
Coherence of light scattered from a randomly rough surface

T. A. Leskova, A. A. Maradudin, and J. Munõz-Lopez
Department of Physics and Astronomy and Institute for Surface and Interface Science, University of California,

Irvine, California 92697, USA
sReceived 24 August 2004; published 14 March 2005d

We study the coherence ofp-polarized light scattered from a one-dimensional weakly rough random metal
surface in contact with vacuum. The mutual coherence function of the single nonzero component of the
scattered magnetic field is calculated in planes parallel to, and at increasing distances from, the mean scattering
surface in the vacuum region. It is found to be the sum of a contribution that is independent of the distance
from the mean surface and a contribution that is a function of this distance and decays to zero over a distance
of the order of the wavelength of the incident light. It is also shown that the spatial coherence of the electro-
magnetic field in the far field in a plane at a fixed distance from the mean surface, as a function of the relative
distance along it, mimics the surface height autocorrelation function at short relative distances and oscillates
with two periods,T1=l and T2=l /sinu0, where u0 is the angle of incidence. The former is due to the
excitation of lateral waves, while the latter is due to the coherent interference of the multiple scattering
processes that lead to the enhanced backscattering effect. In the near field the spatial coherence of the elec-
tromagnetic field measured at a fixed distance from the mean surface displays oscillations that are due to the
excitation of surface plasmon polaritons. The period of these oscillations equals the wavelength of the surface
plasmon polaritons, while the exponential decay of their amplitude is determined by the energy mean free path
of the surface plasmon polaritons.
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I. INTRODUCTION

In an early theoretical study of the radiation emitted by a
planar quasihomogeneous lambertian sourcef1g, it was pre-
dicted that that radiation is not completely spatially incoher-
ent: at a given frequencyv the radiated field correlates over
regions whose spatial dimensions are of the order of the
wavelengthl=2pc/v. This result was obtained by neglect-
ing the contribution of the short-range evanescent waves ra-
diated by the source, and has been successful in describing
the coherence properties of thermal emission in the far field.
In addition, the coherence properties of the radiation were
found to be independent of the distance from the source,
when this distance is greater than the wavelengthl.

In the past several years, due to advances in experimental
capabilities, and interest in nanoscale phenomena, the coher-
ence properties of optical radiation in the near field from its
source have begun to be studied theoreticallyf2–6g. It is only
very recently, however, that these properties have begun to
be studied experimentally. In two papers Apostol and Dog-
ariu f7,8g have examined theoretically and experimentally
the spatial correlations of optical fields close to a highly
scattering randomly inhomogeneous medium as functions of
the distance from the surface of the medium. What was mea-
sured by these authors were the coherence properties in the
near field of light transmitted through highly inhomogeneous
media bounded by weakly rough random surfaces. The con-
tribution to these coherence properties from the evanescent
field was demonstrated experimentally, and it was shown that
they are related to the statistical properties of the surface. In
the theoretical studies accompanying the experimental work,
the surface of the random medium was considered as being
equivalent to a homogeneous, planar, statistically stationary
source of optical radiation, characterized by a cross-spectral

density functionf9g assumed to have a Gaussian form.
In this paper we calculate the spatial correlation of a

p-polarized optical field of frequencyv scattered from a one-
dimensional randomly rough surface of a metal. The plane of
incidence is thex1x3 plane, and is perpendicular to the gen-
erators of the surface. The metal is assumed to be homoge-
neous, but the surface roughness is treated realistically. We
calculate the mutual coherence functionCsx1,x3;x18 ,x3uvd
=kH2sx1,x3uvdscH2sx18 ,x3uvdsc

* l, where H2sx1,x3uvdsc is the
single nonzero component of the magnetic vector of the scat-
tered light in the vacuum region above the metal surface, and
the angle brackets denote an average over the ensemble of
realizations of the surface profile function. The calculation of
Csx1,x3;x18 ,x3uvd is carried out through the solution of a
Bethe-Salpeter equationf10g. The choice ofp-polarization
for the incident light is due to the fact that the vacuum-metal
interface supports asp-polarizedd surface plasmon polariton,
and the angular dependence of the intensity of the light scat-
tered diffusely displays the enhanced backscattering effect
f11g. The effect of each of these properties of the scattering
system on the mutual coherence function is examined. We
find that Csx1,x3;x18 ,x3uvd can be written as the sum of a
contribution from radiative scattered waves that is indepen-
dent ofx3, and a contribution from the evanescent scattered
waves that is a function ofx3 that decays to zero with in-
creasingx3 over a distance of a few wavelengths of the in-
cident light.

