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Temperature and density relaxation close to the liquid-gas critical point: An analytical solution
for cylindrical cells
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We present a study of the temperature and density equilibration near the liquid-gas critical point of a
composite system consisting of a thin circular disk of near-critical fluid surrounded by a copper wall. This
system is a simplified model for a proposed space experiment cell that would have 60 thin fluid layers
separated by perforated copper plates to aid in equilibration. Upper and lower relaxation time limits that are
based on radial and transverse diffusion through the fluid thickness are shown to be too significantly different
for a reasonable estimate of the time required for the space experiment. We therefore have developed the first
rigorous analytical solution of the piston effect in two dimensions for a cylindrically symmetric three-
dimensional cell, including the finite conductivity of the copper wall. This solution covers the entire time
evolution of the system after a boundary temperature step, from the early piston effect through the final
diffusive equilibration. The calculation uses a quasistatic approximation for the copper and a Laplace-transform
solution to the piston effect equation in the fluid. Laplace inversion is performed numerically. The results not
only show that the equilibration is divided into three temporal regimes but also give an estimate of the
amplitudes of the remaining temperature and density inhomogeneity in each regime. These results yield
characteristic length scales for each of the regimes that are used to estimate the expected relaxation times in the
one- and two-phase regions near the critical point.
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[. INTRODUCTION finite thermal conductivity of the wall. However, their study
was limited to the intermediate-time regime of the piston
In determining the feasibility of performing experiments effect, so that no practical information could be deduced as
near a liquid-gas critical point, it is important to know the regards the relaxation of densitwhich takes place on the
expected thermal equilibration time for a given experimentadiffusion time scale Up to now, there has been no model
arrangement. It is known that there is competition betweerthat includes the effects of both geometry and finite conduc-
the critical slowing down associated with the diminishingtivity of the container solid walls for a complete temporal
thermal diffusivity and the critical speeding up associatedcoverage from the initial fast adiabatic equilibration to the
with the piston effec{1-5]. The piston effect is known to final diffusive relaxation. The development of such a model
dominate the early stages of the thermal equilibrium processs the aim of the present work.
At later times, the remaining temperature and resultant den- We will present in this paper a study of temperature and
sity gradients will relax diffusively. General expressionsdensity equilibration of a composite system consisting of a
combining these two competing effects have been developethin circular disk of near-critical fluid surrounded by a cop-
[1,2] and applied to the one-dimensional case. Oneper wall. Such geometry has been used in several Earth-
dimensional(1D) theoretical models have also been devel-bound experiments and proposed space-based experiments
oped to describe the evolution of the temperature and densityn near-critical fluid§11,12. A small cell gap is chosen to
distributions in the presence of gravity and in a microgravityreduce the density stratification on the Earth and the long
environment 5-8]. relaxation times both on the Earth and in space. A large cell
Berg studied the thermal equilibration in three dimensiongdiameter provides a large sample size for increased signal-
near the critical point for the case of a thin disk of fli8].  to-noise ratio in specific heat measurements. In this paper,
His analysis provided the first insight into the effect of ge-we will determine the thermodynamic behavior of such a
ometry on density and temperature equilibration. That studgystem from the early piston effect regime all the way to
demonstrated the existence of isobaric modes induced by fanal equilibrium. The results of our calculation will be used
temperature gradient that relax on a much longer time scal® estimate equilibration times for a much more complicated
than that of the piston effect. Ferrell and Hao studied theexperimental cell being considered for a future space experi-
composite system of a near-critical fluid and enclosing solidnent. Because the fluid relaxation time is the longest along
walls in an arbitrary geometrjl0]. They showed that when the critical isochore, all our numerical estimations were
temperature is measured at the outer surface of a solid walinade for the case of the critical isochore. The thermody-
the fast thermal equilibration takes a longer time than whemamic properties ofHe were calculated using the informa-
measured directly inside the fluid. This delay is due to thetion collected in Ref[6].
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We started by using a 1D approximation to find the upper
T T . . .
I T Tt and |0W€I’ bounds for thermal relaxatlon Of one ﬂu'd Iayer In
REHTITIN] N X A
g the Slngle phase and eventua”y found an apprOXImatlon to
U eStImate the relaxatlon tlme in CoeXIStIng phases If the Cop-
I} per plates are perfect CondUCtorS’ the temperature Of the
T plates will instantly follow that of the external copper wall.
T ] Any radial inhomogeneity in the fluid layer will be removed
immediately via the copper plates. The fluid will then equili-
- - > brate by transverse conduction through the thickness of the
o layer. The thermal relaxation timlifferent from the usual
FIG. 1. Sketch of the flight experimental cell. Heat is applied atFourier expression at constant presssd 1]
cell boundaries. Plates are not shown to scale. 2
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whereCp andX are the specific heat at constant pressure and
The motivation for performing this study was to design anthermal conductivity respectively, is the fluid density, and

experimental cell for efficiently measuring the specific heatd,,, is the thickness of the fluid layer. Equatiét) implies
near the critical point ofHe in a microgravity environment. that the characteristic length scale is the fluid layer thickness
Because a large gravity-induced density stratification is ngetween the copper plates.
longer a problem in a microgravity environment, one would  On the contrary, if the copper plates are poor conductors,
like to increase the sample size in order to increase than inhomogeneity will be relaxed radially through the fluid
signal-to-noise ratio for a specific heat measurement. At the the sidewalls,

same time, a slow diffusive relaxation associated with the 2
large sample size should be avoided due to limited flight time =t E(PC_P)He(ﬁHe> _ 2
in space. In order to reconcile these two conflicting require- DK 2 e T

ments, a composite cylindrical cell design has been propos
for a future space flighit12]. Figure 1 shows a schematic of
the cell design being considered. The cell has a 5.5 cm inn

diameter and a 3.2 cm height and contains a stack of copp?,rery different, 7., a= 2R/ d) 71 aneveres 9-68X 10 ancverce

plates with copper spacers. Each plate and spacer S . ) e
. . . I~ The expression for,gi, gives an unrealistically large upper
?é?ez(fiﬁg tehfle(' :J/\gltlh E[T\Iii ?;rzr;ge_lrphznrté tahrz tr)rﬁjg;ﬂur:gllesssi?\ptﬂgmit on the relaxation time because it totally ignores the
qually ayers. y . _contribution of conduction in the copper plates. We therefore
copper pla'ges_, S0 _the fluid in each layer can communlcatﬁext considered a composite system of a fluid layer and a
with the fluid in adjacent layers. The copper plates are ther-

mally linked to the temperature-regulated copper walks, copper plate in contact. The specific héalp)ye of helium

