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Measuring subdiffusion parameters
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We propose a method to extract from experimental data the subdiffusion parametet subdiffusion
coefficient D, which are defined by means of the relatio)=[2D,/T'(1+a)]t* where (x?) denotes the
mean-square displacement of a random walker starting fefhat the initial timet=0. The method exploits
a membrane system where a substance of interest is transported in a solvent from one vessel to another across
a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study the
diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion
equation with the initial and boundary conditions representing the system under study. Confronting the experi-
mental data with the derived formulas, we show the subdiffusive character of sugar transport in a gel solvent.
We precisely determine the parametgrwhich is smaller than 1, and the subdiffusion coefficiByt

DOI: 10.1103/PhysRevE.71.041105

I. INTRODUCTION

Subdiffusion occurs in various systems. As examples, w

transport in amorphous semiconductfits3|. The subdiffu-

PACS nuné$)er05.40—a, 66.10-x

Our aim here is to develop a method to precisely measure
the parametersr and D,. For practical reasons, which are

. AR . . %xplained below, we choose for the experimental study a
mention here a diffusion in porous media or charge carrier

membrane system containing two vessels with a thin mem-

rg)_rane in between which separates the initially homogeneous
rf.olute of the substance of interest from the pure solvent. A
schematic view of the system is presented in Fig. 1. We show
that the membrane does not affect, as expected, the values of
the investigated parameters. Instead of the mean-square dis-
placementl), our method refers to the temporal evolution of
the thicknesss of the so-called near-membrane layer which

is defined as the distance from the membrane where the sub-
stance concentration dropstimes with respect to the mem-
brane surfacex is an arbitrary number. In our previous paper

sion is characterized by a time dependence of the mea
square displacement of a Brownian particle. When the pa
ticle starts fronx=0 at the initial timet=0 this dependence
in a one-dimensional system is of the form

2D,

2\ — a
Ot @

whereD,, is the subdiffusion coefficient measured in units of

m?/s%, the parametery, which we call here a subdiffusion e |
parameter, obeys@a< 1. Fora=1 one deals with the nor- L8], We demonstrated that for normal diffusiaft) =Avt.

mal or Gaussian diffusion. The linear growth @) with t, Here we are going to study the diffusion of glucose and
which is characteristic for normal diffusion, results from the SUCrose in a gel solvent to show that

central limit theorem applied to many independent jumps of
a random walker. The anomalous diffusion occurs when the
famous theorem fails to describe the system because the dis-
tributions of summed random variables are too broad or the
variables are correlated to each other. In physical terms, the
subdiffusion is related to an infinitely long average time that
a random walker waits to make a finite jump. Then, its av-
erage displacement squared, which is observed in a finite
time interval, is dramatically suppressed.

The subdiffusion has been recently extensively studied;
see, e.g.,1-7]. While the phenomenon is theoretically rather
well understood there are very few experimental investiga-
tions. There is no effective method to experimentally mea-
sure the parametersandD,,. In the pioneering study 4f],
where the subdiffusion coefficient was determined experi-
mentally for the first time, the interdiffusion of heavy and
light water in a porous medium was observed by means of
nuclear magnetic resonance. The subdiffusion coeffidient
was determined using the special case2/3 solution of the
fractional derivative diffusion equation. The procedure is
neither very accurate nor of general use.
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1. Schematic view of the membrane system under

1539-3755/2005/714)/04110%11)/$23.00 041105-1 ©2005 The American Physical Society



KOSZTOLOWICZ, DWORECKI, AND MROWCZYISKI PHYSICAL REVIEW E 71, 041105(2005

with y<<1/2. Our choice of gel medium to look for a sub-
diffusion is far from accidental. A gel is built of large and 2.5

heavy molecules which form a polymer network. Thus, the

gel water solvent resembles a porous material filled with wa- 2.0

ter. Since the mobility of sugar molecules is highly limited in T

such a medium, subdiffusion is expected. As we show below, g 1.5-

this expectation is indeed fulfilled. P

Using an analytic solution of the fractional subdiffusion 1.0

equation, we theoretically argue that2y and that the pa- 1

rameterA uniquely depends, as in the case of normal diffu- 0.5+

sion, on the numbek and the parameterg andD,. There- .

fore, knowingA, «, and«, one can deducP, for arbitrary 0.0 ———

a. Since the subdiffusion parameteris measured with a o 500 1000 1500 2000 2500

high accuracy, we can distinguish a very slow normal diffu- t[s]

sion from a subdiffusion witlx close to unity. Our very first

theoretical and experimental results on the subdiffusion pa- FIG. 2. The experimentally measured thickness of the near-

rametera have been published in two short nof&s. membrane layeb as a function of time for glucose withx=0.05
(), k=0.08 (O), and k=0.12 (A) and for sucrose with«=0.08
(©). The lines represent the power functiatP4° with the coeffi-

Il. EXPERIMENT cientsA given by Eqs(4)—7).

The membrane system under investigation is a cuvette of . . )
two vessels separated by a horizontally located membran ?I from the pure gel in another one. It also precisely fixed
e geometry of the whole system.

