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Double parametric resonance for matter-wave solitons in a time-modulated trap
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We analyze the motion of solitons in a self-attractive Bose-Einstein condensate, loaded into a quasi-one-
dimensional parabolic potential trap, which is subjected to time-periodic modulation with an amplituntk
frequency(). First, we apply the variational approximation, which gives rise to decoupled equations of motion
for the center-of-mass coordinate of the solitétt), and its widtha(t). The equation fok(t) is the ordinary
Mathieu equatioME) (it is an exact equation that does not depend on the adopted arbatequation for
a(t) being a nonlinear generalization of the ME. Both equations give rise to the same map of instability zones
in the (¢,Q) plane, generated by the parametric resona(gs, if the instability is defined as the onset of
growth of the amplitude of the parametrically driven oscillations. In this sense, the double PR is predicted.
Direct simulations of the underlying Gross-Pitaevskii equation give rise to a qualitatively similar but quanti-
tatively different stability map for oscillations of the soliton’s widtt). In the direct simulations, we identify
the soliton dynamics as unstable if the instabiliagain, realized as indefinite growth of the amplitude of
oscillations can be detected during a time comparable with, or smaller than, the lifetime of the condensate
(therefore accessible to experimental detegtidmwo-soliton configurations are also investigated. It is con-
cluded that multiple collisions between solitons are elastic, and they do not affect the instability borders.
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I. INTRODUCTION derived by means of an averaging procedure, which, in par-
The experimental observations of solitons in effectivelyticular, predicts the possibility of a stable equ|l!brf|um mfaﬁ
one-dimensional(1D) Bose-Einstein condensate®ECS  inverted trap, corresponding to a negative sign in front of the

with attractive interactions between atorfls2] make the potenéiall tern;] in the Grossf—Pitaﬁvskii equatic@PB (b4) |
study of soliton dynamics in this medium a highly relevant (S€€ below The existence of such a state was corroborate

subject. In a permanent form, solitons can be created in Qy direct simulations of t.he full equation..However, paramet-
“cigar-shaped” condensate, subjected to tight transverse aritf rkesonance$ZR:§|, Whr'lc.h Sre gthe Sl;]bjeCt of the present
loose longitudinal trapping; see, e.g., a relevant discussion iffOrk: Were not dealt with in Ref9], as the resonance cannot

Ref. [3] and references therein. The soliton may perform'@k€ Place in the large limit. Resonances in collective os-
harmonic oscillations, as a quasiparticle, in a trap with aC|IIat|ons of a 1DrepulsiveBEC due to periodic modulation

lonaitudinal paraboli tential profilen mor histicated of the nonlinear coefficient and trap frequency were investi-
ongitudinal parabolic potential profilén more sopnisticate gated in[10], in both the high density limit described by the
settings, including an additional optical lattice periodic po-

: - N X mean-field GPE, and the low density Tonks-Girardeau re-
tential, and also the possibility of repulsive interactions be-

X - : ime described by the nonlinear Schrddinger equation with
tween atoms in the condensate, the oscillatory motion Oguintic nonlinearity.

one- and two-dimensional BEC solitons was studied in detail” | this work, we aim to study PRs in the motion of soli-

