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2Sołtan Institute for Nuclear Studies, ul. Hoża 69, PL-00-681 Warsaw, Poland

sReceived 12 October 2003; revised manuscript received 28 January 2005; published 18 April 2005d

We propose a method to extract from experimental data the subdiffusion parametera and subdiffusion
coefficient Da which are defined by means of the relationkx2l=f2Da /Gs1+adgta where kx2l denotes the
mean-square displacement of a random walker starting fromx=0 at the initial timet=0. The method exploits
a membrane system where a substance of interest is transported in a solvent from one vessel to another across
a thin membrane which plays here only an auxiliary role. Using such a system, we experimentally study the
diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion
equation with the initial and boundary conditions representing the system under study. Confronting the experi-
mental data with the derived formulas, we show the subdiffusive character of sugar transport in a gel solvent.
We precisely determine the parametera, which is smaller than 1, and the subdiffusion coefficientDa.
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I. INTRODUCTION

Subdiffusion occurs in various systems. As examples, we
mention here a diffusion in porous media or charge carrier
transport in amorphous semiconductorsf1–3g. The subdiffu-
sion is characterized by a time dependence of the mean-
square displacement of a Brownian particle. When the par-
ticle starts fromx=0 at the initial timet=0 this dependence
in a one-dimensional system is of the form

kx2l =
2Da

Gs1 + ad
ta, s1d

whereDa is the subdiffusion coefficient measured in units of
m2/sa; the parametera, which we call here a subdiffusion
parameter, obeys 0,aø1. Fora=1 one deals with the nor-
mal or Gaussian diffusion. The linear growth ofkx2l with t,
which is characteristic for normal diffusion, results from the
central limit theorem applied to many independent jumps of
a random walker. The anomalous diffusion occurs when the
famous theorem fails to describe the system because the dis-
tributions of summed random variables are too broad or the
variables are correlated to each other. In physical terms, the
subdiffusion is related to an infinitely long average time that
a random walker waits to make a finite jump. Then, its av-
erage displacement squared, which is observed in a finite
time interval, is dramatically suppressed.

The subdiffusion has been recently extensively studied;
see, e.g.,f1–7g. While the phenomenon is theoretically rather
well understood there are very few experimental investiga-
tions. There is no effective method to experimentally mea-
sure the parametersa andDa. In the pioneering study off7g,
where the subdiffusion coefficient was determined experi-
mentally for the first time, the interdiffusion of heavy and
light water in a porous medium was observed by means of
nuclear magnetic resonance. The subdiffusion coefficientDa

was determined using the special casea=2/3 solution of the
fractional derivative diffusion equation. The procedure is
neither very accurate nor of general use.

Our aim here is to develop a method to precisely measure
the parametersa and Da. For practical reasons, which are
explained below, we choose for the experimental study a
membrane system containing two vessels with a thin mem-
brane in between which separates the initially homogeneous
solute of the substance of interest from the pure solvent. A
schematic view of the system is presented in Fig. 1. We show
that the membrane does not affect, as expected, the values of
the investigated parameters. Instead of the mean-square dis-
placements1d, our method refers to the temporal evolution of
the thicknessd of the so-called near-membrane layer which
is defined as the distance from the membrane where the sub-
stance concentration dropsk times with respect to the mem-
brane surface;k is an arbitrary number. In our previous paper
f8g, we demonstrated that for normal diffusiondstd=AÎt.
Here we are going to study the diffusion of glucose and
sucrose in a gel solvent to show that

FIG. 1. Schematic view of the membrane system under
study.
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dstd = Atg, s2d

with g,1/2. Our choice of gel medium to look for a sub-
diffusion is far from accidental. A gel is built of large and
heavy molecules which form a polymer network. Thus, the
gel water solvent resembles a porous material filled with wa-
ter. Since the mobility of sugar molecules is highly limited in
such a medium, subdiffusion is expected. As we show below,
this expectation is indeed fulfilled.

Using an analytic solution of the fractional subdiffusion
equation, we theoretically argue thata=2g and that the pa-
rameterA uniquely depends, as in the case of normal diffu-
sion, on the numberk and the parametersa andDa. There-
fore, knowingA, k, anda, one can deduceDa for arbitrary
a. Since the subdiffusion parametera is measured with a
high accuracy, we can distinguish a very slow normal diffu-
sion from a subdiffusion witha close to unity. Our very first
theoretical and experimental results on the subdiffusion pa-
rametera have been published in two short notesf9g.

II. EXPERIMENT

The membrane system under investigation is a cuvette of
two vessels separated by a horizontally located membrane.
Initially, we fill the upperslowerd vessel with the solute of
transported substance while in the lowersupperd one there is
a pure solvent. Then, the substance diffuses from one vessel
to another through the membrane. Since the concentration
gradient is in the vertical direction only, the diffusion is ex-
pected to be one dimensionalsalong the axisxd.

