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We examine an application of the Gillespie algorithm to simulating spatially inhomogeneous reaction-
diffusion systems in mesoscopic volumes such as cells and microchambers. The method involves discretizing
the chamber into elements and modeling the diffusion of chemical species by the movement of molecules
between neighboring elements. These transitions are expressed in the form of a set of reactions which are
added to the chemical system. The derivation of the rates of these diffusion reactions is by comparison with a
finite volume discretization of the heat equation on an unevenly spaced grid. The diffusion coefficient of each
species is allowed to be inhomogeneous in space, including discontinuities. The resulting system is solved by
the Gillespie algorithm using the fast direct method. We show that in an appropriate limit the method repro-
duces exact solutions of the heat equation for a purely diffusive system and the nonlinear reaction-rate equation
describing the cubic autocatalytic reaction.
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I. INTRODUCTION

The Gillespie algorithmf1,2g is a stochastic method that
is frequently used to simulate spatially homogeneous chemi-
cal systems with small reactant populations. Under ordinary
circumstances such systems are naturally characterized by
small length scales as well. Since diffusion is fast on such
scalesse.g.,f3gd reaction-diffusion systems are natural mod-
els of small scale, spatially inhomogeneous chemical sys-
tems. Unless diffusion coefficients are artificially decreased
sas in macroscopic experiments on the formation of Turing
instabilities, e.g.,f4gd the range of length scale of such sys-
tems is on the order of a typical cell, roughly 0.1 to 100mm.
In systems of this size the number of reactant molecules may
only be in the thousands or millions.

Recently interest has turned toward using the Gillespie
algorithm to simulate such mesoscopic, spatially inhomoge-
neous systemsf5,6g. The natural extension of the method is
to discretize the reaction chamber into subvolumessusually
squares or cubesd and consider them to be separate chambers
that are coupled by the addition of a set of reactions which
model diffusion. Some form of the Gillespie algorithm is
then applied to the entire system consisting of all the reac-
tions for each subvolume plus all the diffusion events which
couple them.

The purpose of this paper is to examine the numerical and
computational issues involved in adding diffusion to the
Gillespie algorithm in this way in more detail than has been
done in the past. In particular, we show how the diffusive
rate constants can be derived from a finite volume discreti-
zation of the heat equation. We then show how the results of
a stochastic simulation can be compared against exact solu-
tions of the corresponding reaction-rate equations. This si-
multaneously provides a method for code testing and enables

us to determine the rate of convergence of the error intro-
duced by the spatial discretization. This puts the algorithm
on a somewhat more firm computational foundation than
previous works. We also investigate the regime in which the
simulation contains only a single molecule and show that,
again in an appropriate limit, Brownian motion is accurately
simulated. The algorithm displays similar numerical proper-
ties when chemical reactions are added to the system. Al-
though the method trivially generalizes to Cartesian meshes
in any dimension, to make the analysis and numerical ex-
amples as simple and clear cut as possible we restrict our
attention to systems with one space dimension. The use of
the finite volume method makes likely the extension of the
method to unstructured meshes in higher dimensions and
various possibilities along these lines are discussed in the
conclusion.

Work in this area began with the suggestion of such an
application by Gillespie himselff1g. Elf et al. f5g, and Fricke
and Schnakenburgf6g have implemented algorithms similar
to that described in this paper but on higher dimensional
Cartesian meshes. In both cases the manner in which diffu-
sion is handled by the Gillespie algorithm differs from what
is presented here. These methods are also limited to uniform
meshes and systems for which the diffusion coefficient is
constant. In addition, no substantial code tests are given in
either case. Lukkienet al. f7g describe an application of what
is essentially the Gillespie algorithm applied to a spatially
inhomogeneous chemical system which does not strictly
speaking include diffusion.

The master equation for reaction-diffusion systems was
studied by Baras and Mansourf8g. They compare predictions
obtained by the master equation to that obtained by simula-
tion of mesoscopic systems using Bird’s algorithm. In their
work the domain was also one dimensional, although the
boundary conditions were periodic. Their simulations were
also restricted to uniform meshes and constant diffusion co-
efficients.

Slightly further afield but still related we find the cellular
automata simulations of Weimarf9g and the pattern forma-
tion studies of Turk on triangulated surfacesf10g. Similar
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ideas on the relationship between continuum equations and
stochastic models based on discrete nearest neighbor interac-
tions can be found inf11–13g. The Monte Carlo part of the
Gillespie algorithm appears to have been reinvented a num-
ber of times and used in a wide variety of applications; see
for instancef14–16g.

The underlying model assumed in what follows is that we
have a set of reactant molecules immersed in a solvent and
that the reactants undergo collisions with solvent molecules
much more frequently than they do with each other. This is
in addition to the assumption, as per the original algorithm,
that nonreacting collisions between reactants greatly out-
number reacting collisions. The explicit addition of a solvent
to the model is required to justify the Brownian motion of
the reactants in the limit in which their populations are very
small. Note that these assumptions imply that the mean free
path of the reactant molecules is negligibly small, much
smaller than any other length scale in the system.

The outline of this paper is as follows. Section II contains
a brief review of the Gillespie algorithm while Sec. III shows
how the diffusion part of the reaction-diffusion system is
incorporated into the algorithm. Section IV gives an over-
view of the algorithms and data structures that make up the
code. Section V details tests of the code on a purely diffusive
system. In Sec. VI we examine a nonlinear reaction-diffusion
system and test the code on an exact traveling wave solution.
We summarize the work in Sec. VII.

II. THE GILLESPIE ALGORITHM

The Gillespie algorithm is a well-known stochastic
method in which the number of each chemical species is
considered the independent variable and each reaction the
system undergoes is executed explicitly. Hence the time evo-
lution consists of a number of steps with each step being the
execution of a specific reaction at a specific time. After a
reaction is executed the number of molecules of each of the
affected species is updated according to the reaction formula
and the evolution goes on to the next step. Each reaction is
assumed to be independent of the preceding one so that the
evolution of the system is a Markov process. This section
contains a review of only those elements of the method that
will be necessary for what follows. The reader is referred to
f1,2g for more detailed discussions.

