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We present a study of the temperature and density equilibration near the liquid-gas critical point of a
composite system consisting of a thin circular disk of near-critical fluid surrounded by a copper wall. This
system is a simplified model for a proposed space experiment cell that would have 60 thin fluid layers
separated by perforated copper plates to aid in equilibration. Upper and lower relaxation time limits that are
based on radial and transverse diffusion through the fluid thickness are shown to be too significantly different
for a reasonable estimate of the time required for the space experiment. We therefore have developed the first
rigorous analytical solution of the piston effect in two dimensions for a cylindrically symmetric three-
dimensional cell, including the finite conductivity of the copper wall. This solution covers the entire time
evolution of the system after a boundary temperature step, from the early piston effect through the final
diffusive equilibration. The calculation uses a quasistatic approximation for the copper and a Laplace-transform
solution to the piston effect equation in the fluid. Laplace inversion is performed numerically. The results not
only show that the equilibration is divided into three temporal regimes but also give an estimate of the
amplitudes of the remaining temperature and density inhomogeneity in each regime. These results yield
characteristic length scales for each of the regimes that are used to estimate the expected relaxation times in the
one- and two-phase regions near the critical point.
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I. INTRODUCTION

In determining the feasibility of performing experiments
near a liquid-gas critical point, it is important to know the
expected thermal equilibration time for a given experimental
arrangement. It is known that there is competition between
the critical slowing down associated with the diminishing
thermal diffusivity and the critical speeding up associated
with the piston effectf1–5g. The piston effect is known to
dominate the early stages of the thermal equilibrium process.
At later times, the remaining temperature and resultant den-
sity gradients will relax diffusively. General expressions
combining these two competing effects have been developed
f1,2g and applied to the one-dimensional case. One-
dimensionals1Dd theoretical models have also been devel-
oped to describe the evolution of the temperature and density
distributions in the presence of gravity and in a microgravity
environmentf5–8g.

Berg studied the thermal equilibration in three dimensions
near the critical point for the case of a thin disk of fluidf9g.
His analysis provided the first insight into the effect of ge-
ometry on density and temperature equilibration. That study
demonstrated the existence of isobaric modes induced by a
temperature gradient that relax on a much longer time scale
than that of the piston effect. Ferrell and Hao studied the
composite system of a near-critical fluid and enclosing solid
walls in an arbitrary geometryf10g. They showed that when
temperature is measured at the outer surface of a solid wall,
the fast thermal equilibration takes a longer time than when
measured directly inside the fluid. This delay is due to the

finite thermal conductivity of the wall. However, their study
was limited to the intermediate-time regime of the piston
effect, so that no practical information could be deduced as
regards the relaxation of densityswhich takes place on the
diffusion time scaled. Up to now, there has been no model
that includes the effects of both geometry and finite conduc-
tivity of the container solid walls for a complete temporal
coverage from the initial fast adiabatic equilibration to the
final diffusive relaxation. The development of such a model
is the aim of the present work.

We will present in this paper a study of temperature and
density equilibration of a composite system consisting of a
thin circular disk of near-critical fluid surrounded by a cop-
per wall. Such geometry has been used in several Earth-
bound experiments and proposed space-based experiments
on near-critical fluidsf11,12g. A small cell gap is chosen to
reduce the density stratification on the Earth and the long
relaxation times both on the Earth and in space. A large cell
diameter provides a large sample size for increased signal-
to-noise ratio in specific heat measurements. In this paper,
we will determine the thermodynamic behavior of such a
system from the early piston effect regime all the way to
final equilibrium. The results of our calculation will be used
to estimate equilibration times for a much more complicated
experimental cell being considered for a future space experi-
ment. Because the fluid relaxation time is the longest along
the critical isochore, all our numerical estimations were
made for the case of the critical isochore. The thermody-
namic properties of3He were calculated using the informa-
tion collected in Ref.f6g.
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II. BACKGROUND

The motivation for performing this study was to design an
experimental cell for efficiently measuring the specific heat
near the critical point of3He in a microgravity environment.
Because a large gravity-induced density stratification is no
longer a problem in a microgravity environment, one would
like to increase the sample size in order to increase the
signal-to-noise ratio for a specific heat measurement. At the
same time, a slow diffusive relaxation associated with the
large sample size should be avoided due to limited flight time
in space. In order to reconcile these two conflicting require-
ments, a composite cylindrical cell design has been proposed
for a future space flightf12g. Figure 1 shows a schematic of
the cell design being considered. The cell has a 5.5 cm inner
diameter and a 3.2 cm height and contains a stack of copper
plates with copper spacers. Each plate and spacer is
0.025 cm thick. With this arrangement, the bulk fluid is sepa-
rated into 64 equally thin layers. There are many holes in the
copper plates, so the fluid in each layer can communicate
with the fluid in adjacent layers. The copper plates are ther-
mally linked to the temperature-regulated copper wallssi.e.,
the circumference boundaryd and act as thermal shorts to
speed up the equilibration in the bulk fluid.

In estimating the time required for a future space experi-
ment, it is important to determine the expected equilibration
time constant for such a cell design. Because specific heat is
a strong function of density near the critical point, its mea-
surement should be taken after both temperature and density
inhomogeneity relax to within prescribed values respectively.
For a fluid in the single phase, such as the critical isochore
above the critical temperatureTc, the relaxation time for spe-
cific heat measurements using a pulse heat is not a major
concern since the piston effect speeds up the temperature
equilibration. The large density inhomogeneity at bound-
aries, induced by the piston effect, causes less than 1% sys-
tematic error in the total heat capacity very close toTc since
the boundary layers are so narrow. However, in coexisting
phases belowTc, diffusive density relaxation will affect the
temperature relaxation directly due to the latent heat caused
by the mass conversion. Since there are two characteristic
length scales for this cell design, two different diffusive re-
laxation times are expected. We would like to determine how
to utilize these two length scales to estimate the time re-
quired for specific heat measurements in the coexisting
phases.