The substance concentration is measured by means of the
laser interferometric method. The laser light is split into two
beams. The first one goes through the membrane system par-
allelly to the membrane surface while the secondsreference
oned goes directly to the light detecting system. The inter-
ferograms, which appear due to the interference of the two
beams, are controlled by the refraction coefficient of the sol-
ute which in turn depends on the substance concentration.
The analysis of the interferograms allows one to reconstruct
the time-dependent concentration profiles of the substance
transported in the system and to find the time evolution of
the near-membrane layers which are of our main interest
here. We note that the measurement does not disturb the
system under study. The experimental setup is described in
detail in f10g. Here we only mention that it consists of a
cuvette with a membrane, a Mach-Zehnder interferometer
including a He-Ne laser, a TV camera with the charge-
coupled devicesCCDd, and a computerized data acquisition
system.

For each measurement, we prepared two gel samples: the
pure gel–1.5%-water solution of agerose and the same gel
dripped by the solute of glucose or sucrose. The concentra-
tion of both sugars in the gel was fixed to be either
0.1 mol/dm3 or 0.07 mol/dm3. The two vessels of the mem-
brane system were then filled with the samples and the
sslowd processes of sugar transport across the membrane
started. We used an artificial membrane of the thickness be-
low 0.1 mm. The membrane was needed for two reasons. It
initially separated the homogeneous sugar solute in one ves-

sel from the pure gel in another one. It also precisely fixed
the geometry of the whole system.

When the sugar was diffusing across the membrane we
were recording the concentration profiles in the vessel which
initially contained pure gel. Examples of typical interfero-
grams and extracted concentration profiles are presented in
the earlier paperf10g. The thickness of a near-membrane
layerd was calculated from the measured concentration pro-
files Csx,td according to the definition

Csd,td = kCs0+,td, s3d

where k is an arbitrary number smaller than unity. In our
analysis we usedk=0.12, 0.08, and 0.05. Computingd for
varioust, we found the thickness of the near-membrane layer
as a function of time.

In Fig. 2 we presentd as a function of time for the glucose
and sucrose transported in a gel for the initial sugar concen-
tration equal 0.1 mol/dm3. For the glucose we took three
values ofk=0.12, 0.08, and 0.05 while for the sucrosek
=0.08. The errors ofdstd shown in the figure were found in
the following way. We performed six independent measure-
ments of the concentration profilesCsx,td at the same initial
sugar concentration. The thickness of the near-membrane
layer dstd was found for each concentration profile. We note
here thatdstd is insensitive to a sizable error of absolute
normalization ofCsx,td as it cancels due to the definitions3d.
Having six values ofd for every t, we obtained the mean
value ofd and the standard error. The final errors shown in
Fig. 2 were obtained by further multiplying the standard er-
rors by the Student-Fisher coefficient taken at a confidence
level 95% to include the effect of low statistics.

As seen in Fig. 2, the experimentally found time depen-
dence ofd is well described by the power functions2d with
the common indexg=0.45. In Fig. 3 we show the same data
as in Fig. 2 but in a log-log scale to better test the power-law
dependence. The lines representingÎt are also shown for

FIG. 2. The experimentally measured thickness of the near-
membrane layerd as a function of timet for glucose withk=0.05
shd, k=0.08 ssd, and k=0.12 snd and for sucrose withk=0.08
sLd. The lines represent the power functionAt0.45 with the coeffi-
cientsA given by Eqs.s4d–s7d.
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comparison. It is evident that the measured indexg is smaller
than 0.5. There are some deviations of our data from the
power-law dependence att,300 s. However, as explained
in Sec. III B, our theoretical formulas, in particular the
power-law behavior, are derived in the long-time approxima-
tion.

We fitted the experimental data shown in Figs. 2 and 3 by
the power-law formulaAtg, using a standardx2 procedure.
The values ofx2 per degree of freedom were smaller than
unity for every value ofk. The error of the universal index
g=0.45 was found to be 0.005. The parameterA depends on
k; it is also different for glucose than for sucrose. We found

A = 0.091 ± 0.004 for k = 0.05, s4d

A = 0.081 ± 0.004 for k = 0.08, s5d

A = 0.071 ± 0.004 for k = 0.12, s6d

for glucose, and

A = 0.064 ± 0.003 for k = 0.08, s7d

for sucrose.
The fact thatg is the same for glucose and sucrose sug-

gests that the index depends only on the solvent—i.e., the
medium where the subdiffusion occurs. As will be shown in
Sec. IV, the subdiffusion coefficients for glucose and sucrose
differ from each other. Such a situation resembles the case of
normal diffusion whereg=1 is universal but the diffusion
coefficient changes from one substance to another.

At the end of this section we note that the results of mea-
surements of the near-membrane layers for the initial sugar
concentration equal to 0.07 mol/dm3 fully coincide with
those presented above which were performed for the initial
concentration equal to 0.1 mol/dm3. This simply reflects the
linearity of the subdiffusion equation which is discussed in
the next section.

III. THEORY

In this section we discuss a theoretical description of the
experimental result presented in Sec. II. In particular, we
derive the formula which allows one to obtain the subdiffu-
sion coefficientDa from the experimental data.