The algorithm makes the following assumptions. We have
a chemical system consisting ofS species whose state at a
given timet can be characterized by an integer valued tuple
hSij, 1ø i øS, whereSi is the population of species Si. We
use the convention that italicized symbols represent numbers
si.e., populationsd and their nonitalicized counterparts repre-
sent names. The dynamics of the system are represented by a
set of reactions of the form

a1
r S1 + a2

r S2 + ¯ + aS
r SS ——→

kr

b1
r S1 + b2

r S2 + ¯ + bS
r SS

s1d

whereai
r and bi

r are non-negative integer constantssthe re-
actant and product coefficients, respectivelyd and r is an in-
dex which runs over the number of reactions, 1ø r øR. Cru-

cially, we assume that the events are exponentially
distributed, i.e., the probability of reactionj occurring in the
time interval t+dt to first order indt is ajdt where theaj
depend only on the state of the system at timet. As pointed
out in f17g this is only strictly valid for dimolecular reactions
although it can be argued for monomolecular reactionssas
will be necessary laterd and holds approximately for trimo-
lecular reactions. From these assumptions it can be shown
that the reaction probability density function is given by

Pst, jd = aj exps− atd s2d

where

a = o
j=1

R

aj . s3d

Pst , jddt is the probability that at timet the next reaction
will occur in the intervalst+t ,t+t+dtd and will be thej th
reaction of the system. Given the state of the system at time
t the core of the algorithm is a procedure for selecting the
next reaction and the time it is executed in such a way that
over many simulationss2d is reproduced exactly.

There exist several equivalent procedures for selecting a
pair st , jd. The merits of each of these will be discussed in
Sec. IV. Here we give the basic algorithm, called the direct
method, a version of which will be used in the final code. Let
u1,u2P s0,1d be independent, uniformly distributed random
numbers. Then thej th reaction will be executed if

o
r=1

j−1

ar , au1 ø o
r=1

j

ar s4d

and the time at which it is executed ist+t where

t = −
ln u2

a
. s5d

The quantityaj is often referred to as the propensity for
reactionj . Its relation to the familiar rate constantkj is given
in f1,2g but it will be convenient to summarize the results
here for mono- through trimolecular reactionssreactants:
propensityd

x:kV,

A:kA,

A + B:kABV−1,

2A:kAsA − 1dV−1, s6d

A + B + C:kABCV−2,

2A + B:kAsA − 1dBV−2,

3A:kAsA − 1dsA − 2dV−2.

Herek is the appropriate rate constant andV is the volume of
the reaction chamber or element.
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III. DIFFUSION

In this section we show how diffusion on an irregular grid
in one dimension can be simulated by the Gillespie algo-
rithm. As in previous workf5,6,8g, the basic idea of the
method is to divide the domain into a number of subvolumes,
which we will call elements, and to consider the elements to
be separate reaction chambers which are coupled together by
allowing them to exchange molecules in a way designed to
simulate diffusion. The coupling is formulated as an addi-
tional set of reactions which are appended to the list of
chemical reactions taking place in each element. This master
list is then processed by the Gillespie algorithm resulting in a
coupled reaction-diffusion simulation.

In order that the original Gillespie algorithm be applicable
to the chemical reactions occurring in each element we re-
quire that the concentrations there be considered uniform.
This is equivalent to saying that each molecule in a given
element will have an equal chance of interacting with any
other molecule in the same element in a typical time interval
between chemical reactions in that element. In order for this
to be true the diffusion time across each element for every
species should be much less than the typical reaction time. If
h is the length scale of an element,D a typical diffusion
coefficient, andd the dimension of the domain, then this
requirement is

tD <
h2

2dD
! tC s7d

wheretC is a typical time interval between chemical reac-
tions. However,tD will also be the approximate diffusion
time between elements, so this requirement is equivalent to
saying that the typical rate of diffusion events, i.e., transfers
of molecules between elements, is much greater than that of
the chemical reactions inside the elements themselves.

Note thattC will be approximately the inverse of the pro-
pensity given ins6d. These are of the form of a rate constant
multiplied by zero or more concentration values multiplied
by a single population value. Hence the propensity scales as
the element population which is proportional to the element
volume which in turn is proportional tohd. ThustC scales as
h−d and so the validity of the above inequality improves ash
is reduced.

Whether or nots7d holds in a given simulation can easily
be checked by comparing the number of diffusion events
involving an element to the number of chemical reactions. In
the example simulation in Sec. VI diffusion events typically
outnumber chemical reactions by a hundred or more to one.

A. The master system

It will be convenient to think of the reaction-diffusion
system not as an interaction betweenS chemical species in a
spatially inhomogeneous domain which has been subdivided
into E elements but as the interaction ofSE species in a
homogeneous domain of unit volume. This larger chemical
system, which we call the master system, operating in a fic-
titious unit volume domain enables us to use the Gillespie
algorithm in its original form. The relationship between the

actual chemical system and that in the master domain is the
obvious one: species A is represented byE species labeled Ai
with the index indicating which element is occupied. The
results of a simulation in the master domain can be trans-
formed back into the problem domain when convenient, e.g.,
for purposes of visualization. Note that the assumption of
uniform concentration in each element implies homogeneity
of the master system. The use of the Gillespie algorithm on
the master system differs from its ordinary usage only in the
calculation of the propensitys6d, in which the factorVn var-
ies according to the volume of the element the reaction is
taking place in.

Let R be the number of reactions in the chemical system
andn the number of neighbors of each element. Since each
element contributesR chemical reactions andSn diffusion
reactions to the master system the total number of reactions
in the master system is approximatelyR8=EsR+Snd sele-
ments with faces on a boundary may contribute more or less
thanSn reactions depending on the boundary conditions im-
posed thered. For instance, if the chemical system contains a
reaction of the form A+B→C then the master system will
containE reactions of the form Ai +Bi →Ci. Similarly, the
ESndiffusion reactions in the master system have the form
A i →A j. Note that molecules in separate elements are pre-
vented from reacting in the master system because no reac-
tions on the master list allow them to do so.

