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We consider the inhomogeneous higher-order nonlinear Schrödinger equation and explicitly present exact
combined solitary wave solutions that can describe the simultaneous propagation of bright and dark solitary
waves in a combined form in inhomogeneous fiber media or in optical communication links with distributed
parameters. Furthermore, we analyze the features of the solutions, and numerically discuss the stabilities of
these solitary waves under slight violations of the parameter conditions and finite initial perturbations. The
results show that there exist combined solitary wave solutions in an inhomogeneous fiber system, and the
combined solitary wave solutions are stable under slight violations of the parameter conditions and finite initial
perturbations. Finally, the interaction between two neighboring combined solitary waves is numerically
discussed.
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It is well known that the propagation of subpicosecond or
femtosecond optical pulse in fibers is described by the
higher-order nonlinear SchrödingersHNLSd equation includ-
ing not only the group velocity dispersionsGVDd and self-
phase-modulationsSPMd, but also various higher-order ef-
fects, such as third-order dispersionsTODd, self-steepening,
and self-frequency shiftf1–3g. It has been extensively stud-
ied by many authors and some types of exact solitons or
solitary wave solutions have been obtainedf4–14g. It is
worth noting that these investigations of optical solitons or
solitary waves have been focused mainly on homogeneous
fibers. However, in realistic fiber transmission lines, no fiber
is homogeneous due to long distance communication and
manufacturing problems. Recently, studies of the propaga-
tion of optical pulses in inhomogeneous fibers, which is de-
scribed by the inhomogeneous nonlinear SchrödingersINLSd
type of equation, have attracted more interest. Many authors
have investigated the INLS equations from different points
of view se.g., artificially induced inhomogeneity, randomly
induced imperfections, soliton control and management, etc.d
and obtained some exact soliton solutions for special param-
eter relationsf15–28g. However, it should be noted that all of
these studies are based on the INLS equation, in which the
above-mentioned higher-order effects are omitted. Taking ac-
count of the higher-order effects influenced by the spatial
variations of the fiber parameters, Papaioannouet al. first
investigated the inhomogeneous higher-order nonlinear
SchrödingersIHNLSd equation, which describes femtosec-
ond optical pulse propagation in inhomogeneous fibers, and
derived exact bright and dark solitary wave solutions near
the zero dispersion pointf29g. To our knowledge, the study
of the IHNLS equation has not been widespread.

In this paper, we consider the IHNLS equation and explic-
itly present three types of combined solitary wave solutions
that describe the properties of both bright and dark solitary

waves in the same expression. Furthermore, we analyze the
features of the solutions, and numerically discuss the stabili-
ties of these solitary waves under slight violations of the
parameter conditions and finite initial perturbations. These
results are useful in design of fiber optic amplifiers and in
study of simultaneous propagation of bright and dark soliton-
like pulses in femtosecond fiber laser systems or in optical
communication links with distributed dispersion and nonlin-
earity management.

The governing envelope wave equation for femtosecond
optical pulse propagation in inhomogeneous fiber takes the
form f29g

qz = ia1szdqtt + ia2szduqu2q + a3szdqttt + a4szdsuqu2qdt

+ a5szdqsuqu2dt + Gszdq, s1d

whereqsz,td represents the complex envelope of the electri-
cal field, z is the normalized propagation distance,t is the
normalized retarded time, anda1szd, a2szd, a3szd, a4szd, and
a5szd are the distributed parameters, which are functions of
the propagation distancez, related to GVD, SPM, TOD, self-
steepening, and the delayed nonlinear response effect, re-
spectively.Gszd denotes the amplification or absorption coef-
ficient. Study of Eq.s1d is of great interest due to its wide
range of applications. Its use is not only restricted to optical
pulse propagation in inhomogeneous fiber media, but also to
the core of dispersion-managed solitons and combined-
managed solitons.

