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Simple adaptive-feedback controller for identical chaos synchronization
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Based on the invariance principle of differential equations, a simple adaptive-feedback scheme is proposed
to strictly synchronize almost all chaotic systems. Unlike the usual linear feedback, the variable feedback
strength is automatically adapted to completely synchronize two almost arbitrary identical chaotic systems, so
this scheme is analytical, and simple to implement in practice. Moreover, it is quite robust against the effect of
noise. The famous Lorenz and Rdssler hyperchaos systems are used as illustrative examples.
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Since it was shown ifil] that for some chaotic systems principle of differential equationg9] that a simple feedback
synchronization is possible, synchronizatior(wfidirection-  coupling with updated feedback strength, i.e., an adaptive-
ally) coupled chaotic systems and its potential applications ifeedback scheme, can strictly synchronize two almost arbi-
engineering have been a field of great interest over a decadgary identical chaotic systems.
see[2-4] and references cited therein. Due to the different et a chaotic(drive) system be given as
applications, various specific synchronization schemes have
been proposed in the literature, 48 and references cited x=f(x) (1)
therein. However, just as was stated i}, despite the large ’
cental quesiions s, gven o arbirary dential chaotic syseT® X=X v X € R 0=, 6.,

' f.(x)):R"— R"is a nonlinear vector function. And [€1C R"

tems, how can one design a physically available C.OUp“.nq%e a chaotic bounded set of EG) which is globally attrac-
scheme that is strictly guaranteed to produce stable |dent|cef\ . X
ive. For the vector functiori(x), we give a general assump-

synchronization motiorti.e., high-quality synchronizatiof :

In most of the rigorous results based on the Lyapunov stabil"o": _ 0.0 0

ity or the linear stability, the proposed scheme is very spe- -For any x=0, %, ... ’.X”)’. Xo= (X, X, .. Xg) € 1, there
cific, but also the added controller is sometimes too big to b&XIStS & constarit>0 satisfying

physically practical. One practical scheme is the linear feed-

back. However, in such a technique it is very difficult to find fi00 -~ fio)| < I maxlx =], i=1,2,..n. (2
the suitable feedback constant, and thus numerical calcula-

tion has to be used, e.g., the calculation of the CondltlonaJJIition, andl refers to the uniform Lipschitz constant. Note

Lyapunoy exponents. Due t9 numerical qalculation, suc'h &his condition is very loose, for example, the conditi@)
scheme is not regular since it can be applied only to particup J14c ag long asfi/dx; (i,j=1,2, .. n) are bounded. There-

lar models. More unfortunately, it has been reported that th?ore the class of systems in the form of Ed4) and (2)

negativity of th.e_ conditional Lyapunov exponents s not 8include all well-known chaotic and hyperchaotic systems.
sufficient condition for complete chaotic synchronization

- 'Consider the variables of Eql) as coupling signals, the
see[6]. Therefore, the synchronization based on these NUzoceiver system with variablase R" is given by the follow-

merical schemes cannot be strice., high-qualitativg and . e
is generally not robust against the effect of noise. Especially',ng equations:
in these schemes a very weak noise or a small parameter :

mismatch can trigger the desynchronization problem due to a y="f(y) +ely-x), 3
sequence of bifurcation]. )

Actually, this open problem, although significant for com- Where the feedback couplingy—x)=(e.81,&:€,, ... .€€n),
plete chaos synchronization, is very difficult and cannot ad&=(Yi=), 1=1,2,... n denotes the synchronization error
mit the optimization solutiofi3]. For example, if5], rigor- ~ 0f Egs.(1) and(3). Instead of the usual linear feedback, the
ous criteria are presented to guarantee linearly stablieedback strengthe=(e;, e, ... ,6) here will be duly
synchronization motion, but the criteria are so complicatecedapted according to the following update law:
that specific numerical calculation is necessary for particular
examples in practice. A similar problem was addressed in §=-yeli=12,...n, (4)
[8].