in the recent works$4,5], respectively. Thus a natural way tons in a 1D condensate withitractive nonlinearity. Obvi-
to test various dynamical properties of the systemparticu-  ously, the most interesting situation is that when mean-field
lar, manifestations of possible resonanciesto use a mag- effects, accounted for by the GPE in its capacity of a partial
netic trap whose strength is periodically modulated in timedifferential equatio{PDE), can alter the resonances, if com-
[6,7]. This can be readily implemented by applying a mixturepared to the relatively simple approximation which amounts
of dc and ac magnetic fields to the condensate. Another po$e an ordinary differential equatiof©DE) [in particular, the
sibility would be the periodic modulation of the nonlinear Mathieu equatiofME)]. In this sense, the PR in the motion
coefficient through the atomis-wave scattering length. of the soliton’s center of mass is of lesser interest, as the
Resonances in spherically symmetric trapped Bose-Einsteicorresponding ODE is an exact equation, decoupled from
condensates under a periodically varying atomic scatterin@DE effectg6] (the Ehrenfest theoremA more promising
length were considered in a recent paf@r direction is to study resonant effects in internal vibrations of
The motion of a soliton in a 1D trap with time-modulated the soliton, as in this case the corresponding ODE is only an
strength is an issue of straightforward interest for realizatiorapproximation. Besides that, in the latter case the PRs will be
in experiments. Recently, this problem was considered imesonances in a truly nonlinear system, as the corresponding
Ref. [9] for the case of rapid modulation with a large fre- ODE is a nonlinear one. This, in effect, implies the consid-
quency. For this case, an effective equation of motion waseration of a double parametric resonance: it will be demon-
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strated below that PR-induced instabilities set in simulta-densate trapped in such a potential acquires a highly elon-
neously in the ODESs describing the evolution of the soliton’sgated form(cigar shapg
width and center-of-mass position. When the transverse confinement is strong enough, so that
Actually, the onset of the instability, in the form of per- the transverse oscillation quantuiw , is much greater than
manent growth of the amplitude of parametrically driven os-the characteristic mean-field interaction energy per particle
cillations, is the most important manifestation of the PR.N|ag|¥|?, the dynamics is effectively one dimensional. In
Accordingly, in the case of the ME, if it is cast in the from of this case, the wave function may be effectively factorized as
Eq. (13 (see below; the PRs of different ordens=1,2,...  W(x,y,z,t)=(x,t) ¢y, 2), where oy, 2)=exd-(y?
generate well-known instability zones in the plangQf ¢), +2°)/2a%]/\ma, is the normalized ground state of the 2D
at values close t@g‘ézzv’zm [11]. The main result of the harmonic oscillator in the transverse direction, with
present work will be summarized in the form of a similar but=\A/mw, being the corresponding transverse harmonic-
guantitatively different map of instability zones for intrinsic oscillator length. Inserting the factorized expression into the
vibrations of the soliton and oscillations of its center of mass3D GPE (1), and integrating it over the transverse plane
found from direct simulations of the GRE). The double PR  (y,z), one derives the effective 1D GREZ]

takes place in the overlapping regions of the two zones. p 22 2
The analysis developed in this work has common features iﬁ_w =|-——+ Twixz +g1oN|? |, (3)
with the study of intrinsic oscillations in the three- at 2maxs 2

dimensional(3D) BEC with repulsivenonlinearity, trapped
in a parabolic potential with time-modulated strength. This
problem was considered in Refg®6] and [8], which also
employed the variational approximatigi/A) to predict the
evolution of the condensate’s size. The corresponding equ
tion derived in Ref[6] for the radial sizea(t) of the conden-
sate differs from our Eq10), derived below for the soliton’s
size, by an opposite sign in front of the term proportional t0ye
N, and by its powefit was ~a™, due to the 3D character of
the problem considered if6]). In that work, an instability ] X
map was drawn only on the basis of the ODE results. Her&/ave functiony— V2Nlagw , /aywp,

where we have neglected the zero-point energy of the trans-
verse motionfiw , and defined the coefficient of the 1D
nonlinearity, g,p=4mh%agm 1 [|4(y,2)|*dy d=2adiw,. Es-
sentially the same 1D equation can be derived in another
6é’ituation, when the nonlinearity is much larger than the trans-
verse kinetic energj13].

We now assume the axial parabolic trap to be time depen-
nt ~f(t)x?, and rewrite Eq.(3) using the dimensionless
variablest— w,t, x—x/a,, a,=vhi/mw,, and the rescaled

we present the PDE-based m@mnd the model is different, oy 1Py 5 )
due to the different dimension and the attractive sign of the v fOx*y+[W*y=0, (4)
nonlinearity.

The rest of the paper is organized as follows. In Sec. Il we f(t) = 1+ cog Q1) 5)

describe the model and derive the variational equations. Sec-
tion Ill presents basic results for the PR in the dynamics of avhere the strength of the constafitic’) parabolic trap is
soliton trapped in a time-modulated parabolic potential. Inscaled to be 1g and() being the amplitude and frequency of
Sec. IV, we consider a configuration with two identical soli- the time-dependenf‘ac”) part of the trap’s strength. The
tons created in the trap, concluding that multiple collisionsamplitude, which is defined to be positive, obeys the obvious
between the solitons do not inflict any damage on them. Theestrictione <1, as we do not consider the case of an expul-

paper is concluded by Sec. V. sive potential.
To estimate actual values of the time and space units, we
II. THE MODEL AND VARIATIONAL APPROXIMATION take the eXperimental parameters from F{éﬂ. In this ex-

