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Simulating mesoscopic reaction-diffusion systems using the Gillespie algorithm
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We examine an application of the Gillespie algorithm to simulating spatially inhomogeneous reaction-
diffusion systems in mesoscopic volumes such as cells and microchambers. The method involves discretizing
the chamber into elements and modeling the diffusion of chemical species by the movement of molecules
between neighboring elements. These transitions are expressed in the form of a set of reactions which are
added to the chemical system. The derivation of the rates of these diffusion reactions is by comparison with a
finite volume discretization of the heat equation on an unevenly spaced grid. The diffusion coefficient of each
species is allowed to be inhomogeneous in space, including discontinuities. The resulting system is solved by
the Gillespie algorithm using the fast direct method. We show that in an appropriate limit the method repro-
duces exact solutions of the heat equation for a purely diffusive system and the nonlinear reaction-rate equation
describing the cubic autocatalytic reaction.
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[. INTRODUCTION us to determine the rate of convergence of the error intro-
] ) ] ] ] duced by the spatial discretization. This puts the algorithm
The Gillespie algorithn{1,2] is a stochastic method that on a somewhat more firm computational foundation than
is frequently used to simulate spatially homogeneous chembiyrevious works. We also investigate the regime in which the
cal systems with small reactant populations. Under ordinargimulation contains only a single molecule and show that,
circumstances such systems are naturally characterized lgain in an appropriate limit, Brownian motion is accurately
small length scales as well. Since diffusion is fast on suclsimulated. The algorithm displays similar numerical proper-
scales(e.g.,[3]) reaction-diffusion systems are natural mod- ties when chemical reactions are added to the system. Al-
els of small scale, spatially inhomogeneous chemical systhough the method trivially generalizes to Cartesian meshes
tems. Unless diffusion coefficients are artificially decreasedn any dimension, to make the analysis and numerical ex-
(as in macroscopic experiments on the formation of Turinggmples as simple and clear cut as possible we restrict our
instabilities, e.g.[4]) the range of length scale of such sys- attention to systems with one space dimension. The use of
tems iS on the Order Of a typ|ca| Ce”’ rough'y 0.1to ]m the f|n|te V0|ume methOd makes I|ke|y the eX'FenSiOﬂ Of the
In systems of this size the number of reactant molecules magpethod to unstructured meshes in higher dimensions and
only be in the thousands or millions. varlous_p035|b|llt|es along these lines are discussed in the
Recently interest has turned toward using the Gillespigonclusion. , .
algorithm fo simulate such mesoscopic, spatially inhomoge- WOrK in this area began with the suggestion of such an
neous systemfb,6]. The natural extension of the method is application by Gillespie h'”"!se[ﬂ]- Elf et al.[5],_and F“.Ck?
to discretize the reaction chamber into subvolurqesually and Schnakenburgb] have implemented algorithms similar

: to that described in this paper but on higher dimensional
squares or cubgsind consider them to be separate Chamber%artesian meshes. In both cases the manner in which diffu-

that are coupled by the addition of a set of reactions whicljq, is handled by the Gillespie algorithm differs from what

thdel d|:°_fu§|on. hSome_ form of the Gillespie ?Igl?”rt]hm 'S is presented here. These methods are also limited to uniform
then applied to the entire system consisting of all the reacq,aqhag and systems for which the diffusion coefficient is

ESE;IfeO:hee?r(]:h subvolume plus all the diffusion events Wh'Chconstant. In addition, no substantial code tests are given in

. : . . ither case. Lukkiert al.[7] describe an application of what
The purpose of this paper is to examine the numerical an

; : ) . . o essentially the Gillespie algorithm applied to a spatiall
computational issues involved in adding diffusion to the y P g PP P y

. X . ) . . ) inhomogeneous chemical system which does not strictl
Gillespie algorithm in this way in more detail than has been g y y

d 1 th | icul how h he diffusi speaking include diffusion.
one in the past. In particular, we show how the diffusive = o magter equation for reaction-diffusion systems was
rate constants can be derived from a finite volume discreti:

; : tudied by Baras and Mansd@]. They compare predictions
zation of the heat equation. We then show how the results o y o y pare p

o ! _ btained by the master equation to that obtained by simula-
a stochastic simulation can be compared against exact SOI_an of mesoscopic systems using Bird's algorithm. In their

tions of the corre;ponding reaction-rate equ_ations. This Stvork the domain was also one dimensional, although the
multaneously provides a method for code testing and enablgg,, \nqary conditions were periodic. Their simulations were

also restricted to uniform meshes and constant diffusion co-
efficients.
*Current address: Lawrence Berkeley National Laboratory, Mail ~ Slightly further afield but still related we find the cellular
Stop 50A-1148, One Cyclotron Road, Berkeley, CA 94720. Elec-automata simulations of Weim#8] and the pattern forma-
tronic address: dhbernstein@earthlink.net tion studies of Turk on triangulated surfaceld]. Similar
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ideas on the relationship between continuum equations andally, we assume that the events are exponentially
stochastic models based on discrete nearest neighbor interatistributed, i.e., the probability of reactigroccurring in the
tions can be found if11-13. The Monte Carlo part of the time intervalt+¢t to first order inét is a;6t where thea,
Gillespie algorithm appears to have been reinvented a nundepend only on the state of the system at tim&s pointed
ber of times and used in a wide variety of applications; se®ut in[17] this is only strictly valid for dimolecular reactions
for instance14-16. although it can be argued for monomolecular reactitass
The underlying model assumed in what follows is that wewill be necessary lat¢rand holds approximately for trimo-
have a set of reactant molecules immersed in a solvent ardcular reactions. From these assumptions it can be shown
that the reactants undergo collisions with solvent moleculethat the reaction probability density function is given by
much more frequently than they do with each other. This is .
in addition to the assumption, as per the original algorithm, P(7,j) = & exp(-ar) (2)
that nonreacting collisions between reactants greatly outyhere
number reacting collisions. The explicit addition of a solvent
to the model is required to justify the Brownian motion of R
the reactants in the limit in which their populations are very a= 2 . 3)
small. Note that these assumptions imply that the mean free =
path of the reactant molecules is negligibly small, muchP(r,j)dr is the probability that at timeé the next reaction
smaller than any other length scale in the system. will occur in the interval(t+ 7,t+7+d7) and will be thejth
The outline of this paper is as follows. Section Il containsreaction of the system. Given the state of the system at time
a brief review of the GIIIeSple algorithm while Sec. Ill shows t the core of the a|gorithm is a procedure for Se|ecting the
how the diffusion part of the reaction-diffusion system isnext reaction and the time it is executed in such a way that
incorporated into the algorithm. Section IV gives an over-gyer many simulation§?) is reproduced exactly.
view of the algorithms and data structures that make up the There exist several equivalent procedures for selecting a
code. Section V details tests of the code on a purely diffusivepair (7,j). The merits of each of these will be discussed in
system. In Sec. VI we examine a nonlinear reaction-diffusiorgec. |\. Here we give the basic algorithm, called the direct
system and test the code on an exact traveling wave solutiogaethod, a version of which will be used in the final code. Let