Initially, we fill the upper(lower) vessel with the solute of e
Y pper( ) When the sugar was diffusing across the membrane we

transported substance while in the loweppe) one there is ; ; 7 .
a pure solvent. Then, the substance diffuses from one vessWEre recording the concentration profiles in the vessel which
j 8 I[]ntially contained pure gel. Examples of typical interfero-

to another through the membrane. Since the concentratio ) . .
gradient is in the vertical direction only, the diffusion is ex- grams and extracted concentration profiles are presented in

pected to be one dimension@long the axis) the earlier papef10]. The thickness of a near-membrane
The substance concentration is measured by means of t er § was calculated from the measured concentration pro-

laser interferometric method. The laser light is split into two¢I es C(x,1) according to the definition

beams. The first one goes through the membrane system par- C(8,t) = kC(0*,1), (3)
allelly to the membrane surface while the secdreference ) ) )

one goes directly to the light detecting system. The inter-Where « is an arbitrary number smaller than unity. In our
ferograms, which appear due to the interference of the tw@nalysis we used=0.12, 0.08, and 0.05. Computingfor
beams, are controlled by the refraction coefficient of the solvarioust, we found the thickness of the near-membrane layer
ute which in turn depends on the substance concentratio®S & function of time. . _

The analysis of the interferograms allows one to reconstruct !N Fig. 2 we presend as a function of time for the glucose
the time-dependent concentration profiles of the substanc@d sucrose transported in a gel for the initial sugar concen-
transported in the system and to find the time evolution ofration equal 0.1 mol/d For the glucose we took three
the near-membrane layers which are of our main interest@/ués of«=0.12, 0.08, and 0.05 while for the sucrose
here. We note that the measurement does not disturb trie0-08. The errors o8(t) shown in the figure were found in
system under study. The experimental setup is described #e following way. We performed six independent measure-
detail in [10]. Here we only mention that it consists of a Mments of the concentration profil€tx,t) at the same initial
cuvette with a membrane, a Mach-Zehnder interferometegugar concentration. The thickness of the near-membrane
including a He-Ne laser, a TV camera with the charge-ayer &(t) was found for each concentration profile. We note
coupled devic€CCD), and a computerized data acquisition here thatd(t) is insensitive to a sizable error of absolute
system. normalization ofC(x,t) as it cancels due to the definiti¢8).

For each measurement, we prepared two gel samples: th¢aving six values ofs for everyt, we obtained the mean
pure gel-1.5%-water solution of agerose and the same gehlue of § and the standard error. The final errors shown in
dripped by the solute of glucose or sucrose. The concentrd=ig. 2 were obtained by further multiplying the standard er-
tion of both sugars in the gel was fixed to be eitherrors by the Student-Fisher coefficient taken at a confidence
0.1 mol/dn¥ or 0.07 mol/dm. The two vessels of the mem- level 95% to include the effect of low statistics.
brane system were then filled with the samples and the As seen in Fig. 2, the experimentally found time depen-
(slow) processes of sugar transport across the membrardence ofs is well described by the power functid@) with
started. We used an artificial membrane of the thickness béhe common index=0.45. In Fig. 3 we show the same data
low 0.1 mm. The membrane was needed for two reasons. Hs in Fig. 2 but in a log-log scale to better test the power-law
initially separated the homogeneous sugar solute in one veglependence. The lines representirtgare also shown for
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34 Ill. THEORY

In this section we discuss a theoretical description of the
experimental result presented in Sec. Il. In particular, we
derive the formula which allows one to obtain the subdiffu-
sion coefficientD,, from the experimental data.

E‘ A. General formulas
14
o The subdiffusion is described by the equatjdnli]
JIC(x,t I PC(x,t
( )=Da - (2), ®)
ot 7/ )¢
with the Riemann-Liouville fractional derivative defined as
100 1000 o 1 a_”f‘ gy
t[s] A T(n-a)dt"), (t—t)tre

FIG. 3. The same experimental data as in Fig. 2 but on a log-logvheren is the smallest integer larger than>0. It is tempt-
scale. The solid lines represent the power func#d®* with the  Ing to write down Eq(8) in a simpler form as
coefficientsA given by Eqs(4)—(7). The dotted lines correspond to
the functionAvt. FC(xY _ D aZC(x,t).

i “ o

comparison. Itis evident that the measured ingiésmaller |n general, however, the fractional derivative does not obey
than 0.5. There are some deviations of our data from thenhe property

power-law dependence &k 300 s. However, as explained

(9)

in Sec. Il B, our theoretical formulas, in particular the i“f: geth
power-law behavior, are derived in the long-time approxima- AP ptlerh)’
tion.

We fitted the experimental data shown in Figs. 2 and 3 by"“md Eq.(8) is not fu_IIy equivqlent to Eq_(9) [.12]' And be-
the power-law formulaAt”, using a standarg? procedure. cause the subdiffusion equation as derived in the framework

The values ofy? per degree of freedom were smaller than©f continuous-time random walk theof{1] is of the form
unity for every value ofc. The error of the universal index (8) it has become customary to use E8). rather than Eq.