A. General formulas

The subdiffusion is described by the equationf1,11g

]Csx,td
]t

= Da

]1−a

]t1−a

]2Csx,td
]x2 , s8d

with the Riemann-Liouville fractional derivative defined as

]afstd
]ta =

1

Gsn − ad
]n

]tn
E

0

t

dt8
fst8d

st − t8d1+a−n ,

wheren is the smallest integer larger thana.0. It is tempt-
ing to write down Eq.s8d in a simpler form as

]aCsx,td
]ta = Da

]2Csx,td
]x2 . s9d

In general, however, the fractional derivative does not obey
the property

]a

]ta

]b

]tb =
]sa+bd

]tsa+bd ,

and Eq.s8d is not fully equivalent to Eq.s9d f12g. And be-
cause the subdiffusion equation as derived in the framework
of continuous-time random walk theoryf11g is of the form
s8d, it has become customary to use Eq.s8d rather than Eq.
s9d. We also note here that Eq.s8d with the temporal frac-
tional derivative of ordera,1 corresponds to a “long”sin-
finite on averaged waiting time of the random walker. This is
just the physical situation which is expected in a gel medium
built of large and heavy molecules forming a polymer net-
work where mobility of the walker is strongly limited.

We solve Eq.s8d in the regionx.0 for the initial concen-
tration

Csx,0d = HC0, x , 0,

0, x . 0.
J s10d

Here,x=0 is the position of an infinitely thin membrane. In
fact, we solve Eq.s8d for the Green’s functionGsx,t ;x0d
with the initial condition

Gsx,t = 0;x0d = dsx − x0d, s11d

and then, the concentration profiles are calculated using the
integral formula

Csx,td =E dx0Gsx,t;x0dCsx0,0d. s12d

The Green’s functionGsx,t ;x0d gives the probability density
to find a random walker at the positionx in time t; the walker
starts fromx0 at t=0.

To find the concentration profileCsx,td and then the time
evolution of the near-membrane layerd, we use the relation

FIG. 3. The same experimental data as in Fig. 2 but on a log-log
scale. The solid lines represent the power functionAt0.45 with the
coefficientsA given by Eqs.s4d–s7d. The dotted lines correspond to
the functionAÎt.
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Gsx,t;x0d =E
0

t

dt8Js0+,t8;x0dGrefsx,t − t8;0+d, s13d

wherex.0 while x0,0, Jsx,t ;x0d is the flux associated with
Gsx,t ;x0d which for x=0 gives the flow across the mem-
brane, andGrefsx,t ;x0d is the Green’s function for the half-
space system withx.0 and the fully reflecting wall atx
=0. The integral formulas13d, which we call the wall rela-
tion, represents one-half of the membrane system as a half-
space system with a reflecting wall replacing the membrane.
The substance flux, however, does not vanish at the wall but
it equals the actual flux in the membrane system. For the
case of normal diffusion the wall relations13d was used in
Ref. f14g. In Appendix A we show that it also holds for
subdiffusion.

Using the relations13d and Eq.s12d, the concentration
profile can be written as

Csx,td =E
0

t

dt8Wst8dGrefsx,t − t8;0+d, s14d

wherex.0 and the functionWstd, which equals

Wstd =E
−`

0

dx0Js0+,t;x0dCsx0,0d, s15d

contains all information about the initial and boundary con-
ditions. The interval of integration in Eq.s15d is due to the
initial condition s10d.

Since the subdiffusion equation is of second order with
respect to the space variablex, it requires two boundary con-
ditions at the membrane. The first one simply assumes the
continuity of the fluxJ flowing through the membrane—i.e.,

Js0−,td = Js0+,td, s16d

where J is the subdiffusion flux given by the generalized
Fick’s law f15g. It gets a simple form after Laplace transfor-

mationLhfstdj; f̂ssd=e0
` dt fstde−st. Then, it readsf15g

Ĵsx,sd = − Da s1−adĈsx,sd
dx

. s17d

There is no obvious choice of second boundary condition.
Therefore, we assume that the missing condition is given by
a linear combination of concentrations and flux at the
membrane—i.e.,

b1Cs0−,td + b2Cs0+,td + b3Js0,td = 0. s18d

Since the current is continuous at the membrane, there is no
point to distinguishJs0+,td from Js0−,td. We note that two
boundary conditions discussed in the literature are of the
general forms18d. The first condition can be formulated as
follows: If during a given time interval N particles reach the
membrane, the fractions of them will be stopped while
s1−sd will go through.This condition leads to a boundary
condition of the formf8,16–18g

Cs0+,td =
1 − s

1 + s
Cs0−,td. s19d

The second condition assumes that the flux flowing through
the membrane is proportional to the difference of concentra-
tion at membrane surfacesf19,20g:

Js0,td = l„Cs0−,td − Cs0+,td…, s20d

where the parameterl controls the membrane permeability.
We call the boundary conditionss16d, s19d and s16d, s20d
A and B, respectively, and in Sec. III C, we use the indices A
and B to denote the solutions of the fractional subdiffusion
equation obeying the corresponding boundary conditions.

The initial condition s10d combined with the general
boundary conditions18d gives the Laplace transform of the
function Wstd, which is defined by Eq.s15d as

Ŵssd = C0
b1

ÎDa

b1 − b2 − b3
ÎDas1−a/2

1

sa/2

= C0
b1

ÎDa

b1 − b2

1

sa/2o
k=0

`

dksks1−a/2d, s21d

where

d ;
b3

b1 − b2

ÎDa.