B. Diffusion in one dimension

Consider the case of the diffusion of a single species U on
a nonuniform grid in one dimension whose elements are la-
beled by an indexi. The master system will then haveE
species labeled Ui. We consider a model of diffusion
whereby each element exchanges molecules with its nearest
neighbors only. In the master system the exchange is repre-
sented by the transformation of a molecule of species Ui to
one of species Uj. This suggests a set of reactions for Ui of
the form

Ui ——→
ki,i+1

Ui+1, Ui ——→
ki,i−1

Ui−1,

Ui+1 ——→
ki+1,i

Ui, Ui−1 ——→
ki−1,i

Ui s8d

whereki,j denotes the rate governing the reaction that trans-
forms Ui into Uj. Using the standard procedure, this set of
reactions results in the reaction-rate equation forUi

dUi

dt
= − ski,i+1 + ki,i−1dUi + ki+1,iUi+1 + ki−1,iUi−1 s9d

where we have used the homogeneity of the master domain.
The reader familiar with finite difference or finite element

methods will recognize that the resulting set of coupled or-
dinary differential equations for the time evolution of the
variablesUi is in the same form as that resulting from a
spatial discretization of a first order in time partial differen-
tial equationsPDEd using the method of lines, where the
form of the spatial operator and the nature of the discretiza-
tion are undetermined at this point. We next show that the
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rate constants can be set so thats9d is an approximation to
the heat equation.

C. Finite volume approximation

Let usx,td be the concentration of species U. The two
fundamental continuum equations governing diffusion are
the conservation of mass

]u

]t
= − = ·J s10d

and Fick’s law for the fluxJ

J = − Dsxd = u. s11d

In this paper we consider the case in whichD is allowed to
vary in space but not in time.

We start by integratings10d over elementi and use the
divergence theorem to evaluate the volume integral on the
right hand side,

]Ui

]t
= −E

i

= ·J dx= Jsci − hi/2d − Jsci + hi/2d s12d

whereci denotes the center of elementi. Central to the finite
volume method is the approximation used for the flux on the
boundaries of each element. Here we approximate the gradi-
ent of u at the left boundary by

=usci − hi/2d <
uscid − usci−1d

ci − ci−1
=

1

ci − ci−1
SUi

hi
−

Ui−1

hi−1
D .

s13d

Performing the same procedure at the right boundary, em-
ploying s11d, and inserting intos12d yields

]Ui

]t
= − UiS Di,i−1

hiuci − ci−1u
+

Di,i+1

hiuci − ci+1u
D + Ui−1

Di−1,i

hi−1uci − ci−1u

+ Ui+1
Di+1,i

hi+1uci − ci+1u
s14d

whereDi,j is the diffusion coefficient evaluated at the inter-
face between elementsi and j . This suggests setting the rate
constants ins9d to

ki,j = 5 Di,j

hiuci − cju
, ui − j u = 1,

0, otherwise.
6 s15d

The diffusion coefficient at the faces of the mesh is evaluated
using the well-known weighted harmonic averagese.g.,
f18,19gd

Di,j = S 1

uci − cju
E

ci

cj ds

DssdD−1

s16d

where the integral is along the straight line joining the cen-
ters of the two elements. ForDsxd piecewise constant in one
dimension this is

Di,i+1 = F 1

hi + hi+1
S hi

Di
+

hi+1

Di+1
DG−1

s17d

which in the case of a uniform grid reduces to the usual
harmonic averageDi,i+1=s1/Di +1/Di+1d−1.

If we considerui =Ui /hi to be element-centered variables
and writes14d in terms ofui then the truncation error term on
the right hand side isOshd whereh indicates the size of the
largest element in the mesh. However we will see later that
the L` norm of the error of the overall scheme converges as
h2. This increase in the rate of convergence over that of the
truncation error is known as supraconvergence and is a com-
mon feature of finite volume approximations to systems
based on conservation lawsf20g.

Thus a solution to the systems9d will generate a set of
element-centered concentration valuesui having an error
compared to the exact solution of the heat equation which
will decrease ash2 assuming the time integration is exact.
The Gillespie algorithm is such an exact time integrator in
the sense that the only error associated with it is a sampling
error.

Note that on a uniform grid with a constant diffusion co-
efficient s15d reduces toki,j =Dh−2 which is the expression
used inf5,6,8g. In addition,s9d reduces to

dUi

dt
= D

Ui+1 − 2Ui + Ui−1

h2 , s18d

which is the familiar second order centered rule for finite
differences.

D. Boundary conditions

The natural condition for a closed microchamber is that
no molecules move through the boundary. Since the rate con-
stants ins15d are associated with faces of the mesh this con-
dition is enforced by setting the rate constants associated
with faces on the boundary to zero. That this condition yields
an approximation to a Neumann condition can be seen by
rewriting the flux approximations13d in terms of the rate
constants and noticing that the flux across the boundaries is
zero.

Dirichlet conditions can be modeled as follows. Let the
leftmost interval have index 1 and let a fictitious element to
its left have index 0. The rate equation for U1 is

dU1

dt
= − sk1,2+ k1,0dU1 + k2,1U2 + k0,1U0. s19d

The second and fourth terms represent molecules leaving and
entering the domain through the left boundary which can be
represented by the reactions

U1 ——→
k1,0

x , x ——→
k0,1

U1. s20d

The two rate constants can be set by choosing a reasonable
value for h0, one that is comparable to other values in the
system. For instance, choosingh0=h1 gives
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k1,0=
D1,0

h1
2 , k0,1= D0,1

U0

h0h1
=

D0,1u0

h1
s21d

where u0 is the boundary value of the concentration. The
choice ofh0, and consequentlyk1,0 and k0,1, effectively de-
termines how rapidly the Dirichlet condition is able to re-
spond to changes in the concentration near the boundary.

IV. ALGORITHMS AND DATA STRUCTURES

The number of reactions in the master system can easily
be in the millions for even a modest mesh and a small set of
chemical reactions. Thus efficient data storage and fast algo-
rithms are required to make the simulation feasible. Fortu-
nately this work has already been done in order to address
the needs of simulating large chemical systems with many
reactions. In this section we give a brief overview of these
methods and their implementation in the code that is used in
the rest of the paper.

