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Role of a finite exposure time on measuring an elastic modulus using microrheology
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The role of a finite exposure time on measuring rheological properties using microrheology techniques is
theoretically investigated. We concentrate on studying fluid models displaying a plateau in the mean-squared
displacementMSD) of the embedded probe particle. A model is developed to compare the resulting experi-
mentally measured MSD of the particle to its expected value in the fluid model. A plateau MSD is greatly
modified in a measurement whenis greater than the plateau onset time. Moreover, apparent dynamics
drastically differ from the true dynamics at frequencies o . These results quantify when and how a finite
exposure time effects the measured MSD of a probe particle which can then alter the extracted rheological
properties and physical interpretations.
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I. INTRODUCTION an elastic modulus using microrheology techniques. The first

Passive microrheology uses thermally fluctuating micronS€ction shows the general expression for the apparent mean-
sized probes to determine local mechanical properties of gduared displacement resulting from the propagation of these
host mediun{1]. In this class of techniques, time correlation €rrors on the true mean-squared displacement. The second
of the particle position or displacement, through either thePart explores three model fluids exhibiting a purely elastic
power spectral densil@i;(w)=< X"|%(w)) or the mean-squared regime, for which the dynamic error can have a dramatic
displacementAx?(t))=([x(#+t)—x(6)]?), is often calculated effect. In the third section, we discuss implications of these
[2,3]. Herex(t) is the particle position at time x"(w) is its ~ 'esults on microrheology measurements.

Fourier transform at the frequenay, and the bracket$ - -)

indicate an ensemble average over a particle population

and/or a time average ovet Using a generalized Stokes Il. DYNAMIC ERROR

expression for the drag applied on the particle by the me- _ ) _ )

dium (continuum assumptiorand the fluctuation-dissipation _ Experimentally, microrheology involves measuring par-
theorem(thermal equilibrium assumptionthese correlations  ticle displacements using some sort of detec¢tg., CCD
can then be related to the shear modulus spec@®fw) of  for video microscopy or quadrant photodiode for laser de-
the materia' over a |arge frequency rarﬁ@&] Th|s range is fleCtion tracking. A Single measurement requil’es a giVen ex-
limited in the high frequencies by the fluid and/or the probeposure timeo during which the particle is continually mov-
inertial effects(1—10 MHz in usual conditionsand in the ing. Thus, the position that is acquired at titneontains the
low frequencies by the network compressibilifigss than history of the successive positions occupied by the particle
1 Hz) [2,5,6]. The Brownian motion of a particle embedded during the time intervalt-o,t]. We model this dynamic

in a complex fluid thus involves time scales from a variety oferror by calculating the measured position as the average
dynamical regimes, including the material viscoelastic relaxx(t, o) of all the positions the particle takes during the acqui-
ation modes. sition [9],

Several techniques can be used to measure the particles
position correlationgsee Ref[7] for a review. Recently, we 1 (7
outllngd a general classification of the errors arising in th.ese X(t,0) = —f x(t - &)d¢. (1)
techniqueqd 8]. On the one hand, the noise in the detection oJo
scheme induces an error independent of the particle dynam-
ics, and thus can be measured with a static particle and Cofg finjte sampling acts as a moving average low-pass linear
rected on.the averaged time co_rrelauon_s. On the other han lter [10]. To estimate/AX2(t, o)), we use a method similar
the sampling method of the particle motions leads to an eImol ihat used in Ref[11] and we write
that depends on the particle dynamics, and is challenging to :
correct. The latter error is referred to as “dynamic error” in
the following study. _ _ 1(° o

This work focuses on the role of a finite exposure time x(6+t,0) —x(6,0) = ;f df'f dt'vit' - &), (2
and the resulting dynamic-dependent errors when measuring 0 o

wherev(t) is the true velocity of the particle. In terms of the

* Author to whom correspondence should be addressed. Email a§locity autocorrelation functiorC,(|t"—t'[) =(v(t') -v(t")),
dress: pdoyle@mit.edu we find
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(AX*(t,0)) = ([(X(0+t,0) = X(6,0)]) 85100} (a) 10° (b) R
t t \<]’ —
1(° 7 X ;
:?L df’fo df’fo dt'fo &« Swl 7 el S .
xC(|t' - &) - (' - &) Dyl o=t ol =2
5 (v ¢ 0% 10" 10° 10° 10*° 10® 10" 10° 10" 10°
:—J dg(o——g)f do (t- 0) i3 il ikl
a?Jo 0 a8
4 [
X[C(6+8 +Cyl|6- )] = 08
o [
after multiple changes of variable and partial integrations. By TE“ 0.4F
comparing this expression to the similar expression obtained < 0 0:
for the true mean-squared displacemjgld], 2'0
= 20
t 515
(Ax*() =2 J (t-6)Cy(6)dd, () PER
0 o LOF
= 05}
we finally find, under the conditiot= o, 0.0k ]
10 10" 10° 10' 10

