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We analyze polarization changes of light diffracted on a planar chiral array from the standpoint of the
Lorentz reciprocity lemma and find biorthogonality in the polarization eigenstates for waves diffracting though
the grating in the opposite direction. Both reciprocal and nonreciprocal components in the polarization azimuth
rotation of the diffracted light are identified. The structural chirality of the array arrangement and the chirality
of individual elements of the array give rise to polarization effects.
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Recently we reported that planar two-dimensionals2Dd
chiral structures affect the polarization state of light in an
enantiomeric fashion, similarly to three-dimensional chiral
media f1g. However, polarization phenomena of diffraction
from planar chiral structures have never been studied theo-
retically before, leaving the fundamental properties of 2D
chirality not fully understood. Here we report on the results
of a theoretical investigation of polarization changes for light
diffracted by regular arrays of planar chiral metallic struc-
tures from the standpoint of the Lorentz reciprocity theorem.
By analyzing the propagation of light in two opposite direc-
tions we have identified a strong component in the polariza-
tion effect on diffraction that can be induced either by the
chirality of the individual elements of the array or by arrang-
ing nonchiral elements of an array in a chiral fashion.

Let us consider a planar-square periodic array of metallic
elements of thicknesst with equal pitchd along the axesx
andy placed between planesz=0 andz=−t ssee Figs. 1 and
2d. If a plane electromagnetic wave

Ei = A ie
−ik i·r s1d

of unit amplitude and polarization vectorA i is incident on
the array from the region corresponding toz.0, the trans-
mitted field may be written as a summation over all dif-
fracted waves, numbered by integer indicesq andp:

Et = o
q,p=−`

`

aqpe
−ikqp·sr+eztd, z, − t, s2d

whereaqp andkqp are the amplitudes and wave vectors par-
tial to diffracted waves and

kqp = g + hqp − ez
Îk2 − ug + hqpu2,

hqp = 2psqex + peyd/d.

Hereex, ey, andez are unit vectors along the axesx, y, andz,
g is the component ofk i transverse to the axisz, and k
= uk iu. Let us now consider a “reversed” wave with polariza-

tion vectorA r approaching the array from the opposite side
of the structuresz,−td along the direction of one of the
partial diffracted waves of the “direct” scenario, with indices
s and l and wave vectork r =−ksl:

Er = A re
−ikr·sr+eztd. s3d

In the regionz.0 this wave will produce diffracted waves
with amplitudesbqp. This corresponds to the reversed sce-
nario of diffraction. The Lorentz reciprocity lemmaf2g ap-
plied to the field superposition in the volume bounded by
surfaceS, which consists of planesx= ±d/2, y= ±d/2, z
=z1.0, and z=z2,−t, may be written in the following
form:

R
S

hfẼi 3 H̃ rg − fẼr 3 H̃ igjds = 0, s4d

where Ẽi, H̃ i and Ẽr, H̃ r are electric and magnetic fields
created by waves incident from opposite directions. By using
the corresponding field expressions it may be shown from
formula s4d that
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FIG. 1. Coordinate systems and waves in the directsad and
reversedsbd diffraction scenarios.
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Îk2 − ugu2sA i ·bsld = Îk2 − ug + hslu2sA r ·asld. s5d

Equality s5d constitutes the universal relation between the
amplitudes of partial waves in the direct and reversed dif-
fraction scenarios. Scattering processes are often described in
terms of 232 transformation matrices, relating Cartesian
components of electric fields in coordinate frames of incident

and scattered waves. For the directsD̂d and reversedsR̂d
scenarios these matrices for the incident and partial dif-

fracted waves can be introduced as follows:asl=D̂A i, bsl

=R̂A r. It may be shown from Eq.s5d that these matrices are
linearly related and mutually transposed:

Rnm= cs2dmn− 1dDmn, s6d

where dmn is the Kroneker index and c
=Îk2− ug+hslu2/Îk2− ugu2. For the purpose of analyzing the
polarization eigenstates of the diffraction process it is in-
structive to present both scattering matrices in the coordinate
frame of the direct scenariofsee Fig. 1sadg where the opera-
tor of the reversed scattering process acts on the complex-
conjugated field amplitudes. Here the polarization eigen-
states are simply two linearly independent eigenvectors of

matricesR̂* and D̂. The relation between them may be de-
rived from Eq.s6d, which, when converted to the coordinate
frame of the direct scenario, givesRnm

* =cDmn
* . It follows

from the theory of matrix operators that eigenvectors of the
Hermitian-conjugated matrices with elementsDnm andDmn

* ,

and therefore of matricesR̂* and D̂, are biorthogonal or, in
terms of polarization eigenstates, are represented by antipode
points on the Poincaré sphere, as shown in Fig. 3. In general,
the point representing the first eigenstate in the direct sce-
nario 1d is an antipode to one of the points, which represents

TABLE I. Polarization eigenstatessPES’sd for various diffraction processes presented in the direct scenario coordinate framesall angles
are measured in degrees; subscriptsd and r denote direct and reversed scenariosd.