We started by using a 1D approximation to find the upper
and lower bounds for thermal relaxation of one fluid layer in
the single phase and eventually found an approximation to
estimate the relaxation time in coexisting phases. If the cop-
per plates are perfect conductors, the temperature of the
plates will instantly follow that of the external copper wall.
Any radial inhomogeneity in the fluid layer will be removed
immediately via the copper plates. The fluid will then equili-
brate by transverse conduction through the thickness of the
layer. The thermal relaxation timesdifferent from the usual
Fourier expression at constant pressured is f1g

ttransverse=
srCPdHe

lHe
SdHe

2p
D2

, s1d

whereCP andl are the specific heat at constant pressure and
thermal conductivity respectively,r is the fluid density, and
dHe is the thickness of the fluid layer. Equations1d implies
that the characteristic length scale is the fluid layer thickness
between the copper plates.

On the contrary, if the copper plates are poor conductors,
an inhomogeneity will be relaxed radially through the fluid
to the sidewalls,

tradial=
1

Dk2 =
1

2

srCPdHe

lHe
S2RHe

p
D2

. s2d

Equations2d implies that the characteristic length scale is the
radiusR of the fluid layer. Because of the huge difference in
the length scales, the relaxation times of the two cases are
very different,tradial=2s2R/dd2ttransverse=9.683104ttransverse.
The expression fortradial gives an unrealistically large upper
limit on the relaxation time because it totally ignores the
contribution of conduction in the copper plates. We therefore
next considered a composite system of a fluid layer and a
copper plate in contact. The specific heatsrCPdHe of helium
is much larger than that of the coppersrCPdCu, the ratio
srCPdHe/ srCPdCu being,350 atT/Tc−1=10−2 and increas-
ing for smaller reduced temperatures. The thermal conduc-
tivity of copper,lCu, is much larger than that of the helium,
lHe, the ratiolCu/lHe being,104 at T/Tc−1=10−6 and in-
creases for larger reduced temperatures. We can intuitively
approximate the average properties of the composite system
and substitute them into the expression fortradial:

tradial
comp=

1

2

dHe

dHe + dCu

srCPdHe

dCu

dHe + dCu
lCu

S2R

p
D2

=
1

2

dHe

dCu

srCPdHe

lCu
S2R

p
D2

, s3d

where dCu is the thickness of the copper plate. A realistic
relaxation time for a given reduced temperatureT/Tc−1 will
be bounded by the two extremes,ttransandtradial

comp as shown in
Fig. 2. Whether the realistic relaxation time follows the up-
per bound or the lower bound depends on whether the copper
plate can be considered isothermal. In Appendix A, we use a
simple model to show that the radial temperature difference
in the copper plateDTCu is less than 1% of the temperature
step changeDT at the side wall forT/Tc−1,10−4 using a

FIG. 1. Sketch of the flight experimental cell. Heat is applied at
cell boundaries. Plates are not shown to scale.
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modified piston time. Because this simple model predicts
nearly isothermal copper, it suggests that the true relaxation
time is close to the fastersttransversed limit shown in Fig. 2.

A. Rigorous calculation of piston effect for a cylindrical
composite 3D cell

The range of relaxation times presented in Fig. 2 is so
large that we need a better estimate of the characteristic
length scale for the equilibration of the stacked cell. A piston
effect model for a cylindrically symmetric three dimensional
s3Dd cell was developed to address this problem. In this
model, the complete entropy transfer equation, as first pro-
posed by Onukiet al. f2g, is used to model thermal relaxation
in the fluid and the conventional heat transfer equation is
used in the copper plate. The explicit solution obtained in
Laplace space contains the early piston effect regime and the
late diffusive relaxation regimes as well as the transition be-
tween the different regimes. This solution does not require
the use of the asymptotic matching techniques between time
scales of these regimes.

In order to simplify the problem, we analyzed the thermal
behavior of a composite system consisting of a single fluid
layer plus a copper plate located in the middle of the stacked
cell shown in Fig. 3. This part of the cell is far enough from
the top and bottom cell boundaries that thermal relaxation in
this region can be considered equivalent to that observed in
an infinite periodic stack of such pairs. Actually there are 64
stacked pairs in the flight cell design and our analysis on the
middle pair can serve as the worst-case estimate for the
equilibration time of all other pairs. Due to symmetry and
periodicity, only the area enclosed by the thick rectangle

needs to be considered. The thickness of the copper layer is
an adjustable parameter in our model, so the most general
solution will be obtained. The boundary conditions shown in
Fig. 3 are as follows: the circumference boundary of the two
cylindrical layers is subjected to a step temperature change,
DT, while the top and bottom boundaries are considered to
be adiabatic.

The governing equation in the copper is the conduction
equation written for cylindrical geometry with axial symme-
try sthe variables beingr andzd:

]T

]t
− DCuH1

r
F ]

]r
Sr

]T

]r
DG +

]2T

]z2J = 0. s4d

The governing equation in the helium is the piston-effect
equationf2g

]T

]t
=

g − 1

g

]kTl
]t

+ DHeH1

r
F ]

]r
Sr

]T

]r
DG +

]2T

]z2J , s5d

where kTl represents the spatial average ofT and g
;CP/CV is the ratio of the heat capacities.kTl is a function
of time only. It should be noted that these equations are valid
only in the linear regime where the changes of the media
properties are negligible over the induced temperature
change.

B. Calculation in copper

Equation s4d can be made nondimensional using the
change of variables

t* =
t

tD
He, r* =

r

R
, z̄=

z

dCu/2
. s6d

Here tD
He=sdHe/2d2/DHe is the transverse heat diffusion time

in the fluid helium and similarlytD
Cu=R2/DCu is the radial

heat diffusion time of the copper plate. UsingH=dCu/ s2Rd
and ignoring the superscript stars fort and r from now on,
the nondimensional equation for copper becomes

tD
Cu

tD
He

]T

]t
− H21

r
F ]

]r
Sr

]T

]r
DG −

]2T

]z̄2 = 0. s7d

Since tD
Cu/ tD

He,10−5 for all reduced temperatures, the tem-

perature in copper,T̄sr , z̄,td, is governed to first-order by the
equation

FIG. 2. Transverse and composite radial relaxation times versus
reduced temperature for3He fluid along its critical isochore.