The derivation of Eq.s21d is discussed in Appendix B. In-
verting the Laplace transform, we get

Wstd = C0
b1

ÎDa

b1 − b2

1

t1−a/2o
k=0

`
dk

G„a/2 − ks1 − a/2d…
1

tks1−a/2d .

s22d

The Green’s functionGref, which enters Eq.s14d, can be
easily obtained by means of the method of imagesf1g as

Grefsx,t;x0d = G0sx,t;x0d + G0s− x,t;x0d, s23d

with G0 being the Green’s function for the homogeneous
system given by

G0sx,t;x0d =
2ÎDa

aux − x0u
H1 1

1 0 _*S ux − x0u
ÎData D2/a*1 1

1
2

a
+ ,

s24d

whereH denotes the Fox function. In our numerical calcula-
tions we use the form ofH

H1 1
1 0 1*a1/b

t * 1 1

1 + n

b

1

b
2

= bSa1/b

t
D1+n

o
k=0

`
1

Gs− kb − ndk!
S−

a

tbDk

, s25d

which is derived inf13g by means of the Mellin transform
techniquef22g. In terms of the Laplace transform, the func-
tion s24d simplifies to the formf1g
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Ĝ0sx,s;x0d =
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da, s26d

which was found using the formulaf13g

L−1ssne−asb
d =

1

bas1+nd/bH1 1
1 0 1*a1/b

t * 1 1

1 + n

b

1

b
2 , s27d

wherea,b.0.
Having the explicit form of the functionsW andGref, we

can write down the concentration profile using Eq.s14d. The
Laplace transform ofC equals

Ĉsx,sd = C0
b1

b1 − b2 − b3
ÎDas1−a/2

1

s
e−xÎsa/Da, s28d

which after inverting the transformation can be written down
as

Csx,td =E
0

t

dt8Wst − t8d
2

ax
H1 1

1 0 _*S x
ÎDat8aD2/a*1 1

1
2

a
+ .

s29d

Equation s29d is the starting point of our further analysis
which provides the functiondstd.

B. Long-time approximation

We first consider the long-time approximation of the for-
mula s29d which, according to the Tauberian theoremf21g,
corresponds to the small-s limit of the Laplace transform.
The physical meaning of this approximation is discussed be-
low. Taking into account only the leading contribution in the
small-s limit, Eq. s28d acquires the form

Ĉsx,sd = C0
b1

b1 − b2

1

s
e−xÎsa/Da, s30d

which after inverting Laplace transformation provides

Csx,td = C0
2b1

sb1 − b2da
H1 1

1 0 _*S x
ÎDataD2/a*1 1

0
2

a
+ .

s31d

The solutions31d can be also obtained directly from Eq.
s29d, taking into account only thek=0 term in the expansion
of Wstd given by Eq.s22d and using the formula

ÎDa

xGsa/2dE0

t dt8

st − t8d1−a/2H1 1
1 0 _*S x

ÎDat8aD2/a*1 1

1
2

a
+

= H1 1
1 0 _*S x

ÎDataD2/a*1 1

0
2

a
+ , s32d

which is derived by means of the Laplace transformation.

The seriess22d can be approximated by the first term if
d! t1−a/2 which gives

SÎDa

b3

b1 − b2
D1/s1−a/2d

! t. s33d

When the boundary condition is of the forms19d, the condi-
tion s33d is trivially satisfied for anyt asb3=0 in this case.
Even more, as discussed in the next section, the solutions31d
is exactfor the boundary conditions19d. When the boundary
condition is of the forms20d, we havel=b1/b3=−b2/b3, and
the conditions33d can be written as

SÎDa

2l
D1/s1−a/2d

! t. s34d

We have first estimated the left-hand sidesLHSd of Eq. s34d,
assuming that we deal with the normal diffusionsa=1d. For
the membranes used in our experiments the parameterl is of
order 10−2 mm/s while the coefficient of normal diffusionD
is roughly 10−5 mm2/s. Thus, the LHS of Eq.s34d is esti-
mated as 2 s. Since 10 s is the time step of our measure-
ments which extend to 2500 s, the conditions34d is fulfilled.
We have also checked the conditions34d a posteriori, using
the values ofa and Da found in Sec. IV. The LHS of Eq.
s34d is again about 2 s.

Let us now discuss the temporal evolution of near-
membrane layers in the long-time approximation. Substitut-
ing the solutions31d into Eq. s3d, which defines the near-
membrane layer, we get the equation

H1 1
1 0 _*S d

ÎDataD2/a*1 1

0
2

a
+ = kH1 1

1 0 10*1 1

0
2

a
2 , s35d

which, due to the identity

H1 1
1 0 10*1 1

0
2

a
2 =

a

2
,

simplifies to

H1 1
1 0 _*S d

ÎDataD2/a*1 1

0
2

a
+ =

ka

2
. s36d

One observes that Eq.s36d is solved by

dstd = Asa,Da,kdta/2, s37d

where the coefficientA equals

Asa,Da,kd = ÎDa 3sH1 1
1 0d−11*ak

2 *1 1

0
2

a
24

a/2

. s38d

We note that the near-membrane layer given by Eq.s37d does
not depend on parametersb1 andb2 which control membrane
permeability.dstd remains the same in the absence of mem-
brane. We also observe that the coefficientA can be recalcu-
lated into the diffusion constantDa as
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Da =
A2

3sH1 1
1 0d−11*ak

2 *
1 1

0
2

a
24

a
. s39d

Thus, knowing experimental values ofA, a, andk, one can
deduceDa.

