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Full band gap for surface acoustic waves in a piezoelectric phononic crystal
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A plane-wave-expansion method suited to the analysis of surface-acoustic-wave propagation in two-
dimensional piezoelectric phononic crystals is described. The surface modes of a square-lattice Y-cut lithium
niobate phononic crystal with circular void inclusions with a filling fraction of 63% are identified. It is found
that a large full band gap with a fractional bandwidth of 34% exists for surface acoustic waves of any
polarization and incidence, coincidentally with the full band gap for bulk waves propagating in the plane of the
surface. The excitation of surface acoustic waves by interdigital transducers is discussed.
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I. INTRODUCTION ized by Wuet al. [17] to solid-solid elastic compositions

Phononic crystals are periodic structures made of materiwith general anisotropy.

als with different elastic propertid4,2]. They are receiving Here we focus on surface-acoustic-wave propagation in
increasing attention as they enable the realization of perfegiiezoelectric phononic crystals and their band gaps. For defi-
mirrors, the confinement of acoustic energy in defect modesjiteness, we consider the case of lithium niob@ibO,)

and the fabrication of very efficient waveguides. All theseas the piezoelectric material in numerical simulations,

functions can be achieved in a very tight space of the ordejhough the mathematical derivations in this paper are valid
of some acoustic wavelengths. Phononic crystals are similgsy an arbitrary piezoelectric material. The propagation of

to photonic crystals but for the peculiarities of elastic asy,|k and surface waves in a piezoelectric material is neces-
compared to optical waves. Among these, the propagation ofy iy anisotropic. Furthermore, an electromagnetic wave ac-

ﬁlastlc fvvar:/ es can dble str:n:jgly Ianlslot(optlg:, various cprpbm companies the elastic wave along its propagation. Accord-
lons of shear and fongitudinal polarizations can exist, an ngly, we use and extend a PWE method suited to
surface modes almost always exist at the phononic crystal.

boundaries. Most studies of phononic crystals have focuselezqcomposne mgtenaIElS]. The phOI’.]OHIC crystals we
on the propagation of bulk acoustic or elastic wap&sl11]. con5|der_ are two dl_mensmnal in natu_re, the)_/ are compo_sed
The consideration of bulk waves in phononic crystal experi-Of a_perlt_)dlc repetl_t|on of hollow cylinders inside a SO'.'d
ments is analogous to the use of external light sources i@, with the cylinders axes normal to the propagation
photonic crystal experiments. Bulk elastic waves are gener2t"face, as depicted in Fig. 1. The solid-vacuum composition
ally generated outside the sample of interest—for instancdS interesting for gppllcatlons since it opt!m|zes the contrast
using acoustic transducers. However, surface acoustic wav@§tween the matrix and scatterer properties. The hollow cyl-
(SAW's) can be conveniently excited at the surface of a pi-inders might in practice be realized by microtechniques or
ezoelectric solid and they are widely employed in ultrasonhanotechniques—for instance, using reactive ion etching
ics, especially for high-frequency applications. For instance(RIE) and focused ion beartFIB) milling. With such tech-
SAW devices fabricated on piezoelectric materials such asiques, solid-vacuum compositions are generally easier to
quartz, lithium niobate, or lithium tantalate are extensivelyobtain than solid-solid compositions involving the subse-
used as passive radio-frequency telecommunication filterquent filling of holes in the solid matrix with a different
[12]. The importance of surface waves in this context origi-material.
nates from their direct excitation and detection by interdigital Following the traditional approach for piezoelectric mate-
transducers on the surface of piezoelectric mateft8 rials, the existence of surface modes is revealed by the van-
Surface waves propagating at the surface of a twoishing of the free and shorted boundary condition determi-
dimensional Al-Hg phononic crystal have been observed byants for a plane and homogeneous surface. These boundary
Torres et al. [14]. Plane-wave-expansionPWE) based  congitions are here generalized to the case of a periodically
methods have been used to investigate the propagation @fyctured surface. The concepts of a Green’s dyadic and of
sur_face _modes in ty\{o-dlmensmnal phononic crystals with g, effective permittivity matrix(EPM) are further intro-
solid-solid composition15-17. Tanaka and Tamurgld)] duced, again generalizing traditional SAW procedures. The

obtained the dispersion relations of surface modes foaensity of surface states is also computed and used to predict