First, we should point out that Eq.s1d is integrable for
some special parameter conditions. For example, under the
Hirota condition

3a3a2 = a4a1; a4 + a5 = 0, s2d

and the compatibility requirement
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Gszd =
a1,za2 − a1a2,z

2a1a2
, s3d

one can follow the Ablowitzet al. formalism to construct the
linear eigenvalue problem for bright and dark solitons of Eq.
s1d as follows:

Ct = UC, Cz = VC, s4d

whereC=sC1 C2dT; hereU andV can be given in the forms

U = lJ + P, J = S1 0

0 − 1
D, P =Î a2

2ma1
S 0 q

− mq̄ 0
D ,

s5ad

V = SA B

C − A
D , s5bd

with

A = 4a3l3 + 2ia1l2 +
a2a3

a1
uqu2l +

a2a3

2a1
sq̄qt − qq̄td + i

a2

2
uqu2,

B =Î a2

2ma1
F4a3ql2 + 2sa3qt + ia1qdl + a3Sqtt +

a2

a1
ququ2D

+ ia1qtG ,

C =Î a2

2ma1
F− 4ma3q̄l2 + 2msa3q̄t − ia1q̄dl

− ma3Sq̄tt +
a2

a1
q̄uqu2D + ima1q̄tG .

Here the overbar represents the complex conjugate,l is a
complex spectral parameter, andm= ±1. It is easy to verify
that, whenm=1 and a1a2.0, the compatibility condition
Uz−Vt+fU ,Vg=0 gives the IHNLS Eq.s1d for bright soli-
tons; while whenm=−1 anda1a2,0, the compatibility con-
dition Uz−Vt+fU ,Vg=0 gives the IHNLS Eq.s1d for dark
solitons. In general, the Lax pairs4d confirms that Eq.s1d is
completely integrable under the above conditionss2d ands3d,
and is especially used to obtain theN-soliton solutionsbright
or dark soliton solutiond by means of the inverse-scattering
transform method. We could not yet obtain the Lax pair of
Eq. s1d for combined solitary waves in spite of making great
efforts to search for it. However, Eq.s1d is solvable for com-
bined solitary waves under three sets of special parameter
conditions as we show below.

Now we proceed with the analysis of Eq.s1d by separat-
ing qsz,td into the complex envelope functionAsz,td and the
phase shift wsz,td=kszdt+Vszd according to qsz,td
=Asz,tdexpfiwsz,tdg. Substituting the expression into Eq.s1d
and removing the exponential term, we can rewrite Eq.s1d as

iAz + ia1At + a2Att − ia3Attt + a4uAu2A − ia5uAu2At − ia6A
2At

*

− sa7 + wzdA + iGA = 0, s6d

where a1=2a1k+3a3k
2, a2=a1+3a3k, a4=a2+a4k, a5

=2a4+a5, a6=a4+a5, anda7=a1k
2+a3k

3, which are func-
tions of the normalized distancez.

We introduce an ansatz similar to that of Refs.f12,13g

Asz,td = ibszd + lszdtanhhhszdft − xszdgj

+ irszdsechhhszdft − xszdgj, s7d

wherehszd andxszd are the pulse width and the shift of the
inverse group velocity, respectively. Substituting the ansatz
s7d into Eq. s6d and equating the coefficients of independent
terms, one obtains