We summarize the work in Sec. VII. U;,U, € (0,1) be independent, uniformly distributed random
numbers. Then thgh reaction will be executed if
Il. THE GILLESPIE ALGORITHM -1 i
The Gillespie algorithm is a well-known stochastic Za<ays<Xa (4)
r=1 r=1

method in which the number of each chemical species is

considered the independent variable and each reaction thgd the time at which it is executedtis - where

system undergoes is executed explicitly. Hence the time evo-

lution consists of a number of steps with each step being the In uy 5)

T=—-——

execution of a specific reaction at a specific time. After a a
reaction is executed the number of molecules of each of the . . )
affected species is updated according to the reaction formula 1h€ quantitya; is often referred to as the propensity for
and the evolution goes on to the next step. Each reaction f&&ction;. Its relation to the familiar rate consteKjtis given
assumed to be independent of the preceding one so that tHa [1,2] but it will be convenient to summarize the results
evolution of the system is a Markov process. This sectiof’®'® for mono- through trimolecular reactiofeactants:
contains a review of only those elements of the method thaf"OPeNSIty
will be necessary for what follows. The reader is referred to @KV,
[1,2] for more detailed discussions.

The algorithm makes the following assumptions. We have

. - . A:KA,
a chemical system consisting 8fspecies whose state at a
given timet can be characterized by an integer valued tuple 1
{S}, 1=<i<S where§ is the population of species.SNe A+B:kABVY,
use the convention that italicized symbols represent numbers
(i.e., populationsand their nonitalicized counterparts repre- 2AKAA- 1V, (6)
sent names. The dynamics of the system are represented by a
set of reactions of the form A+ B+ C:KABCV?Z,
kl’
@S+ Sy + - + asSs——— BiSi+ BrS;+ - + BSs 2A+B:KAA- 1BV ?,
(1)

o 3AKAA-1)(A-2V2
whereaj and B/ are non-negative integer constaftise re- ( ) )

actant and product coefficients, respectiyelpdr is an in-  Herek is the appropriate rate constant ané the volume of
dex which runs over the number of reactionssd<R. Cru-  the reaction chamber or element.
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. DIFFUSION actual chemical system and that in the master domain is the

. . e . ., obvious one: species A is representedebspecies labeled A

in Lnng"zifne:;';ngias:ot:’; hs?;'nvudlggzlog Ot%:nézﬁigu:zrglni_vvith the index indicating which element is occupied. The

rithm. As in previous work[5,6.8, the ybasic idea Fc))f theg results of a simulation in the master domain can be trans-

methbd is to dpivide the domair,I i,nt<,) a number of subvolumesforrned back into the problem domain when convenient, e.g.,
for purposes of visualization. Note that the assumption of

\t’)\':'gg gfa\tlg”reC:éltii)lne?r?::r?k’):rgdv\fﬁigr? gsrfi:)lah?e?jliyiqaz:o niform concentration in each element implies homogeneity
P P 9 Y the master system. The use of the Gillespie algorithm on

a_IIowmg th_em to exchange mplec_ules in a way designed e master system differs from its ordinary usage only in the
simulate diffusion. The coupling is formulated as an addi-

. . : : N e
tional set of reactions which are appended to the list Ofcalculatlon of the propensitt), in which the facton" var

. ) . : . ies according to the volume of the element the reaction is
chemical reactions taking place in each element. This mast%sking place in

list is then processed by the Gillespie algorithm resulting in a Let R be the number of reactions in the chemical system

CoTr?lsgj;??ﬁg?tnr;glgﬁSIi?\glSGITIZ?tIiZnél orithm be a Iicableandn the number of neighbors of each element. Since each
9 P 9 PP element contribute® chemical reactions an8n diffusion

touitrrée tﬁgterpr:gatl:(;?\ig?\?rgii(;):scqc;lrg;g 'Qeeggzsﬂirrgznzr\:\i’%rrﬁqr'eactions to the master system the total number of reactions
quire . . . . 'In the master system is approximatd®/=E(R+Sn) (ele-
This is equivalent to saying that each molecule in a glVenments with faces on a boundary may contribute more or less
element will have an equal chance of interacting with any, y may

other molecule in the same element in a typical time intervafhansnreaCtIonS depending on the boundary conditions im-

between chemical reactions in that element. In order for thigOsed therk For instance, if the chemical system contains a

to be true the diffusion time across each element for ever{EeaCtlon of the form A+B-C then the master system will