FIG. 3. Illustration of a 2D composite system
and its boundary conditions.
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H21

r
F ]

]r
Sr

]T̄

]r
DG +

]2T̄

]z̄2 = 0, s8d

with

T − Ti

DT
= T̄sr,z̄,td + OS tD

Cu

tD
HeD , s9d

whereTi is an initial temperature.
This result shows that the temperature in the copper layer

is quasistatic to first order. The copper temperature follows a
Poisson equation with fixed boundary conditions, in which
time is a parameter but not a variable. It is solved by variable

separation. InsertingT̄sr , z̄d; fsrdgsz̄d into Eq. s8d leads to

1

f

1

r
srf 8d8 = −

1

H2

g9

g
= − C2, s10d

whereC is a real constant. The solutions of these two equa-
tions are

gsz̄d = astdcoshfCHsz− 1dg, s11d

fsrd = J0sCrd, s12d

with a being a real function oft andJ0srd being the Bessel
function of zero order. Equations11d satisfies the adiabatic
boundary condition at the top of the copper platesz̄=1d. The

following form is then chosen forT̄ for the case of an im-
posed temperature at the outer border of the copper and he-

lium layers—i.e.,T̄sr =1,z̄,td=1:

T̄sr,z̄,td = 1 −o
1

+`

anstdcoshfCnHsz̄− 1dgJ0sCnrd, s13d

with the Cn’s being the roots ofJ0. Note that this specific
form sand the subsequent solutionsd could be generalized to
more complex temperature boundary conditions in a straight-
forward manner.

C. Calculation in helium

The vertical dimension in helium is scaled bydHe/2 as

z̃=
z

dHe/2
. s14d

Equations5d is now made nondimensional. We now have

]T

]t
=

g − 1

g

]kTl
]t

+ SdHe/2

R
D21

r
F ]

]r
Sr

]T

]r
DG +

]2T

]z̃2 . s15d

SincedHe/2!R, the temperature perturbation in the helium,

T̃sr , z̃,td, is governed to first order by the equation

]T̃

]t
=

g − 1

g

]kT̃l
]t

+
]2T̃

]z̃2 , s16d

with

T − Ti

DT
= T̃sr,z̃,td + OSdHe/2

R
D . s17d

In other words, the radial heat diffusion in heliumsalong
rd is considered negligible compared to the transverse diffu-
sionsalongzd. One consequence of this approximation is that
the local radial heat into the fluid at the circumference copper
wall will not be taken into account in the final solution. The
only heat into the fluid will be through the copper plates after
the copper plates are very rapidly heated to almost the same
temperature as the circumference wall over their own typical
relaxation times. Although this may sound like a severe as-
sumption, it is in fact totally relevant to the chosen geometry
since the wetted surface of the copper plates is 45 times
larger than the wetted surface of the circumference wall,
even though the fluid is heated simultaneously by the cir-
cumference copper wall and by the copper plates.

Equations16d is solved by means of Laplace transforms.
Letting p be the Laplace parameter associated with the non-
dimensional time variablet, Eq. s16d now becomes

pT̃−
]2T̃

]z̃2 =
g − 1

g
pkT̃l, s18d

with a solution in the form

T̃ =
g − 1

g
kT̃lspd + bsp,rdcoshfÎpsz+ 1dg. s19d

Equations19d satisfies the adiabatic boundary condition at
the bottom of the helium layersz̃=−1d.

By matching the heat flux and temperature at the interface
between helium and copper, we derive an analytical expres-
sion for spatial temperature distribution in Laplace space.
One needs only to invert the Laplace transforms to obtain the
temperature profiles and average temperature at any given
time. The details of the derivation and the expression are
given in Appendix B. The obtained solution is verified by the
test cases described in Appendix C. The procedure for the
Laplace inversion, conducted numerically, is described in
Appendix D.

D. Calculation of the pressure and density distributions

The pressure and density distributions are obtained by
considering a linearized equation of state in the form

r − ri = S ]r

]P
D

T
sP − Pid + S ]r

]T
D

r

sT − Tid. s20d

The pressure distribution throughout the evolution is as-
sumed to be homogeneous since the pressure gradient re-
laxes on an acoustic time scale that is much shorter than the
time scales of the piston effect and the later diffusion pro-
cess. Recent results on bulk viscosityf13,14g have shown,
however, that the assumption of a homogeneous pressure
may fail very close to the critical point, where viscous
stresses can build up in the thermal boundary layers and
create a local pressure gradient. According to theoretical pre-
dictions f14g, one consequence of this viscous effect is that
the piston effect should undergo a phase of critical slowing
down very close to the critical point, where its typical time
scale becomes dominated by bulk viscosity. In principle, the
present model should be valid only in the nonviscous region
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of reduced temperatures above 10−3 when one applies formu-
las in f14g usingdHe/2=0.0125 cm as a typical length scale.
However, the effect of bulk viscosity can only be felt on the
early piston-effect regime, and it has no consequence either
on the late piston-effect relaxation or on diffusive processes
and, in particular, no consequence on the diffusion-
dominated density relaxation. Neglecting the bulk viscosity
in the present solution should only lead to a slight underes-
timation of the typical time scale of temperature relaxation
by the piston effect very close to the critical point. Because
the average density deviation in the closed cell is zero, the
spatial integration of Eq.s20d leads to

P − Pi = S ]P

]T
D

r

DTkT̃l. s21d

The density distribution is then given by

r − ri = S ]r

]T
D

P
DTsT̃ − kT̃ld. s22d

III. RESULTS

The evolution of the temperature and density has been
computed for several reduced temperatures and at different
locations in the fluid cell, using the length scalesdHe=dCu
=0.025 cm and 2R=5.5 cm. Shown in Fig. 4 is the tempera-
ture evolution at the fluid-copper interface for a reduced tem-
perature 10−5 and for two different radial positions,r =0 at
the center of the cell andr =0.8R close to the circumference
boundary where the stepDT is applied. The temperature in-
creases rapidly in the copper plate. Only 0.1% temperature
inhomogeneity remains after 5 s due to the piston effect.
This remaining inhomogeneity will vanish diffusively.

