq. s29d, Fkr
1 sxd can be written as

Fkr
1 sxd = o

n1,n2,k1,k2

Wk,k1,k2

r,n1,n2hJk,k1,k2

Y,r,n1,n2sxdBk1n1
Bk2n2

+ Jk,k1,k2

Z,r,n1,n2sxdCk1n1
Ck2n2

j, sB1d

whereJk,k1,k2

Y,r,n1,n2sxd is the characteristic integral defined as

Jk,k1,k2

Y,r,n1,n2sxd ; E E expf− sc1
2 + c2

2dgYksc18dYk1
sc1dYk2

sc2d

3Sk
rsc18

2dSk1

n1sc1
2dSk2

n2sc2
2dgdc2dc1 sB2d

and

Jk,k1,k2

Z,r,n1,n2sxd ; E E expf− sc1
2 + c2

2dgYksc18dZk1
sc1dZk2

sc2d

3Sk
rsc18

2dSk1

n1sc1
2dSk2

n2sc2
2dgdc2dc1. sB3d

We note that values of the latter are obtained from those of

the former by a transformation of axes and thatJk,0,k2

Z,r,n1,n2sxd
=Jk,k1,0

Z,r,n1,n2sxd=0 from Eq. s18d. The integral containing
Yk1

sc1dZk2
sc2d+Zk1

sc1dYk2
sc2d becomes zero, owing to the

symmetry of the trigonometrical functions. The factor
Wk,k1,k2

r,n1,n2 in Eq. sB1d is defined as

Wk,k1,k2

n1,n2 ;
4n2

p2Gsk + r + 1dS m

2kT
Dsk+k1+k2d/2

n1!n2!, sB4d

which is obtained from the prefactors and the coefficients in
the general form off1, f2 in Eq. s14d andQkr8 in Eq. s21d.

We find that it is necessary only to evaluate the character-
istic integral Jk,k1,k2

Y,r,n1,n2sxd in order to calculateFkr
1 sxd. Our

calculation ofJk,k1,k2

Y,r,n1,n2sxd is written in the next subsection.
Once the characteristic integralJk,k1,k2

Y,r,n1,n2sxd has been de-
rived,Fkr

1 sxd is now calculated from Eq.sB1d with Wk,k1,k2

r,n1,n2 in
Eq. sB4d.

2. Calculation of Jk,k1,k2

Y,r,n1,n2
„x…

We shall explain how to calculateJk,k1,k2

Y,r,n1,n2sxd which ap-
pears in Eq.sB2d. The calculation has been performed
mainly based on the method developed in Ref.f18g.

a. Introduction of Qk,k1,k2

Using Eq.s15d, the characteristic integralJk,k1,k2

Y,r,n1,n2sxd cor-
responds to the coefficient ofsrtn1un2 in

Qk,k1,k2
; nk,k1,k2E E Ỹksc18dỸk1

sc1dỸk2
sc2dexph− sac1

2 + bc2
2

+ gc18
2djgdc2dc1, sB5d

that is,

Qk,k1,k2
; o

r,n1,n2

Jk,k1,k2

Y,r,n1,n2sxdsrtn1un2. sB6d

In Eq. sB5d, a, b, andg are defined as

a ;
1

1 − t
, b ;

1

1 − u
, g ;

s

1 − s
, sB7d

andnk,k1,k2
is given by

nk,k1,k2
; s1 − sd−k−1s1 − td−k1−1s1 − ud−k2−1S2kT

m
Dsk+k1+k2d/2

sB8d

and

Ỹksc18d = c18
k coskf, Ỹk1

sc1d = c1
k1 cosk1f1,

Ỹksc2d = c2
k2 cosk2f2. sB9d

Finally, we need only to evaluate the characteristic integral
Qk,k1,k2

in order to calculateJk,k1,k2

Y,r,n1,n2sxd.

b. Derivation of the inductive equation

In order to evaluateQk,k1,k2
in Eq. sB5d, let us derive an

inductive equation forQ̃k,k1,k2
, which is related toQk,k1,k2

by
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Q̃k,k1,k2
; nk,k1,k2

−1 Qk,k1,k2
. sB10d

By replacingc1x andc2x by c1x−w andc2x−w, respectively,
c1x8 andc2x8 will be changed toc1x8 −w andc2x8 −w. At the same
time, the relative speedg is not modified, and the value of
Qk,k1,k2

is unchanged. Therefore,Qk,k1,k2
is independent ofw

and differentiation ofQk,k1,k2
with respect tow gives zero.