species should be much less than the typical reaction time. Osnt%'.?rE reachoni of the tfhorm HtBi_’Cit' S'T}'Iarly’t;hef
h is the length scale of an elemem, a typical diffusion A nA'A u;'otn rﬁ\ai 'OnT In I € master SXES erln avi: e orm_
coefficient, andd the dimension of the domain, then this “i /Y- NOt€ thal MOIecUles In separate elements are pre
requirement is \{ented from reactmg. in the master system because no reac-
tions on the master list allow them to do so.
h2
~—x
72" @) B. Diffusion in one dimension
where 7¢ is a typical time interval between chemical reac- Consider the case of the diffusion of a single species U on
tions. However,7p will also be the approximate diffusion a nonuniform grid in one dimension whose elements are la-
time between elements, so this requirement is equivalent tbeled by an index. The master system will then hake
saying that the typical rate of diffusion events, i.e., transferspecies labeled U We consider a model of diffusion
of molecules between elements, is much greater than that efhereby each element exchanges molecules with its nearest
the chemical reactions inside the elements themselves.  neighbors only. In the master system the exchange is repre-
Note thatr will be approximately the inverse of the pro- sented by the transformation of a molecule of speciesU
pensity given in(6). These are of the form of a rate constantone of species |J This suggests a set of reactions fordf
multiplied by zero or more concentration values multipliedthe form
by a single population value. Hence the propensity scales as
the element population which is proportional to the element
volume which in turn is proportional to®. Thus 7 scales as
h™@ and so the validity of the above inequality improvesas Kipi Kogi
is reduced. _ _ _ _ _ Usy—— U, U_j— U, (8)
Whether or no{7) holds in a given simulation can easily
be checked by comparing the number of diffusion eventdvherek;; denotes the rate governing the reaction that trans-
involving an element to the number of chemical reactions. Iforms U into U;. Using the standard procedure, this set of
the example simulation in Sec. VI diffusion events typically reactions results in the reaction-rate equationdpr
outnumber chemical reactions by a hundred or more to one. du

d_ti == (kijir1 t ki ji-DUi + KU + ki jUisg - (9)

kij+1 Kiji—1
U—— Uy, U—— Uiy,

A. The master system where we have used the homogeneity of the master domain.

It will be convenient to think of the reaction-diffusion The reader familiar with finite difference or finite element
system not as an interaction betwe®ohemical species in a methods will recognize that the resulting set of coupled or-
spatially inhomogeneous domain which has been subdividedinary differential equations for the time evolution of the
into E elements but as the interaction 8E species in a variablesU; is in the same form as that resulting from a
homogeneous domain of unit volume. This larger chemicakpatial discretization of a first order in time partial differen-
system, which we call the master system, operating in a fictial equation(PDE) using the method of lines, where the
titious unit volume domain enables us to use the Gillespidorm of the spatial operator and the nature of the discretiza-
algorithm in its original form. The relationship between thetion are undetermined at this point. We next show that the
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rate constants can be set so tk@tis an approximation to b 1 (hi hi+1> -1 an
the heat equation. i+l = h+h.,\D Dy
C. Finite volume approximation which in the case of a uniform grid reduces to the usual

i L= . X -1
Let u(x,t) be the concentration of species U. The two harmonic averag®; j,;=(1/D;+1/Dj.1) ™

fundamental continuum equations governing diffusion are mljfvv\Yr?t c(cir:);z?]etru;:]ui/ fhi-tt% bﬁtﬁle?e:t-i?ngerre}dr\{{arrlriblis
the conservation of mass a € erms ofy; then the truncalion error term o

the right hand side i©(h) whereh indicates the size of the

au largest element in the mesh. However we will see later that
P =-Vv.J (10 the L., norm of the error of the overall scheme converges as
h?. This increase in the rate of convergence over that of the
and Fick’s law for the fluxJ truncation error is known as supraconvergence and is a com-
mon feature of finite volume approximations to systems
J=-D(X) Vu. (1) pased on conservation la20].

Thus a solution to the systef®) will generate a set of
element-centered concentration valugshaving an error
compared to the exact solution of the heat equation which

ill decrease a$’ assuming the time integration is exact.
he Gillespie algorithm is such an exact time integrator in
the sense that the only error associated with it is a sampling

U, error.
i -J_ V - Jdx=3(ci-h/2) - I(ci+h/2) (12 Note that on a uniform grid with a constant diffusion co-
: efficient (15) reduces tok ;=Dh™2 which is the expression

wherec; denotes the center of eleménCentral to the finite  Used in[5,6,8. In addition, (9) reduces to
volume method is the approximation used for the flux on the

In this paper we consider the case in whighis allowed to
vary in space but not in time.

We start by integrating10) over element and use the
divergence theorem to evaluate the volume integral on th
right hand side,

boundaries of each element. Here we approximate the gradi- ay -D Uiva = 2Ui+ Uiy (18)
ent ofu at the left boundary by dt h? '
Vu(c - h/2) = u(c) —u(ci) _ 1 (Q _Ui_-1) which is the familiar second order centered rule for finite
L Ci—Ci—1 CG—-C-1\h h_4 differences.
(13

. ] D. Boundary conditions
Performing the same procedure at the right boundary, em-

ploying (11), and inserting intq12) yields The natural condition for a closed microchamber is that
no molecules move through the boundary. Since the rate con-
U, ( Dji-1 D1 ) U Di_1; stants in(15) are associated with faces of the mesh this con-
Zio_u - N ) .
ot "\hici—c4  hilci—cil e - iyl dl'tlon is enforced by setting the rate cor?stants'gssoc':lated
with faces on the boundary to zero. That this condition yields
+U Di+1j (14) an approximation to a Neumann condition can be seen by
" st = Ciaa rewriting the flux approximatior(13) in terms of the rate

_ - o . constants and noticing that the flux across the boundaries is
whereD; ; is the diffusion coefficient evaluated at the inter- zerg,

face between elementsandj. This suggests setting the rate  Dirichlet conditions can be modeled as follows. Let the

constants in(9) to leftmost interval have index 1 and let a fictitious element to
D its left have index 0. The rate equation fof i$