Figure 5 shows the residual temperature difference be-
tween the cell center and circumference boundary at the
copper-fluid interface for several reduced temperaturessbe-
tween 10−3 and 10−6d. A careful look at the vertical scales
shows that the radial temperature gradient in the copper plate
goes to zero as the critical point is approached. At a reduced
temperature 10−3, this temperature difference remains small
sless than 10% ofDT for t.10−3tD

Hed, confirming the simpli-
fied model prediction that the copper plate is almost isother-
mal.

Figure 6 shows the evolution of the temperature change at
several radial positions in the midplane of the helium fluid

for a reduced temperature 10−3. It clearly shows two distinct
regimes: one is the piston-effect-dominated regime where the
temperature in the bulk helium is the same regardless of the
radial position; the other is the diffusion-dominated regime
where the temperature relaxation in helium is influenced by
the remaining temperature gradient in copper.

Although these first two regimes are observable through
the temperature evolution, a third regime is only observable
via the density evolution because of the diverging thermal
expansion coefficient that “exposes” the remaining tempera-
ture inhomogeneity in the fluidfsee Eq.s22dg.

A. Three regimes in the equilibration process

1. t/ tD
He™1: piston-effect regime

The early stage behavior of the system occurs fort / tD
He

!1. In this piston-effect regime, heat diffuses through the
copper plate into the helium layer. A thin boundary layer is
created in the helium close to the copper wall. The boundary
layer expansion drives a global piston effect in the whole
fluid, and the bulk helium temperature increases homoge-
neously. Figure 7sad illustrates the heat-flow pattern during
the early piston time period when heat transfer is governed
by conduction in copper and piston effect in helium. Figure
7sbd shows a calculated spatial density profile scaled by the
temperature change at the circumference boundary. The cal-
culation was made for a reduced temperature of 1310−5 and
t / tD

He=0.01 st=37 sd. Both the temperature and density are
dimensionless. Close to the copper-fluid interface, the fluid

FIG. 4. The temperature evolution at a reduced temperature 10−5

and at the fluid copper interface for two different radial positions.
FIG. 5. The evolution of the temperature difference between the

cell center and circumference boundary at the copper-fluid interface
for several reduced temperatures.

FIG. 6. The evolution of temperature change at several radial
positions in the midplane of the helium fluid for a reduced tempera-
ture 10−3.
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density undergoes a strong drop due to the thermal expansion
of the boundary layer. This drop is more pronounced near the
circumference border, where the copper plate is hotter. We
note here that no boundary layer is observed at the circum-
ference wallsi.e., atr /R=1d due to the disappearance of the
radial diffusion term in the piston-effect equations16d in
helium. Had this term been kept in the asymptotic process, a
strong and localized density drop would also have been ob-
served atr /R=1 for all values ofz. The discussion following
Eq. s16d justifies that this local simplification has no conse-
quence on the prediction of the global relaxation process. A
small homogeneous density increase of the bulk fluid every-
where away from the boundary layers also occurs.

2. 0.1, t / tD
He,1: transverse diffusion regime

On the typical time scale of pure diffusion across the he-
lium layer, the piston effect slowly vanishes. The boundary
layer starts to diffuse deep into the helium layer, and the
density and temperature gradients along the directionz are
progressively relaxed by transverse heat diffusion. Figure
8sad illustrates the heat-flow pattern during the transverse
diffusion period when heat transfer is governed by conduc-
tion in copper and transverse diffusion in helium. Figure 8sbd
shows a similar plot as Fig. 7sbd but at t / tD

He=0.1 st=370 sd.
One can observe density gradients extending along the whole
fluid layer’s thicknesssas opposed to the localized gradients
observed in the first regimed. These gradients, again, are
strongest near the circumference, where the temperature of
the copper boundary is higher.

3. t/ tD
He.1: Radial diffusion regime

After this second regime, the boundary layer has totally
diffused across the helium layer, and all transverse gradients
have relaxed. Only radial temperature and density gradients
remain in the cell, and these gradients relax radially through
conduction in the copper. This can be identified as a third
regime, called the radial diffusion regime. At this point, the
temperature gradients are so small that the system seems to

have completely relaxed to equilibrium if one examines the
temperature evolution alone. On the other hand, even though
over 99% temperature equilibration is completed in the first
two regimes in a short time, the residual temperature inho-
mogeneity will still cause a substantial density inhomogene-
ity due to the diverging thermal expansion coefficient. Any
accurate density measurement will have to wait until this
density inhomogeneity relaxes. In the coexisting phases at
T,Tc, the density relaxation will affect the temperature re-
laxation directly due to the latent heat caused by the mass
conversion. Therefore a detailed study of the third regime in
this composite geometry is necessary and the only verifica-
tion of this third regime is through density relaxation mea-
surements. Figure 9sad illustrates the heat-flow pattern during
the radial diffusion regime: heat transfer is governed by ra-
dial diffusion in the composite copper-helium system. Figure
9sbd shows a snapshot of the spatial density profile similar to
Fig. 8sbd but att / tD

He=3 st=3 hd. By this time, only the radial
density inhomogeneity is observable: all transverse gradients
salongzd have relaxed long beforesin the second regimed.

FIG. 7. sad Heat-flow pattern during the early piston time period.
sbd Calculated spatial density profile for reduced temperature 1
310−5 and t / tD

He=0.01 st=37 sd. The dimensionless density
change was scaled by the dimensionless temperature change at the
circumference boundary.

FIG. 8. sad Heat-flow pattern during the transverse diffusion
period. sbd Calculated spatial density profile for reduced tempera-
ture 1310−5 and t / tD

He=0.1 st=370 sd. The dimensionless density
change was scaled by the dimensionless temperature change at the
circumference boundary.