1 (“ o/t

(AX*(t,0)) = 2 f [(AX*(t + 9) + (AX*(t - §) - 2Ax*(é))] /

0 FIG. 1. (Color online Results for the power-law relaxation
X (o - &dE. (4) model.(a) and(b) are the exact mean-squared displaceniéoited
lines) from Eq. (5) and its apparent valuesolid lines obtained
from Eq. (4) with o/7=0.1, 1, and 10(c) shows the apparent pla-
au values, as given by E@). The filled circles correspond to the
ree values ofr/ r used in(a) and(b). (d) is the short-time power-

This relation is linear, but in general is difficult to invert.
We present in the next section three relevant examples fc%ﬁ
;n okieclv\v/lnscr%g:r?fqﬁlg?esdlnd\ilg?)lgé Er:%\/r\;;lz?);) a[;'r?éesse e;slb't law scaling Eq. (7), solid Iines]_ vs o/ 7. The dashed-dotted lines are
. SRR - C the values for the exact scalingt=o0).
amples give specific insight into how the resulting measured
mean-squared displaceme@x?(t,o)) compares with the

true mean-squared displaceméak?(t)). I L if o<t
(AX}(0)) _ (1+a)(2+a) ' ©)
— =
Il. FLUID MODELS <Axp> 4 <2(U/T) - 1 ) if o> 7.
(o/P?*\ 1+a 2+a

A. Power-law relaxation model .
One can also calculate the apparent short-time power law

We first consider a toy-model where the mean-square@yt=¢, o) where the local apparent power-law scaling is de-

displacement has the following form: fined by
(AW _JUD” ift<r, it = JUoKAXA(t,0))) @)
(AX3) 1 if t> 7, ®) ’ dlogt)

We show in Fig. 1 the evolution of these quantities as a
where (Ax)) is the plateau value andis the characteristic function of the acquisition time-. Effects of the finite sam-
time required to reach this plateau. The fluctuation-pling become important folr= 7. The apparent plateau
dissipation theorem and the generalized Stokes relation givealue vanishes whea> 7 as shown in Fig. (8). More dra-
<Ax§>=kBT/(7-raG), where a is the radius of the spherical matic is the effect of the sampling process on the short-time
particle, G is the elastic modulus of the medium, akgT is  power-law scalindFig. 1(d)]. In general, the true scaling is
the Boltzmann temperature. The mean-squared displacemen®t recovered in the apparent mean-squared displacement
described by this model is qualitatively observed in manywheno=<t<7[16]. An exception to this is the ballistic case
systems, though the sharp break introduced=at is not «=2 for which measured displacements are independent of
physically realistic. This model allows us to consider on oneo, as shown by plugging a constant velocitt)=v in Eq.
hand the characteristic plateau onset times well as the (2).
nature of the particle dynamics through the exponent _ )

For this model, we find that a plateau is reached tfor B. Voigt fluid model
>(0), where f(o)=7+0 is the apparent relaxation time,  The shear modulus spectrum of the Voigt fluid viscoelas-
and takes the following values: tic model is given by
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G (w)=G(1+iwT,), (8) cz} 100k ()
whereG is the elastic modulus ang is the relaxation time. Nl
The equation governing the particle dynamics for this model 10k
is then given by = ]
. : T
7, pX(1) + 7, X(1) + x(t) =f(t)/(67aG), (9) < 102l | 7/m = 10° .
where 7,=m/(67aGr,) is the Brownian time(m being the 10 10" 10° 10' 10°
mass of the particle andf(t) is the Brownian forc¢12]. By N ' ' t/'T” ' '
taking the Fourier transform on both sides of E®), we can 10 (b) . i
calculate the power spectral density of the position by 51\, | VVWW _
= A —
* k2 _ 7,k T/ (maG) o 102} o v =
=(|x = , 10 s
S == T s 10 2 _
s ol 7y = 1072
where we have introduced the relaxation times < 10*p . L ulh . . ]
, 10 10" 10° 100 100 10° 10
m=2(1\1-4n/7,), (11) t/ Ty
c\/;} 1.0 T,/ = 103 ]
that can be complex numbers in the underdamped case 4 < 08f )1y = 107"
> 7,. To write Eq.(10), we have also used the fluctuation- > gt ]
dissipation theoren$; (w) =(|f"|*(w))=36maGr,ksT. The in- O ]
verse Fourier transform &, (w) gives the position autocor- T<>]<:“ oot 1
relation function C,(t) and we use the relatiofAx2(t)) ~ 0.0 (c) ) )
=2C,(0)—2C,(1) to find 10 10" 10° 10! 10
(MRW)  7(L—em) - o (1 -gltimy o/ o[\
= . 12
(Axf)) Ty T (12 FIG. 2. (Color online Results for the Voigt fluid modela) and