—— i-jl=1,

ki;=1 hilci - ¢l (15 duy,

0, otherwise. dt

The diffusion coefficient at the faces of the mesh is evaluategthg second and fourth terms represent molecules leaving and
using the well-known weighted harmonic averag®g.,  entering the domain through the left boundary which can be

=~ (kg 2+ kg 9Uq + Ky 1Uo + kg 1U. (19

[18,19) represented by the reactions
1 (% ds \™ .
D .= — 16 1,0 ko,1
N (ICi-lefci D(S)> (10 Uy—— @, @ ——U,. (20)

where the integral is along the straight line joining the cen-The two rate constants can be set by choosing a reasonable
ters of the two elements. F@¥(x) piecewise constant in one value for h,, one that is comparable to other values in the
dimension this is system. For instance, choosihg=h; gives
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D Ug Dgalg constant time operation. We also note that the current imple-
Ki0= F Ko,1= Do,1$hl = h—1 (21) mentation in the code described below is that of a straight-
1

forward binary tree. This means that the depth of the tree can
where ug is the boundary value of the concentration. Thebe as high as 20 or 25, i.e., the tree may have tens of millions
choice ofhy, and consequentliy o andk, ,, effectively de-  of leaves. At this depth, these types of trees often suffer in
termines how rapidly the Dirichlet condition is able to re- performance due to cache related problems. Although we
spond to changes in the concentration near the boundary. have not observed this in the examples described below it
seems prudent to warn the reader that they may occur in
higher dimensional simulations with larger meshes and more
complex chemical systems.

The number of reactions in the master system can easily

be in the millions for even a modest mesh and a small set of

chemical reactions. Thus efficient data storage and fast algo-

rithms are required to make the simulation feasible. Fortu- The code used in the examples below is writternirsi

nately this work has already been done in order to address++ and relies heavily on the standard template library. The

the needs of simulating large chemical systems with mangode was built usingoDE WARRIOR Vg optimized for speed,

reactions. In this section we give a brief overview of theseand run on a single processor of a dual 2 GHz, 1.5 gigabyte

methods and their implementation in the code that is used iiendom access memory RAM, Macintosh G5 running oper-

the rest of the paper. ating system 10.3.5. In a typical simulation with a moder-
ately large tree(10° leave$ the code executes about 3
X 10P reactions per second.

IV. ALGORITHMS AND DATA STRUCTURES

B. The code

A. The fast direct method

As is well known both of Gillespie’s original algorithms
for computing the next reaction and its execution time, called
the direct method and the first reaction method, are not effi- ;¢ running time of the code is a function BfR, S, and

cient when the number of reactions is very large. As a resulfy a5 well as the total number of molecules in the simulation.
a series of fast versions of both algorithms have been develyoyeyer, as stated above the model assumes that the slowest
oped. The fast version of the direct method involves a binary;s,sion process in a given element is much faster than the
tree while the fast version of the first reaction method in-fzstest chemical process. This means that in any given simu-
volves a priority queue. Both methods require time 10 pro-jation the number of diffusion events will greatly outnumber
duce a pair(7,j). They differ primarily in two respectsi)  the number of chemical reactions. Hence the running time of
the constant in front of the term, an@) the number of  {he code will be determined primarily by the diffusion part of
uniform random numbers needed. _ the simulation and this in turn will be determined by the
In our experiencelii) is not a concern since the speed of species which undergoes the most diffusion events. Thus the
thg random number generator is not a bottleneck in the_s'm%omplexity of the algorithm will depend primarily on two
lation. In the examples below we have used the 32-bit nuyyantities: the number of molecules of this species and the
merical recipes routinesanz andrANS [21] and the 64-bit  nymber of elements in the mesh. In the case where all spe-
routine LSFR258[22]. The last is roughly three times slower cjes have similar diffusion coefficients this number is just the
than RAN3 but the resulting simulation time is only a few tota] number of all species. Hence in this section we will
percent longer. Most of the simulation time is spent recoM-xyamine the scaling of the running time of the code in the
puting the rates of affected reactions and updating the corrgsase of the pure diffusion of a single species. Since the for-
sponding data structures. . mulas here are easily generalized to more than one space
We have chosen to use the fast direct method over thgimension we do so; the reader should keep in mind that the

next reaction method of Gibson and Bru@3] even though  examples in the sections which follow are all performed with
it is likely to be inferior regarding pointi). The reason for 4=1.

mesh refinementAMR). AMR will involve the dynamical  of one species A. Fror(E) we see that a typical time step has
addition and subtraction of reactions from the system and itj;e
is unclear how to maintain the priority queue under these
conditions. The maintenance of the binary tree in the direct , 1
method, however, is conceptually straightforward since reac- R
=|2a
r=1

C. Complexity

tions appear as leaves of the tree, which can easily be added (22)
and removed.

Since details of the binary tree used in the method are
given in[24,23 we will not repeat them here but will merely If h is a typical element length scale then accordind&p
make the following observations. Because of the nearesind(15) a, «Ah™2 whereA, is the number of molecules in
neighbor model of diffusion the dependency graph of theelement. There aren diffusion reactions per element, with
master system remains sparse so that updating all of the rthe number of neighbors of each element, so fRatnE

actions dependent on the outcome of a given reaction is which gives
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25 that the PDE method uses an implicit scheme with update
(a) time per step ofO(E E). In order that the comparison be
meaningful we require the PDE method to be second order in
space and time, i.e., that it has a truncation error which scales
asO(h?,(At)?). Hence in order that this error scale l&swe
should haveAtsh which leads toNgxh™«EY so that the

run time should scale as

Tepe= O(EM M E). (26)
E The ratio of this time td25) is

-
)

log 0 [quantity]