FIG. 9. sad Heat-flow pattern during the radial diffusion period.
sbd Calculated spatial density profile for reduced temperature 1
310−5 and t / tD

He=3 st=3 hd. The dimensionless density change
was scaled by the dimensionless temperature change at the circum-
ference boundary. The vertical scale here is much more sensitive
than the corresponding ones in Figs. 7 and 8.
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The density evolution at different cell locations will now
be discussed. Figure 10 shows the density evolution at the
interface between the copper plate and3He fluid layer for
four different reduced temperatures. At small radial posi-
tions, the density increases even next to the copper wall. This
observation may seem surprising at first since the density
could be expected to decrease close to the heated copper wall
where the fluid is heated by conduction. This unexpected
phenomenon, in fact, is a result of the cylindrical geometry
and a purely 3D effect. When the piston effect is driven in
the fluid cell by the boundary heating, the strongest boundary
layer expansion occurs where the copper wall is hotter—that
is, close to the circumference boundary. This strong expan-
sion of the most external parts of the fluid layersfor largerd
drives a global compression of the bulk fluid, thus increasing
its density. Hence, there are two competing effects at the
same time close to the center of the cell and at the copper
interface. One is the local conductive heating of helium from
the copper that drives a thermal expansion of the fluidsthus
reducing densityd and another is the global compression of
the bulk fluid by the piston effect that increases the overall
density of the most internal part of the fluidsfor smallrd. The
positive density variation observed at the fluid-copper inter-
face for small values ofr shows that the piston effect global
compression overcomes the local thermal expansion of the
fluid, at least in the first steps of the relaxation.

Figure 11 shows the density evolution in the middle of the
helium layer where the density increases initially due to the
piston effect. This increase is first homogeneous and then the
differences at different radial positions become substantial
when transverse diffusion starts pervading the cellsi.e., for
times of t / tD

He,1d. This is the indication of entering the so-
called transverse diffusion regime, dominated no longer by
the piston effect but by transverse diffusion.

Both close to the copper walls and in the middle of the
helium layer, the typical timetRD for the scaled remaining
radial density inhomogeneitysdr /rcd / sDT/Tcd=0.1 is longer
than the pure transverse diffusion time across the helium
layer tD

He sas shown by arrows in Figs. 10 and 11d. This radial
relaxation time becomes longer as the critical point is ap-
proached. Its value is typicallytRD/ tD

He,5, 10, 40, and 100

for reduced temperatures of 10−3, 10−4, 10−5, and 10−6, re-
spectively. This is still much faster than pure diffusion in
helium along the radius, which takes a timet / tD

He,5000.
Figure 12 shows the equilibration timesthick solid lined for
the radial density inhomogeneity,tRD, versus reduced tem-
perature. Also shown in Fig. 12 arettranssthin solid lined and
tradial

comp sdashed lined for T.Tc previously shown in Fig. 2. It
is very interesting to note thattRD is parallel totradial

comp in the
logarithmic plot, indicating that the two are linked to the
same length scale and have the same reduced temperature
dependence. Considering thattRD corresponds to the radial
density inhomogeneity equals tosDT/Tcd10% whiletradial

comp is
the relaxation time for an exponential decay, it is not surprise
that tRD is longer thantradial

comp by approximately a factor of 2.
We thus associatetradial

comp with the relaxation time for radial
density inhomogeneity. This is an important discovery of our
3D piston-effect solution for a composite system with the
boundary conditions defined in Fig. 3.

The relaxation in the third regime can also be associated
with the isobaric modes discussed by Bergf9g and Wilkinson
et al. f15g. These modes are characterized by an asymmetric
temperature distribution with one part of the fluid cooling by
transferring heat to the wall and another part warming by

FIG. 10. Density evolutiondr=r−rc at the copper-fluid inter-
face for different reduced temperatures. The time at which the den-
sity becomes homogeneous is marked.

FIG. 11. Density evolutiondr=r−rc in the middle of helium
layer for different reduced temperatures. The time at which the
density becomes homogeneous is marked.

FIG. 12. Various characteristic times versus reduced
temperature.
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extracting heat from the wall, just as shown in Fig. 9. In the
current results, the long relaxation time for the third regime
is caused by the finite conductivity of the copper. This was
not seen inf9g which assumed perfectly isothermal boundary
conditions, but it was hinted at by a significant conductivity
correction calculated even for an infinitely thick, high-
conductivity sapphire cell wall in Ref.f15g.

The result obtained in this analysis can easily be extended
to the two-phase case. Indeed, Zhong and Meyer proved in
their early workf16g that the density relaxation in coexisting
phases forT,Tc could be approximated with the average
thermal properties of the two phases. Since a density relax-
ation is directly linked to a temperature relaxation in coex-
isting phases asdrliq ~−bs1−T/Tcdb−1sdT/Tcd where b
=0.325 is the critical exponent for the coexistence curve, this
radial relaxation time can also be used to estimate the tem-
perature relaxation time in the coexisting phases. Substitut-
ing the average specific heat at constant pressure into Eq.s3d
for the composite relaxation time, we obtain the temperature
relaxation time for the same composite system in the coex-
isting phases as shown by the dot-dashed line in Fig. 12. The
estimated radial relaxation time in the coexisting phases is
about 4 times shorter than in the single phase. This factor of
4 comes from the fact that the specific heat at constant pres-
sure is proportional to the isothermal susceptibility. Based on
the restricted cubic model equation of state, the isothermal
susceptibility is about a factor of 4 smaller in the coexisting
phases than in the single phase along the critical isochore.

B. Equilibration in specific heat measurements

For the specific heat measurement along the critical iso-
chore above the critical temperatureTc, a temperature equili-
bration is completed to within 1% in seconds due to the
piston effect. Thus, we can use the lower boundttrans in Fig.
12 to safely estimate the time required for such a measure-
ment in the single phase. This relatively short time will per-
mit measurements to be performed over a reduced tempera-
ture range 10−6øT/Tc–1ø10−3. However, in coexisting
phases belowTc, the temperature relaxation timetradial

comp is
about 60 h atuT/Tc−1u,10−6 as shown in Fig. 12. Consid-
ering that there is about a factor of 2 between the composite
relaxation timetradial

comp sdashed lined and 1% cutoff density
equilibration timetRD sthick solid lined, it will take approxi-
mately 120 h to obtain heat capacity measurements with a
precision of 1% at,10−6. To permit a better level of 0.1%
precision inCV measurements during a limited space flight
time, one can limit measurements to onlyuT/Tc−1uù10−5

where the temperature equilibration time for a 0.1% preci-
sion would be,8 h. The equilibration time would be shorter
if less stringent demands are made on the precision of aCV
measurement.