Structure

Direct scenario Reversed scenario

Type of diffraction
1st PES

sdegd
2nd PES

sdegd
1st PES

sdegd
2nd PES

sdegd

Straight crosses u1d=0.00 u2d=90.00 u1r =0.00 u2r =90.00 No chiral effect

c=0; b=0 h1d=0.00 h2d=0.00 h1r =0.00 h2r =0.00 u1d=u1r, h1d=h1r

Straight crosses u1d=−14.4 u2d=77.1 u1r =−12.9 u2r =75.6 Chiral effect is present

c= +15; b=0 h1d=−0.05 h2d=0.08 h1r =−0.08 h2r =0.05 u1d−u1r =−1.5,u2d−u2r =1.5

Straight crosses u1d=14.4 u2d=−77.1 u1r =12.9 u2r =−75.6 Chiral effect is present

c=−15; b=0 h1d=0.05 h2d=−0.08 h1r =0.08 h2r =−0.05 u1d−u1r =1.5, u2d−u2r =−1.5

Right gammadions u1d=6.1 u2d=−26.6 u1r =63.5 u2r =−83.9 Chiral effect is present

w=120; b=0 h1d=4.38 h2d=−0.02 h1r =0.12 h2r =−4.42 u1d−u1r =−57.4,u2d−u2r =57.3

Left gammadions u1d=−6.1 u2d=26.6 u1r =−63.5 u2r =83.9 Chiral effect is present

w=120; b=0 h1d=−4.38 h2d=0.02 h1r =−0.12 h2r =4.42 u1d−u1r =57.4,u2d−u2r =−57.3

Right gammadions u1d=9.9 u2d=−80.0 u1r =9.9 u2r =−80.0 Chiral effect is present

w=120; b=b2 h1d=5.2 h2d=5.2 h1r =−5.2 h2r =−5.2 u1d=u1r, h1d=−h1r

Left gammadions u1d=−9.9 u2d=80.0 u1r =−9.9 u2r =80.0 Chiral effect is present

w=120; b=b2 h1d=−5.2 h2d=−5.2 h1r =5.2 h2r =5.2 u1d=u1r, h1d=−h1r

FIG. 2. Structural elements of the arrays: planar straight cross
tilted against the array greed on the tilt anglec and chiral right-
handed gammadion with bending anglew.

FIG. 3. Schematic representation of diffraction on the Poincaré
sphere. For a chiral grating polarization eigenstates in the direct
scenarios1d and 2dd and reversed scenarios1r and 2rd are ellipti-
cal. Polarization eigenstatessunderlinedd for nonchiral gratings are
mutually perpendicular linear polarization.
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the eigenstates of the reversed scenariosthis point is de-
signed as 2r in Fig. 3d. However, eigenstate 1d does not
necessary coincide with eigenstate 1r of the reversed sce-
nario, nor eigenstate 2d coincide with 2r. Therefore, the po-
larization eigenstates in the direct and reversed scenarios pre-
sented in the coordinate frame of the direct scenario could be
different. Such a situation takes place if the complex matrix

D̂ is an asymmetric or even a nondiagonal matrix.
We found that scattering matrices of nonzero order dif-

fraction by periodic planochiral arrays, where chirality is due
to either structural chirality or chirality of individual ele-
ments of the array, are either asymmetric or nondiagonal.
Below we will illustrate these properties by numerical mod-
eling the diffraction process for various planar chiral grat-
ings. We calculated the fields and polarization characteristics
of light diffracted on gratings numerically using the method

described in Ref.f3g. It is based on a vector integral equation
for the surface current induced by the light wave on the array
particles. The equation is derived with boundary conditions
for ideal metallic structures that assume a zero value for the
tangential component of the electric filed on the metal. The
integral equation is then reduced to an algebraic equation set
by use of the Galerkin technique.

In our modeling we concentrated on planar chiral arrays
of the 442 symmetry wallpaper group and calculated the po-
larization eigenstates of the diffraction process and polariza-
tion changes occurring in the diffracted wave for different
incident polarizations.