II. THE SCATTERING SYSTEM

The physical system we consider in this paper consists of
vacuum in the regionx3.zsx1d, and a metal, characterized
by an isotropic, frequency-dependent, complex dielectric
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function esvd=e1svd+ ie2svd, in the regionx3,zsx1d.
The surface profile functionzsx1d is assumed to be a

single-valued function ofx1 that is differentiable, and consti-
tutes a stationary, zero-mean Gaussian random process, de-
fined by

kzsx1dzsx18dl = d2Wsux1 − x18ud. s2.1d

In Eq. s2.1d and in all that follows the angle brackets denote
an average over the ensemble of realizations ofzsx1d, and
d=kz2sx1dl1/2 is the rms height of the surface. The surface
height autocorrelation functionWsux1u d in the present work is
assumed to have the Gaussian form

Wsux1ud = exps− x1
2/a2d, s2.2d

where the characteristic lengtha is the transverse correlation
length of the surface roughness.

It is convenient to introduce the Fourier integral represen-
tation of the surface profile functionzsx1d,

zsx1d =E
−`

` dQ

2p
ẑsQdexpsiQx1d. s2.3d

The Fourier coefficientẑsQd is also a zero-mean Gaussian
random process, defined by

kẑsQdẑsQ8dl = 2pdsQ + Q8dd2gsuQud, s2.4d

wheregsuQu d, the power spectrum of the surface roughness
is given by

gsuQud =E
−`

`

dx1Wsux1udexps− iQx1d s2.5ad

=Îpa exps− a2Q2/4d. s2.5bd

III. THE MUTUAL COHERENCE FUNCTION

The surfacex3=zsx1d is illuminated from the vacuum by a
p-polarized plane wave of frequencyv, whose plane of in-
cidence is thex1x3 plane. The single nonzero component of
the magnetic vector in the vacuum regionx3.zsx1dmax that
satisfies the boundary conditions at infinity is the sum of an
incoming incident plane wave and of outgoing scattered
waves,

H2sx1,x3uvd = expfikx1 − ia0skdx3g +E
−`

` dq

2p
Rsqukd

3expfiqx1 + ia0sqdx3g, s3.1d

where a0sqd=fsv /cd2−q2g1/2, with Rea0sqd.0, Im a0sqd
.0. A time dependence of the field of the form exps−ivtd
has been assumed, but has not been indicated explicitly.

We are concerned here with the evaluation of the correla-
tion function sthe mutual coherence functiond

Csx1,x3;x18,x38uvd = kH2sx1,x3uvdscH2sx18,x38uvdsc
* l, s3.2d

wherex3.zsx1d andx38.zsx18d, andH2sx1,x3uvdsc, the scat-
tered field, is given by the second term on the right-hand side

of Eq. s3.1d. The elements of the mutual coherence tensor
kEisx1,x3uvdscEjsx18 ,x38 uvdsc

* l where i , j =1,3, are then ob-
tained fromCsx1,x3;x18 ,x3uvd according to

kE1sx1,x3uvdscE1sx18,x38uvdsc
* l = S c

v
D2 ]2

]x3 ] x38

3Csx1,x3;x18;x38uvd,

s3.3ad

kE1sx1,x3uvdscE3sx18,x38uvdsc
* l = − S c

v
D2 ]2

]x3 ] x18

3Csx1,x3;x18;x38uvd,

s3.3bd

kE3sx1,x3uvdscE1sx18,x38uvdsc
* l = − S c

v
D2 ]2

]x1 ] x38

3Csx1,x3;x18,x38uvd,

s3.3cd

kE3sx1,x3uvdscE3sx18,x38uvdsc
* l = S c

v
D2 ]2

]x1 ] x18

3Csx1,x3;x18;x38uvd.

s3.3dd

On combining Eqs.s3.1d and s3.2d we obtain the result

Csx1,x3;x18,x38uvd =E
−`

` dq

2p
E

−`

` dq8

2p

3exphisqx1 − q8x18d + ifa0sqdx3

− a0
*sq8dx38gjkRsqukdR*sq8ukdl. s3.4d

In what follows we will focus our attention on the correlation
function kRsqukdR*sq8 ukdl.