C. Specific boundary conditions

In the previous section, we have determined the temporal
evolution of the near-membrane layer for arbitrary linear
boundary conditions18d in the long-time approximation.
Here we discuss the problem for two specific sets of bound-
ary conditionss16d, s19d and s16d, s20d which are called
A and B, respectively. The solutions of the subdiffusion
equations8d satisfying the boundary conditions A and B can
be obtained from the general solutions28d, substitutingb1
=s+1, b2=s−1, andb3=0 or b1=l, b2=−l, and b3=−1,
respectively. However, the solutions of Eq.s8d with the
boundary conditions A and B can be also found in a much
simpler way as demonstrated in Appendix C.

As in the case of normal diffusion, the boundary condi-
tions s16d ands19d allow for an analytic solution of Eq.s8d.
Using the technique of the Laplace transformssee Appendix
C for detailsd, the concentration profile forx.0 is found as

CAsx,td = s1 − sd
C0

a
H1 1

1 0 _*S x2

DataD1/a*1 1

0
2

a
+ . s40d

The solution s40d plugged into the definition of near-
membrane layers3d gives Eq.s36d which is solved bydAstd
of the form s37d. Thus, as already mentioned, the formulas
derived in the long-time approximation are exact for the
boundary condition A.

When Eqs.s16d ands20d are used as the boundary condi-
tions, the solution of subdiffusion equations8d can be written
in the form of the infinite series of Fox functions. As ex-
plained in Appendix C, forx.0 one finds

CBsx,td =
C0

a
o
n=0

` F−
x

2l
SÎDa

x
D2/aGn

3H1 1
1 0 _*S x2

DataD1/a* 1 1

nS 2

a
− 1D 2

a
+ . s41d

The solutionss40d and s41d, which for normal diffusion
has been discussed inf16–19g, qualitatively differ from each
other. In particular, according to Eq.s40d the flux flowing
through the membrane is constant in time while the solution
s41d leads to a flow which decreases in time as the concen-
trations at both sides of the membrane evolve to the same
value C0/2. In the case of Eq.s40d, the ratio of concentra-
tions at both sides is constant in time as dictated by the
boundary condition A. However, the qualitative differences

of the solutionss40d ands41d are evident for times which are
so long that the substance concentration becomes approxi-
mately homogeneous at each side of the membrane in its
neighborhood. These times are usually much longer than
those satisfying the conditions33d when the vessels of a
membrane system are of a few centimeters length as those
used in our measurements.

Since the formulas41d is analytically intractable, we have
found the time evolution of the near-membrane layer numeri-
cally. The results are shown in Figs. 4–8. The physical mean-
ing of the near-membrane layer suggests that it does not
depend on the membrane permeability. The analytical calcu-
lations performed with the boundary condition A fully con-
firm this intuition. As seen,dA remains the same even in the
absence of the membraness=0d. We are now going to show
numerically that the same holds for the boundary condition
B. Specifically, we argue thatdAstd=dBstd for the same val-

FIG. 4. The time evolution of the near-membrane layerdB ob-
tained from Eq.s41d for different values of the membrane perme-
ability parameterl: 1 mm/s ssolid lined, 5 mm/sshd, 100 mm/s
s3d, and 500 mm/ssLd. The remaining parameters equalk=0.12,
a=0.90, andD0.90=3310−3 mm2/s0.90.

FIG. 5. Comparison ofdAstd ssymbolsd and dBstd slinesd for
several values ofk: 0.05 shd, 0.08 ssd, 0.12 snd, 0.20 sLd, and
0.50 s,d. The remaining parameters equala=0.90 andD0.90=3
310−3 mm2/s0.90.
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ues ofk, a, and Da, in spite of the qualitative differences
between the solutionss40d and s41d.

Figure 4 demonstrates thatdBstd is independent of the
membrane permeability parameter. Our numerical calcula-
tions, which are presented in Figs. 5–8 show that the thick-
ness of the near-membrane layer grows in time astg with
g=a /2. Thus, we write

dBstd = ABtg. s42d

We are now going to show thatAA =AB. In Figs. 5–7 we
comparedBstd obtained numerically withdAstd given by Eq.
s37d for the same values ofk, a, andDa. In each of these
figures one parameter changes whereas the remaining two
are fixed. In Fig. 5 we examine the dependence on the pa-
rameter defining thickness of near membrane layerk; in Fig.
6 there are several values of the subdiffusion coefficientDa

while in Fig. 7 the functions are plotted for several values of
a. In all these cases we see a perfect coincidence ofdAstd

with dBstd. Figure 8 demonstrates thatdBstd fulfills the scal-
ing exactly obeyed bydAstd. Namely, we show thatd8std
=dBstd /AA with AA given by Eq. s38d depends solely on
time, exactly asdAstd /AA.