hz = 0, s8ad

kz = 0, s8bd

bz + Gb = 0, s8cd

lz + Gl = 0, s8dd

rz + Gr = 0, s8ed

rf2a2h2 − a4sr2 − l2d + 2a5blhg = 0, s8fd

lf2a2h2 − a4sr2 − l2dg + 2bhfa5r2 + a6sr2 − l2dg = 0,

s8gd

rhf6a3h2 − sa5 + a6dsr2 − l2dg = 0, s8hd

lhf6a3h2 − sa5 + a6dsr2 − l2dg = 0, s8id

a4bs3r2 − l2d + lhf8a3h2 + a1 − a5sb2 + 2r2 − l2d

+ a6sb2 + l2d − xzg = 0, s8jd

2a4blr + rhf5a3h2 + a1 − a5sb2 + r2d

− a6sb2 + r2 − 2l2d − xzg = 0, s8kd

lf2a2h2 − a4sb2 + r2d + a7 + Vzg

+ 2bhfa5r2 + a6sr2 − l2dg = 0, s8ld

rfa2h2 − a4s3b2 + r2d + a7 + Vzg + 2blrhsa5 − a6d = 0,

s8md

bfa4sb2 + 3r2d − a7 − Vzg + lhf2a3h2 + a1 − a5sb2 + r2d

+ a6sb2 + r2d − xzg = 0. s8nd

From Eqs.s8ad–s8nd, one can see that when the gain and/or
loss distributed functionG=0, the system parameters
a1,a2,a3,a4,a5, and the solitary wave parameters
h ,k,b ,l ,r ,x ,V are independent ofz, these 14 equations
can be reduced to nine equations, and the corresponding re-
sults agree with Ref.f12g, in which three types of combined
solitary wave solutions for the HNLS equation with constant
coefficients have been discussed in detail. Also, in the special
case ofb=l=0 or r=0, Eqs.s8ad–s8nd are reduced to seven
or nine equations, and one can obtain the corresponding
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bright or dark solitary wave solution for the IHNLS equa-
tion, which has been obtained recently in Refs.f30,31g. No-
tice that, asa3=a4=a5=0, Eq. s1d can reduce to the INLS
equation and then the 14 equations mentioned above are not
compatible, which means that it is impossible that such a
combined solitary wave solutions7d could exist for the INLS
equation. The result is similar to that of the NLS equation
with constant coefficientsf12g.

Now we continue the analysis of Eqs.s8ad–s8nd. From
Eqs.s8ad–s8ed one can obtain

h = hc, s9d

k = kc, s10d

bszd = b0 expF−E
0

z

Gs§dd§G , s11d

lszd = l0 expF−E
0

z

Gs§dd§G , s12d

rszd = r0 expF−E
0

z

Gs§dd§G , s13d

wherehc and kc are arbitrary constants, andb0, l0, andr0
are integral constants related to the initial pulse injection,
respectively. From Eqs.s11d–s13d, one can see clearly that
the amplitude of the pulse is not a constant due to the pres-
ence ofGszd, and increases or decreases along the propaga-
tion direction of the fiber depending on the sign ofGszd.
Equationss9d and s10d imply that the pulse width and the
wave number remain constant during propagation along the
fiber. For Eqs.s8fd–s8nd, similarly to Ref.f12g, there are the
following three cases.

sid a1/3a3=a2/a4=const, a4+2a5=0, and G=sa1a2,z

−a1,za2d /2a1a2. In this case, the solutions7d can be written
as

Asz,td = lszdtanhhhcft − xszdgj + irszdsechhhcft − xszdgj,

s14d

and its intensity is given by

uAu2 = „l0
2 + sr0

2 − l0
2dsech2hhcft − xszdgj…

3expF− 2E
0

z

Gs§dd§G , s15d

where

hc
2 =

a4szd
3a3szd

sr0
2 − l0

2dexpF− 2E
0

z

Gs§dd§G , s16d

kc = −
a2szd
a4szd

, s17d

xszd = 2kcE
0

z

a1s§dd§ + s3kc
2 − hc

2dE
0

z

a3s§dd§

− l0
2E

0

z

a4s§dexpF− 2E
0

§

GsjddjGd§, s18d

Vszd = − kc
2E

0

z

a1s§dd§ − kc
3E

0

z

a3s§dd§. s19d

From Eq.s16d one can see that system parametersa3szd and
a4szd, and the gain and/or loss distributed functionGszd must
satisfy

fa4szd/a3szdgexpf− 2E
0

z

Gs§dd§g = const

except fora3a4sr0
2−l0

2d.0, sincehc is a constant. In this
situation, the solutions14d describes a brightlike or darklike
solitary wavesdepending on the sign of the factorr0

2−l0
2d

with a variable platforml0 expf−e0
zGs§dd§g. We note that the

time shift xszd and the group velocityVszd=dx /dz of the
solitary wave are dependent onz, which leads to a change of
the center position of the solitary wave along the propagation
direction of the fiber, and means that we may design a fiber
system to control the time shift and the velocity of the soli-
tary wave. In order to understand the evolution of the solu-
tion s14d, let us consider a soliton management system simi-
lar to that of Ref.f23g, where the system parameters are of
the forms

a1szd = a10expsszdcossgzd, s20ad

a2szd = a20cossgzd, s20bd

a3szd = a30expsszdcossgzd, s20cd

a4szd = a40cossgzd, s20dd

wherea10, a30, ands are parameters related to the GVD and
TOD, and a20 and a40 denote the nonlinearity and self-
steepening, respectively.g is related to the variation period
of the fiber parameters. In this situation, the gain and/or loss
distributed functionGszd is of the constant formGszd=
−s /2, which corresponds to a dispersion decreasing fiber for
s,0. Figure 1 presents the evolution plots of the solution
s14d for different signs ofr0

2−l0
2 in this system withs,0.