15 2 25 T
log, , [E] TPIrDE = O(NE1+14d) (27

2 so that for smallN the stochastic method is favored in all
(b) dimensionsgd>1. On the other hand, for fixel the scaling
favors the PDE method in the limit of large, which is
precisely the limit in which the continuum approximation
becomes valid. This is not surprising since the magnitude of
a concentration appears as an amplitude in a system of PDEs
so it does not affect the complexity. Note that here we are
comparing the simulation times for a single run of both
methods. In some cases, as in the sections which follow, it

—
- n

log 10 [quantity]
[=)
o

o

5.
o N(10%

-05 will be useful to compute an average over a very large num-
—_— T/Iogw(E) . .
ber of runs. In this case the average solution may be mean-
1 25 3 35 ingfully compared to the result of the continuum approxima-

log, , [NI tion method and it would be appropriate to append a factor of
M2 to T, whereM is the number of runs. In this case the
FIG. 1. lllustration of relation$24) and(25) in one dimension.  stochastic method suffers considerably because of the slow
(a) shows logoNs and log(T;/log;o E) vs logo E for N=1000.(b)  convergence of the sampling error.
shows the same quantities vs Jgjl for E=80. Least squares fits to
the data in(a) give slopes of 2.02 and 1.84 fdis and T,/log;oE,
respectively, while fits to both curves {h) give unit slope. The run V. TESTING DIFEUSION
time is in seconds and the number of steps is in units 8f 10
The purpose of this section is to determine whether or not

E -1, the simulation of diffusion by the Gillespie algorithm in the
o | S AN2| o h® (23) manner outlined above works. We do this by performing two
i ! ' tests:(i) comparison of the simulation to an exact solution of

_ _ the heat equation ar(d) comparison of the simulation to the
For a uniformly refined mesh the number of elements scalestatistics of Brownian motion. While these tests are essen-

ash™; hence a run to time has number of steps tially straightforward, there are one or two fine points that
need to be mentioned before we begin.

N~ t o ﬂz o NE2/ (24) First, note that the res_ult qf a single simulation is a ran-

7 h domly generated piecewise integer function over the grid.

. . . . . _Hence in order that a meaningful comparison be made to a
and since each step requires time proportional to the run timg, 51y varying exact solution the results must be averaged
T, scales as over many simulations. It is important to understand that this

T.= O(NE?E). (25) average solution is_ not guaranteed to be in some sense rep-
resentative of the final state of the system. This will happen
The scaling ofNg andT, is shown in Fig. 1 for a series of for instance in the case where the system undergoes a bifur-
runs on the unit interval. There is one species WiNh cation due to an instabilityas in pattern formation via a
=1000 andD=1. The initial distribution is uniform and the Turing instability). In general, we should anticipate that this
code is run tor =0.1. The run time is in seconds and and thesituation will arise whenever we have a system that is sensi-
number of steps is in units of 10The data are averaged over tive to initial conditions. However, there are other systems
five runs. for which the average solution does converge in a sensible
It is instructive to comparé25) with the complexity of a  way and this makes them ideal candidates for code testing.
simple finite element or finite difference code for approxi- For these cases, averaging over simulations makes sense
mating solutions of the heat equation. For the purposes aind for the type of test described below the fluctations about
this comparison we ignore the important issues of stiffnessthe average solution can be regarded as a type of sampling
automatic time stepping, mesh refinement, etc. We assunesror which can be decreased by increasing the number of
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simulations. In this case the only property of the fluctuations 05 fg
we will be interested in is their mean. In general though )
other statistical properties of the fluctuations will be more
important. Indeed, one of the attractive properties of the 15
Gillespie algorithm is the possibility that it can reproduce in
a natural way the statistical properties of real systghT$.

—6— Average

—+&— Maximum

log 10 [error]

A. Initial data

To begin a simulation the code reads a data file containing
among other things a set of user specified concentration -3.5
functions which determine the average initial conditions. For
a single species A let this function béx). The starting point log,  [M]
of a simulation is the initial distribution of molecules among
the elements, which, as noted above, is a piecewise integer FIG. 2. Convergence of the error measu(@3) for initial data
function over the domain. This function cannot be identicalon the unit interval. In this exampE=50,n=3, andA=500. Least
for each simulation because on average it would not represquares fits to the data give slopes of 0.5 and -0.48 for the average
senta(x) very well. In this section we show how the initial and maximum error, respectively.
distribution is generated from a probability distribution so
that when averaged over many instances it does converge to To see this in practice consider the errorAn, and de-

ax). note bye  its average oveM runs,
Let A;, be the number of molecules initially placed in "
element for simulationu. The procedure for generatirg , _ 12 1 A 32
is as follows. First the total number of molecules in the simu- &M=V = A (32)
|

lation is computed frona(x). In some cases the total number
of molecules can be computed exactly but in general an apAfe look at the average and maximumepf, over the mesh,
proximation

E
_ 1 R
_ - E_ eM:EE levl  &u= max|e y. (33
A:J a¥)dx=2, | axdx= > A (28) i=1 1=1=E
=1 =1 Figure 2 shows the convergence of these two quantities for
can be used, wherd is a suitable quadrature @fx) over initial data given by(35) with n=3 andA=500. The mesh
elementi. Even though an exact expression is available forconsists of 50 evenly spaced elements.

the test systems below, in what follows the trapezoidal rule is

used to Computai in order that the results be more repre- B. Time evolution with constant diffusion coefficient
sentative of what might be encountered in practigas of In this case the concentrati@(x,t) obeys
course noninteger in general. Let the total number of mol-
ecules for simulationw be generated randomly frok by 92 - Dﬁ ’9_5‘(0) = &_a(l) =0. (34)
_ g ox® o X
— J1, u< . . L
A, =|Al+ u fradi), (29 SettingD=1, an exact solution on the unit intervid, 1]
0, u=fracA), satisfying the boundary conditions is
whereu e (0,1) is a uniform random number artaj and a(x,t) 5A[1+ 1/2g7 ™0 cognmx)] (35)

frac(A) are the integer and fractional partsAffrespectively.  \yheren is a non-negative integer. Note that the total number
The function P;=A//A is treated as a discrete probability of A is A.
distribution which is sampleé,, times, the outcome of each | this section we look at the convergence of the error

sample being used to incremedt, (henceA,=ZA; ). measureg33) for the time evolution. To do this we replace

o B I ey A n (32 with A) computed flom(. From the xac
9 solution we see that the difference between the maximum