. - (b) are the exact mean-squared displacent@oitted line$ from Eq.

For the ove_rdar_nped r_eglme-bél 7,<1, shown in Fig. &), a (12) and its apparent valugsolid lineg obtained from Eq(4) with
plateau region is obtained for 7. H(_)wever, for the unde_r- ol7,=0.1,1,10 in(@), anda/\'myr, =2, 247, 10 in (b). (c) shows the
damped limit 4fb/ 7,>1, plotted in Fig. 2b), the plateau is  apparent plateau values, as given by B@). The filled circles on
reached fot> \7,7, and the mean-squared displacement ex-each line denote the values efused in(a) and (b).
hibits oscillations around the plateau value with a period of
~27T\fTbTv- ing approximated mean-squared displacement were plugged

Using Eq. (4), we can calculate the apparent mean-inig Eq. (4):
squared displacementAx?(t,o)) and obtain the plateau

value by lettingt>max(7,, V’H), (AXA(1)) {1 -e'%+0(n/7,), (16)
(AXY(0)) o+ BL-g7)-A1-em) (Axp) (1= cogthmyr,) + O(7,/ )",
2 — - _ . —_—
(Axp) ol2 (7= 7.)12 by, respectively, keepint 7, or t/\n,7, finite. In particular,

(13 the apparent mean-squared displacement in the inertialess

) . - limit =0 is found to bg8
We first consider the overdamped limit. In that case, theIml 7/ 7,=0 is found to be 8]

characteristic timescale is, and Eq.(13) simplifies to (ARZ(t, o))
AX(o) _ 71— g LA, (17
oD o2 (o oW (14 P
W o o with
as obtained by keeping/ 7, finite and 7,/ 7,— 0. ,
It is interesting to consider the underdamped regime of _(Axg(o)) _ 7, ~ 1-g9n 18
the Voigt model since we will show it is similar to the short- €= <Ax§> ) (al7,)22"

time behavior of the Maxwell model in the next section. The
apparent plateau value is obtained by keepig,7, finite
and,/7,—0,

_sinh(a/7,) - ol7,
1-e9%—gl7, "
(A?E(O')) , o / v
(AxD) =sinc oz +0((n/m)*), (19 Similar to the power-law relaxation model, the plateau
P bR value shown in Fig. @) is greatly modified by the finite
where sin€x)=sin(x)/x is the sine cardinal function. Note sampling foro greater than the characteristic plateau onset
that the same results would have been obtained if the followtime. In the underdamped case, the plateau is reached

Bs=1

(o8

(19
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through oscillations and its apparent value is nonmonotoni- 107
cally decreasing with increasing acquisition tifieé. the os-
cillating line in Fig. Zc)].

2

=
T

—

&
1

C. Maxwell fluid model

In the single relaxation time Maxwell fluid viscoelastic
model, the shear modulus spectrum is given by

(AX%(t,0)) /(A%

. i 166 ' 108
G'(0)=G——m (20)

1l+ion,

whereG is the elastic modulus angl, is the relaxation time.
The equation governing the particle dynamics for this model
is then

TV (1) + 7 () + v(t) =f(t)/(67aGry), (21
wherev(t)=x(t) is the velocity of the particl€12]. By taking

the Fourier transform on both sides of Eg1), we can cal- 0.5 '_2 o e - &
culate the power spectral density of the velocity by 107 100 100 10 /\1/0_10 100 10" 10
g TmTh
. . kgT/(maGry)
S(w) =(lv Hw)) = 1+ 20d)(1+ 20 (22 FIG. 3. (Color onling Results for the Maxwell fluid model, with
" ‘

7l 7,= 10" (motivation for this value is given in the Discussion
where we have introduced the complex relaxation time  section). (a) gives the true mean-squared displacenidntted ling
and its apparent valuésolid lineg for o/ \fﬁ:Z, 21, 10, and
7= E’(l +i me) (23) 108, The dotted and thick lines are obtaine_d with Bﬁ) whereas
2 the thin curves result from exact calculations using Hds.and
(24). (b) shows the apparent plateau values as given by(%5).

and we have used the fluctuation-dissipation theogp(w) The filled circles denote the values efused in(a).