After this differentiation has been performed andw has been
set to zero, it is found that

E E exph− sac1
2 + bc2

2 + gc18
2djgdc2dc1haỸkỸk2

sỸk1+1

+ c1
2Ỹk1−1dsdk1,0 + 1d + bỸkỸk1

sỸk2+1 + c2
2Ỹk2−1dsdk2,0 + 1d

+ gỸk1
Ỹk2

sỸk+1 + c18
2Ỹk−1dsdk,0 + 1d − k1ỸkỸk1−1Ỹk2

− k2ỸkỸk1
Ỹk2−1 − kỸk−1Ỹk1

Ỹk2
j = 0, sB11d

by using the formulas

cixỸki
scid =

sdki,0
+ 1d

2
hỸki+1scid + ci

2Ỹki−1scidj sB12d

and

]Ỹki
scid

]cix
= kiỸki−1scid sB13d

for i =1 and 2. From Eqs.sB5d andsB10d, Eq. sB11d leads to
the inductive equation

asdk1,0 + 1dQ̃k,k1+1,k2
− asdk1,0 + 1d

]Q̃k,k1−1,k2

]a

+ bsdk2,0 + 1dQ̃k,k1,k2+1 − bsdk2,0 + 1d
]Q̃k,k1,k2−1

]b

+ gsdk,0 + 1dQ̃k+1,k1,k2
− gsdk,0 + 1d

]Q̃k−1,k1,k2

]g

− kQ̃k−1,k1,k2
− k1Q̃k,k1−1,k2

− k2Q̃k,k1,k2−1 = 0 sB14d

for Q̃k,k1,k2
. Because of this inductive equation, once the ini-

tial valueQ̃0,k1,k2
is known for allk1 andk2, then the values

of the integralQ̃k,k1,k2
for any k, k1, andk2 can be obtained,

andQk,k1,k2
is then obtained from Eq.sB10d.

c. Calculation of the initial value

In principle, the initial value of the inductive equation

sB14d, Q̃0,k1,k2
, can be obtained and written explicitly from

Eq. sB5d, changing the variablesc1 andc2 to V =sc1+c2d /2

and g=c1−c2. Though we have directly calculatedQ̃0,k1,k2
only for k1=k2=0, 1, 2, 3, 4, 5, 6, 7, and 8, they are sufficient
to get all the results shown in Appendixes C and D. We do
not show the explicit expressions of the initial values in this
paper because they are too complicated. We have also con-

firmed that the initial valueQ̃0,k1,k2
becomes zero fork1

Þk2. Note thatQ0,k1,k2
is obtained byn0,k1,k2

Q̃0,k1,k2
from Eq.

sB10d.

d. Evaluation of Jk,k1,k2

Y,r,n1,n2
„x…

Using the inductive equationsB14d and the initial value

Q̃0,k1,k1
calculated in Appendix B 2 c, thevalues of the inte-

gral Qk,k1,k2
for any k, k1, andk2, can be obtained with the

relation sB10d. The result is thatQk,k1,k2
vanishesk= uk1

−k2u+2q, whereq is a positive integer or zero. In order to
obtain Jk,k1,k2

Y,r,n1,n2sxd, it is sufficient to haveQk,k1,k2
only for

k1ùk2. This is because the value ofJk,k1,k2

Y,r,n1,n2sxd, with k1 and
k2, n1 and n2 interchanged, corresponds to the value of
Jk,k1,k2

Y,r,n1,n2sxd with x replaced byp−x. Thus, if k1Þk2 or
n1Þn2, Jk,k1,k2

Y,r,n1,n2sxd for any set ofk1 andk2, n1 andn2 cor-
responds to

Jk,k1,k2

Y,r,n1,n2sxd = Jk,k1,k2

Y,r,n1,n2sxd + Jk,k1,k2

Y,r,n1,n2sp − xd sB15d

for k1ùk2; if k1=k2 and n1=n2, thenJk,k1,k2

Y,r,n1,n2sxd gives the
required value at once.

APPENDIX C: CALCULATION OF THE FIRST-ORDER
COEFFICIENTS Bkr

I

Let us explain how to obtain the first-order coefficients—
that is, how to solve the integral equations5d. To begin with,
we calculateVkr

H in Eq. s25d to first order;Vkr
H for first order

corresponds to the right-hand side of Eq.s5d. It can be cal-
culated only by substitutingB00=1 into the expressions of
Dk,r and Ek,r in Eqs. sA6d and sA7d: the coefficientB00=1
corresponds tof1= f1

s0d, and no higher-order terms appear in
Vkr

H to first order. It finally becomes

V1r
H = −

2n

T
S2kT

m
D1/2]T

]x
d1,r . sC1d

Now Vkr
H for first order is found to vanish unlessk=1, so

that we need calculate onlyD1r
H for first order; as was men-

tioned in the end of Sec. II, we do not need to consider the
case in which the right-hand side of Eq.s5d becomes zero
f2g. To deriveD1r