— o0 in the sense that the averages . . ~ o~
and minimum values o&(x,t) will decrease fromA to A/2

1 M 1 M in time
A= 2 A A= 2 A (30
u=1 pn=1 In2
== (36)
. n?m?
will obey
o o which gives us a reasonable time at which to end the simu-
Ay — Al M7Y2 A = A e MTY2, (31) lation. Note that since the time incrementsare randomly
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FIG. 3. Average solution of the initial datéop curve and evo-
lution to T=0.0078(bottom curvé on a randomly spaced grid. Here
n=3, E=50,D=1, R:SOO, andM =1000. The solid circles are the
average concentration while the solid line is the exact solUB&n

log 10 [error]

generated it is very unlikely that the cumulative simulation
time will reachT exactly. Nevertheless, each simulation can
be stopped precisely dt Suppose that a reaction takes the
system from timel,;<T to time T,>T. Thus we may infer
that the state of the system &tmust have been the state it
was in at timeT, since by definition the system does not 1 2 3 4
change state between reactions. Hence each simulation pro- log, o M]

ceeds until a reaction is chosen such that the total simulation

time exceedsT, at which point the simulation is stopped . S
b PP on an evenly(a) and randomly(b) spaced grid. Fits ta,, yield

without executing the reaction. ; o o
Recall that ea?:h simulation is begun with a randomly gen_slopes of_ —9.52 and -0.5, respectively. The diffusion coefficient is
erated set of initial data using the algorithm in the previousSet to unity in both cases.

section. We can define an average concentration vains ] ) o ] o o
as C. Time evolution with discontinuous diffusion coefficient

FIG. 4. Convergence to the exact solution of the heat equation

In this section we repeat the tests on the unit interval
above but with the inhomogeneous diffusion coefficient

M
1 _
ai,M:ME ANt (37) 1, 0=x<025,
pn=1 D(X) = (38)

5, 0.5<x=<1.

D(x) is chosen to be discontinuous rather than smoothly

A typical plot of g y, for 1000 simulations is shown in Fig. 3. . - . :
. - . varying because we anticipate that this case will be the one
In this figuren=3, A=500, and the mesh consists of 50 ran- o ost likely encountered in practice.

domly sized elements created by randomly generating 0.1 g gjgenfunctions and eigenvalues of the weak form of
<h,=<1 and scaling to the unit interval.

Next we inspect the error measur&3). We setn=1
which givesT=0.07. Figure 4 shows the two error measures
for a set of 10 runs toT=0.07 on a mesh with 50 equal size

elements and with 50 randomly sized elements. The number, .
. ~ . with Neumann boundary conditions are
of molecules is set &A=500 in both cases.

Again the slope is about —1/2 in both cases. As in Fig. 2, {
fo(x) =

K

I 2
ax(D(x)(y)() N =0 (39

Pn COIAX), 0=x=<0.5,

it appears that the curves in Fig. 4 are converging to zero -
cod\y(1 -x)/V5], 0.5<x=1,

error in the limitM — oo, However, unlike the results for the
initial data, we show in Fig. 5 that this is not the case. Here
the time evolution is performed on a coarser grid and we us@ith \, given by the roots of

n=3in (35). In Fig. 5@ we see thag, for E=20 equal size _ _

elements levels off at around 0.002Mt=10* and does not (1/V5)tan(\/2) + tan(\/2v5) =0 (41)
decrease further. Figurglh shows that this asymptotic sam-

pling error is related to the mesh spacimgnd scales als®. and p,, given by

(40)
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1 r2
—o— Average P(r,t) = m exp( ) (44)
ar

—+&—— Maximum

" 4Dt
which has the well-known expectation value
(r?y =2dDt. (45)

Let the molecule begin the simulation &0 in an ele-
ment with centerc, and end the simulation at timein an
element with centec,. A measure of45) over M runs is

log 10 [error]

1 Jo-cof?
== 2 _Su 46
M MEI 2dDt (4

my, measures only the mean value of the distribution. To see
the whole distribution note that in one dimension the prob-
-15 ability of the molecule ending up in an interval of width
centered ak is

_2 X+A/2

(47)

p(x,t,A) = erf(%)

\“‘34Dt x=A/2

With D=1 the typical time to diffuse from the center of the
unit interval to the boundary i§,=1/8. We set thetopping
-3 (b) time to a small fraction of thisT=0.005, in order to make it
very unlikely that the molecule reaches one of the boundaries
16 4 92 o o8 by the end of the run. The results f46) and (47) of the
‘  log,yIh__] ‘ random walk of a single molecule in one dimension for a
series of 5< 10* runs are shown in Fig. 7. The spatial dis-
FIG. 5. Demonstration of the spatial discretization error. In thesecretization error discussed above should be kept in mind
examples1=3 andT=In 2/(972) ~0.0078. In(a) we show the error  when considering this figure. We expect the error in the ran-
measures foE=20 on an evenly spaced grid. The asymptotic valuedom walk to have the San@(hz) dependency as the previ-
of ey is about 0.002. Inb) we plot the asymptotic value &y vs  gus results.
the maximum element size for a series of evenly and randomly
spaced grids with 1&E<40. Fits to the data give slopes of 1.92 VI. NONLINEAR WAVE PROPAGATION
and 2.11, respectively.

log 10 [Average error]

max

The cubic autocatalytic reactiqsee, e.g.[25])

k

_ cog\/2\5) (42) A+2B—3B (48)