. . _ ~ periment, a single soliton in 4.i condensate oN=4x 10°
The dynamics of a BEC in the mean-field approximationatoms was created in an axially symmetric parabolic trap
at zero temperature is governed by the 3D GPE with , =27 X 710 Hz andw,=27x 50 Hz (subsequently,
2 2 the axial potential was made expulsive, which formally cor-
L ov fi 4aficaN ) . - s
ih—=| - —=V2+V(x,y,2) + ———|¥]2|¥, (1) responds to an imaginary confining frequenay=2mi
a 2m m X 78 H2). The s-wave scattering length, at the value of the

whereW(r ,t) is the macroscopic wave function of the con- Magnetic fieldB=420 G (which was used to make the

densate normalized so thgit(r)[2dr =1, N is the total num- atomic interaction attractive, via the Feshbach resonance
ber of atomsm is the atomic masss is thes-wave scatter- V>\</ais(]‘a257:k_o.21 mr?‘ W'tt?] thf l:na;s O‘;.ZCL' ator&ﬁ, m= 11.651 )
ing length (below we shall be concerned with an attractive g9, we have e loflowing imé and space units:

BEC for whicha,<0), and @Xlz_sx 10°°s, ax=\s"h/rr21wxz 12 um, the trap’s aspect ra-
tio beingw,/w, =7X10°=
As is well known, there is a drastic difference in the sta-
bility between the 3D and 1D attractive condensates, as col-
lapse occurs in the 3D case at a critical value of the param-
is the axially symmetric trapping potential which provides eter k=N|ag/ayo (ayo is the harmonic-oscillator length
for tight confinement in the transverse plafyez), as com-  characterizing the strength of the magnetic traprrespond-
pared to loose axial trapping, assum'mi‘/wi«l. The con- ing to a situation when the attractive forces overwhelm the

Vixy 2 = D¢ + o (2 + 2] @
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kinetic energy, and the condensate rapidly shrinks. For in-

stance, in isotropic 3D trap&v,=w, =wg, ayo=\A/Mwy),
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Px.t) =7 Sec*(%)“lo[i[qﬁ +w(x = &) +b(x— 7},

the Gaussian ansatz for the wave function predicts collapse

at ky,=Nlay/a;0=0.671[14], while direct numerical solu-
tion of the GPE(1) yields k,,=0.575[15]. In a waveguide
trap without longitudinal confinemeriw,=0), the collapse
occurs at a slightly different valué.,=N|aJ/a, =0.627,

9

where 7, a, & ¢, w, andb are time-dependent real varia-
tional parameters. The nor(id) corresponding to the ansatz
(9) is Ng=277a. The subsequent derivation is straightfor-

which was found by applying the imaginary-time relaxationard, ending up with a system of dynamical equations for

method to the GPEL) [16]. Unlike strong3D collapseweak

the soliton’s width and coordinate:

collapse in the 2D GPE occurs if the peak density exceeds a

critical value (|]2),=11.7/87N|ad/a,) [3]. In the present
work, simulations of the 1D equatigd) were run for values
of the parameters that ensure the absence of trans(zibse
or 3D collapse in the full underlying 3D system.
Numerical simulations of Eq(4) were performed by
means of two versions of the operator-splitting technidie:
using fast Fourier transforml?7] and (i) with the Crank-

Nicholson schem§18]. These two numerical methods pro-

4 2N

a= % - @ - 2f(t)a, (10
£=-2f(1)¢, (11)

where the overdot stands fdfdt. The other dynamical vari-

ables are related to these izvyzg andb=a/(2a).
Equation(10) was previously considered in the context of

duced practically identical results. We employed a finite dodisintegration of optical solitons in fibers with randomly
main L <x=L, with absorbers installed near the edges tovarying parameterf20], and recently with regard to collec-
prevent reentering of a small amount of linear waves emittedive oscillations of a 1D repulsive BEC under time-varying

by the perturbed soliton. The domain length @as suffi-
cient to detect indefinite growttat least by a factor of tgrof

trap potential and nonlinearify.0]. Equations similar t§10)
and (11) can also be obtained by means of the moment

amplitudes of oscillations of the soliton’s center-of-mass comethod for the evolution of an optical beam in a system of

ordinate and width due to the parametric resonances.
In the absence of the potential teffiti)=0, Eq.(4) gives
rise to a commonly known family of soliton solutions,