H in Eq. s28d for first order, we must calcu-
late bothW1,k1,k2

r,n1,n2 and J1,k1,k2

r,n1,n2 in F1,r
1 sxd of Eq. sB1d for first

order, as was shown in Appendixes B 1 and B 2. The result
for D1r

H to first order can be written finally in the form

D1r
H = B00o

n1

B1n1

I M1,1,0
Y,r,n1,0, sC2d

where the set of the coefficientsB1n1

I B00 is obtained from
W1,1,0

r,n1,0 in Eq. sB4d. To first order,f1 in Eq. s29d contains only
B00=1 and the first-order coefficientsBk1n1

I and Ck1n1

I ; f2 in
Eq. s29d also containsB00=1, Bk2n2

I and Ck2n2

I to first order.
Thus, we obtain only the termB1n1

I B00 from W1,1,0
r,n1,0 to first

order using the fact thatFkr
1 sxd=0 unlessk= uk1−k2u+2q.

Note that it is sufficient to consider only the case fork1
ùk2 as is explained in Appendix B 2 and that we setq=0.
The matrixM1,1,0

Y,r,n1,0 is thus obtained,
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M1,1,0
Y,r,n1,0 =

dmn2

p2kT

n1!

Gsr + 2dE0

2p

fJ1,1,0
Y,r,n1,0sxd

− J1,1,0
Y,r,n1,0s0dgsin

x

2
dx, sC3d

using Eqs.s28d, sB1d, andsB4d.
For k=1, Eq. s30d gives a simultaneous equation deter-

mining the first-order coefficientsB1n1

I , i.e.,

V1r
H = o

n1ù1
B1n1

I M1,1,0
Y,r,n1,0, sC4d

from Eqs.sC1d and sC2d. Note that we need only to obtain
the first-order coefficientsB1n1

I for n1ù1, becauseB10=0
from Eq. s19d. We have calculated the matrixM1,1,0

Y,r,n1,0 for
1ø r ø7 and 1øn1ø7 from Eq. sC3d, and we have also
confirmed thatM1,1,0

Y,0,n1,0 for 1øn1ø7 calculated from Eq.
sC3d vanishes. Our result forM1,1,0

Y,r,n1,0 for 1ø r ø7 and 1
øn1ø7 is given in Appendix E. At last, we can determine
the first-order coefficientsB1n1

I by solving the simultaneous
equationsC4d; that is,B1n1

I can be obtained as

B1n1

I = o
rù1

V1r
H sM1,1,0

Y,r,n1,0d−1, sC5d

whereX−1 represents the inverse matrix of a matrixX. Fi-
nally, the results of the first-order coefficientsBk1n1

I —i.e., the
first-orderBkr in Eq. s16d—can be calculated as in Eq.s31d.

APPENDIX D: CALCULATION OF THE SECOND-ORDER
COEFFICIENTS Bkr

II

We explain how to obtain the second-order coefficients—
that is, how to solve the integral equations6d. The coeffi-
cients of first order—i.e.,Bkr

I andCkr
I —have been obtained as

are given in Eq.s31d, so that we can employ them to deter-
mine the second-order coefficients.

To begin with, we calculateVkr
H in Eq. s25d for second

order;Vkr
H for second order corresponds to the first term on

the right-hand side of Eq.s6d. It can be calculated by substi-
tuting Bkr

I andCkr
I into the expressions ofDk,r andEk,r in Eqs.

sA6d and sA7d; no other terms appear inVkr
H for second or-

der. The results of the tedious calculation ofVkr
H to second

order finally become as follows. Fork=0, V0r
H becomes

V0r
H = 0 sD1d

for r =0 and 1,

V02
H = −

2p2

dT2S2kT

m
D1/2Hs=Td2S9

2
b12 −

7

2
b11D

+ Ts¹2Tds3b12 − b11dJ sD2d

for r =2, and

V0r
H = −

2p2

dT2S2kT

m
D1/2HTs¹2Tdfsr + 1db1r − b1,r−1g

+ s¹Td2FSr2 +
1

2
r −

1

2
Db1r − S2r −

1

2
Db1,r−1 + b1,r−2GJ

sD3d

for r ù3. Note that values for the constantsb1r are summa-
rized in Table I. Fork=2, V2r