We conclude this section by saying that no difference be-
tweendAstd anddBstd has been observed. Therefore, we ex-
pect thatAA =AB=A. Consequently, the subdiffusion coeffi-
cients calculated from Eq.s39d have to agree with the ones
obtained numerically from the solutions41d. Although we
are unable to prove beyond the long-time approximation that
the time evolution of near-membrane layers does not depend
on the boundary condition, the results presented in this sec-
tion strongly substantiate such a conjecture, and thus they
justify the use of the formulas39d to evaluate the subdiffu-
sive coefficientDa from experimental data.

IV. EXPERIMENTAL VALUES OF a AND Da

In Sec. II we have fitted the experimentally obtaineddstd
by the power functionAtg. Thus, we have found the index
a=2g=0.90±0.01 and the values of the coefficientA given
in Eqs.s4d–s7d. Now, we recalculateA into Da by means of
the relations39d. Using the numerical values of the inverse
Fox functions,

sH1 1
1 0d−110.054*1 1

0
1

0.45
2 = 6.032,

sH1 1
1 0d−110.036*1 1

0
1

0.45
2 = 8.014,

FIG. 6. Comparison ofdAstd ssymbolsd and dBstd slinesd for
several values ofD0.90: 1310−2 mm2/s0.9 shd, 1310−3 mm2/s0.9

ssd, 1310−4 mm2/s0.9 snd, and 1310−5 mm2/s0.9 sLd. The re-
maining parameters equala=0.90 andk=0.12.

FIG. 7. Comparison ofdAstd ssymbolsd and dBstd slinesd for
several values ofa: 0.9 shd, 0.6 ssd, 0.4 snd, and 0.2sLd. The
remaining parameters equalk=0.12 andDa=3310−3 mm2/sa.

FIG. 8. The thickness of the near-membrane layerdB and the
rescaled thicknessdB/AA as functions of time for several values of
k: 0.05 shd, 0.08 ssd, 0.12 snd, and 0.20sLd. For the rescaled
thickness the symbols are on top of each other. The parametersa
andDa equal, respectively, 0.90 and 3310−3 mm2/sa.
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sH1 1
1 0d−110.0225*1 1

0
1

0.45
2 = 10.510,

which are calculated with the help of the expansion formula
s25d, we computed the subdiffusion coefficient for each
value of k. As expected,Da shows no dependence onk
within the errors which were obtained propagating the errors
of A. We took the mean value ofDa as a final result but the
final error is the maximal one. The point is that the values of
Da found for different values ofk cannot be treated as inde-
pendent measurements. Thus, we obtained

D0.90= s9.8 ± 1.0d 3 10−4 mm2/s0.90

for glucose and

D0.90= s6.3 ± 0.9d 3 10−4 mm2/s0.90

for sucrose.
To be sure that Eq.s38d, which is used to evaluateDa,

properly describes the experimentally founddstd, we
checked the scaling property ofdstd suggested by the for-
mula s37d. In Fig. 9 we plot the rescaled thickness of near-
membrane layerd8std=dstd /A with A given by Eq.s38d for
all values ofk, for glucose and for sucrose. The experimental
points are represented as in Fig. 2. According to Eqs.s37d
ands38d, d8std is simply the functiontg, and as seen in Fig. 9,
all our experimental data are indeed very well described by
t0.45.

V. FINAL REMARKS

Our method to determine the parameters of subdiffusion
relies on the near-membrane layers. One may ask whya and
Da are not extracted directly form the concentration profiles

which are measured. There are three reasons to choose the
near-membrane layers: experimental, theoretical, and practi-
cal.

sid Measurement of the near-membrane-layer thickness
does not suffer from the sizables,10% –15%d systematic
uncertainty of absolute normalization of the concentration
profiles, as only the relative concentration matters ford; see
the definitions3d.

sii d Computed concentration profiles depend on the
adopted boundary condition at a membrane while the condi-
tion is not well established even for the normal diffusion.
The near-membrane layer is argued to be free of this depen-
dence.

siii d When the concentration profile is fitted by a solution
of the subdiffusion equation, there are three free parameters:
a, Da, and the parameter characterizing the membrane per-
meability. Because these fit parameters are correlated with
each other, it is very difficult in practice to get their unique
values. One should remember here that the solution of the
subdiffusion equation is of rather complicated structurefsee
Eqs.s40d and s41dg, which makes the fitting procedure very
tedious. When the temporal evolution ofd is discussed the
membrane parameter drops out entirely anda is controlled
by the time dependence ofdstd while Da is provided by the
coefficientA.

We have argued using Eq.s8d thatd scales astg. A similar
scaling can be obtained in the diffusion equation with frac-
tional derivatives in space and time if the orders of the frac-
tional operators are properly chosen. This is related to the
fact that in the fractional diffusion equation of orderm in
space and ordern in time, kx2l scales ast2n/m. One could also
come up with a nonlinear diffusion model without fractional
derivatives that exhibits the observed non-Gaussian scaling
for d f23g. This nonuniqueness problem cannot be solved in
full generality but some possibilities can be excluded. The
fractional differential equation of the orderm,2 of spatial
derivative corresponds to “long” jumpssthe variance is infi-
nited of the random walker. Since we study experimentally
the diffusion in a gel built of large and heavy molecules
forming a polymer network, long jumps are physically not
plausible. We rather expect that the average waiting time of
the random walker in a gel medium goes to infinity. This
corresponds to the fractional differential equation with the
temporal derivative of ordera,1 as in Eq.s8d. One cannot
exclude the equation with fractional spatialand temporal de-
rivatives. Similarly, the nonlinear diffusion equation cannot
be excluded. However, Eq.s8d, which is derived in a physi-
cally well-motivated continuous-time random walk approach
f1,11g, offers the simplest possibility. We also note that the
scaling shown in Fig. 9 strongly supports the subdiffusive
model based on Eq.s8d. It seems difficult to reproduce this
scaling in a quite different theory.