. i h larger than that of the copp&iCp)c,, the ratio
the circumference boundanand act as thermal shorts to IS muc . Pjcw o
speed up the equilibration in the bulk fluid. (PCpue/ (pCe)cy being ~350 atT/T,-1=102 and increas-

In estimating the time required for a future space experijng for smaller reduced temperatures. The thermal conduc-
ment, it is important to determine the expected equilibratiorf!Vity Of COPPErAcy,

is much larger than that of the helium,
time constant for such a cell design. Because specific heat

eI‘—_jquation(Z) implies that the characteristic length scale is the
radiusR of the fluid layer. Because of the huge difference in
She length scales, the relaxation times of the two cases are

e the ratiohc,/Ay being ~10* at T/T,-1=10° and in-
a strong function of density near the critical point, its mea-C€aSes for larger reduced temperatures. We can intuitively

surement should be taken after both temperature and densf@pProximate the average properties of the composite system

inhomogeneity relax to within prescribed values respectively@"d substitute them into the expression fRga

For a fluid in the single phase, such as the critical isochore comp_ 1 e (0Cole [ 2R\2
above the critical temperatuilg, the relaxation time for spe- Tradial = 2d.+d d —
cific heat measurements using a pulse heat is not a major He " MCu__—Cu

w

Cu
concern since the piston effect speeds up the temperature e + dey
equilibration. The large density inhomogeneity at bound- 1 dye (PCp)pe/ 2R\ 2
aries, induced by the piston effect, causes less than 1% sys- = 200 ne ) 3
Cu Cu

tematic error in the total heat capacity very closdtsince
the boundary layers are so narrow. However, in coexistingvhere dc,, is the thickness of the copper plate. A realistic
phases below, diffusive density relaxation will affect the relaxation time for a given reduced temperattiféd,.—1 will
temperature relaxation directly due to the latent heat causeske bounded by the two extremeg,,sand 7iag as shown in

by the mass conversion. Since there are two characteristi€ig. 2. Whether the realistic relaxation time follows the up-
length scales for this cell design, two different diffusive re-per bound or the lower bound depends on whether the copper
laxation times are expected. We would like to determine howplate can be considered isothermal. In Appendix A, we use a
to utilize these two length scales to estimate the time resimple model to show that the radial temperature difference
quired for specific heat measurements in the coexistingn the copper plat\T¢, is less than 1% of the temperature
phases. step change\T at the side wall forT/T,-1<10* using a
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T2 AN ' ' ' ] needs to be considered. The thickness of the copper layer is
. T R=55em an adjustable parameter in our model, so the most general
o r / === TRadial 7 solution will be obtained. The boundary conditions shown in
~ 10} — T 1 Fig. 3 are as follows: the circumference boundary of the two
= cylindrical layers is subjected to a step temperature change,
0o r RN i AT, while the top and bottom boundaries are considered to
otk / T be adiabatic.
., d=0025em i The governing equation in the copper is the conduction
107 . . . y equation written for cylindrical geometry with axial symme-
10° 10° 10t 10” 10” try (the variables being and z):
T,
_ _ o aT_ 5]t ( aT) Fal . 4
FIG. 2. Transverse and composite radial relaxation times versus ot Cu a\ o 522 (4)

reduced temperature fGHe fluid along its critical isochore.
The governing equation in the helium is the piston-effect
modified piston time. Because this simple model predictequation[2]

nearly isothermal copper, it suggests that the true relaxation
time is close to the fastér,ansversk limit shown in Fig. 2. g _y=14T) +D 1 ( aT) . +FT 5)
Ay ot ®lrla\ ar P
A. Rigorous calculation of piston effect for a cylindrical where (T) represents the spatial average of and y
composite 3D cell =Cp/Cy is the ratio of the heat capacitigd.) is a function

The range Of re|axat|0n t|mes presented |n F|g 2 |S Scpf t|me Only It Should be noted that these equat|0ns are Va“d
large that we need a better estimate of the characteristienly in the linear regime where the changes of the media
length scale for the equilibration of the stacked cell. A pistonProperties are negligible over the induced temperature
effect model for a cylindrically symmetric three dimensional change.

(3D) cell was developed to address this problem. In this

model, the complete entropy transfer equation, as first pro- B. Calculation in copper

posed by Onukét al.[2], is used to model thermal relaxation
in the fluid and the conventional heat transfer equation |s
used in the copper plate. The explicit solution obtained in
Laplace space contains the early piston effect regime and the t r 7
late diffusive relaxation regimes as well as the transition be- t = e rr=—=, z=——.
tween the different regimes. This solution does not require th R dc/2
the use of the asymptotic matching techniques between tim
scales of these regimes.