H becomes

V20
H =

p2

dT2S2kT

m
D1/2Hb11

2
fs]xTd2 − s]yTd2g

+ b11Tf]x
2T − ]y

2TgJ , sD4d

V21
H = −

p2

dT2S2kT

m
D1/2Hfs]xTd2 − s]yTd2gF5

2
b11 − 3b12G

+ Tf]x
2T − ]y

2Tgfb11 − 2b12gJ , sD5d

and

V2r
H = −

p2

dT2S2kT

m
D1/2Hfs]xTd2 − s]yTd2gF− Sr +

1

2
D

3sr + 1db1,r+1 + S2r +
1

2
Db1r − b1,r−1G + Tf]x

2T − ]y
2Tg

3f− sr + 1db1,r+1 + b1rgJ sD6d

for r ù2. For k=1 andkù3, we find thatVkr
H for second

order becomes

Vkr
H = 0 sD7d

for any value ofr.
Next let us calculateDkr

H in Eq. s28d for second order. In
order to deriveDkr

H for second order, we have to calculate
Wk,k1,k2

r,n1,n2 andJk,k1,k2

Y,r,n1,n2 in Fkr
1 sxd of Eq. sB1d to second order, as

was shown in Appendix B 1. Fork=0, Dkr
H to second order

results in

D0r
H = B00 o

n1ù2
B0n1

II M0,0,0
Y,r,n1,0 + o

n1,n2

B1n1

I B1n2

I M0,1,1
Y,r,n1,n2

+ o
n1,n2

C1n1

I C1n2

I M0,1,1
Z,r,n1,n2. sD8d

B1n1

I from f1 and B1n2

I from f2 of the set of the coefficients
B1n1

I B1n2

I are the first-order coefficients obtained in Eq.s31d,
so thatB1n1

I B1n2

I is second order. Similarly,C1n1

I C1n2

I is also
second order. The second and third terms on the right-hand
side of Eq.sD8d correspond toJsf1, f2d in the integral equa-
tion s6d. To second order,f i of Eq. s29d contains onlyB00
=1, Bkini

I andCkini

I obtained in Eq.s31d, andBkini

II to be deter-
mined here fori =1 and 2. Therefore, we can only obtain the
sets of the terms in Eq.sD8d for second order by using the
fact thatFkr

1 sxd=0 unlessk= uk1−k2u+2q. We should derive
the second-order coefficientsB0n1

II only for n1ù2, because
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B00=1 andB01=0 from Eq.s19d. Note that it is sufficient to
consider only the case fork1ùk2, as is explained in Appen-
dix B 2, and thatB1n1

I C1n2

I +C1n1

I B1n2

I does not appearssee
Appendix B 1d.

The matrixM0,0,0
Y,r,n1,0 in Eq. sD8d is obtained as

M0,0,0
Y,r,n1,0 =

2dn2

p2 E
0

2p

fJ0,0,0
Y,r,n1,0sxd − J0,0,0

Y,r,n1,0s0dgsin
x

2
dx,

sD9d

using Eqs. s28d, sB1d, and sB4d. Similarly, the matrices
M0,1,1

Y,r,n1,n2 in Eq. sD8d are derived as

M0,1,1
Y,r,n1,n2 =

dmn2

p2kT
E

0

2p

fJ0,1,1
Y,r,n1,n2sxd − J0,1,1

Y,r,n1,n2s0dgsin
x

2
dx,

sD10d

while we have confirmedM0,1,1
Z,r,n1,n2=M0,1,1

Y,r,n1,n2. Equations
sD8d and sD1d–sD3d lead to a simultaneous equation to de-
termine the second-order coefficientsB0n1

II :

B0n1

II = o
rù2

HV0r
H − o

n1,n2

sB1n1

I B1n2

I + C1n1

I C1n2

I dM0,1,1
Y,r,n1,n2J

3sM0,0,0
Y,r,n1,0d−1. sD11d

We have calculated the matrixM0,0,0
Y,r,n1,0 for 2ø r ø6 and 2

øn1ø6 from Eq.sD9d and also confirmed thatM0,0,0
Y,r,n1,0 van-

ishes forr =0,1, and 2øn1ø6 or for 2ø r ø6 andn1=0,1.
We have calculated the matrixM0,1,1

Y,r,n1,n2 for 2ø r ø6,
1øn1ø7 and 1øn2ø7 from Eq. sD10d and confirmed
M0,1,1

Y,r,n1,n2 vanishes forr =0,1, 1øn1ø7 and 1øn2ø7. Our
results forM0,0,0

Y,r,n1,0 for 2ø r ø6 and 2øn1ø6 andM0,1,1
Y,r,n1,n2

for 2ø r ø6, 1øn1ø7 and 1øn2ø7 are given in Appendix
E. Finally, we can determine the second-order coefficients
B0n1

II in f1—i.e., the second-orderB0r in Eq. s14d as in Eq.
s36d.