PeolX,1) = 7 SeCchiz(x - §>Jexp{'5[<n2 - )+ 'fx]}, (6)

whereé andé are, respectively, the instantaneous coordinat

and velocity of the soliton’s center, while the amplituge
determines the number of atorreorm) of the condensate,

Ny = J (¥ [Pdx =27, 7

—o0

which is the single dynamical invariant of E@l) with the
time-dependent coefficieri{t). The normN; is connected to
the “real” number of atom8l in the original 3D GPH1) as

nl2deL

Ay wy

Ns= 8

For the above mentioned experimental settingq ajfthe
relation is Ng=1.115x 10°N, so that approximatelyN
=900 atoms needed to have the norm of the solkga 1
used in our numerical simulations.

nonlinear graded-index fibef&1]. In that work, strong reso-
nances in the beamwidth oscillations were found, when the
fiber’s graded index is a piecewise-constant periodic function
of the propagation coordinate.

The fact that Eq(11) for ¢ is decoupled from the other
one is a general result, which is valid irrespective of the
applicability of the VA. Indeed, Eq(11) for the soliton’s
center-of-mass coordinate, which is defined as

&) = NGt f

e

+00

X|ip(x,t)[7dx, (12)

where Nq is the conserved norrti7), can be derived as an
exactcorollary of the GPE with &ime-dependeniparabolic
potential [6]. In fact, this is the Ehrenfest theorem in the
present contextits validity for the nonlinear Schrodinger
equation with a parabolic potential was proved in R2g)).

In the case of a harmonic time modulation of the trap’s
strength as per Ed5), the equation of motiorill) for the

soliton’s center is the Mathieu equatipht],
&+ 2[1 +ecogOt)]E=0. (13)

As is commonly known, the ME gives rise to parametric

resonances whefl is close to the values
Q =22/, (14)

n=1 andn>1 (n is intege corresponding to the fundamen-

The soliton’s dynamics in the trapping potential can alsotal and higher-order resonances, respectively. In fact, Eq.
be described by means of the variational approximation(10) with the functionf(t) taken from Eq.(5) may be re-
which is a well-known tool for the consideration of solitons garded as a nonlinear generalization of the ME, which also

in nonintegrable modelg19]. In particular, the VA for the

three-dimensional GPE with repulsive nonlinearity and time-

modulated strength of the trap was elaborated in F&f.In

gives rise to PRs.
It is relevant to mention that, in the low-density limit
(Ng< 7%a%/2), the second term on the right-hand side of Eq.

this work, we adopt the following ansatz for a perturbed 1D(10) can be dropped. Such a simplified equation is equivalent

soliton:

to anexactequation for the width, which was derived in Ref.
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[7] (without the use of the VA or other approximatjoinom 10 - - y T -
the two-dimensional GPE with repulsive nonlinearity and i 2
parabolic trapping potential. It is known that solutions of the st i :

latter equation can be expressed, also in an exact form, in
terms of solutions of the linear ME. Therefore, in the limit

when the underlying GPHE4) goes over into the linear °r
Schrddinger equation, which correspondsge0, the PRs in %
Eq. (10) are exactly the same as in Ed.1). However, Eq. 4r
(10) cannot be reduced to the linear ME in the general case
(as# 0). 2
I1l. INSTABILITY ZONES FOR THE TRAPPED SOLITON 00
A. The soliton in the time-independent trap t

and nonresonant motion in the time-modulated one ) o ] ) ]
FIG. 2. Nonlinear oscillations of the soliton’s width, in the case

First, we test the accuracy of the VA, which was briefly of temporal modulation of the parabolic trap’s strength moderately
described above, in the dc case, i.e., with0 in EqQ.(4). AS  close to the parametric resonance, with =1+& cogQt), £=0.5,
mentioned above, the equation #it) is independent of the and(=2.43. The initial condition ig/y(X) = 7 Secti 7o(x— &)1 with
adopted ansatz, in compliance with the Ehrenfest theoremy,=0.5 andé,=1.0. The solid and dashed lines correspond, respec-
By contrast, Eq(10) for the width of a solitona(t) stems tively, to the simulations of the PDE) and ODE(10).
from the VA with the ansatz9). The latter equation coin-
cides with one for a unit-mass patrticle in the potential