In what follows we assume that the surface is weakly
rough so that the Rayleigh hypothesisf12g is applicable. This
means that the expressions3.1d for the magnetic field in the
vacuum region which, strictly speaking, is valid only forx3
.zsx1dmax, can be used in satisfying the boundary conditions
at the surfacex3=zsx1d itself. Although rigorous limits of
validity of the Rayleigh hypothesis for a one-dimensional
randomly rough surface are not known, by analogy with the
known limits of its validity for one-dimensional periodically
corrugated surfacesf13g it is believed that it is valid when
the inequalityudzsx1d /dx1u !1 holds In this case the scatter-
ing amplitudeRsqukd satisfies the reduced Rayleigh equation
f14g

E
−`

` dq

2p
Ns+dspuqdRsqukd = − Ns−dspukd, s3.5d

where
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Ns+dspuqd =
I„aspd − a0sqdup − q…

aspd − a0sqd
fpq+ aspda0sqdg,

s3.6ad

Ns−dspukd =
I„aspd + a0skdup − k…

aspd + a0skd
fpk− aspda0skdg,

s3.6bd

and askd=fesvdsv /cd2−q2g1/2, with Rea sqd.0, Im asqd
.0. The functionIsg uQd appearing in Eqs.s3.6d is defined
by

IsguQd =E
−`

`

dx1exps− iQx1dexpf− igzsx1dg. s3.7d

We seek the solution of Eq.s3.5d in the form f15g

Rsqukd = 2pdsq − kdR0skd − 2iG0sqdTsqukdG0skda0skd,

s3.8d

where

R0skd =
esvda0skd − askd
esvda0skd + askd

s3.9d

is the Fresnel coefficient for the reflection ofp-polarized
light from a planar vacuum-metal interface, and

G0skd =
iesvd

esvda0skd + askd
s3.10d

is the Green’s function for a surface plasmon polariton at a
planar, vacuum-metal interface. The transition matrixTsqukd
is postulated to satisfy the equation

Tsqukd = Vsqukd +E
−`

` dp

2p
TsqupdG0spdVspukd. s3.11d

Equationss3.5d, s3.8d, ands3.11d define the scattering poten-
tial Vsqukd that appears in Eq.s3.11d. From these equations
we find that this potential is the solution of the equationf14g

E
−`

` dq

2p
fNs+dspuqd − Ns−dspuqdg

Vsqukd
2ia0sqd

= hNs+dspukdfesvda0skd − askdg

+ Ns−dspukdfesvda0skd + askdgj
1

2esvda0skd
.

s3.12d

We now introduce the Green’s functionGsqukd for surface
plasmon polaritons on the randomly rough surface, which is
defined by

Gsqukd = 2pdsq − kdG0skd + G0sqdTsqukdG0skd.

s3.13d

By combining Eqs.s3.8d ands3.13d, and using the definitions
s3.9d and s3.10d, we obtain the useful relation

Rsqukd = − 2pdsq − kd − 2iGsqukda0skd. s3.14d

From Eq.s3.14d we immediately obtain the result

kRsqukdR*sq8ukdl = kRsqukdlkR*sq8ukdl

+ 4fkGsqukdG*sq8ukdl − kGsqukdl

3kG*sq8ukdlga0
2skd. s3.15d

We will evaluate the two contributions on the right-hand side
of Eq. s3.15d in turn.