Similarly, for k=2, Dkr
H for second-order results in

D2r
H = B00 o

n1ù0
B2n1

II M2,2,0
Y,r,n1,0 + o

n1,n2

B1n1

I B1n2

I M2,1,1
Y,r,n1,n2

+ o
n1,n2

C1n1

I C1n2

I M2,1,1
Z,r,n1,n2, sD12d

using the fact thatFkr
1 sxd=0 unlessk= uk1−k2u+2q. Note that

we have confirmedM2,0,0
Y,r,n1,0 becomes zero. The matrix

M2,2,0
Y,r,n1,0 in Eq. sD12d is obtained as

M2,2,0
Y,r,n1,0 =

dm2n2

2p2k2T2E
0

2p

fJ2,2,0
Y,r,n1,0sxd − J2,2,0

Y,r,n1,0s0dgsin
x

2
dx,

sD13d

using Eqs. s28d, sB1d, and sB4d. Similarly, the matrices
M2,1,1

Y,r,n1,n2 in Eq. sD12d are derived as

M2,1,1
Y,r,n1,n2 =

dm2n2

2p2k2T2E
0

2p

fJ2,1,1
Y,r,n1,n2sxd

− J2,1,1
Y,r,n1,n2s0dgsin

x

2
dx, sD14d

while we have confirmedM2,1,1
Z,r,n1,n2=−M2,1,1

Y,r,n1,n2. Thus, Eqs.
sD12d andsD4d–sD6d lead to a simultaneous equation to de-
termine the second-order coefficientsB2n1

II :

B2n1

II = o
rù0

HV2r
H − o

n1,n2

sB1n1

I B1n2

I − C1n1

I C1n2

I dM2,1,1
Y,r,n1,n2J

3sM2,2,0
Y,r,n1,0d−1. sD15d

In order to derive the second-order coefficientsB2n1

II for n1

ù0, we have calculated the matrixM2,2,0
Y,r,n1,0 for 0ø r ø6 and

0øn1ø6 from Eq.sD13d and also the matricesM2,1,1
Y,r,n1,n2 for

0ø r ø6, 1øn1ø7 and 1øn2ø7 from Eq. sD14d. Those
results are given in Appendix E. The second-order coeffi-
cientsBk1n1

II in f1—i.e., the second-orderBkr in Eq. s16d—can
be written in the final form shown in Eq.s37d.

We need to consider Eq.s30d only for k=0 and 2 for
second order: it is not necessary to consider Eq.s30d for even
k furthermore, which was first expected in Ref.f18g and
recently confirmed in Ref.f19g. For oddk, Vkr

H to second
order is found to be zero, and no terms corresponding to
Jsf1, f2d in the integral equations6d—i.e., the second and
third terms on the right-hand side of Eq.sD11d or sD15d—
appear, so that any second-order termsBkr

II do not appear for
odd k f18g.

APPENDIX E: MATRIX ELEMENTS

1. M1,1,0
Y,r,n1,0 for 1Ï rÏ7 and 1Ïn1Ï7

The matrix elementsM1,1,0
Y,r,n1,0 for 1ø r ø7 and 1øn1ø7

divided by M1,1,0
Y,1,1,0=−2dn2spkT/md1/2 calculated from Eq.

sC3d are given as follows:

1
1 − 8.3333 10−2 − 2.6043 10−3 − 1.3023 10−4 − 6.7823 10−6 − 3.3913 10−7 − 1.5893 10−8

− 5.0003 10−1 1.625 − 1.1853 10−1 − 3.4513 10−3 − 1.6483 10−4 − 8.3083 10−6 − 4.0533 10−7

− 1.8753 10−1 − 1.422 2.165 − 1.3273 10−1 − 3.4663 10−3 − 1.5313 10−4 − 7.2793 10−6

− 1.8753 10−1 − 8.2813 10−1 − 2.654 2.645 − 1.3833 10−1 − 3.2343 10−3 − 1.3143 10−4

− 2.9303 10−1 − 1.187 − 2.079 − 4.148 3.081 − 1.3983 10−1 − 2.9473 10−3

− 6.1523 10−1 − 2.512 − 3.859 − 4.074 − 5.873 3.483 − 1.3953 10−1

− 1.615 − 6.864 − 1.0273 10 − 9.273 − 6.932 − 7.810 3.858

2 .
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2. M0,0,0
Y,r,n1,0 for 2Ï rÏ6 and 2Ïn1Ï6 and M0,1,1