A. The fast direct method

As is well known both of Gillespie’s original algorithms
for computing the next reaction and its execution time, called
the direct method and the first reaction method, are not effi-
cient when the number of reactions is very large. As a result
a series of fast versions of both algorithms have been devel-
oped. The fast version of the direct method involves a binary
tree while the fast version of the first reaction method in-
volves a priority queue. Both methods require time to pro-
duce a pairst , jd. They differ primarily in two respects:sid
the constant in front of the term, andsii d the number of
uniform random numbers needed.

In our experience,sii d is not a concern since the speed of
the random number generator is not a bottleneck in the simu-
lation. In the examples below we have used the 32-bit nu-
merical recipes routinesRAN2 and RAN3 f21g and the 64-bit
routine LSFR258f22g. The last is roughly three times slower
than RAN3 but the resulting simulation time is only a few
percent longer. Most of the simulation time is spent recom-
puting the rates of affected reactions and updating the corre-
sponding data structures.

We have chosen to use the fast direct method over the
next reaction method of Gibson and Bruckf23g even though
it is likely to be inferior regarding pointsid. The reason for
this is that we are looking ahead to the addition of automatic
mesh refinementsAMRd. AMR will involve the dynamical
addition and subtraction of reactions from the system and it
is unclear how to maintain the priority queue under these
conditions. The maintenance of the binary tree in the direct
method, however, is conceptually straightforward since reac-
tions appear as leaves of the tree, which can easily be added
and removed.

Since details of the binary tree used in the method are
given inf24,23g we will not repeat them here but will merely
make the following observations. Because of the nearest
neighbor model of diffusion the dependency graph of the
master system remains sparse so that updating all of the re-
actions dependent on the outcome of a given reaction is a

constant time operation. We also note that the current imple-
mentation in the code described below is that of a straight-
forward binary tree. This means that the depth of the tree can
be as high as 20 or 25, i.e., the tree may have tens of millions
of leaves. At this depth, these types of trees often suffer in
performance due to cache related problems. Although we
have not observed this in the examples described below it
seems prudent to warn the reader that they may occur in
higher dimensional simulations with larger meshes and more
complex chemical systems.

B. The code

The code used in the examples below is written inANSI

C11 and relies heavily on the standard template library. The
code was built usingCODE WARRIOR V9, optimized for speed,
and run on a single processor of a dual 2 GHz, 1.5 gigabyte
random access memory RAM, Macintosh G5 running oper-
ating system 10.3.5. In a typical simulation with a moder-
ately large trees105 leavesd the code executes about 3
3105 reactions per second.

C. Complexity

The running time of the code is a function ofE, R, S, and
n, as well as the total number of molecules in the simulation.
However, as stated above the model assumes that the slowest
diffusion process in a given element is much faster than the
fastest chemical process. This means that in any given simu-
lation the number of diffusion events will greatly outnumber
the number of chemical reactions. Hence the running time of
the code will be determined primarily by the diffusion part of
the simulation and this in turn will be determined by the
species which undergoes the most diffusion events. Thus the
complexity of the algorithm will depend primarily on two
quantities: the number of molecules of this species and the
number of elements in the mesh. In the case where all spe-
cies have similar diffusion coefficients this number is just the
total number of all species. Hence in this section we will
examine the scaling of the running time of the code in the
case of the pure diffusion of a single species. Since the for-
mulas here are easily generalized to more than one space
dimension we do so; the reader should keep in mind that the
examples in the sections which follow are all performed with
d=1.

Consider a purely diffusive system involvingN molecules
of one species A. Froms5d we see that a typical time step has
size

t <So
r=1

R8

arD−1

. s22d

If h is a typical element length scale then according tos6d
and s15d ar ~Aih

−2 whereAi is the number of molecules in
elementi. There aren diffusion reactions per element, withn
the number of neighbors of each element, so thatR<nE
which gives
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t ~ So
i=1

E

Aih
−2D−1

~
h2

N
. s23d

For a uniformly refined mesh the number of elements scales
ash−d; hence a run to timet has number of steps

Ns <
t

t
~

N

h2 ~ NE2/d s24d

and since each step requires time proportional to the run time
Tr scales as

Tr = OsNE2/d Ed. s25d

The scaling ofNs andTr is shown in Fig. 1 for a series of
runs on the unit interval. There is one species withN
=1000 andD=1. The initial distribution is uniform and the
code is run toT=0.1. The run time is in seconds and and the
number of steps is in units of 105. The data are averaged over
five runs.

It is instructive to compares25d with the complexity of a
simple finite element or finite difference code for approxi-
mating solutions of the heat equation. For the purposes of
this comparison we ignore the important issues of stiffness,
automatic time stepping, mesh refinement, etc. We assume

that the PDE method uses an implicit scheme with update
time per step ofOsE Ed. In order that the comparison be
meaningful we require the PDE method to be second order in
space and time, i.e., that it has a truncation error which scales
asO(h2,sDtd2). Hence in order that this error scale ash2 we
should haveDt~h which leads toNS~h−1~E1/d so that the
run time should scale as

TPDE= OsE1+1/d Ed. s26d

The ratio of this time tos25d is

Tr

TPDE
= OsNE−1+1/dd s27d

so that for smallN the stochastic method is favored in all
dimensionsd.1. On the other hand, for fixedE the scaling
favors the PDE method in the limit of largeN, which is
precisely the limit in which the continuum approximation
becomes valid. This is not surprising since the magnitude of
a concentration appears as an amplitude in a system of PDEs
so it does not affect the complexity. Note that here we are
comparing the simulation times for a single run of both
methods. In some cases, as in the sections which follow, it
will be useful to compute an average over a very large num-
ber of runs. In this case the average solution may be mean-
ingfully compared to the result of the continuum approxima-
tion method and it would be appropriate to append a factor of
M2 to Tr whereM is the number of runs. In this case the
stochastic method suffers considerably because of the slow
convergence of the sampling error.