¥=0.45 was found to be 0.005. The parametatepends on (9). We also note here that EB) with the temporal frac-

«: it is also different for glucose than for sucrose. We foundtiona! derivative of ordex<1 corresponds to a “long(in-
finite on averagewaiting time of the random walker. This is

A=0.091+0.004 for x=0.05, (4) just the physical situation which is expected in a gel medium

built of large and heavy molecules forming a polymer net-
A=0.081+0.004 for x=0.08, (5)  work where mobility of the walker is strongly limited.

We solve Eq(8) in the regionx>0 for the initial concen-
A=0.071+0.004 for x=0.12, () Uaton
for glucose, and C(x,0) = Co. x<0, (10)
0, x>0.

A=0.064+0.003 for x=0.08, (7

Here,x=0 is the position of an infinitely thin membrane. In

for sucrose. fact, we solve Eq(8) for the Green’s functionG(x,t;Xo)

The fact thaty is the same for glucose and sucrose sug-ith the initial condition
gests that the index depends only on the solvent—i.e., the
medium where the subdiffusion occurs. As will be shown in G(X,t=0:%g) = 8(X = Xo), (11
Sec. IV, the subdiffusion coefficients for glucose and sucros
differ from each other. Such a situation resembles the case
normal diffusion wherey=1 is universal but the diffusion
coefficient changes from one substance to another.

At the end of this section we note that the results of mea- Cxt) :f dXG(X,t; %) C(%o, 0). 12
surements of the near-membrane layers for the initial sugar
concentration equal to 0.07 mol/dniully coincide with  The Green’s functioi(x, t; %) gives the probability density
those presented above which were performed for the initialo find a random walker at the positiarin time t; the walker
concentration equal to 0.1 mol/dnirhis simply reflects the starts fromx, at t=0.
linearity of the subdiffusion equation which is discussed in  To find the concentration profil€(x,t) and then the time
the next section. evolution of the near-membrane lay&rwe use the relation

d then, the concentration profiles are calculated using the
tegral formula
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t 1-0 _
G(x,t;xo)=f dt’J(0%,t"; X)) Gef(X,t —=1';0%), (13 C(0*,t) = ——C(07,1). (19
0 l1+o

The second condition assumes that the flux flowing through
the membrane is proportional to the difference of concentra-
tion at membrane surfac¢$9,20:

wherex> 0 while x,< 0, J(X,t;Xp) is the flux associated with
G(x,t; %) which for x=0 gives the flow across the mem-
brane, andG«(x,t;Xg) is the Green’s function for the half-
space system withk>0 and the fully reflecting wall ak J(0,t) = A(C(0,t) - C(0",1)), (20)

;(?n Trf(;e rg]stggglofgg?hﬂ?;)’ﬂﬁ h:}ig%";gﬁg ;hest\évringselg'ha\fghere the parameter controls the membrane permeability.
, [ep y l\/Ve call the boundary condition&l6), (19) and (16), (20)

space system with a reflecting wall replacing the membraneA and B, respectively, and in Sec. Il C, we use the indices A
i1t—h§ lSJ:?SStte;]neCZ(]:Itlljj);I r;ﬁjv)zei\ée:hgorise;c:)tr;ﬁglssh :ttetr?]e ;V:r" t?:gnd B to denote the solutions of the fractional subdiffusion
q e . y C %quation obeying the corresponding boundary conditions.
case of normal d|ffus_|on the wall relatlo(r_L_S) was used in The initial condition (10) combined with the general
Ref. [14]. In Appendix A we show that it also holds for boundary conditior(18) gives the Laplace transform of the

subdiffusion. . . .
Using the relation(13) and Eq.(12), the concentration functionW(t), which is defined by Eq(15) as
profile can be written as bﬂDi, 1

bl - b2 - b3V’Dasl_a/2 Sa/Z

\7\/(5) = CO

o

bl\’/D_ 1
a - dksk(l—a/Z) , 21
%, — b, Sa,% (21)

t
C(x,t) = f dUW(')Gef(x,t -t 0%), (14)
0

wherex>0 and the functionMt), which equals
where

0
wo= [ o0 e, s o b
- b,

contains all information about the initial and boundary con-The derivation of Eq(21) is discussed in Appendix B. In-
ditions. The interval of integration in Eq15) is due to the verting the Laplace transform, we get
initial condition (10). J— » "

Since the subdiffusion equation is of second order with W(H) = C b)\D, 1 d 1
respect to the space variabdgit requires two boundary con- b, — b, t1 25 T (/2 — k(1 - af2)) ti1/2)
ditions at the membrane. The first one simply assumes the

continuity of the fluxJ flowing through the membrane—i.e., (22)
~ . The Green'’s functiorG,;, which enters Eq(14), can be
J(07,1) =J(0",1), (16)  easily obtained by means of the method of imagdsas
where J is the subdiffusion flux given by the generalized Gre(X,1;Xg) = Go(X,t;X0) + Go(— X,t;Xg) (23
F'Ck_s law [15] I:[gets a simple form aftgr Laplace transfor- with G, being the Green’s function for the homogeneous
mationL{f(t)}=f(s)=[¢ dtf(t)e”s. Then, it read$15] system given by
~ - 11
- _dC(x,s) 2D X = x| \ 2
J(x,5) = =D, s\ ——"—. (17 Ga(x tx) = — e 10 -~ %ol 5
( ) dX ) O(Xy 1XO) a|X_X0| 11 \f’Data 1 e K
o