2 oN from Eq. (15), which is close toa=0.4 following from the
_ s 2 .
U(a) = 22 2t f(t)a?. full equation(7).
a& ma In direct simulations of the GPE), the initial condition
In the dc casef(t)=1, the value of the widtla of a station- Was taken as the solitof) with some off-center displace-
ary soliton corresponds to the minimum of this potential, MeNt & and zero velocity:y(x) = 7 sectin(x-&)]. Then,

which is determined by the real positive root of the equatiorin® soliton's coordinate, as a function of time, was extracted
from a numerical solution of Eq4) as per the definition

N 2 : . T )
PN, 2 g (15) (12), and the widtha(t) was identified as follows:
=
Obviously, when the first term in this equation may be ne- 14 . . .
glected, we have a prediction for the width of a soliton co- L F
inciding with that in Eqs(6) and(7), a=1/%=2/N.. There- 2r . :.'4.

fore, the VA is more accurate for a soliton whose width is
narrow in comparison with the harmonic-oscillator length of
the parabolic trap. For instance, M{=5 we havea=0.37

0.7 T T T T T =
(5]
Vg 1 - 1‘ bod =
AR : F
0.6 ; \ 1
0.5 1
a ‘ ‘ -l
-6 1 1 1
041 { ? 0 10 20 30 40
i t
03, 5 0 15 20 25 30 FIG. 3. A double parametric resonance shows up as simulta-
t neous permanent growth of the amplitudes of oscillationg(of

and a(t). Numerical simulations of the GPH) with the initial
FIG. 1. Evolution of the widtha(t) of the relatively broad soli-  condition (X) = 79 secti 7o(X— &)1, whereny=1.0 and&,=0.5, are
ton (6), with the initial amplitudeny=1.5, off-center shif,=0.3, compared to numerical solutions of ODEK)) and (11). The har-
and zero initial velocity, in the model with a dc parabolic tlap ~ monic trap is periodically modulated at the fundamental-resonance
=0). In this figure and below, the solid and dashed lines showfrequencyQ =22, with the amplitudes=0.2. The thick and thin
respectively, the results obtained from direct simulations of the GPEontinuous lines refer to PDE simulations, while corresponding
(4), and from numerical solutions of Eq&L0) and (11). dashed lines refer to ODE simulations.
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5 Y 5 5 bolic trap [in the case shown in Fig. 2, the maximum
as(t) = Ng f [x = &) Fg(x,1)[*dx (16)  amplitude of the oscillations of(t) is ~4.5]. The deforma-
"°° tion breaks the symmetry of the soliton’s shape, which was
) ) ] assumed in the ansat); hence Eq(10), which was derived
[recall thatNs is the conserved norm of the solution definedfqom the symmetric ansatz, may become inaccurate. Despite
in Eq. (7)]. the intrinsic vibrations, the soliton oscillating in the parabolic

If the initial sqliton is nal’r.OV\[:ji(O).<1, 3(9)=01 integra-  trap whose strength is periodically modulated in time, re-
tion of Eq.(10) yieldsa(t) which is virtually identical to that  mains completely stable in this regime.

following from the solution of Eq(4), with regard to the

definition (16). However, fora(0) ~ 1, i.e., for a broader soli- B. The double parametric resonance
ton, the discrepancy between the ODE and PDE results is As was mentioned above, the trivial solutige=0 of the
notable, as is illustrated by Fig. 1. ME loses its stability in certain zones in the parameter plane