V. TESTING DIFFUSION

The purpose of this section is to determine whether or not
the simulation of diffusion by the Gillespie algorithm in the
manner outlined above works. We do this by performing two
tests:sid comparison of the simulation to an exact solution of
the heat equation andsii d comparison of the simulation to the
statistics of Brownian motion. While these tests are essen-
tially straightforward, there are one or two fine points that
need to be mentioned before we begin.

First, note that the result of a single simulation is a ran-
domly generated piecewise integer function over the grid.
Hence in order that a meaningful comparison be made to a
smoothly varying exact solution the results must be averaged
over many simulations. It is important to understand that this
average solution is not guaranteed to be in some sense rep-
resentative of the final state of the system. This will happen
for instance in the case where the system undergoes a bifur-
cation due to an instabilitysas in pattern formation via a
Turing instabilityd. In general, we should anticipate that this
situation will arise whenever we have a system that is sensi-
tive to initial conditions. However, there are other systems
for which the average solution does converge in a sensible
way and this makes them ideal candidates for code testing.

For these cases, averaging over simulations makes sense
and for the type of test described below the fluctations about
the average solution can be regarded as a type of sampling
error which can be decreased by increasing the number of

FIG. 1. Illustration of relationss24d ands25d in one dimension.
sad shows log10 NS and log10sTr / log10 Ed vs log10 E for N=1000.sbd
shows the same quantities vs log10 N for E=80. Least squares fits to
the data insad give slopes of 2.02 and 1.84 forNS andTr / log10 E,
respectively, while fits to both curves insbd give unit slope. The run
time is in seconds and the number of steps is in units of 105.
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simulations. In this case the only property of the fluctuations
we will be interested in is their mean. In general though
other statistical properties of the fluctuations will be more
important. Indeed, one of the attractive properties of the
Gillespie algorithm is the possibility that it can reproduce in
a natural way the statistical properties of real systemsf17g.

A. Initial data

To begin a simulation the code reads a data file containing
among other things a set of user specified concentration
functions which determine the average initial conditions. For
a single species A let this function beasxd. The starting point
of a simulation is the initial distribution of molecules among
the elements, which, as noted above, is a piecewise integer
function over the domain. This function cannot be identical
for each simulation because on average it would not repre-
sentasxd very well. In this section we show how the initial
distribution is generated from a probability distribution so
that when averaged over many instances it does converge to
asxd.

Let Ai,m be the number of molecules initially placed in
elementi for simulationm. The procedure for generatingAi,m
is as follows. First the total number of molecules in the simu-
lation is computed fromasxd. In some cases the total number
of molecules can be computed exactly but in general an ap-
proximation

Ā =E asxddx= o
i=1

E E
i

asxddx< o
i=1

E

Āi s28d

can be used, whereĀi is a suitable quadrature ofasxd over
elementi. Even though an exact expression is available for
the test systems below, in what follows the trapezoidal rule is

used to computeĀi in order that the results be more repre-

sentative of what might be encountered in practice.Ā is of
course noninteger in general. Let the total number of mol-

ecules for simulationm be generated randomly fromĀ by

Am = bĀc +H1, u , fracsĀd,

0, u ù fracsĀd,
J s29d

where uP s0,1d is a uniform random number andbĀc and

fracsĀd are the integer and fractional parts ofĀ, respectively.

The function Pi =Āi / Ā is treated as a discrete probability
distribution which is sampledAm times, the outcome of each
sample being used to incrementAi,m shenceAm=oiAi,md.

It is clear that this method of producing initial data will
converge to the continuous functionasxd in the limit M
→` in the sense that the averages

AM =
1

M
o
m=1

M

Am, Ai,M =
1

M
o
m=1

M

Ai,m s30d

will obey

uAM − Āu ~ M−1/2, uAi,M − Āiu ~ M−1/2. s31d

To see this in practice consider the error inAi,m and de-
note byei,M its average overM runs,

ei,M =
1

M
o
m=1

M S1 −
Ai,m

Āi
D . s32d

We look at the average and maximum ofei,M over the mesh,

ēM =
1

E
o
i=1

E

uei,Mu, êM = max
1øiøE

uei,Mu. s33d

Figure 2 shows the convergence of these two quantities for

initial data given bys35d with n=3 andÃ=500. The mesh
consists of 50 evenly spaced elements.

B. Time evolution with constant diffusion coefficient

In this case the concentrationasx,td obeys

]a

]t
= D

]2a

]x2,
]a

]x
s0d =

]a

]x
s1d = 0. s34d

Setting D=1, an exact solution on the unit intervalf0, 1g
satisfying the boundary conditions is

asx,td = Ãf1 + 1/2e−p2n2t cossnpxdg s35d

wheren is a non-negative integer. Note that the total number

of A is Ã.
In this section we look at the convergence of the error

measuress33d for the time evolution. To do this we replace

Āi in s32d with Āistd computed froms35d. From the exact
solution we see that the difference between the maximum

and minimum values ofasx,td will decrease fromÃ to Ã/2
in time

T =
ln 2

n2p2 s36d

which gives us a reasonable time at which to end the simu-
lation. Note that since the time incrementst are randomly

FIG. 2. Convergence of the error measuress33d for initial data

on the unit interval. In this exampleE=50,n=3, andÃ=500. Least
squares fits to the data give slopes of −0.5 and −0.48 for the average
and maximum error, respectively.
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generated it is very unlikely that the cumulative simulation
time will reachT exactly. Nevertheless, each simulation can
be stopped precisely atT. Suppose that a reaction takes the
system from timeT1øT to time T2.T. Thus we may infer
that the state of the system atT must have been the state it
was in at timeT1 since by definition the system does not
change state between reactions. Hence each simulation pro-
ceeds until a reaction is chosen such that the total simulation
time exceedsT, at which point the simulation is stopped
without executing the reaction.

Recall that each simulation is begun with a randomly gen-
erated set of initial data using the algorithm in the previous
section. We can define an average concentration overM runs
as

ai,M =
1

M
o
m=1

M

Ai,mhi
−1. s37d

A typical plot of ai,M for 1000 simulations is shown in Fig. 3.

In this figuren=3, Ã=500, and the mesh consists of 50 ran-
domly sized elements created by randomly generating 0.1
øhi ø1 and scaling to the unit interval.