F ohr?nnigm; grf;?elsla?ggj';“g%g;g'::;:ﬁ; ?’A‘gdirssg:v':ﬁi the band structure of surface modes. The procedure is illus-
gasq ' Y éated with the Y cut of lithium niobate, and the existence of

existence and gave the stop band distribution of true surface™ . .
(Rayleigh and pseudosurface modégsaky modes They a wide full band gap for surface modes is found. We observe

later reported similar findings for phononic crystals consist"€ €xistence of many surface modes which do not exist on
ing of aluminum cylinders forming a triangular lattice in a @1 Nomogeneous surface and are a consequence of the peri-

polymer matrix[16]. This study was subsequently general-°dic structuration of the surface.
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> stress vectof&=(Ti;, Ti, Tis, D;)T. We further group the gen-
- eralized displacements and the generalized stresses normal to
X ""'ﬂ the surface in the eight-component state vettsi(l,T;)T.

LD Assuming a truncation to a total &f harmonics in the two-
! /2 dimensional Fourier expansions, the following vector nota-

X4 : : tions are considered for the harmonics of the generalized
g i stress and displacement fiel@N components eagh
Ti=(Gig, - Tig,) " ()
(@)
Kpa U= (g, Tg,)", (4)
Y M
& where the vectors of the reciprocal lattidg,, are labeled
using a single indexn.
Bulk waves are obtained as the eigensolutions of the secu-
n] . Kja lar equation
r X L o
«’RU= 2> AU, 5)
i1=1,3
(b) with the 4N X 4N matricesI’;, "A‘i, and R defined by theN
X N blocks with 4x 4 elements

FIG. 1. (a) Square-lattice two-dimensional phononic crystal r _ G 6
consisting of cylindrical holes in a Y-cut lithium niobate substrate (T)mn= Sk + Gim)4, (6)

(d=0.9a) and(b) the corresponding first irreducible Brillouin zone. 5
(A)mn=Aic, -G, (7

Il. PLANE-WAVE-EXPANSION THEORY

Sections Il A and Il B are essentially a summary of the (R)mn= pa, -G |4 (8

PWE method originally exposed in RgfL8] in the context B _
of piezocomposite materials. Sections Il C and Il D are exwith I, the 4X 4 identity matrix,|,=1, but for 1,(4,4)=0,
tensions of the theory to the representation of holes in and

phononic crystal and to the problem of identifying surface ) _
modes, respectively. Aic(J.K) =Cije,  Aucli, 4 =8ije,

A. PWE basics Aic(4.K) = e Aic(4.4) =~ e, 9
According to the Bloch-Floguet theorem, all fields in a, ..\ i.j.k,1=1,2,3 andn,n=1, ... N. Equation(5) defines

perigdi(;: solid, _SL;_CI’_ItaS di_splfacements or stresses, can be egl('generalized eigenvalue problem which can be solveaor
panded as an Infinite series. as a function ok to obtain the band structure of bulk waves.
hrt =S hG(w,k)exp{j(wt—k-r—G-r)], (1) 'I_'he_ two-dimensiongal phononic crystal pf Fig. 1 is not

G periodic along thexg axis andks can be obtained as a func-

) ~ tion of the other parameters of the model—ilg,, k,, and
wherer =(x,%,,%3)" and the vectors of the reciprocal lattice ,,__aq the eigenvalue of the equation

are G=(2mm,/a,, 2mmy/a,,0)". In this expressionk is the
Bloch-Floquet wave vector anld stands for either the dis- o’R-B 0 |~ |G g |
placementsl;, the stresses;;, the electric potentiap, or the -c | H=ks H, (10
electric displacement®;, with i,j=1,2,3. 2
The periodicity of the structure is also used to expand thevhere the eigenvector i9=(U,|T-)T and with
material constants as a Fourier series: B B
B= X TAL}, Ci= X I'Ags,

alr) =2 age e, 2 ij=1,2 i=1,2
G
\ivherea is_ either one_ofp, Cijki» Eijk: OF €, with i,j,k,l C,= > Zsjrjv D:Ze,s- (11)
=1,2,3.p is the material density, and,, €, and¢; are =12