Haupt and Straub measured the specific heat of SF6 in
microgravity using a spherical cell of 19.2 mm diameter
f17g. They used a continuous calorimetry technique with dif-
ferent cooling rates to obtain the experimentalCV data over a
reduced temperature range 3310−6ø uT/Tc−1u,10−2. The
microgravity SF6 CV data were recently reanalyzed using a
renormalization group theory predictionf18g. The critical

temperatureTc=318.6804 K was obtained from this reanaly-
sis which is within the stated uncertainty of 0.5 mK from the
global minimumTc=318.6801 K or the local minimumTc
=318.6800 K of Haupt and Straubf17g. Because the renor-
malization group theory prediction is valid in the crossover
region, all the available experimental data were used in de-
termining the critical temperature. Thus, any systematic er-
rors nearTc were reduced in the reanalysis. Using this newly
determined critical temperature, the experimental data sys-
tematically curved belowsaboved the theoretical prediction
up to 3% for T higher slowerd than Tc for uT/Tc−1u,1
310−5. In view of the long density relaxation time obtained
in this study, we associate these systematic deviations from
the theoretical prediction to density relaxation times that
were too longsthe diffusive relaxation time for SF6 in the
19.2-mm-diam cell is estimated to be 227 h atT/Tc−1=1
310−5d for the experimental ramping rates used by Haupt
and Straubsthe slowest was −0.06 K/hd.

IV. CONCLUSION

Instead of tackling the complicated problem of simulating
the temperature and density equilibration in the flight cell as
shown in Fig. 1sa task most probably out of reach of today’s
capabilities in terms of near-critical fluids simulationd, we
have studied the temperature and density equilibration in a
composite system of just one near-critical fluid layer in con-
tact with a copper plate of the same geometry. A general
analytical solution has been found for this composite prob-
lem. This solution shows that the equilibration can be char-
acterized by three distinct regimes.sid The piston-effect-
dominated regime within which over 99% temperature
equilibration is finished in seconds forT.Tc fthe character-
istic time for this regime is given by Eqs.sA3d–sA5dg. sii d A
transverse diffusion regime for the 3D model within which
transverse inhomogeneity in the fluid relaxes diffusivelyfthe
characteristic time for this regime is given by Eq.s1dg. siii d
Finally, a radial diffusion regime for the 3D model within
which radial inhomogeneity in the composite fluid-solid sys-
tem relaxes diffusively and becomes less than 0.05%fthe
characteristic time for this regime is given by Eq.s3dg. Note
that the solution obtained is valid only in the linear regime
when the amplitude of the heating is small compared to the
initial reduced temperature. In the case of a large temperature
change between an initial reduced temperature and a final
one, the global relaxation time will be shorter than the longer
of the two relaxation times as predicted for each of these
reduced temperatures. Based on this observation, we can al-
ways predict a safesif not precised value of the relaxation
time, even when the heating is strong and the linear model is
inapplicable. Besides, any buoyancy-driven org-jitter-driven
convection in a microgravity environment will only speed up
the equilibration and shorten the timetable of the flight ex-
periment. Therefore our predictions represent a worst-case
estimate for a typical timetable of a flight experiment.

Owing to the geometry—i.e.,d!R—our analysis shows
that the heat transfer in helium during the first two regimes is
little influenced by a change in the copper thicknesssal-
though the relaxation dynamics are intrinsically very differ-
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ent from a pure 1D situationd. In the third regime, however,
the remaining radial inhomogeneity relaxes by conduction
through the copper. Our 3D solution shows that the radial
equilibration time can be shortened by half if the copper
plate thickness is doubled, agreeing with the intuitive expres-
sion fortradial

comp given in Eq.s3d. Hence, a change in the copper
thickness can have an effect on the typical relaxation times,
but only in the thirdsand longestd regime. On the other hand,
increasing the copper thickness will be of no help in short-
ening the measurement time if the amplitude of the fluid
inhomogeneity is sufficiently small at the end of the second
regime for a given experiment.

Our 3D solution also identifies the characteristic length
scales for each regime, enabling us to estimate temperature
and density relaxation times in the coexisting phases by us-
ing the average specific heat at constant pressure in Eq.s3d.
We consider this determination of the characteristic length
scale to be an important achievement of our study, since
developing a complete model of the coexisting phase prob-
lem would be significantly more complicated. In the case of
the proposed flight cell design, the analysis presented here
suggests that specific heat experiments near the liquid-gas
critical point could be successfully performed during the an-
ticipated time period for a microgravity flight.
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APPENDIX A: SIMPLE MODEL TO JUSTIFY NEARLY
ISOTHERMAL COPPER

The large thermal conductivity of the copper leads to a
rapid radial relaxation time for a composite system, but its
finite value results in a radial temperature gradient within the
copper plate. Using qualitative arguments, we will first show
that, even in a thin copper plate, the radial temperature gra-
dient in the copper should be much smaller than the gradi-
ents present in helium fluid, so the copper plate can still be
considered essentially isothermal.srd

When the circumference boundary temperature of the
composite system is raised byDT, we assume that the heat
required to raise the helium temperature goes into the fluid
layer uniformly via the copper plate through surface contact.
The amount of heat required for the portion of the helium
within an arbitrary radius r ,R is DQsrd=pr2

3dHesrCVdHeDT. Here, the heat stored in the copper plate
can be ignored since its heat capacity is much smaller than
that of the fluid. We assume the heatDQsrd is delivered
through the copper at radiusr over the time period of one
transverse diffusive relaxation timeDt=ttransverse. Thus, the
heat conduction equation in the copper plate can be approxi-
mated as

2prdCulCuUdTCu

dr
U

r
=

DQsrd
Dt

=
pr2dHesrCVdHeDT

ttransverse
.

sA1d

By integrating Eq.sA1d, the resultant radial temperature dif-
ference within the copper from the circumference to the cen-
ter can then be calculated as

