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A plane-wave-expansion method suited to the analysis of surface-acoustic-wave propagation in two-
dimensional piezoelectric phononic crystals is described. The surface modes of a square-lattice Y-cut lithium
niobate phononic crystal with circular void inclusions with a filling fraction of 63% are identified. It is found
that a large full band gap with a fractional bandwidth of 34% exists for surface acoustic waves of any
polarization and incidence, coincidentally with the full band gap for bulk waves propagating in the plane of the
surface. The excitation of surface acoustic waves by interdigital transducers is discussed.
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I. INTRODUCTION

Phononic crystals are periodic structures made of materi-
als with different elastic propertiesf1,2g. They are receiving
increasing attention as they enable the realization of perfect
mirrors, the confinement of acoustic energy in defect modes,
and the fabrication of very efficient waveguides. All these
functions can be achieved in a very tight space of the order
of some acoustic wavelengths. Phononic crystals are similar
to photonic crystals but for the peculiarities of elastic as
compared to optical waves. Among these, the propagation of
elastic waves can be strongly anisotropic, various combina-
tions of shear and longitudinal polarizations can exist, and
surface modes almost always exist at the phononic crystal
boundaries. Most studies of phononic crystals have focused
on the propagation of bulk acoustic or elastic wavesf3–11g.
The consideration of bulk waves in phononic crystal experi-
ments is analogous to the use of external light sources in
photonic crystal experiments. Bulk elastic waves are gener-
ally generated outside the sample of interest—for instance,
using acoustic transducers. However, surface acoustic waves
sSAW’sd can be conveniently excited at the surface of a pi-
ezoelectric solid and they are widely employed in ultrason-
ics, especially for high-frequency applications. For instance,
SAW devices fabricated on piezoelectric materials such as
quartz, lithium niobate, or lithium tantalate are extensively
used as passive radio-frequency telecommunication filters
f12g. The importance of surface waves in this context origi-
nates from their direct excitation and detection by interdigital
transducers on the surface of piezoelectric materialsf13g.

Surface waves propagating at the surface of a two-
dimensional Al-Hg phononic crystal have been observed by
Torres et al. f14g. Plane-wave-expansion-sPWE-d based
methods have been used to investigate the propagation of
surface modes in two-dimensional phononic crystals with a
solid-solid compositionf15–17g. Tanaka and Tamuraf15g
obtained the dispersion relations of surface modes for
phononic crystals consisting of circular cylinders of AlAs
forming a square lattice in a GaAs matrix. They observed the
existence and gave the stop band distribution of true surface
sRayleighd and pseudosurface modessleaky modesd. They
later reported similar findings for phononic crystals consist-
ing of aluminum cylinders forming a triangular lattice in a
polymer matrixf16g. This study was subsequently general-

ized by Wu et al. f17g to solid-solid elastic compositions
with general anisotropy.

Here we focus on surface-acoustic-wave propagation in
piezoelectric phononic crystals and their band gaps. For defi-
niteness, we consider the case of lithium niobatesLiNbO3d
as the piezoelectric material in numerical simulations,
though the mathematical derivations in this paper are valid
for an arbitrary piezoelectric material. The propagation of
bulk and surface waves in a piezoelectric material is neces-
sarily anisotropic. Furthermore, an electromagnetic wave ac-
companies the elastic wave along its propagation. Accord-
ingly, we use and extend a PWE method suited to
piezocomposite materialsf18g. The phononic crystals we
consider are two dimensional in nature; they are composed
of a periodic repetition of hollow cylinders inside a solid
matrix, with the cylinders axes normal to the propagation
surface, as depicted in Fig. 1. The solid-vacuum composition
is interesting for applications since it optimizes the contrast
between the matrix and scatterer properties. The hollow cyl-
inders might in practice be realized by microtechniques or
nanotechniques—for instance, using reactive ion etching
sRIEd and focused ion beamsFIBd milling. With such tech-
niques, solid-vacuum compositions are generally easier to
obtain than solid-solid compositions involving the subse-
quent filling of holes in the solid matrix with a different
material.