In our calculations presented in Sec. III, the membrane is
assumed to be infinitely thin. Relaxing this assumption con-
siderably complicates a theoretical analysis of the problem. It
is not only the finite membrane thickness that should be
taken into account, but the membrane internal structure
should be modeled as well. In particular, one should answer
the question whether transported substance is accumulated
inside the membrane. If so, the membrane permeability

FIG. 9. The experimentally measuredd divided by the co-
efficient A given by Eq. s38d. The symbols are assigned as in
Fig. 2. The parameters equala=0.90 and D0.90=9.8
310−4 mm2/s0.90 for glucose and D0.90=6.3310−4 mm2/s0.90

for sucrose. For clarity of the plot the error bars are not shown.
The line represents the functiont0.45.
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might be time dependent. To avoid all these complications,
the membrane is infinitely thin in our analysis which is a
reasonable assumption as long as the membrane is suffi-
ciently thin. sThe thickness of the membrane used in our
measurements was below 0.1 mm.d However, we expect that
our method to determine the parametersa andDa also works
for finite-width membranes. First of all, the temporal evolu-
tion of the near-membrane layer was shown to be fully inde-
pendent of the boundary condition at a membrane in the
long-time approximation. Our numerical calculations also
suggest thatdstd does not depend on the membrane. Finally,
we observe that for the near-membrane layers3d only the
relative substance concentration atx=d and at the membrane
surface sx=0d matters. Therefore, it is expected that the
membrane properties do not influence the time evolution of
the near-membrane layer.

Our method to determine the subdiffusion parameters uses
the membrane system. While the membrane plays here only
an auxiliary role, it should be stressed that the transport in
membrane systems is of interest in several fields of technol-
ogy f24g, where the membranes are used as filters, and bio-
physicsf25g, where the membrane transport plays a crucial
role in the cell physiology. The diffusion in a membrane
system is also interesting by itself as a nontrivial stochastic
problem; see, e.g.,f16–18,20g. Thus, our study of the sub-
diffusion in a membrane system, which to our best knowl-
edge has not been investigated by other authors, opens up a
new field of interdisciplinary research. It is also worth men-
tioning that our interferometric setup can be used to experi-
mentally studysanomalousd diffusion not only in membrane
systems. In particular, we plan to perform measurements on a
system with no membrane where the sugar is transported
directly from the water to gel solvent. However, there are
problems keeping fixed the geometry of the whole system in
the course of a long-lasting diffusion process.

At the end let us summarize our considerations. We have
developed a method to extract the subdiffusion parametersa
andDa from experimental data. The method uses the mem-
brane system, where the transported substance diffuses from
one vessel to another, and it relies on a fully analytic solution
of the fractional subdiffusion equation. We have applied the
method to our experimental data on glucose and sucrose sub-
diffusion in a gel solvent and we have precisely determined
the parametera and the subdiffusion coefficientDa.
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APPENDIX A: WALL RELATION

We derive here the integral relations13d which after the
Laplace transformation reads

Ĝ+−sx,s;x0d = Ĵ+−s0+,s;x0dĜrefsx,s;0+d. sA1d

We have introduced here the indices1 and2 which corre-
spond to the signs ofx and x0. Sincex.0 andx0,0, the
Green’s function is labeled with12.

Because the currentJsx,s;x0d is expressed, in accordance
with Eq. s17d, as

Ĵsx,s;x0d = − Das1−adĜsx,s;x0d
dx

, sA2d

and the general solution of the subdiffusion equation is, as
discussed in the Appendix C, given by Eq.sC2d, the current
equals

Ĵ+−s0+,s;x0d = ÎDas1−a/2Bssd +
1

2
ex0

Îsa/Da

= ÎDas1−a/2Ĝ+−s0+,s;x0d. sA3d

As the Green’s function of the system with the reflecting
wall at x=0 is given by Eqs.s23d, s24d, ands26d, we have

Ĝrefsx,s;0+d =
1

ÎDas1−a/2
e−xÎsa/Da, sA4d

and due to Eq.sA3d, the expression on the RHS of Eq.sA1d
equals

Ĵ+−s0+,s;x0dĜrefsx,s;0+d = e−xÎsa/DaĜ+−s0+,s;x0d. sA5d

EquationsC2d allows one to write down the Green’s func-
tion from the LHS of Eq.sA1d as

Ĝ+−sx,s;x0d = e−xÎsa/DaĜ+−s0+,s;x0d. sA6d

Comparing Eq.sA5d to Eq. sA6d, one finally finds the wall
relation sA1d.