There is no obvious choice of second boundary condition.
-~ LA (24)
Therefore, we assume that the missing condition is given by
a linear combination of concentrations and flux at thewhereH denotes the Fox function. In our numerical calcula-

membrane—i.e., tions we use the form ofl
b,C(07,1) + b,C(0%,1) + b3J(0,t) = 0. (18) am 11t
HIOl —|1+v 1
Since the current is continuous at the membrane, there is no B E
point to distinguishJ(0*,t) from J(07,t). We note that two
boundary conditions discussed in the literature are of the allB\1+v 1 a\k
general form(18). The first condition can be formulated as :ﬁ(T k_om(‘ t_ﬂ) . (29

follows: If during a given time interval N particles reach the
membrane, the fractionr of them will be stopped while which is derived in[13] by means of the Mellin transform
(1-0) will go through. This condition leads to a boundary technique[22]. In terms of the Laplace transform, the func-
condition of the form8,16-1§ tion (24) simplifies to the forn{1]
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éO(X:S;XO) = WG—IX—XOI\%&/D% (26)
which was found using the formu[d.3]
1 1
~ _ 1 al/B
Lo ™) = om0 (1 1] @7)
B B

wherea, 8>0.

Having the explicit form of the functiong/ and G, we
can write down the concentration profile using Etd). The
Laplace transform o€ equals

bl 1 [
_e—X\cS /Da, 28
bl - b2 - bg\/D_asl—a/Z S ( )

which after inverting the transformation can be written dow
as

é(x,s) =Gy
1
X )2/01
D t'*/ |1
(29

Equation (29) is the starting point of our further analysis
which provides the functiom(t).

t 2
C(x,t):J dt'W(t-t")—H1 9 (
0 aX

RIN K

B. Long-time approximation

We first consider the long-time approximation of the for-

mula (29) which, according to the Tauberian theoréi],
corresponds to the smalimit of the Laplace transform.

PHYSICAL REVIEW F1, 041105(2009

The serieg22) can be approximated by the first term if
d<t"*2 which gives

!’_ b3
'D
(\ “b,— b,

When the boundary condition is of the for(h9), the condi-

tion (33) is trivially satisfied for anyt asb;=0 in this case.
Even more, as discussed in the next section, the sol(@ibn

is exactfor the boundary conditiofi19). When the boundary
condition is of the form(20), we havex =b,/bs;=-b,/bs, and

the condition(33) can be written as

( \Fa ) 1(1-al2)
2\

We have first estimated the left-hand sidi#iS) of Eq. (34),

<t.

U(1-a/2)
) (33

<t. (39

nassuming that we deal with the normal diffusian=1). For

the membranes used in our experiments the pararnéseof
order 102 mm/s while the coefficient of normal diffusidd
is roughly 10° mn?/s. Thus, the LHS of Eq(34) is esti-
mated as 2 s. Since 10 s is the time step of our measure-
ments which extend to 2500 s, the conditi@4) is fulfilled.

We have also checked the conditi(84) a posteriorj using

the values ofa and D, found in Sec. IV. The LHS of Eq.
(34) is again about 2 s.

Let us now discuss the temporal evolution of near-
membrane layers in the long-time approximation. Substitut-
ing the solution(31) into Eq. (3), which defines the near-
membrane layer, we get the equation

The physical meaning of this approximation is discussed be-
low. Taking into account only the leading contribution in the which, due to the identity

smallss limit, Eq. (28) acquires the form

~ bl 1 [y
C(x,8)=C —gX"Pa, 30
(%8 = Cop ' (30
which after inverting Laplace transformation provides

11
Cixt)=C 2 o (—L)Zla 2
, ®(by-bya 1 VD t* 0 -

(31)

The solution(31) can be also obtained directly from Eq.
(29), taking into account only the=0 term in the expansion
of W(t) given by Eq.(22) and using the formula

1

\D—a t dat’ Lo ( X )2/a
VDt 1

H
XF(Q’/Z) 0 (t_tr)l—aIZ 11

RIN

1
( X )2/01
VDt 0

which is derived by means of the Laplace transformation.

=Hp 3 (32

LIN

5 \2all 1 11
i (vﬁ) o 2|7HHhi|0g 2. (39
o o
11
Hi%lo| 2 ]=%,
150 =] 2
(63
simplifies to
11
S 2l Ka
H1 O (—_) 2 |=— 36
2|\ 5w o2 (36)
o
One observes that E§36) is solved by
8(t) = A(a, D, 12, (37)
where the coefficienf equals
1 1 al2
R 10-1f @K
A(a,D,, k) =\D, | (H1 ) Slo 2 (39)
o

We note that the near-membrane layer given by(B@. does
not depend on parametdssandb, which control membrane
permeability.5(t) remains the same in the absence of mem-
brane. We also observe that the coefficidrtan be recalcu-
lated into the diffusion constam,, as
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A2

(39)

a

(Hy 9™ <

2 |0

(¢4

Thus, knowing experimental values Af «, and «, one can
deduceD,,.