Following the traditional approach for piezoelectric mate-
rials, the existence of surface modes is revealed by the van-
ishing of the free and shorted boundary condition determi-
nants for a plane and homogeneous surface. These boundary
conditions are here generalized to the case of a periodically
structured surface. The concepts of a Green’s dyadic and of
an effective permittivity matrixsEPMd are further intro-
duced, again generalizing traditional SAW procedures. The
density of surface states is also computed and used to predict
the band structure of surface modes. The procedure is illus-
trated with the Y cut of lithium niobate, and the existence of
a wide full band gap for surface modes is found. We observe
the existence of many surface modes which do not exist on
an homogeneous surface and are a consequence of the peri-
odic structuration of the surface.
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II. PLANE-WAVE-EXPANSION THEORY

Sections II A and II B are essentially a summary of the
PWE method originally exposed in Ref.f18g in the context
of piezocomposite materials. Sections II C and II D are ex-
tensions of the theory to the representation of holes in a
phononic crystal and to the problem of identifying surface
modes, respectively.

A. PWE basics

According to the Bloch-Floquet theorem, all fields in a
periodic solid, such as displacements or stresses, can be ex-
panded as an infinite series:

hsr,td = o
G

hGsv,kdexpf jsvt − k · r − G · rdg , s1d

wherer =sx1,x2,x3dT and the vectors of the reciprocal lattice
areG=s2pm1/a1,2pm2/a2,0dT. In this expression,k is the
Bloch-Floquet wave vector andh stands for either the dis-
placementsui, the stressesTij , the electric potentialf, or the
electric displacementsDi, with i , j =1,2,3.

The periodicity of the structure is also used to expand the
material constants as a Fourier series:

asrd = o
G

aGe−jG·r , s2d

where a is either one ofr, cijkl , eijk, or ei j , with i , j ,k, l
=1,2,3.r is the material density, andcijkl , eijk, andei j are
the elastic, piezoelectric, and dielectric tensors, respectively.
The Fourier harmonicsaG are easily calculated for various
scatterers and lattice geometriesf17,19g.

It is useful to define a generalized displacement fieldũ in
which ũ4 represents the electric potentialf, and generalized

stress vectorst̃i =sTi1,Ti2,Ti3,DidT. We further group the gen-
eralized displacements and the generalized stresses normal to

the surface in the eight-component state vectorh̃=sũ , t̃3dT.
Assuming a truncation to a total ofN harmonics in the two-
dimensional Fourier expansions, the following vector nota-
tions are considered for the harmonics of the generalized
stress and displacement fieldss4N components eachd:

T̃i = st̃iG1
¯ t̃iGN

dT, s3d

Ũ = sũG1
¯ ũGN

dT, s4d

where the vectors of the reciprocal lattice,Gm, are labeled
using a single indexm.

Bulk waves are obtained as the eigensolutions of the secu-
lar equation

v2R̃Ũ = o
i,l=1,3

GiÃilGlŨ, s5d

with the 4N34N matricesGi, Ãil and R̃ defined by theN
3N blocks with 434 elements

sGidmn= dmnski + GimdI4, s6d

sÃildmn= AilGm−Gn
, s7d

sR̃dmn= rGm−Gn
Ĩ4, s8d

with I4 the 434 identity matrix, Ĩ4= I4 but for Ĩ4s4,4d=0,
and

AilGs j ,kd = cijklG, AilGs j ,4d = elij G,

AilGs4,kd = eiklG, AilGs4,4d = − eilG, s9d

with i , j ,k, l =1,2,3 andm,n=1, . . . ,N. Equations5d defines
a generalized eigenvalue problem which can be solved forv2

as a function ofk to obtain the band structure of bulk waves.
The two-dimensional phononic crystal of Fig. 1 is not

periodic along thex3 axis andk3 can be obtained as a func-
tion of the other parameters of the model—i.e.,k1, k2, and
v—as the eigenvalue of the equation

