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Based on the invariance principle of differential equations, a simple adaptive-feedback scheme is proposed
to strictly synchronize almost all chaotic systems. Unlike the usual linear feedback, the variable feedback
strength is automatically adapted to completely synchronize two almost arbitrary identical chaotic systems, so
this scheme is analytical, and simple to implement in practice. Moreover, it is quite robust against the effect of
noise. The famous Lorenz and Rössler hyperchaos systems are used as illustrative examples.
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Since it was shown inf1g that for some chaotic systems
synchronization is possible, synchronization ofsunidirection-
allyd coupled chaotic systems and its potential applications in
engineering have been a field of great interest over a decade,
seef2–4g and references cited therein. Due to the different
applications, various specific synchronization schemes have
been proposed in the literature, seef3g and references cited
therein. However, just as was stated inf5g, despite the large
amount of effort, many key issues remain open. One of the
central questions is, given two arbitrary identical chaotic sys-
tems, how can one design a physically available coupling
scheme that is strictly guaranteed to produce stable identical
synchronization motionsi.e., high-quality synchronizationd?
In most of the rigorous results based on the Lyapunov stabil-
ity or the linear stability, the proposed scheme is very spe-
cific, but also the added controller is sometimes too big to be
physically practical. One practical scheme is the linear feed-
back. However, in such a technique it is very difficult to find
the suitable feedback constant, and thus numerical calcula-
tion has to be used, e.g., the calculation of the conditional
Lyapunov exponents. Due to numerical calculation, such a
scheme is not regular since it can be applied only to particu-
lar models. More unfortunately, it has been reported that the
negativity of the conditional Lyapunov exponents is not a
sufficient condition for complete chaotic synchronization,
seef6g. Therefore, the synchronization based on these nu-
merical schemes cannot be strictsi.e., high-qualitatived, and
is generally not robust against the effect of noise. Especially,
in these schemes a very weak noise or a small parameter
mismatch can trigger the desynchronization problem due to a
sequence of bifurcationsf7g.

Actually, this open problem, although significant for com-
plete chaos synchronization, is very difficult and cannot ad-
mit the optimization solutionf3g. For example, inf5g, rigor-
ous criteria are presented to guarantee linearly stable
synchronization motion, but the criteria are so complicated
that specific numerical calculation is necessary for particular
examples in practice. A similar problem was addressed in
f8g.

In this Brief Report, we give a novel answer to the above
open problem. We prove rigorously by using the invariance

principle of differential equationsf9g that a simple feedback
coupling with updated feedback strength, i.e., an adaptive-
feedback scheme, can strictly synchronize two almost arbi-
trary identical chaotic systems.

Let a chaoticsdrived system be given as

ẋ = fsxd, s1d

where x=sx1,x2, . . . ,xndP Rn, fsxd=(f1sxd, f2sxd , . . . ,
fnsxd) :Rn→Rn is a nonlinear vector function. And letV,Rn

be a chaotic bounded set of Eq.s1d which is globally attrac-
tive. For the vector functionfsxd, we give a general assump-
tion.

For any x=sx1,x2, . . . ,xnd, x0=sx1
0,x2

0, . . . ,xn
0dPV, there

exists a constantl .0 satisfying

uf isxd − f isx0du ø l maxjuxj − xj
0u, i = 1,2, . . . ,n. s2d

We call the above condition as the uniform Lipschitz con-
dition, and l refers to the uniform Lipschitz constant. Note
this condition is very loose, for example, the conditions2d
holds as long as]f i /]xj si , j =1,2, . . . ,nd are bounded. There-
fore the class of systems in the form of Eqs.s1d and s2d
include all well-known chaotic and hyperchaotic systems.
Consider the variables of Eq.s1d as coupling signals, the
receiver system with variablesyPRn is given by the follow-
ing equations:

ẏ = fsyd + esy − xd, s3d

where the feedback couplingesy−xd=se1e1,e2e2, . . . ,enend,
ei =syi −xid , i =1,2, . . . ,n denotes the synchronization error
of Eqs.s1d and s3d. Instead of the usual linear feedback, the
feedback strengthe=se1,e2, . . . ,end here will be duly
adapted according to the following update law:

ėi = − giei
2,i = 1,2, . . . ,n, s4d

where gi .0,i =1,2, . . . ,n, are arbitrary constants. For the
system of 2n equationsswhich is formally called the aug-
ment system for convenience belowd, consisting of the error
equation between Eqs.s1d ands3d and Eq.s4d, we introduce
the following non-negative function:*Email address: dbhuang@staff.shu.edu.cn
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V =
1