In this Brief Report, we give a novel answer to the abovewhere ,>0,i=1,2, ... n, are arbitrary constants. For the
open problem. We prove rigorously by using the invariancesystem of & equations(which is formally called the aug-

ment system for convenience belpwonsisting of the error
equation between Eqgl) and(3) and Eq.(4), we introduce
*Email address: dbhuang@staff.shu.edu.cn the following non-negative function:

We call the above condition as the uniform Lipschitz con-
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1D 101 to idea of OGY contro[10]. This excellence is absent from
V=D e+=> —(g+L)? (5)  the usual feedback scheme. In addition, in the present
2is1 2is1 % scheme the small converged strength may be obtained by

decreasing suitably the value of paramegewhich governs

the rate of increasing the feedback strength. The question on
how the parametey affects the convergence ratee., tran-
sient timg and the final coupling strength remains to be fur-

whereL is a constant bigger thaml, i.e., L>nl. By differ-
entiating the functiorV along the trajectories of the augment
system, we obtain

2 "1 ther investigated.
V=2 eli-%)+2> —(g+L)e Note that in the proposed scheme, the coupling of all the
i=1 i=1 N variables may be redundant to achieve synchronization, be-
n n cause we find from my proof that it is not necessary, e.g., one
= elfiy) - fix) +ee] - >, (g +L)e may sete; =0 (i.e., canceling the corresponding coup)iriiy
i=1 i=1 le|=<lej|. Actually, this case exists in general due to the non-
n hyperbolicity of a chaotic attractor, namely near a nonhyper-
<(nl-L)> e?=<0. (6)  bolic point the divergence rate of trajectorigise contraction
i=1 and stretching of phase space along trajectories, respegtively

. in some directions vanishdsr is very small; see the fol-
where we 'have assumexdyg Q) (without loss of the 9ener |owing examples. Although we cannot give rigorous criteria
ality as€) is globally attractivg, and used the uniform Lip-  , getermine which variables can be used as the coupling
schitz condition(2). It is obvious thatv=0 if and only ife,  signals for the general examples, in a concrete model one
=0,i=1,2,...n, namely the setE={(e,e)eR*:e=0,e  may determine it by the numerical technique, e.g., the calcu-
=g, R"} is the largest invariant set Contained\.'m:o for lation of the Lyapunov exponent respective to each direction.
the augment system. Then according to the well-known inOf course for the low-dimensional systems the optimal cou-
variance principle of differential equatiofig], starting with ~ pling variables may be found by directly testing again and
arbitrary initial values of the augment system, the orbit con-2gain. Especially, if based on the calculation of the condi-
verges asymptotically to the sBt i.e.,y—x ande— e, as  tional Lyapunov exponents a chaotic system can be synchro-
t—s o0, nized by linearly coupling a variable, then the coupling of
Obviously, such identical synchronization motion is strictthis variable in the present scheme can surely achieve syn-
(i.e., high-qualitative global(as long as the chaotic attractor chronization; see the first example below.
is globally attractivé, and nonlinearly stable. In particular, ~ Next we will give two illustrative examples. Consider the
the nonlinear global stability implies that such chaos synlorentz system,
chronization is quite robust against the effect of noise,

namely under the case of presenting a small noise, the syn- X = B~ Xa),

chronization error eventually approaches zero and ultimately '

fluctuates around zero wherever the initial values start. In Xp = Xy~ X1X3 ~ X,

addition, we note that in order to reach synchronization, the

variable feedback strengthwill be automatically adapted to X3 = X Xo — DXa. 7

a suitable strengtla, depending on the initial values, which _ _ _
is significantly different from the usual linear feedback. As isThe corresponding receiver system is
well known, in the usual linear feedback scheme a fixed

strength is used wherever the initial values start, thus the Y1=B(y2— Y1) + €€y,
strength must be maximal, which means a kind of waste in
practice. Furthermore, the present control scheme does not Vo= ay1 — Y13~ Yo + €6,

require us to determine numerically any additive parameters,
a.nd. is simple to implement in practice since the t.echnlque is Va= V1Yo — bys + e85 (8)
similar to the well-known self-adaptive controller in the con-

trol theory. Note theoretically the converged feedbackwith the update lan(4). Now let 3=10,0=28 ,bzg. It has
strength may be too big to be practi¢although the added been well known that a suitable linear feedback in the second
control may be small because the feedback egranay be  component may synchronize the Lorentz system, so we let
small), but the flexibility of feedback strength in the presente;=e;=0 (i.e., the time series of only the variablg are
scheme can overcome this limitation once such a case ariseselected as the driven sighabnd sety,=0.1. The corre-

For example, suppose that the feedback strength is restrictaghonding numerical results are shown in Figs. 1 and 2, where
not to exceed a critical value, s&y In the present control the initial feedback strength is set as zero. Figure 1 shows the
procedure, once the variable strengtlexceedsk at timet  temporal evolution of synchronization error between Egp.