Fv2R̃− B 0

− C2 Id
GH̃ = k3FC1 Id

D 0
GH̃ , s10d

where the eigenvector isH̃ =sŨ , jT̃3dT and with

B = o
i,j=1,2

GiÃi jG j, C1 = o
i=1,2

GiÃi3,

C2 = o
j=1,2

Ã3jG j, D = Ã33. s11d

Solving this system yields 8N complex-valued eigenvalues

k3q and eigenvectorsH̃q. By grouping in the eigenvectors the
eight components corresponding to themth harmonic, we
introduce the notation

FIG. 1. sad Square-lattice two-dimensional phononic crystal
consisting of cylindrical holes in a Y-cut lithium niobate substrate
sd=0.9ad andsbd the corresponding first irreducible Brillouin zone.
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h̃mq=1
suidGmq

fGmq

sT3jdGmq

sD3dGmq

2 , s12d

with i , j =1,2,3,m=1, . . . ,N, and q=1, . . . ,8N. The gener-
alized displacement and normal stress fields are obtained
from the superposition with relative amplitudesAq:

h̃sr,td = o
m=1

N

o
q=1

8N

Aqh̃mq exph jfvt − sGm + kqd · rgj. s13d

This superposition is a finite approximation to the infinite

seriess1d. Each individual termH̃q expf jsvt−kq·rdg in the
superposition is termed a partial wave in the following.

B. Surface boundary conditions

Since we consider a semi-infinitesthough composited sub-
strate, only physically valid partial waves must be included
in the normal mode expansions13d. Due to the tensor sym-
metries of the material constants and for real-valuedk1 and
k2, the partial waves belong in pairs to an ensemble of 4N
slowness curves. Hence, for each partial wave, using a crite-
rion based on the sign of the component of the time-averaged
Poynting vector that is normal to the surfacef20g sin the case
of a propagative partial waved or on the sign of the imaginary
part of k3q sin the case of an evanescent partial waved, an
unambiguous modal selection can be performed. We are then
left with exactly 4N partial waves describing waves in the

interior of the substrate. The eigenvectorsH̃q can then be
restricted to the selected 4N partial waves.

The boundary conditions for surface modes apply at the
x3=0 surface. The mechanical boundary conditions require
the nullity of stress components normal to the surface or

o
q=1

4N

AqsT3jdGmq = 0, s14d

for a total of 3N conditions. In the derivation of boundary
conditions, the orthogonality of the exps jGm·rd harmonic
functions over one period of the surface is usedf18g. From
the electrical point of view, the free and shorted boundary
conditions are considered. The free boundary condition is
that the component of the electric displacement normal to the
surface is continuous, resulting in

o
q=1

4N

AqfsD3dGmq − e0ukmufGmqg = 0, s15d

with ukmu=Îsk1+G1md2+sk2+G2md2 and with e0 the permit-
tivity of vacuum. The shorted boundary condition considers
that the electric potential at the surface vanishes—for in-
stance, because of the presence of a thin perfectly conducting
metallic layer—yielding

o
q=1

4N

AqfGmq = 0. s16d

Both electrical boundary conditions result in a total ofN
conditions.

C. Solid-void phononic crystals

The PWE method summarized in Secs. II A and II B as-
sumes implicitly a solid-solid composition. In order to de-
scribe also solid-void compositions, the material constants of
one of the two solids must be modified. More precisely, this
modification must be such that the interfaces between the
solid matrixssolid 1d and the inclusionsssolid 2d are free of
tractions. We first let the piezoelectric constants in solid 2
vanish and imposeei j

s2d=e0. The equations of motion in solid
2 are then purely elastic:

Tij
s2d = o

k,l=1

3

cijkl
s2d ]uk

s2d

]xl
, s17d

rs2d]
2uj

s2d

]t2
= o

i=1

3
]Tij

s2d

]xi
. s18d

Since there are no stresses in a vacuum, we setcijkl
s2d =0 to

impose Tij
s2d=0 independently of the displacements, which

are precisely defined in solid 2 only at the interfaces. As a
consequence, we setrs2d=0 or otherwise from Eq.s18d the
displacements at the interface would not be free.