the elastic, piezoelectric, and dielectric tensors, respectively. ) ) )
The Fourier harmonicsr are easily calculated for various S0Iving this system yields complex-valued eigenvalues

scatterers and lattice geometr{ds,19. ksq and eigenvectorglq. By grouping in the eigenvectors the
It is useful to define a generalized displacement fieid ~ eight components corresponding to thh harmonic, we
which T, represents the electric potentia) and generalized introduce the notation
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(U, g il
> Aqdb = 0. (16)
~ ¢qu =1
Ning= , (12 , L .
31)G,a oth electrical boundary conditions result in a tota
(Ty) Both electrical bound dit It total f
(Ds)s g conditions.
Wi_th i,j:_1,2,3,m:1, ....N, andg=1,... 8\| The gener- C. Solid-void phononic crystals
alized displacement and normal stress fields are obtained ) _
from the superposition with relative amplitudag: The PWE method summarized in Secs. Il A and |l B as-
sumes implicitly a solid-solid composition. In order to de-
5 No&N o scribe also solid-void compositions, the material constants of
h(r,ty=>, > Ajhmgexplji[wt = (G +kg) -r]}. (13)  one of the two solids must be modified. More precisely, this
m=1g=1 modification must be such that the interfaces between the

_ o o o ~ solid matrix (solid 1) and the inclusiongsolid 2) are free of
This superposition is a finite approximation to the infinite tractions. We first let the piezoelectric constants in solid 2

series(1). Each individual terrﬂtiq exfdj(wt—Kq-r)] in the  vanish and imposei(z):eo. The equations of motion in solid

superposition is termed a partial wave in the following. 2 are then purely elastic:
8 u?
B. Surface boundary conditions T2 = ¢2 = (17)
ij = ijkl &XI d
Since we consider a semi-infinihough compositesub-

strate, only physically valid partial waves must be included 3
- | _ AP 2 T
in the normal mode expansidi3). Due to the tensor sym ) Al (19)
metries of the material constants and for real-valkgdnd P ol 0%

ko, the partial waves belong in pairs to an ensemble Nf 4

slowness curves. Hence, for each partial wave, using a critésince there are no stresses in a vacuum, Weci(ﬁ)gﬂso to
rion based on the sign of the component of the time-averageithpose Ti(jz):o independently of the displacements, which
Poynting vector that is normal to the surfd@@] (in the case are precisely defined in solid 2 only at the interfaces. As a
of a propagative partial wayer on the sign of the imaginary consequence, we spt?=0 or otherwise from Eq(18) the
part of kg, (in the case of an evanescent partial waxan  displacements at the interface would not be free.
unambiguous modal selection can be performed. We are then Conversely, is the solution above compatible with the
left with exactly AN partial waves describing waves in the conditions defining a free interface? The relations of conti-

interior of the substrate. The eigenvectdts can then be nuity at the interface between two solids ard'=u? and

restricted to the selected\4partial waves. Ef;lTi(jl)nj:stlei(jz)nj, wheren; defines the outward normal.
The boundary conditions for surface modes apply at theit a free interface, the displacemeufé) are unspecified and

x3=0 surface. The mechanical boundary conditions requir@?lei(jl)nj:o_ Clearly both sets of conditions are compatible

the nullity of stress components normal to the surface or ifjci(jzl’()l =0 andp®=0 simultaneously. We have thus defined a
AN simple pseudosolid that will fake a vacuum in solid-solid
E A(Ts)e 4=0 (14) PWE com.p_gtatlons. It is worth pomtln_g out thqt_no numeri-
pur] 3/6ma™ = cal instabilities result, since the Fourier coefficients in Eq.