From Eq.s3.14d we find that

kRsqukdl = 2pdsq − kd − 2ikGsqukdla0skd. s3.16d

Due to the stationarity of the surface profile functionzsx1d
the averaged Green’s functionkGsqukdl is diagonal inq and
k,

kGsqukdl = 2pdsq − kdGskd. s3.17d

The Green’s functionGskd is related to the unperturbed
Green’s functionG0skd by f10g

Gskd =
1

G0skd−1 − Mskd
=

iesvd
esvda0skd + askd − iesvdMskd

,

s3.18d

whereMskd is a proper self-energy that is obtained from the
pair of equationsf10g

kMsqukdl = 2pdsq − kdMskd,

Msqukd = Vsqukd +E
−`

` dp

2p
E

−`

` dr

2p
MsqupdkGspurdl

3fVsr ukd − kMsr ukdlg. s3.19d

When we combine Eqs.s3.16d–s3.18d and use the definition
s3.10d, we find that

kRsqukdl = 2pdsq − kdRskd, s3.20ad

where

Rskd =
esvda0skd − askd + iesvdMskd
esvda0skd + askd − iesvdMskd

. s3.20bd

It follows from Eqs.s3.4d, s3.15d, ands3.20ad that

Csx1,x3;x18,x38vd = uRskdu2expfiksx1 − x18d + ia0skdsx3 − x38dg

+ 4a0
2skdE

−`

` dq

2p
E

−`

` dq8

2p
exphisqx1 − q8x18d

+ ifa0sqdx3 − a0
*sq8dx38gj

3 fkGsqukdG*sq8ukdl − kGsqukdl

3kG*sq8ukdlg. s3.21d

IV. THE BETHE-SALPETER EQUATION

Equation s3.21d is convenient for the determination
of Csx1,x3;x18 ,x38 uvd becausekGsqukdG*sq8 ukdl −kGsqukdl
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3kG*sq8 ukdl can be calculated from the solution of the
Bethe-Salpeter equationf10g,

kGsqukdG*sq8uk8dl = kGsqukdlkG*sq8uk8dl

+E
−`

` dr

2p
E

−`

` dr8

2p
E

−`

` ds

2p
E

−`

` ds8

2p

3kGsqurdlkG*sq8ur8dlkGsr,r8us,s8dl

3kGssukdG*ss8uk8dl, s4.1d

wherekGsr ,r8 us,s8dl is the irreducible vertex function. If we
make use of Eq.s3.17d, Eq. s4.1d becomes

kGsqukdG*sq8uk8dl = 2pdsq − kd2pdsq8 − k8dGsqdG*sq8d

+ GsqdG*sq8dE
−`

` ds

2p
E

−`

` ds8

2p

3kGsq,q8us,s8dlkGssukdG*ss8uk8dl.

s4.2d

We now setk8=k and obtain

kGsqukdG*sq8ukdl = 2pdsq − q8d2pdsq − kduGskdu2

+ GsqdG*sq8dE
−`

` ds

2p
E

−`

` ds8

2p

3kGsq,q8us,s8dlkGssukdG*ss8ukdl.

s4.3d

To solve Eq.s4.3d we write

kGsqukdG*sq8ukdl = 2pdsq − q8dFsqukd, s4.4d

a result that follows from the stationarity of the surface pro-
file function. The stationarity of the surface profile function
has the further consequence thatkGsq,q8 us,sdl is diagonal in
q andq8,

kGsq,q8us,sdl = 2pdsq − q8dUsqusd. s4.5d

The equation satisfied byFsqukd therefore becomes

Fsqukd = 2pdsq − kduGskdu2 + uGsqdu2E
−`

` ds

2p
UsqusdFssukd.

s4.6d

The solution of Eq.s4.6d can be written formally as

Fsqukd = 2pdsq − kduGskdu2 + uGsqdu2R̂squkduGskdu2,

s4.7d

whereR̂squkd is the reducible vertex function. It is related to
the irreducible vertex functionUsqukd by