=ty, we may choose the values of variables at this time aand (8) and the variable strength,. Figure 2 shows that
initial values and repeat the same control by resetting thevhen an additive uniformly distributed random noise in the
initial strengthe(0)=0. Namely, one may achieve synchroni- range[-1,1] (i.e., a noise of the strength Is present in the
zation within the restricted feedback strength due to the glosignal outputx, of Eq. (7), the synchronization error eventu-
bal stability of the present scheme, which is slightly similarally approaches zero and ultimately fluctuates slightly around
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FIG. 1. The chaos synchronization between Et}.and (8) is
achieved by only the signad,, where(a)—(c) show temporal evo-
lution of the synchronization error arld) shows the evolution of
the corresponding feedback strength Here the initial values of
(x,y,€) are set a$2,3,7,3,4,8,0

zero. Meanwhile, the variable feedback strength is affected

slightly and cannot stabilize.
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FIG. 3. (a)—(g) show the hyperchaotic synchronization between
systemg9) and(10), and temporal evolution of the corresponding
feedback strength, where only three variables of Hj, x;, i
=2,3,4, areselected as the driven signals. Here the initial values of
(x,y,€) are set a$2,3,7,10,3,4,5,11,0,0,0

Y3=3+y1ys+ €363,

As the second example, we consider the Rdssler hyper-

chaos system,

)-(l:_XZ_X3’ )-(2:X1+O.25(2+X4,

5(3 =3 +X1X3, )-(4 =- 05(3 + 005(4 (9)

The receiver system is

Y1=—Y2— Y3+ €€y,

Y2=Y1+0.25/,+y, + €6,
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Y4=-0.5/3+0.05/,+ €&, (10

with the update law4). Let ;=0 (we speculate that this is
not optima), y,=1,i=2,3,4, andnitial feedback strength be
(0,0,0. Numerical results for the two different cases are
shown in Figs. 3 and 4, respectively. Figure 3 shows the
hyperchaotic synchronization and Fig. 4 the slight effect of a
noise with the strength 0.1 which is simultaneously added to
the signalsx,, X3, andX,.

The above numerical examples show that chaotic or hy-
perchaotic synchronization can be quickly achieved by the
present controllefi.e., the transient time to synchronization
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FIG. 2. (a—(d) show the effect on the synchronization error and  FIG. 4. (a)—<g) show the effect on the synchronization error and
the feedback strength in Fig. 1 when a noise of the strength 1 ithe feedback strength in Fig. 3 when a noise of the strength 0.1 is
present in the signal outpu of Eq. (7). simultaneously added to the signal outpxiisxs, andx, of Eq. (9).
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is very short. In addition, we find from these examples that troller to synchronize strictly two arbitrary identical chaotic
such synchronization is robust against the effect of noisesystems satisfying a very loose condition. The technique is
namely if the expected synchronization means that the syrsimple to implement in practice, and quite robust against the
chronization error is eventually smaller than a thresholdeffect of noise. The control idea may also be generalized to
value (does not tend to zejpthen the present scheme is the case of the discrete chaotic systems. We also believe that
physically feasible in the noisy case. Moreover, by comparsych a simple synchronization controller will be very benefi-
ing the converged feedback strength and the correspondingg) for the applications of chaos synchronization. Especially,
feedback signals, we find that the coupling is indeed small ifpe similar control scheme has been successfully used to sta-
the examples. In addition, by testing the other chaotic syspjjize the chaotic neuron modEL1], and hence the proposed
tems including the Rossler system, Chua's circuit, andygantive-feedback synchronization controller can be used to
Sprott's collection of the simplest chaotic flows, we find thatgypiore more reasonably the interesting dynamics found in
the coupling of only one variable is sufficient to achieve neyropiological systems, i.e., the onset of regular bursts in a
identical synchronization of a three-dimensional system. group of irregularly bursting neurons with different indi-

In conclusion, we have given a novel answer to an opeR;qyal propertieg12].
problem in the field of identical chaos synchronization. In
comparison with previous methods, the proposed scheme This work is supported by the National Natural Science
supplies a simple, analytical, ariglystemati¢ uniform con-  Foundation of ChinéGrants Nos. 10201020 and 10432010
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