7 coghy2) . . . . .
is at the heart of several interesting and well-studied nonlin-
Similar to the above, we choose the following linear combi-ear chemical systems, the archetypal example being the

nation of the zeroth and second eigenfunctions: Brusselator[26,27. In one dimension it becomes a good
~ 2 candidate for algorithm testing as a reaction-diffusion system
a(x,t) = A[1 + 1/4e7'f,(x)], (43)  pecause of the existence of a traveling wave solution whose
where\,~9.0065 andh,~2.0651, and set the stopping time Wave front has a constant velocity and sh_ape.. In additior) we
to T=In 2/)\5%0_0085. will see that the averaging procedure outlined in the previous

Figure 6 shows the average solution ovef fifhs against section appears to make sense for this system with the initial
the exact solution(43) on an evenly spaced 40-element conditions described below.
mesh. Measuring the spatial error with the method outlined

above shows that the convergenceOgh?) in this case as ) o
well. Let the two species A and B have the same diffusion

coefficient D and concentrations(x,t) and b(x,t). If the
initial value of a+b is constant in space theat+b will be

A. Wave propagation

D. Random walks constant in time as well and the reaction-rate equation gov-
The relationship between diffusion, Brownian motion, €Mingb reduces to
and random walks is well known. In this section we look at b b
the motion of a single molecule propagating on a mesh by e DW +kb’(ap-b), (49)

the algorithm above. If the molecule undergoes a random
walk starting at the origin at time=0 the distribution of its where a, is the initial value ofa+b. This can be put in
position at timet is given by dimensionless form by the scaling
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FIG. 6. The average solutigsolid circleg is shown against the 016 [Jx (b)
exact solutior(solid line) for a series of runs with the discontinuous 014 N
diffusion coefficient(38). The top curve is the initial data while the 042 X
bottom curve is the data at=0.0085. In this cas&=40, M =10, 5 \i
A=500, and the mesh is evenly spaced. g 01
T 008
< 0.06
b [k '
B=—, r=ka}, x=r i) (50) 0.04
ag D
0.02
An exact traveling wave solution fg8 of (49) is 0
_ 0 01 02 03 04 05
B(2) = exd- (1N2)(z-z)] (51) X
1+exd- (1N2)(z-z)] FIG. 7. Random walk data for a series 0k3.0* runs. The mesh
consists of 1000 randomly sized elemeilis; 1, and the run time is
where T=0.005.(a) showsmy vs M while (b) shows the distribution of
1 x=|c,—co| at T=0.005. The solid circles are the exact distribution
z=x-cr, Cc=-=, (52 (4D
V2
. . . . ~1003 i
andz, is a constant of integration. The boundary conditionsd€gree of accuracy there, e.ga'(0,0|~10" gives 7
satisfied by(51) are ~9.3. . . .
Similarly, we choose the time of the simulation such that
lim B(z2=0, Ilim B(z)=1. (53 the wave stops before it comes close to the right boundary.
zohe zome Hence we choose

The location of the wave front is given §=1/2 orx-cr
-Z5=0, which at7=0 impliesx=2z,.

Our aim in this section is to compare the output of the
code to the exact solutiofbl). However, as discussed in
Sec. lll D. the simulation requires boundary conditions an
(51) on a finite domairf0,x,] does not satisfy either a Di-
richlet or Neumann conditiorfor a linear combination of
them at either boundary. Nevertheless, suppose we choo
the Neumann condition. At=7=0 we have

2=10, x,=30, T=12(x,—22)=14.1. (56

In addition we seD=1,k=2.5x 10", anda,=200, giving a

Ototal population of 6000 molecules. The wave starts off at

x=10 att=0 and travels tx=20 att=14.1. The distribution

of molecules for a typical run at timé=14.1 forE=60 is

S‘(s‘i%hown in Fig. 8. Note the large amount of variation in the
ata. The average solution over 1000 runs is shown versus

the exact solutior{51) also in Fig. 8. The reaction count in

B 1 expzy/\2) these simulations is about 3@L0° diffusion events for both
—00=-F"7-""""- (549 A and B and about X 10° occurrences of the autocatalytic
x V2[1+expz/V2)] reaction. Each simulation required about 1.5 s of CPU time.

We can estimate the inequalify) on this mesh by taking the
1 = values ofA andB at the center of the wave front, where the
T G exp=2/v2) (55) majority of the reactions take place. At this point the popu-
lations are roughly 50 molecules per element so that the left
where the last expression holds whg 0. Henceg’ (0,0 hand side i$1?/2D=1/8 while the right hand side is approxi-
can be made arbitrarily small by choosimglarge enough. mately 1{kA’Bh™?)~1.3.
By choosing the wave to start far enough away from the left To test the sampling and spatial discretization error we
boundary we can enforce the Neumann condition to a certainse the same domain, s&=100,k=10"% D=1, and
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0 10 20 30

X FIG. 9. Convergence of the error for the cubic autocalytic reac-

FIG. 8. A typical distribution of molecules at tinfg=14.1 is  1°N- In (&) we show the error measuréss) on a 40 element evenly
shown in(a) on a 60 element evenly space mesh. The averagépaCEd nlweshdfd\'/lsso ?]00' lln(b) the_asypggliégIUE_dM anhd
distribution over 1000 runs is shown (h) (solid circles along with Sw are plotied versus the element Siz€ Tor=sti= 00 Its to the
the exact solutiorsolid line). data have slopes 2.9 and 2.5, respectively.

zp=14, x,=30, T= \s‘E(xb— 22p)=2.83. (57)  be executed. In this final example we show that this is un-