Y,r,n1,n2 for 2Ï rÏ6, 1Ïn1Ï7, and 1Ïn2Ï7

The matrix elementsM0,0,0
Y,r,n1,0 for 2ø r ø6 and 2øn1ø6 divided byM0,0,0

Y,2,2,0=−4dn2spkT/md1/2 calculated from Eq.sD9d
are given as

1
1 − 8.3333 10−2 − 2.6043 10−3 − 1.3023 10−4 − 6.7823 10−1

− 7.5003 10−1 1.688 − 1.1523 10−1 − 3.2233 10−3 − 1.4953 10−4

− 3.7503 10−1 − 1.844 2.251 − 1.2873 10−1 − 3.2043 10−3

− 4.6883 10−1 − 1.289 − 3.217 2.741 − 1.3423 10−1

− 8.7893 10−1 − 2.153 − 2.883 − 4.833 3.182
2 .

The matrix elementsM0,1,1
Y,2,n1,n2 for 1øn1ø7 and 1øn2ø7 divided by M0,1,1

Y,2,1,1=−fp4s¹Td2/4dT2gspkT/md
1
2 calculated

from Eq. s10d are given as

1
1 5.0003 10−1 0.000 − 9.3753 10−1 − 4.102 − 1.6613 10 − 7.1063 10

5.0003 10−1 3.7503 10−1 9.3753 10−1 8.2033 10−1 − 1.846 − 2.0303 10 − 1.3203 102

0.000 9.3753 10−1 1.230 5.537 1.0153 10 0.000 − 1.8563 102

− 9.3753 10−1 8.2033 10−1 5.537 1.0153 10 6.5983 10 1.8563 102 2.6293 102

− 4.102 − 1.846 1.0153 10 6.5983 10 1.5473 102 1.3153 103 4.9953 103

− 1.6613 10 − 2.0303 101 0.000 1.8563 102 1.3153 103 3.7463 103 3.9343 104

− 7.1063 10 − 1.3203 102 − 1.8563 102 2.6293 102 4.9953 103 3.9343 104 1.3193 105

2 .

The matrix elementsM0,1,1
Y,3,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM0,1,1

Y,2,1,1 are given as

1
− 2.5003 10−1 1.125 5.0003 10−1 − 4.6883 10−2 − 2.490 − 1.4823 10 − 7.9133 10

1.125 2.8133 10−1 7.9693 10−1 1.436 2.000 − 4.153 − 7.3603 10

5.0003 10−1 7.9693 10−1 7.4713 10−1 3.845 1.1303 101 3.0453 101 2.9903 101

− 4.6883 10−2 1.436 3.845 5.768 4.1873 10 1.6813 102 6.5343 102

− 2.490 2.000 1.1303 10 4.1873 10 8.5063 10 7.9263 102 4.0093 103

− 1.4823 10 − 4.153 3.0453 10 1.6813 102 7.9263 102 2.0213 103 2.2953 104

− 7.9133 10 − 7.3603 10 2.9903 10 6.5343 102 4.0093 103 2.2953 104 7.0273 104

2 .

The matrix elementsM0,1,1
Y,4,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM0,1,1

Y,2,1,1 are given as

1
− 1.3023 10−2 − 2.3053 10−1 7.8133 10−1 4.9463 10−1 − 8.3313 10−2 − 4.567 − 3.4433 10

− 2.3053 10−1 2.2953 10−1 3.9603 10−1 7.7843 10−1 1.869 3.623 − 6.020

7.8133 10−1 3.9603 10−1 3.0623 10−1 1.513 4.918 1.8173 10 6.3963 10

4.9463 10−1 7.7843 10−1 1.513 2.111 1.5273 10 6.6423 10 3.2163 102

− 8.3313 10−2 1.869 4.918 1.5273 10 2.9713 10 2.7823 102 1.5023 103

− 4.567 3.623 1.8173 10 6.6423 10 2.7823 102 6.8823 102 7.8713 103

− 3.4433 10 − 6.020 6.3963 101 3.2163 102 1.5023 103 7.8713 103 2.3553 104

2 .

The matrix elementsM0,1,1
Y,5,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM0,1,1

Y,2,1,1 are given as

1
− 9.1153 10−4 − 1.0743 10−3 − 1.2893 10−1 5.9483 10−1 4.9143 10−1 − 1.0373 10−1 − 7.105

− 1.0743 10−2 − 4.2723 10−2 2.5093 10−1 3.0063 10−1 7.5753 10−1 2.279 5.713

− 1.2893 10−1 2.5093 10−1 1.1043 10−1 4.7183 10−1 1.484 5.886 2.6213 10

5.9483 10−1 3.0063 10−1 4.7183 10−1 6.0423 10−1 4.226 1.845 9.4613 10

4.9143 10−1 7.5753 10−1 1.484 4.226 7.918 7.3263 10 4.0003 102

− 1.0373 10−1 2.279 5.886 1.8453 10 7.3263 10 1.7723 102 2.0173 10

− 7.105 5.713 2.6213 10 9.4613 102 4.0003 10 2.0173 103 5.9413 103

2 .