2o
i=1

n

ei
2 +

1

2o
i=1

n
1

gi
sei + Ld2, s5d

whereL is a constant bigger thannl, i.e., L.nl. By differ-
entiating the functionV along the trajectories of the augment
system, we obtain

V̇ = o
i=1

n

eisẏi − ẋid + o
i=1

n
1

gi
sei + Ldė

= o
i=1

n

eiff isyd − f isxd + eieig − o
i=1

n

sei + Ldei
2

ø snl − Ldo
i=1

n

ei
2 ø 0. s6d

where we have assumedx,yPV swithout loss of the gener-
ality asV is globally attractived, and used the uniform Lip-

schitz conditions2d. It is obvious thatV̇=0 if and only if ei
=0,i =1,2, . . . ,n, namely the setE=hse,edPR2n: e=0,e

=e0PRnj is the largest invariant set contained inV̇=0 for
the augment system. Then according to the well-known in-
variance principle of differential equationsf9g, starting with
arbitrary initial values of the augment system, the orbit con-
verges asymptotically to the setE, i.e., y→x and e→e0 as
t→`.

Obviously, such identical synchronization motion is strict
si.e., high-qualitatived, globalsas long as the chaotic attractor
is globally attractived, and nonlinearly stable. In particular,
the nonlinear global stability implies that such chaos syn-
chronization is quite robust against the effect of noise,
namely under the case of presenting a small noise, the syn-
chronization error eventually approaches zero and ultimately
fluctuates around zero wherever the initial values start. In
addition, we note that in order to reach synchronization, the
variable feedback strengthe will be automatically adapted to
a suitable strengthe0 depending on the initial values, which
is significantly different from the usual linear feedback. As is
well known, in the usual linear feedback scheme a fixed
strength is used wherever the initial values start, thus the
strength must be maximal, which means a kind of waste in
practice. Furthermore, the present control scheme does not
require us to determine numerically any additive parameters,
and is simple to implement in practice since the technique is
similar to the well-known self-adaptive controller in the con-
trol theory. Note theoretically the converged feedback
strength may be too big to be practicalsalthough the added
control may be small because the feedback errorei may be
smalld, but the flexibility of feedback strength in the present
scheme can overcome this limitation once such a case arises.
For example, suppose that the feedback strength is restricted
not to exceed a critical value, sayk. In the present control
procedure, once the variable strengthe exceedsk at time t
= t0, we may choose the values of variables at this time as
initial values and repeat the same control by resetting the
initial strengthes0d=0. Namely, one may achieve synchroni-
zation within the restricted feedback strength due to the glo-
bal stability of the present scheme, which is slightly similar

to idea of OGY controlf10g. This excellence is absent from
the usual feedback scheme. In addition, in the present
scheme the small converged strength may be obtained by
decreasing suitably the value of parameterg, which governs
the rate of increasing the feedback strength. The question on
how the parameterg affects the convergence ratesi.e., tran-
sient timed and the final coupling strength remains to be fur-
ther investigated.

Note that in the proposed scheme, the coupling of all the
variables may be redundant to achieve synchronization, be-
cause we find from my proof that it is not necessary, e.g., one
may setei ;0 si.e., canceling the corresponding couplingd if
ueiuø ueju. Actually, this case exists in general due to the non-
hyperbolicity of a chaotic attractor, namely near a nonhyper-
bolic point the divergence rate of trajectoriessthe contraction
and stretching of phase space along trajectories, respectivelyd
in some directions vanishessor is very smalld; see the fol-
lowing examples. Although we cannot give rigorous criteria
to determine which variables can be used as the coupling
signals for the general examples, in a concrete model one
may determine it by the numerical technique, e.g., the calcu-
lation of the Lyapunov exponent respective to each direction.
Of course for the low-dimensional systems the optimal cou-
pling variables may be found by directly testing again and
again. Especially, if based on the calculation of the condi-
tional Lyapunov exponents a chaotic system can be synchro-
nized by linearly coupling a variable, then the coupling of
this variable in the present scheme can surely achieve syn-
chronization; see the first example below.