The wave travels a distance of ontg 2, from one side of I|PI1<er to be a prloblzrr;. Cﬁns_ld_e_r Ithe auItOt_:ataIync syst$m on
the center of the grid to the other. This gives a smaller valué e unit interval and let the Initial population consist of one
of B’ at the boundar about>510‘é which ensures that this molecule of A and two of B. The molecules are randomly
error will be smalleryt’han the one’Which is bein measuredpIaCEd in elements with equal probabiliie., the algorithm

i 9 of Sec. V A is used where the concentration functions are
The error measurg83) are shown in Fig. 9 on a 40 element

constant The molecules are allowed to randomly walk over
evenly spaced mesh féd <5x 10°. The error measures are X Y

taken with respect to the concentration of B over the interva[he mesh until all three of them occupy the same element and
P he algorithm determines that the autocatalytic reaction is

e ok o, o o Xecbd. Using2) ) he average time unl e esc-
; S . ' tion occurs ist=(2k)™L. In Table | we showr whenk=1/2
vergence of the spatial error in this case is not as clear as in a series of meshes wifd ranging from 1 to 100. The
the pure diffusion case but it appears to be at a somewh ffusi fficient has b %[&?:10 that th ' i
higher rate, although this could be an artifact of the smal musion coetlicient has been se S0 that the aver

meshes we are restricted to due to the slow convergence Selgee?:ltf;%&roeggtrigi ?i(r:rzzss'r:]hee rrgsejl:;'Sag“;\?ef;”‘;zeg\t/gi‘”lg%%
the sampling error. rurllas : g

B. Dilute reaction times

The previous examples were computed on meshes for _TABLE_ I. Average _time for a single execution of the aut_ocatg-
which the number of molecules per element was fairly Iarge!yt'c reaction on a series of evenly spaced meshes of varying size.
In this situation all of the elements along the wave front will The €xpected time is=1.

contain enough reactant molecules to execute the autocata-
lytic reaction. One possible concern is that on very dense E 1 2 > 10 25 50 100
meshes there will be few elemer_1ts w_hich satisfy th_is crite- . 106 1.07 107 104 103 109 0.99
rion and the more complex reactions in a system will never
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VIl. CONCLUSION the neighborhood of the wave front which would seem to be

. . . . a reasonable place to concentrate the elements. Elsewhere
We have examined an extension of the Gillespie algo-

. . . . > ; the ratio of A to B is either very large or very small so the
rithm for S|mula}tlng reaction-diffusion systems on wregularly number of reactions is small and in these regions it would be
spaced _Cart_e5|an me_shes. The sys_tems may hgve '.nhomp%?éferable to have fewer elements. In addition, in three di-
neous diffusion coefficients, including those with disconti-

nuities. We have shown numerical examples in one dimenmensions the scaling of the diffusion rate is such that a large
' P lement will experience fewer diffusion events per unit time

::?nnuI;\;?AChbg;\m?Jr;Zt:jai;fistiZ?\t ;23 tr?(lagggmme; gl?t?iib;itg- han a large number of smaller elements with the same total
ting both pure di . .volume and population. Controlling the element size to take
catalytic reaction-diffusion system accurately in an appropri-

ate limit. We have also shown that the algorithm reproduceadvantage of this may result in a substantial overall savings

the statistics of Brownian motion for the random walk of a?n simulation time.
: oy . . There are other reasons for controlling the element size as
single molecule, at least on a sufficiently fine grid. We show

) . 3 well. For instance, up to this point we have ignored the finite
that the spatlalzerror caused by the discretization of the .doéize of the reactants. If an element becomes too small, it may
main scales ak- for the diffusion problem and at least this ﬁj

fast for the cubic autocatalytic reaction. It should be stresse ecome “overcrowded" and violate the basic assumption that

that we have not derived any general formulas for the scaling - reactants collide much more frequently with the solvent
: . Yy gene e han they do with each other. An extreme case would be an
of this error for an arbitrary reaction-diffusion system. Cur-

rently this must be determined empirically and the r‘m:),[hoaelement too small to contain even a single reactant molecule.
y P y And of course elements cannot be too large either since the

used in this paper for determining this rate is not guarantee%equa"tym will be violated
to \/&vm&n r? ?heenzflz!\rieﬁtelrs‘g.shown in this paper are in on We must also be aware, however, that these restrictions on
9 P pap She element size may in some cases be mutually exclusive.

space d_imens_ion the met_hod itself trivially gengralizes tOTrnis may happen for instance in systems characterized by a
higher dimensional Cartesian meshes. However, in a gener rge separation of time scales, i.e., rate constants and diffu-

Egl;at;;ogofnuﬁxase%nrnltrart?glg?gywsohua}gﬁﬁ(g ?g (L)Jrs: ;nr:clzﬁg?rﬁrgéion coefficients which differ by many orders of magnitude.
hiex g Y To be fair, these conditions arise in a wide variety of physical

tured_ grld. The derivation of the diffusive rate constants b ysystems and their accurate simulation is an active area of
the finite volume method opens up the possibility that one

- . work in many fields.
can borrow more results from the finite volume literature to To summarize. this work can be considered an early ste
generalize the method to unstructured meshes. Possibilitirieﬁ ! y step

along these lines include Voronoi cel&9,28 and irregular the simulation of reaction-diffusion systems using the
9 . R 9 Gillespie algorithm. Many important issues remain to be re-
polygons based on underlying simplicial meshH&9,30.

Such meshes have manv advantages over reaular CarteSIsolved such as the extension to unstructured meshes, the ef-
y 9 9 r&tiveness of automatic mesh refinement, and the addition

gi];;hliigl]ldlrjgfli?]%(;haen?itntrr:a?itntgsya%?jntr?aet?I’rlidee(xj mr:)l(?rrnn;[% more realistic features to the basic model such as thermo-
' 'y . ’ y app ‘aynamics and time varying domain geometry.
the domain boundaries much more accurately.

In addition, the use of automatic mesh refinement would
seem to be very useful in future versions of the algorithm.
For instance, in the simulations of the autocatalytic reaction Thanks to Mayya Tokman for many helpful discussions
the variation in the concentrations of A and B are greatest irand to Naida Lacevic for a useful conversation.
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