DTCu

DT
=

TCusRd − TCus0d
DT

= SCV

CP
D

He

lHe

lCu

R2

4dHedCu
. sA2d

In reality, the heat flow into the helium at early times is much
faster because of the piston effectf1g. A more stringent test
of the copper temperature gradient is obtained by using the
modified piston time in place ofttransverseas the time scale for
the heat flow. The modified piston timetPE,compositeof the
composite system is given byf10g

tPE,composite= t1
1 + s

s
, sA3d

with

t1 =
srCPdHe

lHe
SCVd

CP
D

He

2

, sA4d

where the inverse impedance ratio is

s =
lCu

lHe
SDHe

DCu
D1/2

, sA5d

with DHe and DCu being the thermal diffusivity of fluid he-
lium and copper, respectively. This improved time scale
gives

DTCu

DT
=

TCusRd − TCus0d
DT

=
lHe

lCu

R2

4dHedCu

s

1 + s
. sA6d

Figure 13 shows the radial temperature difference within
the copper plate, scaled by the step boundary temperature
changeDT, versus reduced temperature for the two special
cases given above. These cases correspond to heat being
transferred into the fluid helium withins1d a modified piston
time tPE,compositesdashed curved and s2d a thermal diffusion
time ttransversessolid curved. In these calculations, we used
lCu=2 W/cm K and srCPdCu=5.6310−4 J/cm3 K at

FIG. 13. The radial temperature difference within the copper
plate, scaled by the step boundary temperature change, versus re-
duced temperature for two heat-flow time scales.
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T=3.3 K. As the critical temperatureTc is approached, the
total heat required for aDT boundary temperature change
increases only slightlyf~srCVdHeg. On the other hand, the
time scale seither ttranverse or the modified piston time
tPE,compositeincreases much faster thansrCVdHe. Therefore the
radial heat flux within the copper plate decreases asTc is
approached. This leads to a decreasing radial temperature
difference within the copper plate as the transition is ap-
proached. The copper plates are closer to being isothermal
near the transition, withDTCu/DT being less than 1% for
T/Tc−1,10−4 using the modified piston time. Because it
predicts nearly isothermal copper, this simple model suggests
that the true relaxation time is close to the fastersttransversed
limit shown in Fig. 2.

APPENDIX B: DETAILED TEMPERATURE
CALCULATIONS IN LAPLACE SPACE

Equations13d is an expression in temporal space for the
temperature in copper plate. Equations19d is an expression
in Laplace space for the temperature in helium fluid. Both
equations contain undetermined coefficients. In this appen-
dix, we derived analytical expressions for these coefficients
in Laplace space by matching the heat flux and temperature
at the interface between helium and copper.

1. Matching between helium and copper

The matching condition at the interface between helium
and copper requires that both the temperature and the heat
flux be continuous atz̃= z̄=0. For flux continuity, one has

lHe

dHe/2

]T̃

]z̃
sz̃= 0d =

lCu

dCu/2

]T̄

]z̄
sz̄= 0d sB1d

or

]T̃

]z̃
sz̃= 0d = L

]T̄

]z̄
sz̄= 0d, sB2d

with L=slCu/lHedsdHe/dCud, which is typically larger than 1.
However, no asymptotic simplification is possible based on
this observation. Indeed, the flux continuity requires that a
solution for a general value ofL be foundsotherwise, only
degenerate solutions can be obtained, where the copper re-

mains isothermal to first orderd. Substituting Eq.s13d for T̄

and Eq.s19d for T̃ into Eq. sB2d, one has

bsp,rdÎp sinhsÎpd = Lo
1

+`

AnspdCnH sinhsCnHdJ0sCnrd,

sB3d

where Anspd denotes the Laplace transform ofanstd. From

the temperature continuityT̃sz̃=0d=T̄sz̄=0d, one has

g − 1

g
kT̃l + bsp,rdcoshsÎpd =

1

p
− o

1

+`

AnspdcoshsCnHdJ0sCnrd.

sB4d

One now needs to define 1/p in terms of the Bessel functions
J0sCnrd. This is accomplished using the orthogonality prop-
erty

E
0

1

rJ0sCnrdJ0sCmrddr = 0 if n Þ m, sB5d

E
0

1

rJ0sCnrdJ0sCnrddr =
1

2
J1

2sCnd. sB6d

When unity is expanded as a sum of the Bessel functions,

1 = o
1

+`

DnJ0sCnrd, sB7d

the scalar product defined in Eqs.sB5d andsB6d and leads to

Dn =
2

J1
2sCndE0

1

rJ0sCnrddr sB8d

or

Dn =
2

CnJ1sCnd
. sB9d

Hence one has

1

p
=

1

p
o
1

+`
2

CnJ1sCnd
J0sCnrd. sB10d

EquationsB10d is valid everywhere except atr =0 andr =1
where the Bessel series are singular. Combining Eqs.sB3d,
sB4d, andsB10d, one obtains

An = S1

p
−

g − 1

g
kT̃lD

3
2

CnJ1sCnd

Îp

LCnH sinhsCnHdcothsÎpd + Îp coshsCnHd
.

sB11d

The expressions for dimensionless temperatures in the cop-
per and fluid helium become

T̄sr,z̄,pd =
1

p
− o

1

+`

AnspdcoshfCnHsz̄− 1dgJ0sCnrd,

sB12d
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T̃sr,z̃,pd =
g − 1

g
kT̃l +

coshfÎpsz̃+ 1dg
Îp sinhsÎpd

LH

3o
1

+`

AnspdCn sinhsCnHdJ0sCnrd

=
g − 1

g
kT̃l + S1

p
−

g − 1

g
kT̃lD

3coshfÎpsz̃+ 1dgo
1

+`

BnspdJ0sCnrd, sB13d

with

Bn =
2

J1sCnd
LH

LCnH coshsÎpd + Îp sinhsÎpdctanhsCnHd
.