Conversely, is the solution above compatible with the
conditions defining a free interface? The relations of conti-
nuity at the interface between two solids areui

s1d=ui
s2d and

o j=1
3 Tij

s1dnj =o j=1
3 Tij

s2dnj, wherenj defines the outward normal.
At a free interface, the displacementsui

s1d are unspecified and
o j=1

3 Tij
s1dnj =0. Clearly both sets of conditions are compatible

if cijkl
s2d =0 andrs2d=0 simultaneously. We have thus defined a

simple pseudosolid that will fake a vacuum in solid-solid
PWE computations. It is worth pointing out that no numeri-
cal instabilities result, since the Fourier coefficients in Eq.
s2d are still well defined, though using the material constants
of only one solid.

D. Surface modes

In the case of a shorted surface, the surface boundary
conditions s14d and s16d must be satisfied simultaneously.
This yields a system of 4N linear equations in the 4N un-
known amplitudesAq, which has a nontrivial solution only if
the determinant

Dssv,k1,k2d = UsT3jdGmq

fGmq
U s19d

vanishes. Thus the SAW solutions on a shorted surface can
be identified by locating the zeros ofDs. Similarly, in the
case of a free surface, the SAW solutions can be identified by
locating the zeros of the determinant
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D fsv,k1,k2d = UsT3jdGmq

sD3dGmq
U , s20d

where we have made the substitution

sD3dGmq ← sD3dGmq − e0ukmufGmq. s21d

This substitution is assumed from now on. As in the case of
a homogeneous substrate, it can be expected that a simulta-
neous zero of both determinantsDs andD f is the signature of
a nonpiezoelectrically coupled surface mode. Indeed, in this
case, the surface mode is insensitive to the electrical bound-
ary conditions. Conversely, in the case there exists assmalld
frequency shift between two zeros of the determinants, this
shift can be used to obtain an estimate of the piezoelectric
coupling factorK2 of the surface mode, according to the
usual formulaK2=2sv f −vsd / sv f +vsd.

A surface Green’s dyadicsgeneralizing the surface
Green’s dyadic or Green’s function of the homogeneous pi-
ezoelectric substrated can be obtained by eliminating the par-
tial waves amplitudes from Eq.s13d. At the surface, we take
the scalar product over one period of the surface of Eq.s13d,
restricted to the 4N selected partial waves, with theN har-
monic functions exps jGm·rd or

1

a1a2
E h̃sr,tdexps jGm · rddr

= o
q=1

8N

Aqh̃mq exps jsvt − k1x1 − k2x2dd

= h̃m exps jsvt − k1x1 − k2x2dd. s22d

Upon defining the 8N-component vector

H̃ = sh̃1 . . . h̃NdT =1
suidGm

fGm

sT3jdGm

sD3dGm

2 , s23d

we have the vector-matrix relation between the harmonics of
the generalized displacements and generalized stresses:

SsuidGm

fGm

D = G 3 SsT3jdGm

sD3dGm

D , s24d

with the Green’s dyadic

G = SuiGmq

fGmq
D−1

3 SsT3jdGmq

D3Gmq
D . s25d

The Green’s dyadic is a 4N34N square matrix and relates
the generalized displacements to the generalized stresses.
This is a direct generalization of the 434 Green’s dyadic of
a homogeneous piezoelectric semi-infinite substrate.

The concept of an effective permittivity for surface acous-
tic waves on an homogeneous substrate is very usefulf21g.
Such an effective permittivity is a scalar function relating the

normal electric displacement to the potential of a plane-wave
solution with a given wave vector and frequency, in the case
of a mechanically free surface. In the case treated here, there
are N Fourier harmonics which have to be considered for
every wave vector and frequency couple. Then an effective
permittivity matrixeeff can be defined by relating the normal
electric displacement harmonics to the potential harmonics—
i.e., fsD3dGm

g=eeffffGm
g. Using the boundary conditions14d,

we obtain at once that the effective permittivity matrix is
given by the lower rightN3N submatrix of the inverse
Green’s dyadic.