=36maGr,kgT. The inverse Fourier transform Gf/(w) re-
turns the velocity autocorrelation functid,(t) and the use
of Eq. (3) gives finally[17]

@y I Ra-elm) - 2 -etin

?m(O') = Tmé€o- (27)

Next, we calculate the limiting behavior of E(R5) as
7o/ 7m— 0. By keepingo/ 7,7y, finite, we obtain

ax3 T 77 (7= T.)
—
(24) _p_<A<: (g» - sim;(—z g ) +O((fm)tD,  (28)
We investigate only the physically realistic regime where *p Vb Tm
Tl 75> 1. whereas by keeping/ 7, finite, we find
For the Maxwell model, a plateau region is obtained for
V1, <t<t, and its apparent value is found to be <A<i29(;;)> _ 3L +O(nr). 29
AX? AXA(, t ot *p 7m
W) - [@Roy ¢t o
(AXD) el (AXD) T, T- It is interesting to note the close resemblance of @§) to

Eq. (28). This point will be discussed in the next section.

5 0l _ O(1 — a0l T . R . . . -
- n(1l-e’)-2(1-e7") _ Lt The inertialess regime is a peculiar limit where
A1t — )2 agl2 )
AX
P I (AX%(t,0)) = <_p_(t - al3) (30)
- = (25) Tm

ot 712 37, E
— . . . is similar to the purely viscous model, for which

For 2my 7,7y < o<, the sampling rate is not high enough 32 ;)= (t-/3), whereD is the self-diffusion coef-
o detect the oscillations in the mean-squared diSpIacemer\%bient'of the particle[8]' Note that this result is obtained for
and we introduce the following approximatigs} any finite value ofo/ 7,;,, so that the Maxwell relaxation time

(AXA(t, o)) t is not measurable even if< 7,
g e +1), (26) Figure 3 shows the results for the single relaxation time
P mee Maxwell model, with 7,/ 7,=10'? as found in experimental

with ef(A?f,(a))/(Axg) and obtained by discarding oscilla- studies(see the Dis;_cussion sectDorNot_e in_ Fig. 3a) 'Fhat the _
tory terms in{Ax?(t,o)). Equation(26) also shows that the mean-squared displacement oscillations, with period
apparent Maxwell relaxation time is ~ 21\ 1,7y, cannot be distinguished fore> o> 27\ 7,7y,
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IV. DISCUSSION 10°F
. . . . g fn(c%:)nuunnunnunuunu 3
Using a relatively simple model for ,the qy”am'c error, we 310° bobbbbbbb006664408856 ngeeeeeeeeeeeggq-asSzoog
can quantify the effect of the acquisition time on the mean- |‘=“ . - "-._l A:g:-" ]
squared displacement of thermally fluctuating particles ina "~} __.-"' fwAgé-"
complex medium. Moreover, most of the trends of the Voigt S107 AA:g:o"'q”uD E
and Maxwell models are captured with the simple power-law 3 . 3 Mgéé‘" ] E
relaxation model. |55 10°F aastd®® a _
The complex shear modulus spectru@i(w) can be = ‘“fs' e 1'_1 1' T
evaluated using the generalized Stokes-Einstein relation ob- 107107 107 10 leo 0 0 0
tained in the inertialess limit3,4], lozv(b) .
@) [ §Ooo000000000000000]
~ ~ - .IIH!.HI.. gl
B . * . — ..I o uy
G(s) = m with G (w) = G(iw), (31) |§/ 10°F -llls5;gsgaEEMMMoooo::zu-.ﬁ::oooo.
~ . L ot e o ey L
where G(s) and (AX%(s)) are the Laplace transform of the Ql 0? ;_.-_.-- . ® :.D “‘m.“ ]
shear modulus and of the mean-squared displacersdmt; B ﬁn‘*n uu”n “‘o.“
ing the Laplace frequency. Ry, Fat® o “6... E
For the Voigt model, we can use the inertialess limit Eq. 1O — — — =k
(17) for the mean-squared displacement to find 10 10 10 J? 10 10 10