In order to simplify the problem, we analyzed the thermal
behavior of a composite system consisting of a single flui
layer plus a copper plate located in the middle of the stacke
cell shown in Fig. 3. This part of the cell is far enough from

Equation (4) can be made nondimensional using the
change of variables

(6)

Ser ethe=(dye/2)%/ Dy is the transverse heat diffusion time
I|n the f|UId helium and S|m|IarIyt U=R?/D, is the radial
d‘neat diffusion time of the copper plate. Usikb=dc,/(2R)

nd ignoring the superscript stars foandr from now on,
the nondimensional equation for copper becomes

the top and bottom cell boundaries that thermal relaxation in {CU T ilal ar 2T
this region can be considered equivalent to that observed in %e_ - Hz—[—<r—>} =0. (7)
an infinite periodic stack of such pairs. Actually there are 64 ty ot ar\ or 07

stacked pairs in the flight cell design and our analysis on the CurHe 5
middle pair can serve as the worst-case estimate for theincets /tp <10~ for all reduced temperatures, the tem-
equilibration time of all other pairs. Due to symmetry and perature in coppef[(r,z,t), is governed to first-order by the
periodicity, only the area enclosed by the thick rectangleequation

= \\\\\\\\\\\\\ 8 St 0 e e

v

.. Adiabatic boundary .-
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+-—= =0, (8) r) is considered negligible compared to the transverse diffu-
iz sion (alongz). One consequence of this approximation is that
with the local radial heat into the fluid at the circumference copper
wall will not be taken into account in the final solution. The
T-T — _ tgu only heat into the fluid will be through the copper plates after
AT (rzH+0| e . © the copper plates are very rapidly heated to almost the same
temperature as the circumference wall over their own typical
whereT; is an initial temperature. relaxation times. Although this may sound like a severe as-
This result shows that the temperature in the copper layesumption, it is in fact totally relevant to the chosen geometry
is quasistatic to first order. The copper temperature follows g@ince the wetted surface of the copper plates is 45 times
Poisson equation with fixed boundary conditions, in whichjarger than the wetted surface of the circumference wall,
time is a parameter but not a variable. It is solved by variableeyen though the fluid is heated simultaneously by the cir-
separation. Inserting(r,z) = f(r)g(2) into Eq. (8) leads to cumference copper wall and by the copper plates.
Equation(16) is solved by means of Laplace transforms.
)y =- =2 =-C (10) Letting p be the Laplace parameter associated with the non-

%i( a_?)] 2T In other words, the radial heat diffusion in heliu@ong

f H? g ’ dimensional time variable Eq. (16) now becomes
whereC is a real constant. The solutions of these two equa- I y-1
ti T-—=—"—"pNT 18
ions are PT-"— = » p(T), (18
9(2) =a(t)cosiCH(z-1)], (11) with a solution in the form
f(r) =Jy(Cr), 12 ~
(1) =%(Cr) (12 7= —<T><p) +b(p,r)costipz+ ], (19

with a being a real function of and Jy(r) being the Bessel

function of zero order. Equatio(ll) satisfies the adiabatic Equation(19) satisfies the adiabatic boundary condition at
boundary condition at the top of the copper pl&te1). The  the bottom of the helium layeZ="-1).

following form is then chosen fof for the case of an im- By matching the heat flux and temperature at the interface
posed temperature at the outer border of the copper and hbetween helium and copper, we derive an analytical expres-
lium layers—i.e. T(r=17zt)=1: sion for spatial temperature distribution in Laplace space.

One needs only to invert the Laplace transforms to obtain the

- temperature profiles and average temperature at any given
T(r,zt) =1 -2 a,()coshCH(Z= D136(Cor), (13)  time. The details of the derivation and the expression are

1 given in Appendix B. The obtained solution is verified by the

with the C,’s being the roots ofl,. Note that this specific test cases described in Appendix C. The procedure for the

form (and the subsequent solutigreould be generalized to Laplace inversion, conducted numerically, is described in

more complex temperature boundary conditions in a straightAppendix D.

forward manner.

400

D. Calculation of the pressure and density distributions
C. Calculation in helium . o i
The pressure and density distributions are obtained by

The vertical dimension in helium is scaled by./2 as considering a linearized equation of state in the form
z
= . (14) —p ( ) P-P, (5’3) T-T, 20
duel/2 p=pi=|\"5) P-P)+| 2 p( i) (20)

Equation(5) is now made nondimensional. We now have  The pressure distribution throughout the evolution is as-
aT  y=14T)  [dud2\21] o aT aZT sumed to be homqgeneous since the pressure gradient re-
T = T a + R /T (9— o (Tzz (15) laxes on an acoustic time scale that is much shorter than the
Y r time scales of the piston effect and the later diffusion pro-
Sincedye/2<R, the temperature perturbation in the helium, cess. Recent results on bulk viscosiy3,14 have shown,
T(r 2,1), is governed to first order by the equation howeve_r, that the assumption _Qf a ho_mogeneous pressure
may fail very close to the critical point, where viscous
T 1(9<-|-> AT stresses can build up in the thermal poundary Iay_ers and
E = P (7’22 (16) create a local pressure gradient. According to theoretical pre-
Y dictions[14], one consequence of this viscous effect is that

with the piston effect should undergo a phase of critical slowing
down very close to the critical point, where its typical time

T-T :T'(r Ft) + O(M) (17) scale becomes dominated by bulk viscosity. In principle, the

AT " R/ present model should be valid only in the nonviscous region
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FIG. 4. The temperature evolution at a reduced temperatife 10  FIG. 5. The evolution of the temperature difference between the
and at the fluid copper interface for two different radial positions. cell center and circumference boundary at the copper-fluid interface
for several reduced temperatures.

of reduced temperatures above 4@hen one applies formu-

las in[14] usingdy/2=0.0125 cm as a typical length scale. for a reduced temperature F0It clearly shows two distinct
However, the effect of bulk viscosity can only be felt on theregimes: one is the piston-effect-dominated regime where the
early piston-effect regime, and it has no consequence eitheemperature in the bulk helium is the same regardless of the
on the late piston-effect relaxation or on diffusive processesadial position; the other is the diffusion-dominated regime
and, in particular, no consequence on the diffusion-where the temperature relaxation in helium is influenced by
dominated density relaxation. Neglecting the bulk viscositythe remaining temperature gradient in copper.

in the present solution should only lead to a slight underes- Although these first two regimes are observable through
timation of the typical time scale of temperature relaxationthe temperature evolution, a third regime is only observable
by the piston effect very close to the critical point. Becausevia the density evolution because of the diverging thermal
the average density deviation in the closed cell is zero, thexpansion coefficient that “exposes” the remaining tempera-
spatial integration of Eq(20) leads to ture inhomogeneity in the fluifsee Eq(22)].