APPENDIX B: FUNCTION Ŵ

We derive here Eq.s21d. Taking the Laplace transform of
the boundary conditions18d, replacing the concentration pro-
files by the Green’s functions, and puttingx0,0, we get

b1Ĝ−−s0−,s;x0d + b2Ĝ+−s0−,s;x0d + b3Ĵs0,s;x0d = 0.

sB1d

Using Eq.sC2d, one finds

Ĝ−−sx,s;x0d = AssdexÎsa/Da +
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da,

sB2d

Ĝ+−sx,s;x0d = Bssde−xÎsa/Da +
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da.

sB3d
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The Green’s functionssB2d and sB3d provide, via Eq.s17d,
the currents

Ĵ−−s0−,s;x0d =
1

2
ex0

Îsa/Da − ÎDaAssd, sB4d

Ĵ+−s0+,s;x0d =
1

2
ex0

Îsa/Da + ÎDaBssd. sB5d

Due to the current continuity equations16d, Assd=−Bssd and
the current, which enters the boundary conditionsB1d, equals

Ĵ+−s0+,s;x0d. Substituting the expressionssB2d, sB3d, and
sB5d into Eq. sB1d and using the equalityAssd=−Bssd, one
finds

Bssd =
b1 + b2 + b3

ÎDas1−a/2

2ÎDas1−a/2sb1 − b2 − b3
ÎDas1−a/2d

ex0
Îsa/Da.

sB6d

The functionBssd determines the currentsB5d which, substi-
tuted into the definitions15d together with the initial condi-

tion s10d, provides the functionŴssd, as given by Eq.s21d.

APPENDIX C: SOLVING THE SUBDIFFUSION
EQUATION

We briefly present here a procedure of solving the subdif-
fusion equations8d with the boundary conditionss16d and
s19d and, respectively, Eqs.s16d ands20d. Taking the Laplace
transform of Eq.s8d, we obtain

Ĉsx,sd − s−aDa

d2Ĉsx,sd
dx2 − Csx,0d = 0, sC1d

where, as previously, we use carets to denote the Laplace-
transformed functions. The solution of Eq.sC1d with the ini-
tial condition s11d reads

Ĝsx,s;x0d = AssdexÎsa/Da + Bssde−xÎsa/Da

+
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da, sC2d

where the functionsAssd and Bssd are determined by the
boundary conditions.

1. Boundary condition A

The Laplace transform of boundary conditions19d is

Ĉs0+,sd =
1 − s

1 + s
Ĉs0−,sd. sC3d

Proceeding analogously to the case of normal diffusion
f17,18g, we find the Green’s functions obeying the boundary
condition sC3d as

Ĝ−−sx,s;x0d = Ĝ0sx,s;x0d + sĜ0s− x,s;x0d,

Ĝ+−sx,s;x0d = s1 − sdĜ0sx,s;x0d, sC4d

where Ĝ0 is the Laplace transform of Green’s function for
the homogeneous system without a membranes24d; the in-
dices1 and2 of the Green’s functions refer to the sign ofx
andx0, respectively.

To compute the concentration profiles we use the Laplace
transform of the integral relations12d which takes the form

Ĉsx,sd =E Ĝsx,s;x0dCsx0,0ddx0. sC5d

Now, we substitute the Green’s functionsC4d into Eq. sC5d
and use the formula

L−1ssne−asb
d =

1

bas1+nd/bH1 1
1 0 1a1/b

t * 1 1

1 + n

b

1

b
2 , sC6d

which is derived in f13g using the Mellin transform
techniquef22g. Here,a,b.0 while the parametern is not
limited. After simple calculations, we finally find the solution
s40d.

2. Boundary conditions B

The subdiffusion equations8d is solved by the Green’s
functions of the form

Ĝ−−sx,s;x0d = A1ssdexÎsa/Da + B1ssde−xÎsa/Da

+
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da, sC7d

Ĝ+−sx,s;x0d = A2ssdexÎsa/Da + B2ssde−xÎsa/Da

+
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da. sC8d

The functionsA1ssd, A2ssd, B1ssd, andB2ssd are now deter-
mined by the boundary conditionss16d ands20d which after
the Laplace transformation takes the form

Ĵs0−,s;x0d = Ĵs0+,s;x0d, sC9d

Ĵs0,s;x0d = l„Ĝ−−s0−,s;x0d − Ĝ+−s0+,s;x0d…, sC10d

with the Laplace transform of subdiffusive flux given by the
formula f15g

Ĵsx,s;x0d = − Das1−adĜsx,s;x0d
dx

.

For the infinite system, one demands vanishing of the
Green’s functions forx→ ±`, which gives B1;A2;0.
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Substituting the Green’s functionssC7d and sC8d into the
boundary conditionssC9d and sC10d, we obtain

Ĝ−−sx,s;x0d =
1

4l + 2ÎDas1−a/2
esx+x0dÎsa/Da

+
1

2ÎDas1−a/2
e−ux−x0uÎsa/Da,

Ĝ+−sx,s;x0d =
4l

4l + 2ÎDas1−a/2

1

2ÎDas1−a/2
e−sx−x0dÎsa/Da.

sC11d

Expanding the functionsC11d into a power series with re-
spect tos and using the initial conditions10d, the integral
relationsC5d provides, with the help of the formulasC6d, the
solution s41d.
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