Before closing this section, we define two useful scalar
functions for locating surface modes. First, we remark that in
the case of a homogeneous substrate, the effective permittiv-
ity is proportional to the functionbsv ,k1,k2d=D f /Ds. This
property is not valid anymore for a piezocomposite material
as considered here. However, this function still gives direct
information on piezoelectrically coupled surface modes,
since its poles indicate surface modes on the shorted surface
while its zeros indicate surface modes on a free surface. Sec-
ond, we can define the variation of the total density of sur-
face states according to the formulaf22g

Dnsv,k1,k2d =
1

p
ImH ]

]v
lnuGuJ . s26d

This function is zero when there are no surface modes and
presents poles where there are.

III. RESULTS

In this section, we exemplify the PWE theory in the case
of the square-lattice lithium-niobate phononic crystal de-
picted in Fig. 1. For a Y-cut substrate, the crystallographic
axisY is the outward normal to the surface, which is also the
XZ plane. The reference frame used for the PWE method is
chosen to besx1,x2,x3d=sX,−Z,Yd. Lithium niobate belongs
to the trigonal 3m crystallographic class so that theXY plane
is a symmetry plane. Propagation in the plane of the surface
along axesZ and −Z is then equivalent. The holes have a
circular cross section with a diameterd=0.9a, wherea is the
lattice constant. The filling fractionp2d2/ s4a2d then equals
63%. Seven harmonics are used in each direction in the PWE
computations, resulting in a total ofN=49 harmonics. By
increasing this number, it was verified that computations, and
especially band structures, are within 1%-precision for all
presented results.

It is first instructive to consider the bulk and surface
acoustic waves propagating in the plane of the surface of a
homogeneoussi.e., without holesd substrate of lithium nio-
bate, as depicted in Fig. 2. The propagation of piezoelastic
waves is clearly anisotropic with relatively large velocity
variations. In addition to the longitudinal and the two shear
bulk elastic modes, there exists two kind of surface modes on
the homogeneous surface. The Rayleigh SAW is a truesloss-
lessd surface mode located in the subsonic region—i.e., at
velocities lower than that of all bulk waves. This SAW is
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sensitive to the electrical surface boundary condition for all
propagation angles. The difference in the free and shorted
velocities is a direct measure of the piezoelectric coupling
coefficient of this wave. The leaky SAWsLSAWd is a lossy
surface mode located mostly in the hypersonic region—i.e.,
at velocities in between that of the two shear bulk waves.
The LSAW is also very sensitive to the electrical surface
boundary condition. Its piezoelectric coupling coefficient is
maximum in theX direction but vanishes in a wide angular
range about theZ direction—i.e., from 40° to 140°.

Figure 3 displays the band structure for bulk waves propa-
gating in the plane of the phononic crystal, plotted along the
closed pathG-X-M-Y-G in the first irreducible Brillouin zone
fFig. 1sbdg. Due to the lattice symmetry and to the anisotropy
of lithium niobate, this path is the shortest yielding compre-
hensive information on band gaps. It can be seen that a full
band gapsi.e., a band gap for any direction of propagation
and polarizationd exists for bulk waves propagating in plane
from va/ s2pd=1935 m/s to 2745 m/s. The fractional band-
with is then larger than 34%. Qualitatively, it can be ob-
served that although in principle anisotropy makes it more
difficult to open a full band gap than with isotropic materials,
the free boundaries of void inclusions are very efficient scat-
terers for elastic waves of any polarization. The frequency
width of the band gap is defined solely by theM point.

Figure 4 displays the variations of the free and shorted
boundary condition determinants of Eqs.s19d and s20d as a
function of frequency, for theX and M points of the first
irreducible Brillouin zone. The occurrence of surface modes

is indicated by zerossor sharp minima in the case of leaky
modesd. As a general rule, it can be observed that there exist
many surface modes in the phononic crystal, both below and
above the full band gap for bulk waves, but not within it.
This multiplicity of surface modes was not mentionned in the

FIG. 2. Velocities of bulk and surface modes in theXZ plane of
Y-cut lithium niobate, as a function of the propagation angle. The
longitudinal sLd and shearsS1 and S2d bulk acoustic waves are
shown. The Rayleigh surface acoustic wavesSAWd and the leaky
surface acoustic wavesLSAWd are shown for freesfd and shorted
ssd electrical boundary conditions.