P-P= (E—) AT(T). (21) A. Three regimes in the equilibration process
p
The density distribution is then given by 1. t/tp°<1: piston-effect regime
P o The early stage behavior of the system occursthn{ge
p—pi= <—p> AT(T-(T)). (22 <1. In this piston-effect regime, heat diffuses through the
JT/p copper plate into the helium layer. A thin boundary layer is
created in the helium close to the copper wall. The boundary
IIl. RESULTS Iayer expansion drives_ a global piston e_:ffect in the whole
fluid, and the bulk helium temperature increases homoge-
The evolution of the temperature and density has beeneously. Figure (@) illustrates the heat-flow pattern during
computed for several reduced temperatures and at differefifie early piston time period when heat transfer is governed
locations in the fluid cell, using the length scalg=dc, by conduction in copper and piston effect in helium. Figure
=0.025 cm and R=5.5 cm. Shown in Fig. 4 is the tempera- 7(b) shows a calculated spatial density profile scaled by the
ture evolution at the fluid-copper interface for a reduced temtemperature change at the circumference boundary. The cal-
perature 10° and for two different radial positions=0 at  culation was made for a reduced temperature xf10"°> and
the center of the cell and=0.8R close to the circumference t/tgezo_m (t=37 9. Both the temperature and density are
boundary where the stepT is applied. The temperature in- dimensionless. Close to the copper-fluid interface, the fluid
creases rapidly in the copper plate. Only 0.1% temperature
inhomogeneity remains after 5 s due to the piston effect. . : :
This remaining inhomogeneity will vanish diffusively. DL -1-107, 2= -dup2
Figure 5 shows the residual temperature difference be- ,'L |
tween the cell center and circumference boundary at theg

Diffusion

copper-fluid interface for several reduced temperatdoes 5 10°F /R dominated regime 4
tween 103 and 10°). A careful look at the vertical scales L T oa Gommatec vegime ‘

shows that the radial temperature gradient in the copper platr  10°f === 038 - o

goes to zero as the critical point is approached. At a reducec . i i N
temperature 10, this temperature difference remains small ' = e e i o
(less than 10% oAT for t>10t59), confirming the simpli- /e

fied model prediction that the copper plate is almost isother-

mal. FIG. 6. The evolution of temperature change at several radial

Figure 6 shows the evolution of the temperature change aositions in the midplane of the helium fluid for a reduced tempera-
several radial positions in the midplane of the helium fluidture 1072,
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FIG. 7. (a) Heat-flow pattern during the early piston time period. ~ FIG. 8. (8) Heat-flow pattern during the transverse diffusion
(b) Calculated spatial density profile for reduced temperature qperiod. (b) Calculated spatial density profile for reduced tempera-
X105 and t/tDHe:O.Ol (t=37'9. The dimensionless density ture 1x 10°° andt/tDHezo.l(t:37O 9. The dimensionless density

change was scaled by the dimensionless temperature change at ft2nge was scaled by the dimensionless temperature change at the
circumference boundary. circumference boundary.

have completely relaxed to equilibrium if one examines the
density undergoes a strong drop due to the thermal expansiaémperature evolution alone. On the other hand, even though
of the boundary layer. This drop is more pronounced near thever 99% temperature equilibration is completed in the first
circumference border, where the copper plate is hotter. Wewo regimes in a short time, the residual temperature inho-
note here that no boundary layer is observed at the circummogeneity will still cause a substantial density inhomogene-
ference wall(i.e., atr/R=1) due to the disappearance of the ity due to the diverging thermal expansion coefficient. Any
radial diffusion term in the piston-effect equatiéh6) in  accurate density measurement will have to wait until this
helium. Had this term been kept in the asymptotic process, density inhomogeneity relaxes. In the coexisting phases at
strong and localized density drop would also have been obf < T, the density relaxation will affect the temperature re-
served at/R=1 for all values ofz. The discussion following |axation directly due to the latent heat caused by the mass
Eq. (16) justifies that this local simplification has no conse- conversion. Therefore a detailed study of the third regime in
quence on the prediction of the global relaxation process. Ahis composite geometry is necessary and the only verifica-
small homogeneous density increase of the bulk fluid everytion of this third regime is through density relaxation mea-

where away from the boundary layers also occurs. surements. Figure(8) illustrates the heat-flow pattern during
the radial diffusion regime: heat transfer is governed by ra-
2.0.1<t/tfe<1: transverse diffusion regime dial diffusion in the composite copper-helium system. Figure

On the typical time scale of pure diffusion across the he_9(b) shows a snapshot of the spatial density profile similar to

. He_ — . . .
lium layer, the piston effect slowly vanishes. The boundaryF'g' ‘?(b). but att/ty _.3 ('[._3 h). By thls_ time, only the rad@l
layer starts to diffuse deep into the helium layer, and thedenslty inhomogeneity is observable: all transverse gradients

density and temperature gradients along the directieamne (along2) have relaxed long beforén the second regime

progressively relaxed by transverse heat diffusion. Figurea -
8(a) illustrates the heat-flow pattern during the transverse 92
diffusion period when heat transfer is governed by conduc-

tion in copper and transverse diffusion in helium. Figufie) 8 0
shows a similar plot as Fig.(B) but att/tge=0.1(t=370 9.

Adiabatic boundary

Y Diffusion \\\\\\\\\\\\\\\\x\\\\}tﬁ

Heated
boundary

Copper
N
R

One can observe density gradients extending along the whol Al Adiabatic boundary
fluid layer’s thicknesgas opposed to the localized gradients

observed in the first regime These gradients, again, are

strongest near the circumference, where the temperature ¢ g

the copper boundary is higher. g

3. t/t5°>1: Radial diffusion regime

ik 00 6.5

After this second regime, the boundary layer has totally
diffused across the helium layer, and all transverse gradients |G 9. (a) Heat-flow pattern during the radial diffusion period.
have relaxed. Only radial temperature and density gradientg) calculated spatial density profile for reduced temperature 1
remain in the cell, and these gradients relax radially through« 10-5 andt/tDHe=3 (t=3 h). The dimensionless density change
conduction in the copper. This can be identified as a thirdvas scaled by the dimensionless temperature change at the circum-
regime, called the radial diffusion regime. At this point, the ference boundary. The vertical scale here is much more sensitive
temperature gradients are so small that the system seemstt@n the corresponding ones in Figs. 7 and 8.
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FIG. 10. Density evolutionSp=p—p, at the copper-fluid inter- FIG. 11. Density evolutionsp=p—p. in the middle of helium
face for different reduced temperatures. The time at which the derlayer for different reduced temperatures. The time at which the
sity becomes homogeneous is marked. density becomes homogeneous is marked.