Next we inspect the error measuress33d. We setn=1
which givesT<0.07. Figure 4 shows the two error measures
for a set of 104 runs toT=0.07 on a mesh with 50 equal size
elements and with 50 randomly sized elements. The number

of molecules is set atÃ=500 in both cases.
Again the slope is about −1/2 in both cases. As in Fig. 2,

it appears that the curves in Fig. 4 are converging to zero
error in the limitM→`. However, unlike the results for the
initial data, we show in Fig. 5 that this is not the case. Here
the time evolution is performed on a coarser grid and we use
n=3 in s35d. In Fig. 5sad we see thatēM for E=20 equal size
elements levels off at around 0.002 atM <104 and does not
decrease further. Figure 5sbd shows that this asymptotic sam-
pling error is related to the mesh spacingh and scales ash2.

C. Time evolution with discontinuous diffusion coefficient

In this section we repeat the tests on the unit interval
above but with the inhomogeneous diffusion coefficient

Dsxd = H1, 0 ø x ø 0.5,

5, 0.5, x ø 1.
J s38d

Dsxd is chosen to be discontinuous rather than smoothly
varying because we anticipate that this case will be the one
most likely encountered in practice.

The eigenfunctions and eigenvalues of the weak form of

]

]x
SDsxd

]f

]x
D − l2f = 0 s39d

with Neumann boundary conditions are

fnsxd = Hrn cosslnxd, 0 ø x ø 0.5,

cosflns1 − xd/Î5g, 0.5, x ø 1,
J s40d

with ln given by the roots of

s1/Î5dtansl/2d + tansl/2Î5d = 0 s41d

andrn given by

FIG. 3. Average solution of the initial datastop curved and evo-
lution to T=0.0078sbottom curved on a randomly spaced grid. Here

n=3, E=50, D=1, Ã=500, andM =1000. The solid circles are the
average concentration while the solid line is the exact solutions35d.

FIG. 4. Convergence to the exact solution of the heat equation
on an evenlysad and randomlysbd spaced grid. Fits toēM yield
slopes of −0.52 and −0.5, respectively. The diffusion coefficient is
set to unity in both cases.
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rn =
cossln/2Î5d
cossln/2d

. s42d

Similar to the above, we choose the following linear combi-
nation of the zeroth and second eigenfunctions:

asx,td = Ãf1 + 1/4e−l2
2t f2sxdg, s43d

wherel2<9.0065 andr2<2.0651, and set the stopping time
to T=ln 2/l2

2<0.0085.
Figure 6 shows the average solution over 104 runs against

the exact solutions43d on an evenly spaced 40-element
mesh. Measuring the spatial error with the method outlined
above shows that the convergence isOsh2d in this case as
well.

D. Random walks

The relationship between diffusion, Brownian motion,
and random walks is well known. In this section we look at
the motion of a single molecule propagating on a mesh by
the algorithm above. If the molecule undergoes a random
walk starting at the origin at timet=0 the distribution of its
position at timet is given by

Psr ,td =
1

s4pDtdd/2 expS−
r2

4Dt
D s44d

which has the well-known expectation value

kr2l = 2dDt. s45d

Let the molecule begin the simulation att=0 in an ele-
ment with centerc0 and end the simulation at timet in an
element with centerct. A measure ofs45d over M runs is

mM =
1

M
o
m=1

M uct − c0um
2

2dDt
. s46d

mM measures only the mean value of the distribution. To see
the whole distribution note that in one dimension the prob-
ability of the molecule ending up in an interval of widthD
centered atx is

psx,t,Dd = UerfS x
Î4Dt

DU
x−D/2

x+D/2

. s47d

With D=1 the typical time to diffuse from the center of the
unit interval to the boundary isTb=1/8. We set thestopping
time to a small fraction of this,T=0.005, in order to make it
very unlikely that the molecule reaches one of the boundaries
by the end of the run. The results fors46d and s47d of the
random walk of a single molecule in one dimension for a
series of 53104 runs are shown in Fig. 7. The spatial dis-
cretization error discussed above should be kept in mind
when considering this figure. We expect the error in the ran-
dom walk to have the sameOsh2d dependency as the previ-
ous results.

VI. NONLINEAR WAVE PROPAGATION

The cubic autocatalytic reactionssee, e.g.,f25gd

A + 2B→
k

3B s48d

is at the heart of several interesting and well-studied nonlin-
ear chemical systems, the archetypal example being the
Brusselatorf26,27g. In one dimension it becomes a good
candidate for algorithm testing as a reaction-diffusion system
because of the existence of a traveling wave solution whose
wave front has a constant velocity and shape. In addition we
will see that the averaging procedure outlined in the previous
section appears to make sense for this system with the initial
conditions described below.

A. Wave propagation

Let the two species A and B have the same diffusion
coefficient D and concentrationsasx,td and bsx,td. If the
initial value of a+b is constant in space thena+b will be
constant in time as well and the reaction-rate equation gov-
erningb reduces to

]b

]t
= D

]2b

]r2 + kb2sa0 − bd, s49d

where a0 is the initial value ofa+b. This can be put in
dimensionless form by the scaling

FIG. 5. Demonstration of the spatial discretization error. In these
examplesn=3 andT=ln 2/s9p2d<0.0078. Insad we show the error
measures forE=20 on an evenly spaced grid. The asymptotic value
of ēM is about 0.002. Insbd we plot the asymptotic value ofēM vs
the maximum element sizeh for a series of evenly and randomly
spaced grids with 10øEø40. Fits to the data give slopes of 1.92
and 2.11, respectively.
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b =
b

a0
, t = ka0

2t, x = rÎka0
2

D
. s50d

An exact traveling wave solution forb of s49d is

bszd =
expf− s1/Î2dsz− z0dg

1 + expf− s1/Î2dsz− z0dg
s51d

where

z= x − ct, c =
1
Î2

, s52d

andz0 is a constant of integration. The boundary conditions
satisfied bys51d are

lim
z→+`

bszd = 0, lim
z→−`

bszd = 1. s53d

The location of the wave front is given byb=1/2 or x−ct
−z0=0, which att=0 impliesx=z0.