R̂squkd = Usqukd +E
−`

` ds

2p
UsqusduGssdu2R̂ssukd. s4.8d

If we multiply both sides of Eq.s4.7d by 2pdsq−q8d, then
in view of Eq. s4.4d we obtain

kGsqukdG*sq8ukdl − kGsqukdlkG*sq8ukdl

= 2pdsq − q8duGsqdu2R̂squkduGskdu2. s4.9d

It follows from Eqs.s3.21d and s4.9d that

Csx1,x3;x18,x38uvd = uRskdu2expfiksx1 − x18d + ia0skdsx3 − x38dg

+ 4a0
2skdE

−`

` dq

2p
exphiqsx1 − x18d

+ ifa0sqdx3 − a0
*sqdx38gj

3uGsqdu2R̂squkduGskdu2. s4.10d

This result is exact within the limits of validity of the Ray-
leigh hypothesisf12g. We now turn to a determination of

R̂squkd.
We approximate the irreducible vertex functionUsqukd by

the sum of the contributions from all maximally-crossed dia-
grams, because they describe the phase coherent multiple-
scattering processes that give rise to enhanced backscatter-
ing. In calculating these contributions we make the small
roughness approximationf14g, which consists of approxi-
mating the scattering potentialVsqukd by the solution of Eq.
s3.12d that is of first order in the surface profile function
zsx1d,

Vsqukd > usqukdẑsq − kd, s4.11d

where

usqukd =
esvd − 1

e2svd
fesvdqk− asqdaskdg

= uskuqd

= us− qu− kd = us− ku− qd. s4.12d

The results we obtain are therefore limited to weakly rough
surfaces.

We also make thesinessentiald approximation of neglect-
ing the imaginary part ofesvd in evaluatingusqukd. This has
the consequence thatusqukd is real in the frequency range in
which the real part ofesvd is negative, which contains the
frequency range in which surface plasmon polaritons can ex-
ist.

In the small roughness approximation, Eq.s4.11d, the
proper self-energyMskd is given by

Mskd = d2E
−`

` dp

2p
fuskupdg2G0spdgsup − kud. s4.13d

In calculatingUsqukd we also use the pole approximation
for the averaged Green’s functionGssd f11g

Gssd .
Csvd

s− kspsvd − iDsvd
−

Csvd
s+ kspsvd + iDsvd

,

s4.14d

where
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Dsvd = Desvd + Dspsvd, s4.15d

with

Desvd =
1

2

v

c

e2svd
ue1svdu1/2

„ue1svdu− 1…3/2, s4.16d

Dspsvd = 2C2svdSv

c
D4F e1

2svd
ue1svdu− 1

G2

d2g„2kspsvd…,

s4.17d

Csvd =
ue1svdu3/2

e1
2svd − 1

, s4.18d

kspsvd =
v

c
F ue1svdu

ue1svdu− 1
G1/2

. s4.19d

Here Desvd is the amplitude decay rate of the surface plas-
mon polariton of frequencyv supported by a planar vacuum-
metal interface, whose wave number iskspsvd, andDspsvd is
the amplitude decay rate of the suface plasmon polariton due
to its roughness-induced scattering into other surface plas-
mon polaritons. The result isf16g

Usqukd = Xsqukd +
Asqukd

sq + kd2 + 4G2 , s4.20d

where

Asqukd = 2C2svdDsvdfXsqukspdXskspukd + Xsqu− kspd

3Xs− kspukdg + 2C2svdDspsvdfXsqukspdXs− kspukd

+ Xsqu− kspdXskspukdg, s4.21d

Xsqukd = fusqukdg2d2gsuq − kud, s4.22d

G = fDesDe + 2Dspdg1/2. s4.23d

When the result given by Eq.s4.20d is substituted into Eq.
s4.8d the resulting equation,

R̂squkd = Xsqukd +
Asqukd

sq + kd2 + 4G2 +E
−`

` ds

2p
FXsqusd

+
Asqusd

sq + sd2 + 4G2GuGssdu2R̂ssukd, s4.24d

is solved by iteration. However, in each of the resulting in-
tegral terms only the contribution associated withXsqukd is
kept, and all terms that containAsqukd / fsq+kd2+4G2g are
omitted. The sum of the integral terms obtained in this way is
just the sum of the contributions from all ladder diagrams of
two or more rungs. The reason for this approximation is that

the contribution toR̂squkd from the ladder diagrams is equal
to the contribution fromAsqukd / fsq+kd2+4G2g, the second
term on the right hand side of Eq.s4.24d, whenq=−k, i.e., in
the backscattering direction, while the integral terms contain-
ing Asqukd / fsq+kd2+4G2g are small in comparisonf17g. In
this way we obtain the result that