The density evolution at different cell locations will now fqr reduced temperatures of 0104, 10°°, and 10°, re-
be discussed. Figure 10 shows the density evolution at th@pectively. This is still much faster than pure diffusion in
interface between the copper plate aitte fluid layer for  helium along the radius, which takes a it~ 5000.
four different reduced temperatures. At small radial posi-Figure 12 shows the equilibration tinfthick solid line for
tions, the density increases even next to the copper wall. Thighe radial density inhomogeneitygp, versus reduced tem-
observation may seem surprising at first since the densityerature. Also shown in Fig. 12 avg,,.(thin solid line and
could be expected to decrease close to the heated copper Wf;!rﬂJmp (dashed lingfor T>T, previously shown in Fig. 2. It

P . - adial
where the fluid is heated by conduction. This unexpectegs yery interesting to note thakp is parallel tor2T® in the

phenomenon, in fact, is a result of the cylindrical geometryjogarithmic plot, indicating that the two are linked to the
and a purely 3D effect. When the piston effect is driven insame length scale and have the same reduced temperature
the fluid cell by the boundary heating, the strongest boundarﬁependence. Considering thagy, corresponds to the radial

layer expansion occurs where the copper wall is hotter—thagensity innomogeneity equals (AT/T,)10% while 7oMR is

is, close to the circumference boundary. This strong expang rejaxation time for an exponential decay, it is not surprise

sion of the most external parts of the fluid layéor larger) 4t Trp IS longer thanr<2™ by approximately a factor of 2.

Qrives a_global compression of the bulk flui(_JI, thus increasingpe thus associate™ with the relaxation time for radial
its density. Hence, there are two competing effects at th@ensity inhomogeneity. This is an important discovery of our

same time close to the center of the cell and at the coppejp piston-effect solution for a composite system with the
interface. One is the local conductive heating of helium fromboundary conditions defined in Fig. 3.

the copper that drives a thermal expansion of the fithds The relaxation in the third regime can also be associated

reducing densityand another is the global compression of it the isobaric modes discussed by BE§and Wilkinson
the bulk fluid by the piston effect that increases the overal; 4 [15]. These modes are characterized by an asymmetric

den;_ity of the_most i.nt(_arnal part of the fluiwr s.mallr). Th? temperature distribution with one part of the fluid cooling by
positive density variation observed at the fluid-copper 'mer"transferring heat to the wall and another part warming by
face for small values of shows that the piston effect global

compression overcomes the local thermal expansion of the
fluid, at least in the first steps of the relaxation. 2

T i T>T) 3

Figure 11 shows the density evolution in the middle of the el TS — e
helium layer where the density increases initially due to the o' Tea, - _
piston effect. This increase is first homogeneous and then th —- B (T<T)

differences at different radial positions become substantial~ 1¢0°

when transverse diffusion starts pervading the Gedl, for f/

times oft/tge~ 1). This is the indication of entering the so- 10"

called transverse diffusion regime, dominated no longer by

the piston effect but by transverse diffusion. 10
Both close to the copper walls and in the middle of the

helium layer, the typical timagp for the scaled remaining 10

radial density inhomogeneityp/p.)/(AT/T;)=0.1 is longer 10° 0° o o o

than the pure transverse diffusion time across the heliunm T,-1

Iayertge (as shown by arrows in Figs. 10 and)1This radial

relaxation time becomes longer as the critical point is ap- FIG. 12. Various characteristic times versus reduced

proached. Its value is typicallyrp/t5°~5, 10, 40, and 100 temperature.

041201-7



CARLESet al. PHYSICAL REVIEW E 71, 041201(2009

extracting heat from the wall, just as shown in Fig. 9. In thetemperatur& .=318.6804 K was obtained from this reanaly-
current results, the long relaxation time for the third regimesis which is within the stated uncertainty of 0.5 mK from the
is caused by the finite conductivity of the copper. This wasglobal minimumT.=318.6801 K or the local minimunt,
not seen i 9] which assumed perfectly isothermal boundary=318.6800 K of Haupt and Strayli7]. Because the renor-
conditions, but it was hinted at by a significant conductivity malization group theory prediction is valid in the crossover
correction calculated even for an infinitely thick, high- region, all the available experimental data were used in de-
conductivity sapphire cell wall in Refl15]. termining the critical temperature. Thus, any systematic er-
The result obtained in this analysis can easily be extenderbrs nearT. were reduced in the reanalysis. Using this newly
to the two-phase case. Indeed, Zhong and Meyer proved idetermined critical temperature, the experimental data sys-
their early work{ 16] that the density relaxation in coexisting tematically curved belowabove the theoretical prediction
phases folT< T, could be approximated with the average up to 3% for T higher (lower) than T, for |T/T,-1]<1
thermal properties of the two phases. Since a density relax< 107°. In view of the long density relaxation time obtained
ation is directly linked to a temperature relaxation in coex-in this study, we associate these systematic deviations from
isting phases asdpjq*-B(1-T/T)P X(STIT,) where B the theoretical prediction to density relaxation times that
=0.325 is the critical exponent for the coexistence curve, thigvere too long(the diffusive relaxation time for SFin the
radial relaxation time can also be used to estimate the tenik9.2-mm-diam cell is estimated to be 227 hTdfT,-1=1
perature relaxation time in the coexisting phases. Substitut 107 for the experimental ramping rates used by Haupt
ing the average specific heat at constant pressure int@Bgq. and Straul{the slowest was —0.06 Kjh
for the composite relaxation time, we obtain the temperature
relaxation time for the same composite system in the coex-
isting phases as shown by the dot-dashed line in Fig. 12. The