C. Specific boundary conditions

In the previous section, we have determined the temporal
evolution of the near-membrane layer for arbitrary linear
boundary condition(18) in the long-time approximation.
Here we discuss the problem for two specific sets of bound- FIG. 4. The time evolution of the near-membrane laggrob-
ary conditions(16), (19) and (16), (20) which are called tained from Eq.41) for different values of the membrane perme-
A and B, respectively. The solutions of the subdiffusionability parametein: 1 mm/s(solid line), 5 mm/s(J), 100 mm/s
equation(8) satisfying the boundary conditions A and B can (x), and 500 mm/€< ). The remaining parameters equat0.12,

T T T
1000 1500 2000

t[s]

T
500

be obtained from the general soluti¢®8), substitutingb;
=o+1, b,=0-1, andb;=0 or b;=\, b,=—\, andbg=-1,
respectively. However, the solutions of E(B) with the

@=0.90, andDg go=3% 1073 mn?/s%%,

of the solutiong40) and(41) are evident for times which are

boundary conditions A and B can be also found in @ muchso |ong that the substance concentration becomes approxi-

simpler way as demonstrated in Appendix C.

As in the case of normal diffusion, the boundary condi-
tions (16) and(19) allow for an analytic solution of Eq8).
Using the technique of the Laplace transfofsee Appendix
C for detailg, the concentration profile for>0 is found as

11
CO 1o XZ 1/«
Cax=(-0) it (5] [o 2] (4O
o

The solution (40) plugged into the definition of near-
membrane laye(3) gives Eq.(36) which is solved bys,(t)
of the form (37). Thus, as already mentioned, the formulas
derived in the long-time approximation are exact for the
boundary condition A.

When Eqs(16) and(20) are used as the boundary condi-
tions, the solution of subdiffusion equati¢®) can be written
in the form of the infinite series of Fox functions. As ex-
plained in Appendix C, fox>0 one finds

C > |: X \’/D_ 2/a:|n
Ca(x,t) = = ——( ‘ “)
5.0 ag 2N\ X
2 1l 1 1
XH1 O (X ) 2 2. (@
tH \Dute n(——l) =
(04 o

The solutions(40) and (41), which for normal diffusion
has been discussed[ih6-19, qualitatively differ from each
other. In particular, according to E¢40) the flux flowing

mately homogeneous at each side of the membrane in its
neighborhood. These times are usually much longer than
those satisfying the conditiof33) when the vessels of a
membrane system are of a few centimeters length as those
used in our measurements.

Since the formuld41) is analytically intractable, we have
found the time evolution of the near-membrane layer numeri-
cally. The results are shown in Figs. 4—8. The physical mean-
ing of the near-membrane layer suggests that it does not
depend on the membrane permeability. The analytical calcu-
lations performed with the boundary condition A fully con-
firm this intuition. As seeng, remains the same even in the
absence of the membrafe=0). We are now going to show
numerically that the same holds for the boundary condition
B. Specifically, we argue thai,(t)=g(t) for the same val-

7 -

T T T T
1000 1500 2000 2500

through the membrane is constant in time while the solution
(41) leads to a flow which decreases in time as the concen-
trations at both sides of the membrane evolve to the same FIG. 5. Comparison ofS(t) (symbol3 and 85(t) (lines) for
value Cy/2. In the case of Eq40), the ratio of concentra- several values ok: 0.05 (CJ), 0.08 (O), 0.12 (A), 0.20(¢), and
tions at both sides is constant in time as dictated by th@.50 (V). The remaining parameters equaf0.90 andDggo=3
boundary condition A. However, the qualitative differencesx 1072 mnv/s%9C

1[s]
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45
40 N

3.5+

A
| A

3.0 ;//.,ljy:;/.:;/i _A,A_A_A
—_ ] i
E 1 E 25 T el
E £ 1 O’O:Z:A M
= % 2.0 A
-} | o

1.5 4

10 gooaB®
M&————A—’—A’-‘Q’A_— 05
0 ! i ! N ! i ! ) ! ’ 0.0 ] T d T T T d T T T d T
[ 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
t[s] tis]
FIG. 6. Comparison ofS,(t) (symbolg and &g(t) (lines for FIG. 8. The thickness of the near-membrane lagigrand the

several values 0D g5 1X 1072 mm?/s%? (0), 1x 103 mm?/s>°  rescaled thicknes&s/ A, as functions of time for several values of

(0), 1x 1074 mm2/L9 (A), and 1xX 1075 mm2/?2 (¢). The re-  «: 0.05(0J), 0.08 (0O), 0.12(A), and 0.20(¢). For the rescaled

maining parameters equakE0.90 andx=0.12. thickness the symbols are on top of each other. The parameters
andD,, equal, respectively, 0.90 and<@L0~3 mm?/s?.

ues ofk, a, andD,, in spite of the qualitative differences

between the solution@0) and (41). with 8g(t). Figure 8 demonstrates thgi(t) fulfills the scal-
Figure 4 demonstrates thak(t) is independent of the ing exactly obeyed byd,(t). Namely, we show tha®’(t)

membrane permeability parameter. Our numerical calcula=dg(t)/Ax with A, given by Eg.(38) depends solely on

tions, which are presented in Figs. 5—8 show that the thicktime, exactly asda(t)/Aa.