sB14d

Using Eq. sB13d, the spatial average of the temperature

distribution in helium,kT̃l, can be derived. First, the spatial
average of a function in cylindrical coordinates is defined as

kfsr,z̃dl = −E
0

−1F 1

p
E

0

1

2prf sr,z̃ddrGdz̃. sB15d

Substituting the spatial dependence of Eq.sB13d into Eq.
sB15d, one has

kcoshfÎpsz̃+ 1dgJ0sCnrdl

= − 2E
0

−1

coshfÎpsz̃+ 1dgdz̃E
0

1

rJ0sCnrddr

=
sinhsÎpd

Îp

2J1sCnd
Cn

. sB16d

Hence we have

kT̃l =
g − 1

g
kT̃l + S1

p
−

g − 1

g
kT̃lDo

1

+`

Bn
sinhsÎpd

Îp

2J1sCnd
Cn

.

sB17d

This leads to

kT̃lspd =
g

p

o
1

+`

En

1 + sg − 1do
1

+`

En

, sB18d

with

En = Bn
sinhsÎpd

Îp

2J1sCnd
Cn

=
4

Cn
Îp

LH

LCnHctanhsÎpd + ÎpctanhsCnHd
. sB19d

The Laplace coefficients for the copper temperature are
given by Eq.sB11d. The expression for the helium tempera-
ture in the Laplace space is given by Eq.sB13d. Both equa-

tions contain the average temperature in the helium, which is
given in Eq.sB18d. The problem is now solved in Laplace
space. One needs only to invert the Laplace transforms to
obtain the temperature profiles and average temperature at
any given time.

APPENDIX C: TEST CASES OF THE GENERAL
SOLUTION

The solution obtained for the temperature and density re-
laxation in a 3D system is a complex series of Laplace trans-
forms. As such, it is difficult to accurately assess its validity.
In order to justify the exactness of the result, we have relied
on two asymptotic limits: the behavior of the series when the
copper becomes a perfect heat conductor and the behavior of
the series when the heat transfer in the fluid becomes purely
diffusive.

If the copper plates are perfect heat conductors, the tem-
perature in the interior of the plates will relax instantly and
will remain isothermal throughout the fluid evolution. The
temperature relaxation in the fluid will then be governed by a
pure 1D piston effect along the transverse directionsvariable
zd. This situation is obtained for the limitLH* →`.

If this limit is applied to Eqs.sB14d andsB19d, one finds

Bn → 2

CnJ1sCnd
1

e2Îp + 1
, sC1d

En → 1
Îp

4

Cn
2

eÎp − e−Îp

eÎp + e−Îp
. sC2d

Based on the property

o
1

+`
4

Cn
2 = 1,

the temperature solution in Eq.sB13d becomes

T̃ → 1

p

eÎpsz̃+1d + e−Îpsz̃+1d +
g − 1
Îp

seÎp − e−Îpd

eÎp + e−Îp +
g − 1
Îp

seÎp − e−Îpd
. sC3d

The above expression is the Laplace transform of the general
piston effect 1D solution, when both the piston effect and
diffusion are taken into accountfas obtained by a direct reso-
lution of Eq. s16d in 1D geometryg f19g. The pure 1D piston
effect is thus obtained as a special case of our 3D solution.

The second test for the general solution is to apply the
limit L→0. In this case, the specific heats at constant pres-
sure and constant volume are equal, and the piston effect
disappears. The obtained solution should thus describe a
purely diffusive transport in a 3D cylindrically symmetric
composite cell. Ifg=1, Eq.sB13d becomes

T̃sr,z̃,pd =
1

p
fe−Îpsz̃+1d + eÎpsz̃+1dgo

1

+`

BnspdJ0sCnrd. sC4d

A direct 3D diffusive solutionssimilar to the one presented
here but not detailed in this paperd leads to the exact same
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result f20g. Hence, our solution becomes equivalent to a
purely diffusive one in the case of an incompressible fluid.

The two particular limit cases described above give us
confidence in the reliability of the general set of solutions.

APPENDIX D: NUMERICAL INVERSION OF THE
LAPLACE SERIES

The general solution of the problem is obtained under the
form of an infinite series of Laplace transforms involving
Bessel functions of order zero and one. Such solutions must
rely on numerical inversion to be expressed in the space of
physical variablessr ,z,td. In order to do so, the series are
first truncated at a certain number of terms, summed up as
complex functions of the complex variablep, and then the
inverse Laplace transform of the obtained complex function
is computed. The Laplace inversion is based on the Durbin
formula combined with the epsilon algorithmf21g. The cho-
sen relative precision in our calculations was 10−6. Note that
the inversion always fails atr =0 andr =1: it is well known
indeed that Bessel series are singular in these two values of
the radial variable. Very close to these values though, con-
vergence is recovered, so that the prediction of the fluid’s
behavior is possible essentially everywhere in the cell de-
spite these singularities.

Let us examine the convergence of the solution when the
number of truncated terms in the series is increased. A test at
a reduced temperature of 10−6 was conducted. This reduced
temperature, which is the smallest we used in our calcula-
tion, leads to the slowest convergence of the series due to the
thinnest boundary layers. At a given dimensionless timet
and for r =0.2 andz̃=−1 smiddle plane of the fluid layer,
close to the center of the celld, the numerical inversion was
conducted for a sum of 10–100 terms in steps of 10. Figure
14 shows the difference in convergence between each suc-
cessive calculation. For a givenN, the value plotted is the

difference between the temperature calculated withN terms
and the temperature calculated withN−10 terms at the same
point and at the same time. This value thus represents the
correction brought by adding 10 more terms to the series
after rankN. As can be seen on the figure, this correction
becomes smaller and smaller as the rank at which the series
is truncatedsi.e., Nd increases, until it finally levels off
around 10−6 whenN becomes larger than 80. This saturation
of the correction at 10−6 is due to the error in the numerical
inversion of the Laplace transform, chosen to be 10−6 as
mentioned above. Hence, regardless of the number of terms
included in the estimate of the series, an error of this order
will always be observed. Similar figures have been drawn for
other reduced temperatures and dimensionless times, with
equivalent results.

In all the figures presented in this article, the series were
truncated afterN=100 terms and the Laplace inversion was
conducted with a relative precision of 10−6.
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FIG. 14. Convergence of numerical Laplace inversion versus the
number of terms in the series for a reduced temperature of 10−3.
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