estimated radial relaxation time in the coexisting phases is |nstead of tackling the complicated problem of simulating
about 4 times shorter than in the single phase. This factor ahe temperature and density equilibration in the flight cell as
4 comes from the fact that the specific heat at constant preshown in Fig. 1(a task most probably out of reach of today’s
sure is proportional to the isothermal susceptibility. Based ozapabilities in terms of near-critical fluids simulatiorwe
the restricted cubic model equation of state, the isotherma\aye studied the temperature and density equilibration in a
susceptibility is about a factor of 4 smaller in the coexistingcomposite system of just one near-critical fluid layer in con-
phases than in the Single phase along the critical iSOChore.tact with a copper p|ate of the same geometry_ A genera|
analytical solution has been found for this composite prob-
lem. This solution shows that the equilibration can be char-
acterized by three distinct regime§) The piston-effect-
For the specific heat measurement along the critical isoedominated regime within which over 99% temperature
chore above the critical temperaturg a temperature equili- equilibration is finished in seconds for>T, [the character-
bration is completed to within 1% in seconds due to theistic time for this regime is given by Eq6A3)—(A5)]. (ii) A
piston effect. Thus, we can use the lower boupgsin Fig.  transverse diffusion regime for the 3D model within which
12 to safely estimate the time required for such a measuraransverse inhomogeneity in the fluid relaxes diffusiViehe
ment in the single phase. This relatively short time will per-characteristic time for this regime is given by Ed)]. (iii)
mit measurements to be performed over a reduced temper&inally, a radial diffusion regime for the 3D model within
ture range 1®<T/T.~1<1073. However, in coexisting which radial inhomogeneity in the composite fluid-solid sys-
phases belowT,, the temperature relaxation timéoy is  tem relaxes diffusively and becomes less than 0.08%
about 60 h atT/T,—1|~10° as shown in Fig. 12. Consid- characteristic time for this regime is given by E8)]. Note
ering that there is about a factor of 2 between the compositthat the solution obtained is valid only in the linear regime
relaxation timeroqn (dashed ling and 1% cutoff density when the amplitude of the heating is small compared to the
equilibration timergp (thick solid line, it will take approxi- initial reduced temperature. In the case of a large temperature
mately 120 h to obtain heat capacity measurements with ahange between an initial reduced temperature and a final
precision of 1% at~107°. To permit a better level of 0.1% one, the global relaxation time will be shorter than the longer
precision inCy measurements during a limited space flightof the two relaxation times as predicted for each of these
time, one can limit measurements to o/ T.-1/=10"° reduced temperatures. Based on this observation, we can al-
where the temperature equilibration time for a 0.1% preciways predict a saféif not precise value of the relaxation
sion would be~8 h. The equilibration time would be shorter time, even when the heating is strong and the linear model is
if less stringent demands are made on the precision@f a inapplicable. Besides, any buoyancy-driverggitter-driven
measurement. convection in a microgravity environment will only speed up
Haupt and Straub measured the specific heat qf iBF the equilibration and shorten the timetable of the flight ex-
microgravity using a spherical cell of 19.2 mm diameterperiment. Therefore our predictions represent a worst-case
[17]. They used a continuous calorimetry technique with dif-estimate for a typical timetable of a flight experiment.
ferent cooling rates to obtain the experimer@gldata over a Owing to the geometry—i.ed<<R—our analysis shows
reduced temperature rangexa08<|T/T,-1/<102 The that the heat transfer in helium during the first two regimes is
microgravity Sk C, data were recently reanalyzed using alittle influenced by a change in the copper thicknéak
renormalization group theory predictidi8]. The critical though the relaxation dynamics are intrinsically very differ-

IV. CONCLUSION

B. Equilibration in specific heat measurements
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ent from a pure 1D situationiIn the third regime, however,

the remaining radial inhomogeneity relaxes by conduction )

through the copper. Our 3D solution shows that the radial.  '® [__..c-———"""" Total heat flow within time scales 1

equilibration time can be shortened by half if the copper< =777 B composts

plate thickness is doubled, agreeing with the intuitive expres- 5 0 [ ~ 2R=35cm T v 1

. comp . . . dy, = de,, =0.025 cm

sion for 75ogm given in Eq.(3). Hence, a change in the copper oo

thickness can have an effect on the typical relaxation times ¢

but only in the third(and longestregime. On the other hand,

increasing the copper thickness will be of no help in short-  1°

ening the measurement time if the amplitude of the fluid

inhomogeneity is sufficiently small at the end of the second

regime for a given experiment. FIG. 13. The radial temperature difference within the copper
Our 3D solution also identifies the characteristic lengthplate, scaled by the step boundary temperature change, versus re-

scales for each regime, enabling us to estimate temperatudaced temperature for two heat-flow time scales.

and density relaxation times in the coexisting phases by us-

ing the average specific heat at constant pressure if3Eq. dT

We consider this determination of the characteristic length  2zrdc\c, ——

scale to be an important achievement of our study, since dr

developing a complete model of the coexisting phase prob- (A1)

lem would be significantly more complicated. In the case of_ . . . .
the proposed flight cell gesign, the gnalysis presented hefy Integrating Eq(A1), the resultant _radlal temperature dif-
suggests that specific heat experiments near the liquid-g grence within the copper from the circumference to the cen-

critical point could be successfully performed during the an-er can then be calculated as

ticipated time period for a microgravity flight. ATe, TeuR) = Tey0) (Cv> Ae R
= =\=] — . (A2
AT AT CP He )\Cu4dHedCu ( )