Our aim in this section is to compare the output of the
code to the exact solutions51d. However, as discussed in
Sec. III D. the simulation requires boundary conditions and
s51d on a finite domainf0,xbg does not satisfy either a Di-
richlet or Neumann conditionsor a linear combination of
themd at either boundary. Nevertheless, suppose we choose
the Neumann condition. Atx=t=0 we have

]b

]x
s0,0d = −

1
Î2

expsz0/Î2d
f1 + expsz0/Î2dg2

s54d

<−
1
Î2

exps− z0/Î2d s55d

where the last expression holds whenz0@0. Henceb8s0,0d
can be made arbitrarily small by choosingz0 large enough.
By choosing the wave to start far enough away from the left
boundary we can enforce the Neumann condition to a certain

degree of accuracy there, e.g.,ub8s0,0du<10−3 gives z0

<9.3.
Similarly, we choose the time of the simulation such that

the wave stops before it comes close to the right boundary.
Hence we choose

z0 = 10, xb = 30, T = Î2sxb − 2z0d = 14.1. s56d

In addition we setD=1, k=2.5310−5, anda0=200, giving a
total population of 6000 molecules. The wave starts off at
x=10 att=0 and travels tox=20 att=14.1. The distribution
of molecules for a typical run at timeT=14.1 for E=60 is
shown in Fig. 8. Note the large amount of variation in the
data. The average solution over 1000 runs is shown versus
the exact solutions51d also in Fig. 8. The reaction count in
these simulations is about 3.33105 diffusion events for both
A and B and about 23103 occurrences of the autocatalytic
reaction. Each simulation required about 1.5 s of CPU time.
We can estimate the inequalitys7d on this mesh by taking the
values ofA andB at the center of the wave front, where the
majority of the reactions take place. At this point the popu-
lations are roughly 50 molecules per element so that the left
hand side ish2/2D=1/8 while the right hand side is approxi-
mately 1/skA2Bh−2d<1.3.

To test the sampling and spatial discretization error we
use the same domain, seta0=100,k=10−4, D=1, and

FIG. 6. The average solutionssolid circlesd is shown against the
exact solutionssolid lined for a series of runs with the discontinuous
diffusion coefficients38d. The top curve is the initial data while the
bottom curve is the data atT=0.0085. In this caseE=40, M =104,

Ã=500, and the mesh is evenly spaced.

FIG. 7. Random walk data for a series of 53104 runs. The mesh
consists of 1000 randomly sized elements,D=1, and the run time is
T=0.005.sad showsmM vs M while sbd shows the distribution of
x= uct−c0u at T=0.005. The solid circles are the exact distribution
s47d.
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z0 = 14, xb = 30, T = Î2sxb − 2z0d = 2.83. s57d

The wave travels a distance of onlyx=2, from one side of
the center of the grid to the other. This gives a smaller value
of b8 at the boundary, about 5310−5, which ensures that this
error will be smaller than the one which is being measured.
The error measuress33d are shown in Fig. 9 on a 40 element
evenly spaced mesh forM ø53105. The error measures are
taken with respect to the concentration of B over the interval
f0, 18.5g rather than the entire domain in order to avoid the
region of very small concentration at the right end. The con-
vergence of the spatial error in this case is not as clear as in
the pure diffusion case but it appears to be at a somewhat
higher rate, although this could be an artifact of the small
meshes we are restricted to due to the slow convergence of
the sampling error.

B. Dilute reaction times

The previous examples were computed on meshes for
which the number of molecules per element was fairly large.
In this situation all of the elements along the wave front will
contain enough reactant molecules to execute the autocata-
lytic reaction. One possible concern is that on very dense
meshes there will be few elements which satisfy this crite-
rion and the more complex reactions in a system will never

be executed. In this final example we show that this is un-
likely to be a problem. Consider the autocatalytic system on
the unit interval and let the initial population consist of one
molecule of A and two of B. The molecules are randomly
placed in elements with equal probabilitysi.e., the algorithm
of Sec. V A is used where the concentration functions are
constantd. The molecules are allowed to randomly walk over
the mesh until all three of them occupy the same element and
the algorithm determines that the autocatalytic reaction is
executed. Usings2d and s6d the average time until the reac-
tion occurs ist=s2kd−1. In Table I we showt whenk=1/2
on a series of meshes withE ranging from 1 to 100. The
diffusion coefficient has been set toD=10 so that the aver-
age diffusion time across the mesh is much smaller than the
expected reaction time. The results are averaged over 1000
runs.

FIG. 8. A typical distribution of molecules at timeT=14.1 is
shown in sad on a 60 element evenly space mesh. The average
distribution over 1000 runs is shown insbd ssolid circlesd along with
the exact solutionssolid lined.

FIG. 9. Convergence of the error for the cubic autocalytic reac-
tion. In sad we show the error measuress33d on a 40 element evenly
spaced mesh forM ø50 000. Insbd the asymptotic value ofēM and
êM are plotted versus the element size for 30øEø60. Fits to the
data have slopes 2.9 and 2.5, respectively.

TABLE I. Average time for a single execution of the autocata-
lytic reaction on a series of evenly spaced meshes of varying size.
The expected time ist=1.

E 1 2 5 10 25 50 100

t 1.06 1.07 1.07 1.04 1.03 1.09 0.99
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VII. CONCLUSION

We have examined an extension of the Gillespie algo-
rithm for simulating reaction-diffusion systems on irregularly
spaced Cartesian meshes. The systems may have inhomoge-
neous diffusion coefficients, including those with disconti-
nuities. We have shown numerical examples in one dimen-
sion which demonstrate that the algorithm is capable of
simulating both pure diffusion and the nonlinear cubic auto-
catalytic reaction-diffusion system accurately in an appropri-
ate limit. We have also shown that the algorithm reproduces
the statistics of Brownian motion for the random walk of a
single molecule, at least on a sufficiently fine grid. We show
that the spatial error caused by the discretization of the do-
main scales ash2 for the diffusion problem and at least this
fast for the cubic autocatalytic reaction. It should be stressed
that we have not derived any general formulas for the scaling
of this error for an arbitrary reaction-diffusion system. Cur-
rently this must be determined empirically and the method
used in this paper for determining this rate is not guaranteed
to work in a general setting.