ness of the near-membrane layer grows in time”awith We conclude this section by saying that no difference be-
y=al2. Thus, we write tween 5 (t) and 5z(t) has been observed. Therefore, we ex-
55(t) = Agt?. (42) pect thatA,=Ag=A. Consequently, the subdiffusion coeffi-

cients calculated from Eq39) have to agree with the ones
We are now going to show th#,=Ag. In Figs. 5-7 we obtained numerically from the solutio@1). Although we

comparedg(t) obtained numerically withS,(t) given by Eq.  are unable to prove beyond the long-time approximation that

(37) for the same values ot, a, andD,. In each of these the time evolution of near-membrane layers does not depend

figures one parameter changes whereas the remaining tvam the boundary condition, the results presented in this sec-

are fixed. In Fig. 5 we examine the dependence on the pdion strongly substantiate such a conjecture, and thus they

rameter defining thickness of near membrane layen Fig.  justify the use of the formul#39) to evaluate the subdiffu-

6 there are several values of the subdiffusion coeffidigpt sive coefficientD, from experimental data.

while in Fig. 7 the functions are plotted for several values of

a. In all these cases we see a perfect coincidencé,

IV. EXPERIMENTAL VALUES OF « AND D,

In Sec. Il we have fitted the experimentally obtain#t

44 by the power functiomAt”. Thus, we have found the index
a=2y=0.90£0.01 and the values of the coefficiéngiven

in Egs.(4)—7). Now, we recalculaté into D, by means of
the relation(39). Using the numerical values of the inverse

E Fox functions,
w 27
1 1
(HI 9™ 0.054 = 1 [=6.032,
0 0.45
1 v 1 v ) ' L v ) v
0 500 1000 1500 2000 2500
t[s]
FIG. 7. C i Ea(t) ( bolg and &5(t) (lines f t!
. 7. Comparison ofds(t) (symbolg and &g(t) (lines) for 101 _
several values ofv: 0.9 (), 0.6 (0), 0.4 (A), and 0.2(¢). The (Hr 7| 003§ 1 |=8014,
remaining parameters equaF0.12 andD,=3X 1072 mm?/s?. 0.45
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354 which are measured. There are three reasons to choose the
1 : near-membrane layers: experimental, theoretical, and practi-
30+ cal.
1 (i) Measurement of the near-membrane-layer thickness
254 does not suffer from the sizable-10% —15% systematic
20_’ uncertainty of absolute normalization of the concentration
profiles, as only the relative concentration mattersdosee
"o 15_' the definition(3).

] (i) Computed concentration profiles depend on the
104 adopted boundary condition at a membrane while the condi-
| tion is not well established even for the normal diffusion.
54 The near-membrane layer is argued to be free of this depen-

J dence.
0 — (iii) When the concentration profile is fitted by a solution
0 500 1000 1500 2000 2500 of the subdiffusion equation, there are three free parameters:
t[s] «, D,, and the parameter characterizing the membrane per-

meability. Because these fit parameters are correlated with
each other, it is very difficult in practice to get their unique
efficient A given by Eq.(38). The symbols are assigned as in value_s. Qne shoul_d rgmember here tha}t the solution of the
Fig. 2. The parameters equale=0.90 and Dyggo=9.8 subdiffusion equation is of rather complicated strucfsee

X 104 mP/L for glucose and Dy og=6.3x 104 mm?/ <090 Egs.(40) and(41)], which makes the fitting procedure very

for sucrose. For clarity of the plot the error bars are not shown.ted'ous' When the temporal evolution 6fis discussed the

FIG. 9. The experimentally measurefl divided by the co-

The line represents the functiah?s membrane parameter drops out entirely angs controlled
by the time dependence &ft) while D, is provided by the
coefficientA.
11 We have argued using E(B) that  scales a$”. A similar
(H1 97Y 0.022 1 |=10.510, scaling can be obtained in the diffusion equation with frac-
0.45 tional derivatives in space and time if the orders of the frac-

. ) . tional operators are properly chosen. This is related to the
which are calculated with the help of the expansion formulgact that in the fractional diffusion equation of ordgrin
(25, we computed the subdiffusion coefficient for eachspace and order in time, (x2) scales a$”*. One could also
value of x. As expectedD, shows no dependence 08 .4me up with a nonlinear diffusion model without fractional
within the errors which were obtained propagating the errorgjeriyatives that exhibits the observed non-Gaussian scaling
of A. We took the mean value @, as a final result but the o 5123]. This nonuniqueness problem cannot be solved in
final error is thg maximal one. The point is that the vaI_ues oty generality but some possibilities can be excluded. The
D, found for different values ok cannot be treated as inde- ¢4ctional differential equation of the order<2 of spatial

pendent measurements. Thus, we obtained derivative corresponds to “long” jumpghe variance is infi-

Dooo= (9.8 +1.0 X 1074 mm?/s>%° nite) of the random walker. Since we study experimentally
' the diffusion in a gel built of large and heavy molecules
for glucose and forming a polymer network, long jumps are physically not