Next we will give two illustrative examples. Consider the
Lorentz system,

ẋ1 = bsx2 − x1d,

ẋ2 = ax1 − x1x3 − x2,

ẋ3 = x1x2 − bx3. s7d

The corresponding receiver system is

ẏ1 = bsy2 − y1d + e1e1,

ẏ2 = ay1 − y1y3 − y2 + e2e2,

ẏ3 = y1y2 − by3 + e3e3 s8d

with the update laws4d. Now let b=10,a=28,b= 8
3. It has

been well known that a suitable linear feedback in the second
component may synchronize the Lorentz system, so we let
e1=e3;0 si.e., the time series of only the variablex2 are
selected as the driven signald, and setg2=0.1. The corre-
sponding numerical results are shown in Figs. 1 and 2, where
the initial feedback strength is set as zero. Figure 1 shows the
temporal evolution of synchronization error between Eqs.s7d
and s8d and the variable strengthe2. Figure 2 shows that
when an additive uniformly distributed random noise in the
rangef−1,1g si.e., a noise of the strength 1d is present in the
signal outputx2 of Eq. s7d, the synchronization error eventu-
ally approaches zero and ultimately fluctuates slightly around
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zero. Meanwhile, the variable feedback strength is affected
slightly and cannot stabilize.

As the second example, we consider the Rössler hyper-
chaos system,

ẋ1 = − x2 − x3, ẋ2 = x1 + 0.25x2 + x4,

ẋ3 = 3 +x1x3, ẋ4 = − 0.5x3 + 0.05x4. s9d

The receiver system is

ẏ1 = − y2 − y3 + e1e1,

ẏ2 = y1 + 0.25y2 + y4 + e2e2,

ẏ3 = 3 +y1y3 + e3e3,

ẏ4 = − 0.5y3 + 0.05y4 + e4e4 s10d

with the update laws4d. Let e1;0 swe speculate that this is
not optimald, gi =1,i =2,3,4, andinitial feedback strength be
s0,0,0d. Numerical results for the two different cases are
shown in Figs. 3 and 4, respectively. Figure 3 shows the
hyperchaotic synchronization and Fig. 4 the slight effect of a
noise with the strength 0.1 which is simultaneously added to
the signalsx2, x3, andx4.

The above numerical examples show that chaotic or hy-
perchaotic synchronization can be quickly achieved by the
present controllersi.e., the transient time to synchronization

FIG. 1. The chaos synchronization between Eq.s7d and s8d is
achieved by only the signalx2, wheresad–scd show temporal evo-
lution of the synchronization error andsdd shows the evolution of
the corresponding feedback strengthe2. Here the initial values of
sx,y,ed are set ass2,3,7,3,4,8,0d.

FIG. 2. sad–sdd show the effect on the synchronization error and
the feedback strength in Fig. 1 when a noise of the strength 1 is
present in the signal outputx2 of Eq. s7d.

FIG. 3. sad–sgd show the hyperchaotic synchronization between
systemss9d and s10d, and temporal evolution of the corresponding
feedback strength, where only three variables of Eq.s9d, xi, i
=2,3,4, areselected as the driven signals. Here the initial values of
sx,y,ed are set ass2,3,7,10,3,4,5,11,0,0,0d.

FIG. 4. sad–sgd show the effect on the synchronization error and
the feedback strength in Fig. 3 when a noise of the strength 0.1 is
simultaneously added to the signal outputsx2, x3, andx4 of Eq. s9d.
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is very shortd. In addition, we find from these examples that
such synchronization is robust against the effect of noise,
namely if the expected synchronization means that the syn-
chronization error is eventually smaller than a threshold
value sdoes not tend to zerod, then the present scheme is
physically feasible in the noisy case. Moreover, by compar-
ing the converged feedback strength and the corresponding
feedback signals, we find that the coupling is indeed small in
the examples. In addition, by testing the other chaotic sys-
tems including the Rössler system, Chua’s circuit, and
Sprott’s collection of the simplest chaotic flows, we find that
the coupling of only one variable is sufficient to achieve
identical synchronization of a three-dimensional system.

In conclusion, we have given a novel answer to an open
problem in the field of identical chaos synchronization. In
comparison with previous methods, the proposed scheme
supplies a simple, analytical, andssystematicd uniform con-

troller to synchronize strictly two arbitrary identical chaotic
systems satisfying a very loose condition. The technique is
simple to implement in practice, and quite robust against the
effect of noise. The control idea may also be generalized to
the case of the discrete chaotic systems. We also believe that
such a simple synchronization controller will be very benefi-
cial for the applications of chaos synchronization. Especially,
the similar control scheme has been successfully used to sta-
bilize the chaotic neuron modelf11g, and hence the proposed
adaptive-feedback synchronization controller can be used to
explore more reasonably the interesting dynamics found in
neurobiological systems, i.e., the onset of regular bursts in a
group of irregularly bursting neurons with different indi-
vidual propertiesf12g.
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