From it one can clearly see that the intensity of the solitary
wave decreases whens,0, and the time shift and the group
velocity of the solitary wave are changing while the solitary
wave keeps its shape in propagating along the fiber. This is
one of the important properties of solitary waves.

sii d a3=0, a4+a5=0, a2/a4=const, and G=sa1a4,z

−a1,za4d /2a1a4. In this case, the solutions7d can be written
in the form

Asz,td = ibszd + lszdtanhhhcft − xszdgj ± ilszd

3sechhhcft − xszdgj, s21d

and its intensity is given by
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uAu2 = „b0
2 + l0

2 ± 2b0
2l0

2sechhhcft − xszdgj…

3expF− 2E
0

z

Gs§dd§G , s22d

where

hc = −
a4szd
a1szd

l0b0 expF− 2E
0

z

Gs§dd§G , s23d

kc = −
a2szd
a4szd

−
a4szd
2a1szd

l0
2 expF− 2E

0

z

Gs§dd§G , s24d

xszd = − 2E
0

z a1s§da2s§d
a4s§d

d§ − sb0
2 + l0

2dE
0

z

a4s§d

3expF− 2E
0

§

GsjddjGd§, s25d

Vszd = − kc
2E

0

z

a1s§dd§ + sb0
2 + l0

2dE
0

z

fa2s§d + kca4s§dg

3expF− 2E
0

§

GsjddjGd§. s26d

Similarly to the casesid, we can see from Eqs.s23d ands24d
that the parametersa1szd ,a4szd, and the gain and/or loss dis-
tributed functionGszd must satisfy

fa4szd/a1szdgexpf− 2E
0

z

Gs§dd§g = const,

sincehc andkc are constants. In this case, the solutions21d
presents a brightlike or darklike solitary wave depending on
the sign ofl0b0. However, unlike the casesid, the solution
s21d does not depend on special features of medium intensity
and is dependent only on the initial pulse. This feature indi-
cates that a bright and dark solitary wave may combine to-
gether under certain conditions and propagate simulta-
neously in an inhomogeneous fiber in a combined form.
Figure 2 presents the evolution plots of the solutions21d for
different signs ofl0b0 in the systems20d.

siii d a1=a3=3a4+2a5=0 and Wfa2,a4g=a2,za4−a2a4,z

FIG. 1. The evolution plots of the combined solitary wave so-
lution s14d for sad a brightlike andsbd a darklike solitary wave in the
systems20d with parameters as follows:s=−0.07, g=1, a20=1,
a30=−0.02; sad a10=0.5, r0=1, l0=0.5, andsbd a10=−0.5, l0=1,
r0=0.5.

FIG. 2. The evolution plots of the combined solitary wave so-
lution s21d for sad a brightlike andsbd a darklike solitary wave in the
systems20d with parameters as follows:s=−0.06, g=1, a20=1,
a30=0, a40=−0.1; sad a10=0.5, l0=1, b0=1 and sbd a10=−0.5,
l0=1, b0=−1.
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=0. In this case, the solutions7d can be written as

Asz,td = ibszd + lszdtanhhhcft − xszdgj

+ irszdsechhhcft − xszdgj, s27d

and its intensity is given by

uAu2 = „b0
2 + l0

2 + 2b0r0sechhhcft − xszdgj

+ sr0
2 − l0

2dsech2hhcft − xszdgj…expf− 2E
0

z

Gs§dd§g,

s28d

where

hc = −
fa2szd + kca4szdgb0

fa4szd + a5szdgl0
, s29d

r0
2 = 2b0

2 + l0
2, s30d

xszd = const, s31d

Vszd = sb0
2 + l0

2dE
0

z

fa2s§d + kca4s§dgexpF− 2E
0

§

GsjddjGd§.