FIG. 3. Band structure along the pathG-X-M-Y-G in the first
irreducible Brillouin zone for bulk waves propagating in the plane
of the phononic crystal of Fig. 1si.e., with k3=0d.

FIG. 4. Freesad and shortedsbd boundary conditions determi-
nants for theX ssolid lined and M sdotted lined points of the first
irreducible Brillouin zone, for the lithium niobate phononic crystal
of Fig. 1.
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case of the solid-solid phononic crystals of Refs.f15–17g,
but is clearly apparent in previous studies of surface modes
in superlatticesf22,23g, which can be viewed as one-
dimensional phononic crystals. The contributions of bulk
waves can also be seen in the form of discontinuities of the
first derivative of the determinants. The ratio of the two
boundary condition determinants is shown in Fig. 5. Poles of
this function indicate the existence of piezoelectrically
coupled surface modes, since for uncoupled surface modes
the two determinants have identical zeros that compensate
one another.

Figure 6 shows the band structure for surface modes
along the pathG-X-M-Y-G. This band structure clearly has
similarities with the band structure of bulk waves propagat-
ing in the plane of the surface of Fig. 3. This plot is obtained
using the modulus of the variation of the total density of
surface states, Eq.s26d. The surface mode branches define a
full band gap that is exactly coincident with that for in-plane
propagating bulk waves. This result is not obvious since the
4N partial waves defining a surface mode include evanescent
waves as well as bulk waves propagating obliquely in the
phononic crystal, with possibly any direction and polariza-
tion state. We observe that surface mode branches often exist
just below bulk branches, as in the case of the homogeneous

substrate, but not exclusively. In addition to the existence of
a full band gap, which offers the basis for phononic crystal
functions in combination with usual interdigital transducers,
such as mirrors, waveguides, or filters, the variety of surface
modes in phononic crystals is also interesting in itself. How-
ever, we do not attempt here to identify the details of these
surface modes—e.g., their attenuation, coupling, and disper-
sion.

As already pointed out, a distinctive advantage of consid-
ering a piezoelectric material is the possibility to generate
and detect surface modes using usual interdigital transducers
sIDT’sd directly inside or in close proximity to the phononic
crystal. For instance, assuming a simple transducer with an
alternate potential of +1 and −1 V applied to the IDT fingers,
the resonance condition for SAW generation and detection is

vp

2p
=

v
2

, s27d

with p the transducer pitch andv the SAW velocity. This
relation in combination with the band structure of Fig. 6
makes it possible to design an IDT for frequencies inside the
full band gap. For instance, if the phononic crystal has a
lattice constanta=1 mm, then the full band gap extends ap-
proximately from 1.95 to 2.75 GHz. For an IDT pitchp
=0.85mm, it can be verified from Fig. 2 that the Rayleigh
SAW and the LSAW on the homogeneous surface are simul-
taneously within the full band gap for any propagation direc-
tion.

IV. CONCLUSION

A plane-wave-expansion method suited to the analysis of
surface-acoustic-wave propagation in phononic crystals has
been described. The surface modes of a square-lattice
phononic crystal made of Y-cut lithium niobate with void
circular inclusions have been obtained. A full band gap for
surface waves with a fractional bandwidth of 34% has been
found, coincidentally with the full band gap for bulk waves

FIG. 5. Realsad and imaginarysbd parts of the free and shorted
boundary conditions determinants ratio for theX ssolid lined andM
sdotted lined points of the first irreducible Brillouin zone, for the
lithium niobate phononic crystal of Fig. 1.

FIG. 6. Band structure for surface modes along the path
G-X-M-Y-G in the first irreducible Brillouin zone, for the lithium
niobate phononic crystal of Fig. 1.
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propagating in the plane of the surface. We conjecture that
this property generally applies to all phononic crystals, al-
though it is at present only the result of a numerical obser-
vation. We suspect that it is directly related to the existence
of band gaps for bulk elastic waves propagating out of plane
f9g, since these obliquely propagating bulk waves contribute
to the plane-wave expansion of the surface modes. However,

the analysis presented in Ref.f9g would need to be extended
to all complex branches of the band structure, whereas it was
limited to only the real branches.
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