Next, we compare the evolution of the soliton’s widit) (Q,e) close to the PR point$l4) [11]. In that case&(t)
in a trap including an ac paft # 0), but still not very close features oscillations with a permanently growing amplitude.
to the PR, as found from the solution of the variational Eq.The solution of Eq(10), which is a nonlinear generalization
(10), and from the full PDE simulations as per H46). A of the ME, is always an oscillatory one, and it may be ex-
typical example of the comparison is displayed in Fig. 2. pected that, also close to the poilfig}), a periodic solution
As may be expected in a nonlinear system, periodic forcwill develop an instability that will also manifest itself in the
ing with a frequency close to the resonance results in comanlimited growth of the amplitude of the oscillations. This
plex dynamics. The frequency of the oscillations depends oexpectation is corroborated by simulations of E0). As
the amplitude, which leads to detuning the system from thavas explained in the Introduction, we always identify the
resonance as the amplitude grows. The periodic slow dynanPR-induced instability as a permanent growth of the ampli-
ics of the amplitude in Fig. 2 is a manifestation of this phe-tude of oscillations in simulations of the corresponding equa-
nomenon (which is usually called a nonlinear resonancetion, and this definition makes the onset of the instability in
[23]). This general character of the evolution is qualitatively Egs.(11) and(10) identical. Thus, alouble parametric reso-
similar in the ODE and PDE results; some discrepancy benancetakes place in the system.
tween them is explained by a deformation of the soliton per- In direct simulations of the full GPE4), double PR is
forming the oscillations with a large amplitude in the para-observed indeed, in the form of growth of the amplitude of

1.00+600+9 6+90 0000000000
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the oscillatory motion of the solitoriexternal instability, Finally, it is also relevant to stress that, although Fig. 4

and of the amplitude of its intrinsic vibratiorigtrinsic in-  displays what we define as instability zones, the soliton, even
stability), as shown in Fig. 3. In accordance with the fact thatafter the amplitude of its intrinsic vibrations starts to grow,

Eqg. (11) is an exact corollary of Eq(4), the onset of the doesnot feature self-destruction, remaining a coherent, al-
external instability is observed precisely at frequencieshough unsteady, object. Eventually, it gets destroyed, but
Where |t |S predicted by Simu|ati0ns Of the |ineal‘ Mathieu qun|y when it hits absorbers p|aced at the edges of the inte-
(1D. In Fig. 3, one can see some difference between thgyation domair(as mentioned above, the absorbers emulate a

oscillation law for(t) as found from the direct simulations o4 physical feature—a finite size of the experimental setup
of the GPE and from the numerical integration of the ODE;j, \which the BEC is trapped

(11). An explanation for this is that the soliton under periodic

perturbation emits linear waves which are absorbed on the

domain boundaries. This process is enhanced under paramety, co| | |SIONS BETWEEN OSCILLATING SOLITONS

ric resonance, and as a result, the norm of the soliton slowly

decreasesgnote that the Ehrenfest theorem presumes a con- In the experiment, it may be quite feasible to create sev-
stant norm. In the experiment, a similar role may be played eral solitons in one tragwhich was actually done in Ref.
by evaporation of atoms from a finite-size trap. Detuning[1]); therefore it is relevant to analyze the dynamics of a
from the resonance due to such mass loss can be explored to-soliton state. As the solitons are expected to collide
dint of soliton perturbation theory based on the inverse scatmany times, systematic simulations of this configuration will
tering transforn{24], which should be a subject of separate aiso help to understand the nature of interactions between the
consideration. matter-wave solitons.

Instability zones found from direct simulations of the  The results of the investigation of two-soliton configura-
GPE (4) are presented in Fig. 4. To collect data for thistions can be summarized in a simple form: in all cadegh
figure, the simulations were run long enougypically, upto  off-resonance and near-resonant oneslitons easily sur-
t~1000, which in physical units corresponds to the lifetimeyjve multiple collisions, irrespective of the initial phase dif-
of the condensate;-3 s), in a harmonic trap with the con- ference between them, which is evidence of the completely
fining frequencyw,=27X50 Hz. Such a long simulation elastic character of the collisions. In particular, no tangible
time makes it possible to unambiguously distinguish betweemission of radiation has been observed as a result of the
stable and unstable behaviors. A practical criterion for thegllisions.
onset of the instability was that the oscillation amplitude |f the individual soliton does not get into an instability
would grow, at least, by a factor of 5 in the course of thezone, then the periodically colliding paiof identical soli-
evolution. o tons remains stable as well. In the opposite case, when the