s32d

Similarly, Eq. s29d requires that fa2szd+kca4szdg / fa4szd
+a5szdg is a constant. The combined solitary waves27d may
be used in some dispersion compensation systems and laser
systems, etc. Here we consider the special case ofl=0 and

then the solutions27d can reduce the envelope function of
the electrical field to the following form:

qsz,td = hibszd + irszdsechfhcst − xcdgjexpF− iSa2

a4
t + VcDG ,

s33d

and its intensity is given by

uqu2 = hb0
2 + r0

2sech2fhcst − xcdg + 2b0r0 sechfhcst − xcdgj

3expF− 2E
0

z

Gs§dd§G , s34d

wherexc andVc are arbitrary constants. The intensity of the
solitary wave s33d takes different shapes under different
pulse parameters. Whenb0r0.0, the solutions33d repre-
sents a brightlike solitary wave, and whenb0r0,0 and
ur0uø ub0u, the solutions33d represents a darklike solitary
wave, as shown in Figs. 3sad and 3sbd, respectively. How-
ever, whenb0r0,0 and ur0u. ub0u, the solutions33d repre-
sents a W-shaped solitary wave, as shown Fig. 3scd. It is
worth noting that, unlike the previous two cases, the solitary
velocity does not change and there is only a changeless time
shift in propagation due to constantxc. In particular, when
xc=Vc=0 andGszd=0, the solutions33d is in agreement with
the one of Ref.f12g. This means that this type of combined
solitary wave has a more general form than the earlier report
f12g.

We have investigated the general character of the com-
bined solitary wave solution from the soliton management
concept by considering the systems20d. In practical fiber

FIG. 3. The evolution plots of the combined solitary wave solutions33d for sad a brightlike,sbd a darklike, andscd a W-shape solitary
wave in the systems20d with parameters as follows:s=−0.05,g=1, a10=0, a20=1, a30=0, a40=0.1;sad r0=1, b0=1, sbd r0=−1,b0=1, and
scd r0=−s1+Î2d, b0=1.
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communication, however, it is difficult to produce an ideal
homogeneous fiber system due to manufacturing imperfec-
tions. If the inhomogeneity is relatively small, one may as-
sume that the fiber parameters simply fluctuate in a sinu-
soidal form around the values of the ideal fiber parameters.
Therefore, in the following, we will consider a practical in-
homogeneous fiber system, where the fiber parameters are of
the forms

a1szd = a10f1 + «1sinsgzdg, s35ad

a2szd = a20f1 + «2sinsgzdg, s35bd

a3szd = a30f1 + «3sinsgzdg, s35cd

a4szd = a40f1 + «4sinsgzdg, s35dd

wherea10, a20, a30, anda40 are ideal fiber parameters, and
« j, j =1,2,3,4, aresmall quantities that characterize the am-
plitudes of fluctuations. In order to understand the influence
of such small fluctuations of the fiber parameters on the com-
bined solitary wave, here we take the casesid as an example
to discuss the evolution of the combined solitary waves7d. In
this situation, there exists an exact combined solitary wave
solution s14d with lszd=l0Îf1+«1 sinsgzdg / f1+«2 sinsgzdg
and rszd=r0Îf1+«1 sinsgzdg / f1+«2 sinsgzdg under the con-
straint conditions

3a20a30 = a10a40, «1 = «3, «2 = «4, a4 + 2a5 = 0,

s36d

and

Gszd =
gs«2 − «1dcossgzd

2f1 + «1 sinsgzdgf1 + «2 sinsgzdg
. s37d

Figure 4 shows the evolution plot of the combined solitary
wave solutions14d under these strict constraint conditions. It
should be pointed out that, for convenience, the transforma-
tion of the time coordinateT= t−f2kce0

za1s§dd§+s3kc
2

−hc
2de0

za3s§dd§g is used in Fig. 4 as well as the following

figures. It can be seen from Fig. 4 that the intensity and
platform of the solitary wave vary with propagation distance
sinceGszdÞconst, while the pulse width stays constant as it
propagates along the fiber. It should be noted that the above
solitary wave solution is based on the corresponding con-
straint conditionss36d and s37d which present the balances
among the ideal fiber parameters and the fluctuation param-
eters. In real applications, however, it may be difficult to
produce such exact balances. Therefore, a study for the per-
turbed constraint conditionss36d and s37d is necessary. In
Figs. 5sad and 5sbd, we present the numerical evolution of the
combined solitary wave solutions14d under two different
slight violations of the constraint conditions:sad 3a20a30
=0.97a10a40 and the other conditions do not change;sbd «1
=0.95«3, 0.93«2=«4, 0.93a4+2a5=0, Gszd=0, and the
condition 3a20a30=a10a40 does not change. From Fig. 5 we
can see that the profiles of the solitary wave do not change
except for some small oscillations on one side of the plat-
form. Notice that the intensity and platform are not variable
in Fig. 5sbd due to the perturbed conditionGszd=0. By com-
paring Fig. 5sad with 5sbd, we find that the condition
3a20a30=a10a40 has a stronger influence on the solitary
wave propagation than the others.