ATe,

1 1 1
.5 -4 -3 2

10
T, 1

_ AQ(r) _ 7Trdee(PCv)HeAT_

r At Tiransverse
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1+o
TPE,composite~ L1 o (A3)
APPENDIX A: SIMPLE MODEL TO JUSTIFY NEARLY
ISOTHERMAL COPPER with
2
The large thermal conductivity of the copper leads to a t, = M(%> , (A4)
rapid radial relaxation time for a composite system, but its Me \ Cp /e

finite value results in a radial temperature gradient within the, hare the inverse impedance ratio is
copper plate. Using qualitative arguments, we will first show

that, even in a thin copper plate, the radial temperature gra- _ Mcuf Dhe 12

dient in the copper should be much smaller than the gradi- o= E E ' (AS)
ents present in helium fluid, so the copper plate can still be ¢ !

considered essentially isotherngal. with Dy and D¢, being the thermal diffusivity of fluid he-

When the circumference boundary temperature of thélum and copper, respectively. This improved time scale
composite system is raised T, we assume that the heat 9!Ve€S
required to raise the helium temperature goes into the fluid _ 2
layer uniformly via the copper plate through surface contact. ATey = Teu® ~Ted0) = Ao R 7 .
The amount of heat required for the portion of the helium AT AT Acuddhedeyl +o
within an arbitrary radius r<R is AQ(r)=mar? Figure 13 shows the radial temperature difference within
X due(pCy)HeAT. Here, the heat stored in the copper platethe copper plate, scaled by the step boundary temperature
can be ignored since its heat capacity is much smaller thaphangeAT, versus reduced temperature for the two special
that of the fluid. We assume the heaQ(r) is delivered cases given above. These cases correspond to heat being
through the copper at radiusover the time period of one transferred into the fluid helium withifl) a modified piston
transverse diffusive relaxation tim&t=7ynsverse ThUS, the  time 7pg composite(dashed curveand (2) a thermal diffusion
heat conduction equation in the copper plate can be approxiime 7 nsverse(S0lid curve. In these calculations, we used
mated as Aey=2 W/emK and (pCp)c,=5.6x10*J/cnPK at

(A6)
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T=3.3 K. As the critical temperatur; is approached, the y-1-~ +e

total heat required for &T boundary temperature change —(T) +b(p,r)coshy p) =—- E An(p)cosHCH)Jy(C,r).
increases only slightlfo(pCy)ye]. On the other hand, the 7 P

time scale (either 7y anverse OF the modified piston time (B4)
TpE,composidNCreases much faster thgwC, ). Therefore the

radial heat flux within the copper plate decreasesTass  One now needs to define f.in terms of the Bessel functions
approached. This leads to a decreasing radial temperatugg(C,r). This is accomplished using the orthogonality prop-
difference within the copper plate as the transition is aperty

proached. The copper plates are closer to being isothermal

near the transition, witlAT., /AT being less than 1% for 1

T/T,-~1<10* using the modified piston time. Because it f rJo(Cr)Jo(Cr)dr=0 if n# m, (B5)
predicts nearly isothermal copper, this simple model suggests 0

that the true relaxation time is close to the fastgrsyers)

limit shown in Fig. 2. 1 1
J 3o(Car) 3o Cor)dr = SJ(Cy). (86)
APPENDIX B: DETAILED TEMPERATURE °

CALCULATIONS IN LAPLACE SPACE When unity is expanded as a sum of the Bessel functions,

Equation(13) is an expression in temporal space for the
temperature in copper plate. Equatiti®) is an expression
in Laplace space for the temperature in helium fluid. Both
equations contain undetermined coefficients. In this appen-

dix, we derived analytical expressions for these coefﬂmentffhe scalar product defined in Eq85) and (B6) and leads to
in Laplace space by matching the heat flux and temperature

+oo

1=, DpJo(Cir), (B7)
1

at the interface between helium and copper.

2 1
D,= \]2(—C)f rJo(Cyr)dr (B8)
1. Matching between helium and copper RS0
The matching condition at the interface between heliumor
and copper requires that both the temperature and the heat
flux be continuous at=z=0. For flux continuity, one has 2
D,= (B9)
Coi(Cy)’
X ( = KC” I 0) B1) h h
dud/2 &7 ence one has
or 1_ 1
—J(C,r). (B10)
p PT Cada(Cp) o
dJ ar
Ez(z: 0) :AE z=0), (B2)  Equation(B10) is valid everywhere except a0 andr=1

where the Bessel series are singular. Combining E8R),

. L . (B4), and(B10), one obtains
with A =(\cy/Mpe) (dye/ dey), Which is typically larger than 1.

However, no asymptotic simplification is possible based on y-1~
this observation. Indeed, the flux continuity requires that aA,= (— - —(T))
solution for a general value of be found(otherwise, only P Y
degenerate solutions can be obtained, where the copper re- 2 \Fp
. . . T p— X = .
mains isothermal to first orderSubstituting Eq(13) for T CnJ1(Co) AC H sinI‘(CnH)cotr(\r’B) +/p cosiC,H)

and Eq.(19) for T into Eq. (B2), one has (B11)

+0o0

— . — . The expressions for dimensionless temperatures in the cop-
b(p,r)Vp sinh(vp) = A X, A(p)CyH sinh(CH)Jo(Cir), P P P
1

per and fluid helium become
(B3)

- 1 +oo
T(r,Z,p) = = = 2 Af(p)cosiCH(Z = 1)13p(Cy),
where Aq(p) denotes the Laplace transform af(t). From P

the temperature continuify("z:O):T(z_:O), one has (B12)
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M+ costi\pE+ 1]\

Vpsinh(vp)

y—1

'~I'(r Z,p) =

+o0

X 2 Ay(p)C, SINN(CH) Jo(C,r)
1
U Y
Y p Y

xcostiVp@ + 1)1 By(p)Je(Cyr), (B13)
1

with
2 AH
J1(Cr) AC,H cosh\p) + Vp sinh(Vp)ctan{C,H)
(B14)

n:

PHYSICAL REVIEW E 71, 041201(2009

tions contain the average temperature in the helium, which is
given in Eq.(B18). The problem is now solved in Laplace
space. One needs only to invert the Laplace transforms to
obtain the temperature profiles and average temperature at
any given time.