The matrix elementsM0,1,1
Y,6,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM0,1,1

Y,2,1,1 are given as
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1
− 6.1043 10−5 − 6.9783 10−4 − 5.0463 10−3 − 8.1583 10−2 4.7823 10−1 4.8983 10−1 − 1.0873 10−1

− 6.9783 10−4 − 1.9763 10−3 − 3.9763 10−2 1.5753 10−1 2.4073 10−1 7.3973 10−1 2.678

− 5.0463 10−3 − 3.9763 10−2 5.6643 10−2 1.3873 10−1 3.7883 10−1 1.450 6.802

− 8.1583 10−2 1.5753 10−1 1.3873 10−1 1.5053 10−1 9.8063 10−1 4.159 2.1373 10

4.7823 10−1 2.4073 10−1 3.7883 10−1 9.8063 10−1 1.749 1.5793 10 8.5573 10

4.8983 10−1 7.3973 10−1 1.450 4.159 1.5793 10 3.7273 10 4.1943 102

− 1.0873 10−1 2.678 6.802 2.1373 10 8.5573 10 4.1943 102 1.2173 103

2 .

3. M2,2,0
Y,r,n1,0 for 0Ï rÏ6 and 0Ïn1Ï6 and M2,1,1

Y,r,n1,n2 for 0Ï rÏ6, 1Ïn1Ï7, and 1Ïn2Ï7

The matrix elementsM2,2,0
Y,r,n1,0 for 0ø r ø6 and 0øn1ø6 divided byM2,2,0

Y,0,0,0=−4dn2spkT/md
1
2 calculated from Eq.sD13d

are given as

1
1 − 8.3333 10−2 − 2.6043 10−3 − 1.3023 10−4 − 6.7823 10−6 − 3.3913 10−7 − 1.5893 10−8

− 2.5003 10−1 1.063 − 8.0083 10−2 − 2.3763 10−3 − 1.1493 10−4 − 5.8493 10−6 − 2.8743 10−7

− 6.2503 10−2 − 6.4063 10−1 1.232 − 7.9393 10−2 − 2.1433 10−3 − 9.7073 10−5 − 4.7063 10−6

− 4.6883 10−2 − 2.8523 10−1 − 1.191 1.420 − 7.8253 10−2 − 1.9003 10−3 − 7.9533 10−5

− 5.8593 10−2 − 3.3113 10−1 − 7.7133 10−1 − 1.878 1.607 − 7.6763 10−2 − 1.6803 10−3

− 1.0253 10−1 − 5.8963 10−1 − 1.223 − 1.596 − 2.687 1.787 − 7.5103 10−2

− 2.3073 10−1 − 1.391 − 2.846 − 3.207 − 2.822 − 3.605 1.961

2 .

The matrix elementsM2,1,1
Y,0,n1,n2 for 1øn1ø7 and 1øn2ø7 divided by M2,1,1

Y,0,1,1=−sp4/16dT2dspkT/md
1
2hs]xTd2−s]yTd2j

calculated from Eq.sD14d are given as

1
1 1.500 1.875 3.281 7.383 2.0303 10 6.5983 10

1.500 9.3753 10−1 3.281 7.383 2.0303 10 6.5983 10 2.4743 102

1.875 3.281 3.691 2.0303 10 6.5983 10 2.4743 102 1.0523 103

3.281 7.383 2.0303 101 3.2993 101 2.4743 102 1.0523 103 4.9953 103

7.383 2.0303 10 6.5983 10 2.4743 102 5.2583 102 4.9953 103 2.6223 104

2.0303 10 6.5983 10 2.4743 102 1.0523 103 4.9953 103 1.3113 104 1.5083 105

6.5983 10 2.4743 102 1.0523 103 4.9953 103 2.6223 104 1.5083 105 4.7123 105

2 .

The matrix elementsM2,1,1
Y,1,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as

1
2.250 2.125 3.094 6.680 1.8253 10 5.9523 10 2.2463 102

2.125 7.9693 10−1 2.930 8.408 2.9993 10 1.2313 102 5.6503 102

3.094 2.930 2.563 1.5233 10 6.2183 10 3.0113 102 1.6243 102

6.680 8.408 15.233 10 2.0943 10 1.6913 102 8.8153 102 5.3243 103

1.8253 10 2.9993 10 6.2183 10 1.6913 102 3.1703 102 3.2213 103 2.0293 103

5.9523 101 1.2313 102 3.0113 102 8.8153 102 3.2213 103 7.6493 103 9.3433 104

2.2463 102 5.6503 102 1.6243 103 5.3243 103 2.0293 104 9.3433 104 2.6863 105

2 .