_ 4 0.90 plausible. We rather expect that the average waiting time of
Do o= (6-3+0.9 > 10°* mn/s the random walker in a gel medium goes to infinity. This
for sucrose. corresponds to the fractional differential equation with the
To be sure that Eq(38), which is used to evaluatB,, temporal derivative of ordesr<1 as in Eq.(8). One cannot
properly describes the experimentally founélt), we  exclude the equation with fractional spatsadd temporal de-
checked the scaling property @ft) suggested by the for- rivatives. Similarly, the nonlinear diffusion equation cannot
mula (37). In Fig. 9 we plot the rescaled thickness of near-be excluded. However, E¢8), which is derived in a physi-
membrane layes' (t)=&(t)/A with A given by Eq.(38) for  cally well-motivated continuous-time random walk approach
all values ofx, for glucose and for sucrose. The experimentall1,11], offers the simplest possibility. We also note that the
points are represented as in Fig. 2. According to E8%) scaling shown in Fig. 9 strongly supports the subdiffusive
and(398), &' (t) is simply the functiort?, and as seen in Fig. 9, model based on Ed8). It seems difficult to reproduce this

all our experimental data are indeed very well described byc@ling in a quite different theory. _
{0.45 In our calculations presented in Sec. Ill, the membrane is

assumed to be infinitely thin. Relaxing this assumption con-

siderably complicates a theoretical analysis of the problem. It

V. FINAL REMARKS is not only the finite membrane thickness that should be

taken into account, but the membrane internal structure

Our method to determine the parameters of subdiffusiorshould be modeled as well. In particular, one should answer
relies on the near-membrane layers. One may askavagd  the question whether transported substance is accumulated
D, are not extracted directly form the concentration profilesinside the membrane. If so, the membrane permeability
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might be time dependent. To avoid all these complications, Because the curreidtx,s;Xp) is expressed, in accordance
the membrane is infinitely thin in our analysis which is awith Eq. (17), as

reasonable assumption as long as the membrane is suffi-

ciently thin. (The thickness of the membrane used in our 4S(x s
measurements was below 0.1 miHowever, we expect that I(x,8;%0) = — Dasl‘“M,
our method to determine the parameteandD, also works dx

for finite-width membranes. First of all, the temporal evolu-

tion of the near-membrane layer was shown to be fully inde-and the general solution of the subdiffusion equation is, as
pendent of the boundary condition at a membrane in theliscussed in the Appendix C, given by EG.2), the current
long-time approximation. Our numerical calculations alsoequals

suggest tha#(t) does not depend on the membrane. Finally,

(A2)

we observe that for the near-membrane lag&ronly the . — 1 =

relative substance concentratiorxatd and at the membrane J.-(0",5;%0) = VD,s'™?B(s) + Eexms e

surface (x=0) matters. Therefore, it is expected that the

membrane properties do not influence the time evolution of = \f'D—asl‘“’zéJ,_(O*,s;xo). (A3)

the near-membrane layer.

Our method to determine the subdiffusion parameters Usegs the Green’s function of the system with the reflecting

the membrane system. While the membrane plays here onl{y. at x=0 is given by Eqs(23), (24), and(26), we have
an auxiliary role, it should be stressed that the transport in

membrane systems is of interest in several fields of technol-
ogy [24], where the membranes are used as filters, and bio- Gref(X,5;0%) = ;e—xds“/Da, (A4)
physics[25], where the membrane transport plays a crucial \'Esl‘“’z

role in the cell physiology. The diffusion in a membrane

system is also interesting by itself as a nontrivial stochastiand due to Eq(A3), the expression on the RHS of Hd\1)
problem; see, e.g[,16-18,2Q. Thus, our study of the sub- equals

diffusion in a membrane system, which to our best knowl-
edge has not been investigated by other authors, opensupa ~ = . L — X STD A .
new field of interdisciplinary research. It is also worth men- J:-(07,8:%0)Grerlx,5;07) = & G,-(07,8:%9). (AS)
tioning that our interferometric setup can be used to experi- Equation(C2) allows one to write down the Green’s func-
mentally study(anomalousdiffusion not only in membrane  tjon from the LHS of Eq(A1) as

systems. In particular, we plan to perform measurements on a

system with no membrane where the sugar is transported

directly from the water to gel solvent. However, there are G-(X,5;X0) = €X¥7PaG,_(0%,5;Xp). (AB)
problems keeping fixed the geometry of the whole system in
the course of a long-lasting diffusion process. Comparing Eq(A5) to Eqg. (A6), one finally finds the wall

At the end let us summarize our considerations. We haveelation (A1).

developed a method to extract the subdiffusion parameters
andD, from experimental data. The method uses the mem- -
brane system, where the transported substance diffuses from APPENDIX B: FUNCTION W
one vessel'to another3 anq it relies on a fully analytic splqun We derive here Eq(21). Taking the Laplace transform of
of the fractional subdiffusion equation. We have applied th . . )

; he boundary conditiofil8), replacing the concentration pro-
method to our experimental data on glucose and sucrose sup-
diffusion in a gel solvent and we have precisely determine
the parametewr and the subdiffusion coefficiem,,.

iles by the Green’s functions, and puttirg<0, we get

byG_(07,5;%) + b,G,—(07,8;Xp) + b3J(0,8; %) = 0.