(2) are still well defined, though using the material constants

for a total of N conditions. In the derivation of boundary ©f only one solid.
conditions, the orthogonality of the e§f®,,-r) harmonic

functions over one period of the surface is u$&f]. From

the electrical point of view, the free and shorted boundary

conditions are considered. The free boundary condition is In the case of a shorted surface, the surface boundary

that the component of the electric displacement normal to theonditions (14) and (16) must be satisfied simultaneously.
surface is continuous, resulting in This yields a system of M linear equations in the M un-

known amplitudeg\;, which has a nontrivial solution only if
the determinant

D. Surface modes

(Ts)e, g

With || = (kg + Gy %+ (Ko + Gom)? and with g, the permit- Poua
tivity of vacuum. The shorted boundary condition considersvanishes. Thus the SAW solutions on a shorted surface can
that the electric potential at the surface vanishes—for inbe identified by locating the zeros adf,. Similarly, in the
stance, because of the presence of a thin perfectly conductirse of a free surface, the SAW solutions can be identified by
metallic layer—yielding locating the zeros of the determinant

4N
21 A{(D3)g, g~ €olkml b, q] = 0, (15)
-

Ag(w,ky k) = (19
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(T3)e_q normal electric displacement to the potential of a plane-wave
Af(w,kq,ky) = D ™, (200  solution with a given wave vector and frequency, in the case
( 3)qu of a mechanically free surface. In the case treated here, there

are N Fourier harmonics which have to be considered for
every wave vector and frequency couple. Then an effective
(D3)g, g — (D3)g,q~ €ol Kl b6, g (21) permi_ttivifcy matrix €. can be qlefined by relating the normal
electric displacement harmonics to the potential harmonics—
This substitution is assumed from now on. As in the case of.e., [(D3)Gm]=eeﬁ[¢em]. Using the boundary conditiofi4),
a homogeneous substrate, it can be expected that a simult@e obtain at once that the effective permittivity matrix is
neous zero of both determinamgandA; is the signature of given by the lower rightN X N submatrix of the inverse
a nonpiezoelectrically coupled surface mode. Indeed, in thisreen’s dyadic.
case, the surface mode is insensitive to the electrical bound- Before closing this section, we define two useful scalar
ary conditions. Conversely, in the case there exidtsmnaal)  functions for locating surface modes. First, we remark that in
frequency shift between two zeros of the determinants, thishe case of a homogeneous substrate, the effective permittiv-
shift can be used to obtain an estimate of the piezoelectrigy is proportional to the functiorm(w,k;,ky)=A¢/As This
coupling factork?® of the surface mode, according to the property is not valid anymore for a piezocomposite material
usual formulak?=2(w;— wg)/ (w;+ wy). as considered here. However, this function still gives direct
A surface Green’'s dyadic(generalizing the surface information on piezoelectrically coupled surface modes,
Green’s dyadic or Green’s function of the homogeneous pisince its poles indicate surface modes on the shorted surface
ezoelectric substratean be obtained by eliminating the par- while its zeros indicate surface modes on a free surface. Sec-
tial waves amplitudes from E@13). At the surface, we take ond, we can define the variation of the total density of sur-
the scalar product over one period of the surface of(E8), face states according to the formyi22]
restricted to the M selected partial waves, with thé har-

where we have made the substitution

monic functions ex@G,r) or 1 P
An(w,kq,ky) = — Im{— In|G|}. (26)
1 ﬁ(r t)exp(jG,, - r)dr m g
2,3 , 16m
8N This function is zero when there are no surface modes and
=> AqF]mq explj(wt = KyXy = KoXo) presents poles where there are.
g=1
= hm eX[Xj(wt - klxl - k2X2) . (22) IIl. RESULTS
Upon defining the B-component vector In this section, we exemplify the PWE theory in the case
(W) of the square-lattice lithium-niobate phononic crystal de-
G picted in Fig. 1. For a Y-cut substrate, the crystallographic
- o~ - b axisY is the outward normal to the surface, which is also the
H=(h;...hy"= (T ')m , (23) Xz plane. The reference frame used for the PWE method is
817G chosen to béx;,x,,%3) =(X,—-Z,Y). Lithium niobate belongs
(Da)Gm to the trigonal 3n crystallographic class so that tXé/ plane

is a symmetry plane. Propagation in the plane of the surface
we have the vector-matrix relation between the harmonics og|ong axesZ and —Z is then equivalent. The holes have a
the generalized displacements and generalized stresses: cjrcular cross section with a diameti* 0.9, wherea is the
w (To) lattice constant. The filling fractionr?d?/ (4a?) then equals
( ' Gm) _ ( 3 Gm) (24  63%. Seven harmonics are used in each direction in the PWE
' computations, resulting in a total ®=49 harmonics. By
increasing this number, it was verified that computations, and