We studied diffraction for two different incident anglesb,
at b1=0 and atb2=arcsinsp /kdd. In the first case, the dif-
fracted wave sq=1,p=0d propagates at anglej=j1

=arcsins2p /kdd to the array. In the second case the diffracted

FIG. 4. Polarization azimuth
rotation D=u−a on diffraction
from chiral arrays as a function of
incident polarization azimuth.
Straight line: direct scenarios.
Dashed line: reversed scenarios
sall results are presented in the di-
rect scenario coordinate framed.
The influence of chirality is mani-
fested as a split between corre-
sponding solid and dashed lines:
sad Array of straight crosses. The
insert shows the chiral difference
in polarization azimuth for the
two polarization eigenstates as a
function of the tilt angle of the
crosses.sbd Array of left sLd and
right sRd gammadions. The inset
shows the chiral difference in po-
larization azimuth for the two po-
larization eigenstates as a function
of gammadion bending angle.
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wavesq=−1,p=0d the same angle makes to the array as the
incident wavej=j2=−b2 sfor definitions of angles see Fig.
1d. The wave’s polarization azimuthu and degree of elliptic-
ity h were calculated from the Cartesian field amplitudes
using the standard definitions: tan 2u=s2/s1, sin 2h=s3/s0,
wheresi are the Stokes parameters. The results of our analy-
sis for d=4 mm, l=2p /k=1520 nm,b1=0, j1=22.3°, b2
=11.0°, andj2=−11.0° are summarized in Table I and Fig. 4.
We considered an array without a substrate. The width of the
metal strips was equal to 0.05mm.

In optics polarization elements are often classified as re-
ciprocal or nonreciprocal depending on whether their effect
on the polarization state of the transmitted light is the same
or different for light propagating in the opposite directions.
This understanding of optical reciprocity which we will use
below is somewhat different from the general, more tolerant
definition of reciprocity based on the Lorentz lemma. For the
purpose of comparison of the polarization transformations
for opposite directions of light propagation, in the table and
figures the polarization parameter of the waves are converted
into the coordinate frame of the direct scenario. In such a
presentation, if the values of polarization azimuth rotation in
the direct and reversed scenarios are the same, the rotation is
truly nonreciprocal like, for instance, in the optical Faraday
effect in magnetic field. On the contrary, a difference be-
tween the values of polarization azimuth rotation in the di-
rect and reversed scenarios would represent a reciprocal
component of the polarization change that is analogous to the
optical activity effect in a chiral liquid.

The calculations revealed the following.
sid For all diffraction processes involving twisted or non-

twisted arrays, equalitiess6d are held to within the numerical
accuracy of the method. They are thus compatible with the
Lorentz lemma.

sii d For the arrays of straight crosses polarization azimuth
rotation in opposite directions have opposite signs due to the
difference in the efficiency of diffraction for perpendicular
polarization componentsfline C in Fig. 4sbdg. This nonreci-
procity of polarization azimuth rotation is analogous to the
polarization rotation nonreciprocity in dichroic media due to
anizotropic dissipation.

siii d No polarization rotation is seen in the nondiffracted
part of the beam at the normal incidence. Its polarization
eigenstates are the same in both directions and for any type
of array.

sivd From Table I, one can see that for nonzero order
asymmetrical diffractionsujuÞ ubud when individual struc-
tural elements of the array are chiral gammadions polariza-
tion azimuths of eigenstates for the direct and reversed sce-

narios are resolutely different. The difference between the
polarization azimuths of the eigenstates depends on the ro-
sette curvature anglew and reaches a maximum of about 57°
at w=120°. The difference in the eigenstates vanishes at ro-
sette bending anglew=95°.

svd When individual structural elements of the array are
chiral gammadions, polarization azimuth rotation on diffrac-
tion has both reciprocal and nonreciprocal components. The
nonreciprocal component of the polarization azimuth rota-
tion is due to a difference in the efficiency of diffraction for
perpendicular polarization components. The corresponding
oscillating dependence of the nonreciprocal rotation on the
incident angle is shifted in respect of lineC corresponding to
straight crosses. It is shifted along the incident polarization
azimuth axis towards left for left rosettes and towards right
for right rosettes. The split between corresponding solid and
dashed lines in Fig. 4 indicates the reciprocal component of
the polarization azimuth rotation analogous to optical activ-
ity.

svid Nonreciprocity of polarization rotation in the diffrac-
tion process is evident when a diffracted light wave is re-
flected straight back towards the twisted planar structure by a
mirror, and then diffracts again. The polarization state of the
returning light after the second diffraction is different from
that of the incident light, even if the incident light was an
eigenstate in the forward direction. For an array of rosettes
with w=120°, the two incident eigenstates and corresponding
returning polarizations have azimuths different by 27° and
21°.

Therefore, polarization effects on diffraction from planar
chiral grating can be induced by either structural chirality or
the chirality of individual elements of the array. However, in
contrast with findings reported in Ref.f4g, no polarization
rotation compatible with the Lorentz lemma is possible for a
wave transmitting through or reflected from a planar chiral
structure at normal incidence, as the scattering matrices are
diagonal in this case.

Finally, we shall note that our analysis is underpinned by
the Lorentz lemma while our computational method is com-
patible with it. It shall be noted, however, that the recent true
three-dimensional finite elements calculations revealing
chirality-related nonreciprocity of polarization conversion
for the light transmission through a chiral holef5g may well
call for reexamining the validity of the Lorentz lemma for
planar chiral structure.
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