In order to analyze the stability of these solitary wave
solutions with respect to finite initial perturbations, we still
take the casesid as an example to perform two types of
numerical experiments for the systems35d. First, we perturb

FIG. 4. The evolution plot of the combined solitary wave solu-
tion s14d under the strict constraint conditionss36d and s37d with
parameters as follows:«1=«3=0.05, «2=«4=0.1, g=0.5, a10=0.5,
a20=1, a30=−0.01,l0=0.3, r0=1.

FIG. 5. The numerical evolution of the combined solitary wave
s14d with l0=0.3,r0=1 in the systems35d under slight violations of
the parameter conditions:sad a10=0.485, the other parameters the
same as in Fig. 4;sbd «1=0.05,«2=0.09,«3=0.0475,«4=0.1, a40

=−0.06, a50=0.027,Gszd=0, the other parameters the same as in
Fig. 4.
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the amplitudes10%d in the initial distribution. Second, we
add white noise in an initial pulsefl0 tanhshctd
+ ir0 sechshctdgexpsikctd+0.1randomstd. The numerical re-
sults are shown in Figs. 6sad and 6sbd, respectively. The re-
sults reveal that the combined solitary wave can propagate in
a stable way under finite initial perturbations, such as ampli-
tude and white noise.

In addition, we consider the interaction between two
neighboring solitary wavess14d in the systems35d. The input
pulse is of the form

qs0,td = hl0 tanhfhcst + t0/2dg + ir0 sechfhcst + t0/2dgj

3expsikctd s38ad

as −̀ , t,0, and

qs0,td = h− l0 tanhfhcst − t0/2dg + ir0 sechfhcst − t0/2dgj

3expsikctd s38bd

as 0ø t, +`. Here t0 is the initial separation between two
neighboring solitary waves. Figure 7 presents the interaction
scenario of two neighboring solitary wavess38d with the
initial separationt0=7, where the parameters adopted are the
same as in Fig. 4. From it one can clearly see that the two
solitary waves hardly interact and the separation stays con-
stant while propagating 500 dispersion lengths along the fi-
ber. However, when the initial separation decreases further,

the interaction between two neighboring solitary waves be-
comes serious and repulsion occurs. This particular property
might come from the combination of bright and dark solitary
waves. Also, by a lot of numerical simulations, we find that
the separation of the neighboring combined solitary waves in
Eq. s38d is smaller than that of the pure bright or dark soli-
tons. Therefore, we may infer that the combined transmission
of bright and dark solitary waves can restrict the interaction
between the neighboring solitary waves to some extent. This
is an advantage in improving the information bit rate in
ultrahigh-speed optical telecommunication.

In conclusion, we have investigated the IHNLS equation
and presented three types of combined solitary wave solu-
tions in explicit forms for the wave propagation in an inho-
mogeneous fiber system using the complex amplitude ansatz
method. The results show that there exist combined solitary
wave solutions in an inhomogeneous fiber system. This is
useful in the design of fiber optic amplifiers and in the study
of simultaneous propagation of bright and dark solitonlike
pulses in femtosecond fiber laser systems or in communica-
tion links with distributed dispersion and nonlinearity man-
agement. Also, we have discussed the stability of the com-
bined solitary waves under slight violations of the parameter
conditions and finite initial perturbations. The results show
that the combined waves are still stable under slight viola-
tions of the parameter conditions and finite initial perturba-
tions, such as amplitude and white noise. Finally, we have
numerically investigated the interaction between two neigh-
boring solitary waves. The results imply that the combined
transmission of bright and dark solitary waves can restrict
the interaction between neighboring solitary waves to some
extent. This is an advantage in improving the information bit
rate in ultrahigh-speed optical telecommunication.
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FIG. 6. The numerical evolution ofsad an initial pulse whose
amplitude is 10% smaller than the theoretical prediction, i.e., 0.9;
sbd the exact solution under the perturbation of white noise in the
systems35d with the same parameters as in Fig. 4.

FIG. 7. The interaction scenario of two neighboring solitary
wavess38d in the systems35d when the initial separation is equal to
7. The adopted parameters are the same as in Fig. 4.
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