Although the examples shown in this paper are in one
space dimension the method itself trivially generalizes to
higher dimensional Cartesian meshes. However, in a general
situation such as an irregularly shaped cell or a microcham-
ber of complex geometry one would like to use an unstruc-
tured grid. The derivation of the diffusive rate constants by
the finite volume method opens up the possibility that one
can borrow more results from the finite volume literature to
generalize the method to unstructured meshes. Possibilities
along these lines include Voronoi cellsf19,28g and irregular
polygons based on underlying simplicial meshesf29,30g.
Such meshes have many advantages over regular Cartesian
meshes including the fact that they can be graded in element
size, locally refined and unrefined, and that they approximate
the domain boundaries much more accurately.

In addition, the use of automatic mesh refinement would
seem to be very useful in future versions of the algorithm.
For instance, in the simulations of the autocatalytic reaction
the variation in the concentrations of A and B are greatest in

the neighborhood of the wave front which would seem to be
a reasonable place to concentrate the elements. Elsewhere
the ratio of A to B is either very large or very small so the
number of reactions is small and in these regions it would be
preferable to have fewer elements. In addition, in three di-
mensions the scaling of the diffusion rate is such that a large
element will experience fewer diffusion events per unit time
than a large number of smaller elements with the same total
volume and population. Controlling the element size to take
advantage of this may result in a substantial overall savings
in simulation time.

There are other reasons for controlling the element size as
well. For instance, up to this point we have ignored the finite
size of the reactants. If an element becomes too small, it may
become “overcrowded” and violate the basic assumption that
the reactants collide much more frequently with the solvent
than they do with each other. An extreme case would be an
element too small to contain even a single reactant molecule.
And of course elements cannot be too large either since the
inequality s7d will be violated.

We must also be aware, however, that these restrictions on
the element size may in some cases be mutually exclusive.
This may happen for instance in systems characterized by a
large separation of time scales, i.e., rate constants and diffu-
sion coefficients which differ by many orders of magnitude.
To be fair, these conditions arise in a wide variety of physical
systems and their accurate simulation is an active area of
work in many fields.

To summarize, this work can be considered an early step
in the simulation of reaction-diffusion systems using the
Gillespie algorithm. Many important issues remain to be re-
solved such as the extension to unstructured meshes, the ef-
fectiveness of automatic mesh refinement, and the addition
of more realistic features to the basic model such as thermo-
dynamics and time varying domain geometry.

ACKNOWLEDGMENTS

Thanks to Mayya Tokman for many helpful discussions
and to Naida Lacevic for a useful conversation.

f1g D. T. Gillespie, J. Comput. Phys.22, 403 s1976d.
f2g D. T. Gillespie, J. Phys. Chem.81, 2340s1977d.
f3g J. A. Pelesko and D. Bernstein,Modeling MEMS and NEMS

sCRC Press, Baton Rouge, FL, 2002d.
f4g Q. Ouyang, R. Li, G. Li, and H. L. Swinnery, J. Chem. Phys.

102, 2551s1995d.
f5g J. Elf, A. Doncic, and M. Ehrenberg, SPIE First International

Symposium on Fluctuations and Noise, 2003sunpublishedd,
pp. 114–124.

f6g T. Fricke and J. Schnakenberg, Z. Phys. B: Condens. Matter
83, 277 s1991d.

f7g J. J. Lukkien, J. P. L. Segers, P. A. J. Hilbers, R. J. Gelten, and
A. P. J. Jansen, Phys. Rev. E58, 2598s1998d.

f8g F. Baras and M. M. Mansour, Phys. Rev. E54, 6139s1996d.
f9g J. Weimar, Fund. Inform.52, 277 s2002d.

f10g G. Turk, Comput. Graph.25, 289 s1991d.
f11g D. Givon, R. Kupferman, and A. M. Stuart, Nonlinearity17,

R55 s2004d.
f12g C. Haselwandter and D. Vvedensky, J. Phys. A35, L579

s2002d.
f13g D. Vvedensky, Phys. Rev. E67, 025102sRd s2003d.
f14g P. A. Maksym, Solid State Commun.3, 594 s1988d.
f15g K. A. Fichthorn and W. H. Weinberg, J. Chem. Phys.95, 1090

s1991d.
f16g J. L. Blue, I. Beichl, and F. Sullivan, Phys. Rev. E51, R867

s1995d.
f17g D. T. Gillespie, Physica A188, 401 s1992d.
f18g Z. Cai, J. Douglas, and M. Park, Adv. Comput. Math.19, 3

s2003d.
f19g I. D. Mishev, Numer. Methods Partial Differ. Equ.14, 193

DAVID BERNSTEIN PHYSICAL REVIEW E71, 041103s2005d

041103-12



s1998d.
f20g B. Cockburn and P. A. Gremaud, Math. Comput.66, 547

s1997d.
f21g W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes in CsCambridge University Press,
Cambridge, U.K., 1993d.

f22g P. L’Ecuyer, Math. Comput.68, 261 s1999d.
f23g M. A. Gibson and J. Bruck, J. Phys. Chem. A104, 1876

s2000d.
f24g S. Rajasekaran and K. W. Ross, ACM Trans. Model. Comput.

Simul. 3, 1 s1993d.

f25g P. Gray and S. K. Scott,Chemical Oscillations and Instabili-
ties sClarendon Press, Oxford, 1990d.

f26g I. Prigogine and R. Lefever, J. Chem. Phys.48, 1695s1968d.
f27g G. Nicolis and I. Prigogine,Self-Organization in Nonequilib-

rium SystemssWiley, New York, 1977d.
f28g N. Sukumar, Int. J. Numer. Methods Eng.57, 1 s2003d.
f29g I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth, SIAM J.

Sci. Comput.sUSAd 19, 1700s1998d.
f30g R. D. Lazarov and S. Z. Tomov Comput. Geosci.6, 483

s2002d.

SIMULATING MESOSCOPIC REACTION-DIFFUSION… PHYSICAL REVIEW E 71, 041103s2005d

041103-13