The matrix elementsM2,1,1
Y,2,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as

1
− 3.211 3.855 2.370 4.590 1.3683 10 5.0903 10 2.1993 102

3.855 8.4133 10−1 2.059 4.478 1.5223 10 6.8733 10 3.6603 102

2.370 2.059 1.799 8.862 2.9743 10 1.3513 102 7.7623 102

4.590 4.478 8.862 1.2683 10 9.0683 10 4.0303 102 2.2533 103

1.3683 10 1.5223 10 2.9743 10 9.0683 10 1.7783 102 1.6503 103 9.0683 103

5.0903 10 6.8733 10 1.3513 102 4.0303 102 1.6503 103 4.0903 103 4.6513 104

2.1993 102 3.6603 102 7.7623 102 2.2533 103 9.0683 103 4.6513 104 1.3913 105

2 .

The matrix elementsM2,1,1
Y,3,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as
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1
2.4933 10−1 − 3.585 3.119 2.456 5.985 2.2713 10 1.0703 102

− 3.585 1.265 1.474 2.290 5.928 2.3403 10 1.2573 102

3.119 1.474 9.8983 10−1 4.274 1.2573 10 4.8313 10 2.4433 102

2.456 2.290 4.274 5.626 3.8003 10 1.5653 102 7.7743 102

5.985 5.928 1.2573 10 3.8003 10 7.1563 10 6.4293 102 3.3573 103

2.2713 10 2.3403 10 4.8313 10 1.5653 102 6.4293 102 1.5573 103 1.7333 104

1.0703 102 1.2573 102 2.4433 102 7.7743 102 3.3573 103 1.7333 104 5.1083 104

2 .

The matrix elementsM2,1,1
Y,4,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as

1
7.7193 10−3 2.3013 10−1 − 2.277 2.579 2.484 7.307 3.3693 10

2.3013 10−1 − 8.2673 10−1 1.678 1.262 2.404 7.292 3.2853 10

− 2.277 1.678 5.2553 10−1 1.778 4.645 1.6073 10 7.0493 10

2.579 1.262 1.778 2.037 1.2763 10 5.0153 10 2.3633 102

2.484 2.404 4.645 1.2763 10 2.2623 10 1.9603 102 9.9903 102

7.307 7.2919 1.6073 10 5.0153 10 1.9603 102 4.5893 102 5.0003 103

3.3693 10 3.2853 10 7.0493 10 2.3633 102 9.9903 102 5.0003 103 1.4423 104

2 .

The matrix elementsM2,1,1
Y,5,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as

1
3.8583 10−4 6.3693 10−3 1.2353 10−1 − 1.567 2.185 2.488 8.576

6.3693 10−3 4.5323 10−2 − 8.9473 10−1 1.178 1.088 2.463 8.595

1.2353 10−1 − 8.9473 10−1 4.7363 10−1 7.6233 10−1 1.573 4.855 1.9403 10

− 1.567 1.178 7.6233 10−1 6.7433 10−1 3.723 1.3663 10 6.1713 10

2.185 1.088 1.573 3.723 6.063 4.9913 10 2.4673 102

2.488 2.463 4.855 1.3663 10 4.9913 10 1.1193 102 1.1863 103

8.576 8.595 1.9403 10 6.1713 10 2.4673 102 1.1863 103 3.3313 103

2 .

The matrix elementsM2,1,1
Y,6,n1,n2 for 1øn1ø7 and 1øn2ø7 divided byM2,1,1

Y,0,1,1 are given as

1
2.0123 10−5 2.9533 10−4 2.9973 10−3 7.3613 10−2 − 1.141 1.888 2.482

2.9533 10−4 1.1693 10−3 4.2393 10−2 − 5.3643 10−1 8.6713 10−1 9.5073 10−1 2.494

2.9973 10−3 4.2393 10−2 − 2.1093 10−1 5.7913 10−1 5.7113 10−1 1.395 4.977

7.3613 10−2 − 5.3643 10−1 5.7913 10−1 2.4043 10−1 1.035 3.364 1.4223 10

− 1.141 8.6713 10−1 5.7113 10−1 1.035 1.473 1.1223 10 5.2913 10

1.888 9.5073 10−1 1.395 3.364 1.1223 10 2.3743 10 2.4253 102

2.482 2.494 4.977 1.4223 10 5.2913 10 2.4253 102 6.5913 102

2 .
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