ACKNOWLEDGMENT (B1)
We are grateful to Stawek Ygik for help in performing i i
the measurements and in the data analysis. Using Eq.(C2), one finds
APPENDIX A: WALL RELATION é__(x,s;xo) _ A(S)exv‘s,“/oa+ — 1_a/2e—\x—XoNs“/Da,
We derive here the integral relatigh3) which after the 2\D,s
Laplace transformation reads (B2)
G- (X,5;Xg) = J4_(0%,5:X0) Gef(X,S;07) . (A1)
~ . 1 N vy
We have introduced here the indicésand — which corre- G4-(X,S;Xg) = B(s)e ™" /Pur + 20D e® xS D
spond to the signs of and xg. Sincex>0 andxy<0, the 2\D,
Green’s function is labeled with-—. (B3)
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The Green’s function$B2) and (B3) provide, via Eq.(17),
the currents

~ 1, e

J(05%0) = S0P - VD A(s), (B4)
] + 1 Vs D

J,_(0%,8;%0) = Eexm a+\D,_B(s). (B5)

Due to the current continuity equati@h6), A(s)=-B(s) and
the current, which enters the boundary conditiBa), equals
J,._(0*,s;%p). Substituting the expression82), (B3), and
(B5) into Eq. (B1) and using the equaliti(s)=-B(s), one
finds

bl + bz + bs\/D—aSl—a/Z

o\f s*ID,, )
21D, "?(by - b, ~ bs\D )

B(s) =

(B6)

The functionB(s) determines the curreiiB5) which, substi-
tuted into the definitior(15) together with the initial condi-

tion (10), provides the functior\?V(s), as given by Eq(21).

APPENDIX C: SOLVING THE SUBDIFFUSION
EQUATION

We briefly present here a procedure of solving the subdif-

fusion equation(8) with the boundary condition§l6) and
(19 and, respectively, Eq$16) and(20). Taking the Laplace
transform of Eq.(8), we obtain

d2C(x,s)

C(x,s) —s “D, 02

-C(x,0)=0, (Cy

PHYSICAL REVIEW E 71, 041105(2005

G-(X,5:%0) = (1 = 0)Go(X,S; Xo), (C4
where Gy is the Laplace transform of Green’s function for
the homogeneous system without a membrgd?®; the in-
dices+ and— of the Green'’s functions refer to the signof
andx,, respectively.

To compute the concentration profiles we use the Laplace
transform of the integral relatiof12) which takes the form

é(x,s) = f é(x,s;xo)C(xo, 0)dxg. (C5H)

Now, we substitute the Green’s functi§¢@4) into Eq. (C5)
and use the formula

& 1 1o @ Lot

-1/ aVa— —

L (s"e™® )_Ba(lh/)/ﬁHll . 1+v 1/, (C6)
B B

which is derived in[13] using the Mellin transform
technique[22]. Here,a,3>0 while the parameter is not
limited. After simple calculations, we finally find the solution
(40).

2. Boundary conditions B

The subdiffusion equatioii8) is solved by the Green’s
functions of the form

é__(x,s;xo) = Al(s)ex\"‘S“/Da + Bl(s)e'XVSQ/Da

where, as previously, we use carets to denote the Laplace-

transformed functions. The solution of EE1) with the ini-
tial condition(11) reads

G(x,5:%0) = A(9)g" < ™Pa + B(g)e™ =D
1

+ ,_—lze_lx_xol \‘;Sa/Da,
2\D,st™

(C2)

where the functionsA(s) and B(s) are determined by the
boundary conditions.

1. Boundary condition A

The Laplace transform of boundary conditi®) is

C(0%,9) = i%‘;é(o-,s). (C3

Proceeding analogously to the case of normal diffusion
[17,18, we find the Green’s functions obeying the boundary

condition(C3) as

G__(x,5;%0) = Go(, ;%) + 0Go(— X,5;%),

1 —
— = g PxglVs*D,
top s e (©D
é+_(x,s;x0) = AZ(S)ex\s“sa/Da + Bz(s)e'XVSH/Da
1 s
— = g PxglVs¥D,
top e e (©Y

The functionsA;(s), A,(s), B4(s), andB,(s) are now deter-
mined by the boundary conditiori6) and (20) which after
the Laplace transformation takes the form

3(0‘,s;xo) = 3(0+,s;xo), (C9

J(0,5;%) = MG-(07,5;%) = G,-(0*,5;%)), (C10)

with the Laplace transform of subdiffusive flux given by the
formula[15]

- _ dé(x,s;xo)

J(X,8;Xp) = — D st —————.

(X,S;X0) x
For the infinite system, one demands vanishing of the
Green’s functions forx— o0, which gives B;=A,=0.
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Substituting the Green’s function€7) and (C8) into the
boundary condition$C9) and (C10), we obtain

1
AN + ZV/D_aSl'“/ 2

e(x+x0) \s¥D,,

G__(X,SX) =

—|x=xo|\'sYD
e | Ol\ a,

+ ”_—
2\},Dasl—a/2

PHYSICAL REVIEW F1, 041105(2005

4\ 1

. S~ e (XX \s"/D,,
AN + ZV'Dasl—aIZ 2\/Dasl—a/2

é+_(x,s;xo) =

(C11)

Expanding the functiofC1l) into a power series with re-
spect tos and using the initial conditiori10), the integral
relation(C5) provides, with the help of the formul&6), the
solution (41).
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