G 1+iwT,

G o)’

(32
Using the approximation given by E¢R6) for the Maxwell
model, we find

- G
G(w,o)=—7— .
€, 1 +tiwre,

| OT€E,

(33

FIG. 4. (Color onling Apparent shear modulus spectrum for the
Voigt model(a) and the Maxwell mode(b) obtained from Eqs32)
and(33), respectively. The open symbols show the apparent storage
modulusG’ (real part ofG") and the filled symbols give the loss
modulusG” (imaginary part ofG"). Circles are the exact values
[from Eg.(8) in () and Eq.(20) in (b)]. The triangles and squares
are the apparent values with being, respectively, equal to the
plateau onset timgo=7, in (a) ando= \m in (b)] and 10 times

These apparent shear modulus spectra are compared to {Ag plateau onset timgr=10r, in (a) and o= 10\7,7, in (b)]. We

exact expressions Eg8) and (20) in Fig. 4.
To evaluate the errag,, one must compare the acquisition

time o to the onset time of the plateau. In the Maxwell model
and the underdamped Voigt model, the ballistic regime ob

served before the plateau is extended to an onset time,

and 7,7, respectively. These timescales can be understoo
with a simple picture. In the elastic regime, the particle

moves in a harmonic welU(x)=kx?, with k=67aG and
where G is the elastic modulus of either the Voigt or the
Maxwell fluid. Since the particle equilibrium energykgT,

it moves in a rang&= +kgT/k. The time required to sample
this range at the equilibrium velocitykgT/m is thenym/k,

equal to, respectivelyyr,7, or \m7y, in the Voigt or the
Maxwell model.

took 7,/ 7,= 10 for (b).

frequency of the multiple-tau digital correlator as used for

lag times larger than-1 us [14]. Under the conditions they

sed[19], both rheological and microrheological measure-
ents show a single relaxation time Maxwellian behavior of
the solution. From their data we find/ v‘m:lo and
m/ T,= 102 For these values, the use of EB5) shows that
the apparent plateau is less than 5% of the true values, which
corresponds to a factor of 20 for the error in the estimated
elastic moduluss (see Fig. 4. However, the plateau moduli
estimated by van Zanten and co-workers are in good agree-
ment with rheological measuremefit3]. Another plateau
onset timer,> o is involved in the dynamics. They suggest

This simple picture of a particle in a harmonic potential that fort< . the particle's dynamics is driven by the Rouse
well helps to understand the effect of the sampling and th&ehavior of the wormlike micelles, that igAx“(t))=t
common trends observed for the apparent plateau values ad 15]. We can modify our power-law relaxation model to take

increases. In a time interval of length the particle has

sampled all possible positions in the potential well. Thus,

when averaged over a time interval> 7, its apparent posi-

tion remains constant equal to the potential center, and the

apparent mean-squared displacement tends to O.

the Maxwell behavior into account by setting

|

(t/ 75112 ift< 7,

(t-r) T+ 1 ift> 7.

(AXA() _

(Axy (34

Few microrheology experiments have been performed off we take 7./ 7,,=10°% and o/ 7,,=10°°, we find that the dy-
single relaxation time fluid models. In a study by van Zantennamic error diminishes the plateau value by only 5%.

and co-workers[13], measurements were performed on

It is instructive to consider the dynamic error arising in

CTAB/KBr wormlike micelle aqueous solution using diffus- the same experimental system when studied by the com-

ing wave spectroscopy withe2= 1 um diameter polystyrene

monly employed technique of video microscdgy-8|. Stan-

beads for probe particles. This technique provides a higllard video microscopy uses an industrial grade CCD camera

temporal resolution ofr=10"° s limited by the sampling

for signal detection with usually=1073s. If the experi-
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mental Maxwell model fluid described here was studied withabove an onset time. Using common viscoelastic models,
video microscopythena/ 7,=10"2 ando/ 7,=10), we pre-  we find that the sampling rate™* has a great effect on the
dict that the dynamic error will lead to a great discrepancymeasured shear modulus. In particular, the latter exhibits ap-
between the microrheology measurements and the bulk rhearent magnitudes that greatly differ from the expected value
ology (Fig. 4). This dramatic comparison reinforces the needwhen o is larger thanr and our calculations allow us to

to understand the dynamic error when performing microrheguantify these effects. In general, at frequencieso™?, ex-
ology using different setups. tracted scalings and analysis should be performed with great

care.
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