APPENDIX C: TEST CASES OF THE GENERAL
SOLUTION

The solution obtained for the temperature and density re-
laxation in a 3D system is a complex series of Laplace trans-
forms. As such, it is difficult to accurately assess its validity.
In order to justify the exactness of the result, we have relied
on two asymptotic limits: the behavior of the series when the
copper becomes a perfect heat conductor and the behavior of
the series when the heat transfer in the fluid becomes purely
diffusive.

If the copper plates are perfect heat conductors, the tem-
perature in the interior of the plates will relax instantly and

Using Eq.(B13), the spatial average of the temperaturewjl| remain isothermal throughout the fluid evolution. The
distribution in helium (T) can be derived. First, the spatial temperature relaxation in the fluid will then be governed by a
average of a function in cylindrical coordinates is defined agure 1D piston effect along the transverse directicariable

-1
(7)) =~ J F
o | 7

1
f 2wrf(r,~z)dr] dz. (B15)
0

Substituting the spatial dependence of EB13) into Eq.

(B15), one has
(cosip(Z+ 1)136(C))

-1 1
=- Zf cosr[\r'|3(2+ 1)]d'zJ rJo(Cyr)dr
0 0

inh(Vp) 23,(C
:S'”*,‘Qp) 1 n)_ (816
\p Cn
Hence we have
= y=1~ [1 y-1=~\ot _sinh(\p)23(C.)
M=+ (— - 7—<T>)E By
Y Py 1 \p (O
(B17)
This leads to
+oo
> E,
~ 1
Mp)=t——, (B18)
1+(y-1DXE,
1
with
inh(Vp) 23,(C
En:anmh(F\p) 1(Co)
P C,
4 AH
- — . (B19)

Cn\rp AC Hctanhyp) + ypctaniCH)

2). This situation is obtained for the limitH" — oo.
If this limit is applied to Eqs(B14) and(B19), one finds

2 1

B,— (Cy
" C ‘Jl( n) ez‘p+ 1
. 1 4eP-gP ©2
n \/I—J Cﬁ e\s‘p+ e—vp
Based on the property
+o0 4
- = 1,
= c
the temperature solution in ECBl3) becomes
e P@+) 4 g \pE+D) 4 -p)
~ 1 Y p
T—— 1 (C3
P ePiepy? — (eP—g P

VP

The above expression is the Laplace transform of the general
piston effect 1D solution, when both the piston effect and
diffusion are taken into accoufds obtained by a direct reso-
lution of Eq.(16) in 1D geometry[19]. The pure 1D piston
effect is thus obtained as a special case of our 3D solution.

The second test for the general solution is to apply the
limit A— 0. In this case, the specific heats at constant pres-
sure and constant volume are equal, and the piston effect
disappears. The obtained solution should thus describe a
purely diffusive transport in a 3D cylindrically symmetric
composite cell. Ify=1, Eq.(B13) becomes

+o

- 1 - -
T(rzp) = B[e“‘p@”) +ePEV]Y B (p)J(Cyr). (CH)
1

The Laplace coefficients for the copper temperature are
given by Eq.(B11). The expression for the helium tempera- A direct 3D diffusive solution(similar to the one presented

ture in the Laplace space is given by EB13). Both equa-

here but not detailed in this papdeads to the exact same
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result [20]. Hence, our solution becomes equivalent to a  1¢*J : ! : : =
purely diffusive one in the case of an incompressible fluid. 2 '
The two particular limit cases described above give us 4] T/Te—1 =107
confidence in the reliability of the general set of solutions. 1
APPENDIX D: NUMERICAL INVERSION OF THE
LAPLACE SERIES

1073
8]

- T(N-10))/AT

The general solution of the problem is obtained under the
form of an infinite series of Laplace transforms involving
Bessel functions of order zero and one. Such solutions mus
rely on numerical inversion to be expressed in the space 0 ¢ 00
physical variablegr,z,t). In order to do so, the series are 0 20 40 60 20 100
first truncated at a certain number of terms, summed up av N
_complex functions of the complex var_lablE and then the_ FIG. 14. Convergence of numerical Laplace inversion versus the
inverse Laplace transform of the obtained complex function . . _

. - o .number of terms in the series for a reduced temperature of 10

is computed. The Laplace inversion is based on the Durbin
formula combined with the epsilon algorithi@1]. The cho-
sen relative precision in our calculations was®Mote that  difference between the temperature calculated Witterms

the inversion always fails at=0 andr=1: it is well known and the temperature calculated wiNix- 10 terms at the same
indeed that Bessel series are singular in these two values pbint and at the same time. This value thus represents the
the radial variable. Very close to these values though, coneorrection brought by adding 10 more terms to the series
vergence is recovered, so that the prediction of the fluid'safter rankN. As can be seen on the figure, this correction
behavior is possible essentially everywhere in the cell debecomes smaller and smaller as the rank at which the series
spite these singularities. is truncated(i.e., N) increases, until it finally levels off

Let us examine the convergence of the solution when tharound 108 whenN becomes larger than 80. This saturation
number of truncated terms in the series is increased. A test af the correction at 18 is due to the error in the numerical
a reduced temperature of Powas conducted. This reduced inversion of the Laplace transform, chosen to be®l18s
temperature, which is the smallest we used in our calculamentioned above. Hence, regardless of the number of terms
tion, leads to the slowest convergence of the series due to thecluded in the estimate of the series, an error of this order
thinnest boundary layers. At a given dimensionless time will always be observed. Similar figures have been drawn for
and forr=0.2 andZz=-1 (middle plane of the fluid layer, other reduced temperatures and dimensionless times, with
close to the center of the cglithe numerical inversion was equivalent results.
conducted for a sum of 10-100 terms in steps of 10. Figure In all the figures presented in this article, the series were
14 shows the difference in convergence between each sutruncated afteN=100 terms and the Laplace inversion was
cessive calculation. For a giveM, the value plotted is the conducted with a relative precision of 0

[T(N)
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