The instability zones shown in Fig. 4 reveal three separatggliton develops the instability by itself, the two solitons col-
PRs, viz., the fundamental one @t=2.82, obviously corre- |ide several times, while performing oscillations with a
sponding ton=1 in Eq. (14), and two higher-order PRs, at
0=1.41 and 0.94, which correspondne2 and 3, respec-

tively. The instability growth rate rapidly decreases for (a) (b)
higher-order resonances, which explains why the PRs corre- J“A /EL 12 s
sponding ton>3 cannot be easily spotted by dint of direct TR o = —
simulations running for a finite time. This also explains the A= 7

fact that the instability “tongues” corresponding to the PRs e 8 H 6
with n=2 and 3 do not extend to very small valueseof s % / - ‘

The borders of the intrinsic-instability zones reported in ZW: 6 /’f’\; i ‘
Fig. 4 are, generally, similar to the borders of the external < = yw«“
instability (recall that the latter are strictly tantamount to the _%H\M’VAA 4 s — t
instability borders in the parametric plane of the ordinary v ' = 2
ME), except for the notable upward shift of all the intrinsic- 2 S & 2 W
instability zones, including the one corresponding to the fun- I e J\@A
damental PR af)=2.82. One reason for this shift is that, o 0 o o 0 o
unlike the ODE411) and(10), in the GPE the oscillations of X X

the soliton’s position and, especially, its intrinsic vibrations

give rise to emiss_ior_‘ _Of r_adiation_' Alth_OUQh the .emitted collisions in the nonresonant cage=0.5, 1=2.0). (b) The case
waves are almost invisible in the simulatiofs mentioned 0n the individual soliton falls into the instability zone induced by
above, they are absorbed at the edges of the computatiQRe fyndamental parametric resonaticethis examples=0.5 and
domain), the radiation loss induces an effective dissipation ing =2 g). In this case, the solitons elastically collide several times,
the system{which, in principle, can be accounted for in more performing oscillations with an increasing amplitude, and then get
sophisticated, but rather cumbersome, versions of the VAestroyed, hitting absorbers at the edges of the integration domain.
[25]). Then Eq.(10) will turn into a weakly damped nonlin- |n both casega) and (b), the Gross-Pitaevskii equatiod) was

ear ME. It is known that weak friction indeed shifts the in- simulated with the initial configuration in the form of a pair of
stability zones in the ME upward i, without affecting the in-phase solitons/y(x) = 7{sectin(x—21)]+sechin(x+2m)]}, with
resonant frequencidg6]. 7=2.

FIG. 5. Two solitons in the parabolic trafa) Multiple elastic
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growing amplitude. Eventually, both of them get destroyed, Direct simulations of the underlying Gross-Pitaevskii
hitting the edge absorbers. Typical examples of this behavioequation give rise to qualitatively similar, but quantitatively

are displayed in Fig. 5. different instability maps for the intrinsic and external oscil-
lations of the soliton. The double parametric resonance oc-
V. CONCLUSION curs in overlap areas of these two maps.

] ] ) ) Two-soliton configurations were also investigated, with
In this work, we have analyzed oscillatory motion of soli- the conclusion that multiple collisions between solitons do

tons in a qu_asi-lD self-z?\ttra(_:tive B_EC, Ioaded_ into a Paranot damage them. The collisions do not alter the borders of
bolic potential trap, which is subjected to time-periodic the jnstability zones either.

“management.” In the analytical approximation, the dynam-
ics of the soliton is governed by the decoupled evolution
equations for its center-of-mass coordingt¢) and width
a(t). The former is the linear Mathieu equatiéwhich is an B.B. thanks the Department of Physics at the University
exact equation that does not depend on the adopted ansatz,csSalerno(ltaly) for a research grant. M.S. acknowledges
it follows from the Ehrenfest theoremand the latter is a partial financial support from the MIUR, through the inter-
nonlinear version of the ME. Both equations give rise to theuniversity project PRIN-2003, and from the European LOC-
same map of instability zondgenerated by parametric reso- NET Grant No. HPRN-CT-1999-00163. B.M. appreciates the
nances of orders 1, 2,.3,), in terms of the amplitude and  hospitality of the Department of Physics at Universita di Sal-
frequency() of the periodic temporal modulation of the para- erno, and of the Department of Biological and Environmen-
bolic trap, if the instability is realized as permanent growthtal Sciences at Universita del Saniii@enevento, Italy. The

of the amplitude of the parametrically driven oscillations. work of B.M. was partially supported by Grant No. 8006/03
Thus, double PR is expected in the system. from the Israel Science Foundation.
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