ba, (Da)g,,

with the Green’s dyadic especially band structures, are within 1%-precision for all
1 presented results.
_<Uiqu) % <(T3J)qu) (25) It is first instructive to consider the bulk and surface
bc. g Dsc, g ' acoustic waves propagating in the plane of the surface of a

homogeneousi.e., without holep substrate of lithium nio-
The Green’s dyadic is aNkX 4N square matrix and relates bate, as depicted in Fig. 2. The propagation of piezoelastic
the generalized displacements to the generalized stressegaves is clearly anisotropic with relatively large velocity
This is a direct generalization of thex#4 Green’s dyadic of variations. In addition to the longitudinal and the two shear
a homogeneous piezoelectric semi-infinite substrate. bulk elastic modes, there exists two kind of surface modes on
The concept of an effective permittivity for surface acous-the homogeneous surface. The Rayleigh SAW is a (lnss-
tic waves on an homogeneous substrate is very ug2fill  les9 surface mode located in the subsonic region—i.e., at
Such an effective permittivity is a scalar function relating thevelocities lower than that of all bulk waves. This SAW is
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> s FIG. 3. Band structure along the pathX-M-Y-I" in the first
3600 v o irreducible Brillouin zone for bulk waves propagating in the plane
R L of the phononic crystal of Fig. li.e., with ks=0).
EAWTS) p Yy g 3
3200 1 ] 1 1 1 1 1 1 . . . P .
0 20 40 60 80 100 120 140 160 180 is indicated by zerogor sharp minima in the case of leaky
Propagation angle (deg.) modes. As a general rule, it can be observed that there exist

many surface modes in the phononic crystal, both below and
FIG. 2. Velocities of bulk and surface modes in %& plane of  above the full band gap for bulk waves, but not within it.

Y-cut lithium niobate, as a function of the propagation angle. TheThjs multiplicity of surface modes was not mentionned in the
longitudinal (L) and shear(S1 and S2 bulk acoustic waves are

shown. The Rayleigh surface acoustic wad8AW) and the leaky
surface acoustic wavd SAW) are shown for fredf) and shorted
(s) electrical boundary conditions.

sensitive to the electrical surface boundary condition for all g
propagation angles. The difference in the free and shortecs
velocities is a direct measure of the piezoelectric coupling
coefficient of this wave. The leaky SAW.SAW) is a lossy B
surface mode located mostly in the hypersonic region—i.e.,

at velocities in between that of the two shear bulk waves.

The LSAW is also very sensitive to the electrical surface

boundary condition. Its piezoelectric coupling coefficient is , , , , , , ,
maximum in theX direction but vanishes in a wide angular o 500 1000 1500 2000 2500 3000 3500 4000
range about th& direction—i.e., from 40° to 140°. @ wa(2n) (m/s)

Figure 3 displays the band structure for bulk waves propa-
gating in the plane of the phononic crystal, plotted along the
closed patH™-X-M-Y-I" in the first irreducible Brillouin zone
[Fig. 1(b)]. Due to the lattice symmetry and to the anisotropy
of lithium niobate, this path is the shortest yielding compre- &
hensive information on band gaps. It can be seen that a ful g
band gap(i.e., a band gap for any direction of propagation
and polarizationexists for bulk waves propagating in plane
from wa/(27)=1935 m/s to 2745 m/s. The fractional band-
with is then larger than 34%. Qualitatively, it can be ob-
served that although in principle anisotropy makes it more
difficult to open a full band gap than with isotropic materials,
the free boundaries of void inclusions are very efficient scat-
terers for elastic waves of any polarization. The frequency(b)
width of the band gap is defined solely by thEpoint.

Figure 4 displays the variations of the free and shorted FIG. 4. Free(a) and shortedb) boundary conditions determi-
boundary condition determinants of Eq$9) and(20) as a nants for theX (solid line) and M (dotted ling points of the first
function of frequency, for theX and M points of the first irreducible Brillouin zone, for the lithium niobate phononic crystal
irreducible Brillouin zone. The occurrence of surface modesf Fig. 1.

log(lAg))

0 500 1000 1500 2000 2500 3000 3500 4000
wa/(2r) (m/s)
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@) 0 500 1000 150£w(§2;)?m/32)500 8000 3500 4000 FIG. 6. Band structure for surface modes along the path
I'-X-M-Y-I" in the first irreducible Brillouin zone, for the lithium
1 niobate phononic crystal of Fig. 1.
0 P TN e substrate, but not exclusively. In addition to the existence of
_ l a full band gap, which offers the basis for phononic crystal
g 1 i i functions in combination with usual interdigital transducers,
£ i such as mirrors, waveguides, or filters, the variety of surface
<& i modes in phononic crystals is also interesting in itself. How-
g 2r ' ] ever, we do not attempt here to identify the details of these
E surface modes—e.g., their attenuation, coupling, and disper-
al _ sion.
As already pointed out, a distinctive advantage of consid-
ering a piezoelectric material is the possibility to generate

0 500 1000 1500 2000 2500 3000 3500 4000 and detept surfgcg mode_s using usua] ir]terdigital trande_lcers
(o) wal(2r) (m/s) (IDT’s) directly inside or in close proximity to the phononic
crystal. For instance, assuming a simple transducer with an
FIG. 5. Real(a) and imaginary(b) parts of the free and shorted alternate potential of +1 and —1 V applied to the IDT fingers,
boundary conditions determinants ratio for #ésolid line) andM the resonance condition for SAW generation and detection is
(dotted ling points of the first irreducible Brillouin zone, for the
lithium niobate phononic crystal of Fig. 1.

g
©

N
3
NS

case of the solid-solid phononic crystals of RdfE5-17, (27)

but is clearly apparent in previous studies of surface modes

in superlattices[22,23, which can be viewed as one-

dimensional phononic crystals. The contributions of bulkWith p the transducer pitch and the SAW velocity. This

waves can also be seen in the form of discontinuities of théelation in combination with the band structure of Fig. 6

first derivative of the determinants. The ratio of the twoMakes it possible to design an IDT for frequencies inside the

boundary condition determinants is shown in Fig. 5. Poles ofull band gap. For instance, if the phononic crystal has a

this function indicate the existence of piezoelectricallylattice constana=1 um, then the full band gap extends ap-

coupled surface modes, since for uncoupled surface modd¥oximately from 1.95to 2.75 GHz. For an IDT pitgh

the two determinants have identical zeros that compensafe0-85um, it can be verified from Fig. 2 that the Rayleigh

one another. SAW and the LSAW on the homogeneous surface are simul-
Figure 6 shows the band structure for surface mode&neously within the full band gap for any propagation direc-

along the pati™-X-M-Y-I". This band structure clearly has tion.

similarities with the band structure of bulk waves propagat-

ing in the plane of the surface of Fig. 3. This plot is obtained

using the modulus of the variation of the total density of IV. CONCLUSION

surface states, E@26). The surface mode branches define a

full band gap that is exactly coincident with that for in-plane A plane-wave-expansion method suited to the analysis of

propagating bulk waves. This result is not obvious since theurface-acoustic-wave propagation in phononic crystals has

4N partial waves defining a surface mode include evanescefteen described. The surface modes of a square-lattice

waves as well as bulk waves propagating obliquely in thegphononic crystal made of Y-cut lithium niobate with void

phononic crystal, with possibly any direction and polariza-circular inclusions have been obtained. A full band gap for

tion state. We observe that surface mode branches often existirface waves with a fractional bandwidth of 34% has been

just below bulk branches, as in the case of the homogeneodisund, coincidentally with the full band gap for bulk waves
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propagating in the plane of the surface. We conjecture thahe analysis presented in RE8] would need to be extended
this property generally applies to all phononic crystals, al-to all complex branches of the band structure, whereas it was
though it is at present only the result of a numerical obserlimited to only the real branches.

vation. We suspect that it is directly related to the existence
of band gaps for bulk elastic waves propagating out of plane
[9], since these obliquely propagating bulk waves contribute We gratefully acknowledge support in this work from the
to the plane-wave expansion of the surface modes. Howevenction Concertée Nanosciences 20@%oject No. NR13Y.
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