R̂squkd = Xsqukd +
Asqukd
4G2 +

Asqukd
sq + kd2 + 4G2 . s4.25d

The first term on the right-hand side of Eq.s4.25d is the

contribution toR̂squkd from single-scattering processes; the
second term is the contribution from all ladder diagrams of
two or more rungs; and the third term is the contribution
from the maximally-crossed diagrams. We see that the sec-
ond and third terms are equal whenq=−k. This means that

the height of the peak inR̂squkd at q=−k is twice the height
of the background at its position when the contribution from
the single-scattering processes is subtracted off. It is the peak

in R̂squkd arising from the third term on the right hand side
of Eq. s4.25d that describes enhanced backscattering. This
conclusion follows from the result that the contribution to the
mean differential reflection coefficient from the light that has
been scattered incoherently, calculated on the basis of the

approximations used in obtainingR̂squkd is given byf17g

K ]Rp

]us
L

incoh
=

2

p
Sv

c
D3

cos2 uscosu0uGsqdu2FXsqukd +
Asqukd
4G2

+
Asqukd

sq + kd2 + 4G2GuGskdu2, s4.26d

where the wave numbersk andq are to be expressed in terms
of the angles of incidence and scatteringu0 andus, measured
counterclockwise and clockwise from the positivex3 axis,
respectively, throughk=sv /cdsinu0 andq=sv /cdsinus.

When the result given by Eq.s4.25d is substituted into Eq.
s4.10d and x38 is set equal tox3, the correlation function
Csx1,x3;x18 ,x3uvd takes the form

Csx1,x3;x18,x3uvd = uRskdu2expfiksx1 − x18dg + Csx1;x18uvdhom

+ Csx1,x3;x18,x3uvdev, s4.27d

where

Csx1;x18uvdhom= 4a0
2skdE

uqu,v/c

dq

2p
uGsqdu2FXsqukd +

Asqukd
4G2

+
Asqukd

sq + kd2 + 4G2GuGskdu2expfiqsx1 − x18dg,

s4.28d

Csx1,x3;x18,x3uvdev = 4a0
2skdE

uqu.sv/cd

dq

2p
uGsqdu2FXsqukd

+
Asqukd
4G2 +

Asqukd
sq + kd2 + 4G2G

3 uGskdu2expfiqsx1 − x18dg

3expf− 2b0sqdx3g, s4.29d

where

COHERENCE OF LIGHT SCATTERED FROM A… PHYSICAL REVIEW E 71, 036606s2005d

036606-5



b0sqd = fq2 − sv/cd2g1/2 Reb0sqd . 0, Im b0sqd , 0.

s4.30d

The contributionuRskdu2expfiksx1−x18dg+Csx1;x18 uvdhom is in-
dependent ofx3. The contributionCsx1,x3;x18 ,x3uvdev is a
function of x3 that decays to zero with increasingx3.

Finally, we emphasize that although the pole approxima-
tion s4.14d for Gssd was used in calculating the irreducible
vertex functionUsqukd, it is the result forGsqd obtained by
combining Eqs.s3.18d and s4.13d that is used in evaluating
the integrals overq in Eqs.s4.27d ands4.28d. Therefore, the
integrands in Eqs.s4.27d and s4.28d have branch points at
q= ± sv /cd arising from the presence ofa0sqd in the expres-
sion s3.18d for Gsqd. In addition,Gsqd has simple poles at
q= ± fkspsvd+ iDsvdg, i.e., at the wave numbers of the surface
plasmon polaritons on the randomly rough surface. Finally,
the integrands in Eqs.s4.27d and s4.28d have poles atq=
−k± i2G, which are associated with the existence of a peak in
the retroreflection direction in the angular dependence of the
intensity of the light scattered incoherently. All of these sin-
gularities manifest themselves in the dependencies of
Csx1;x18 uvdhom andCsx1,x3;x18 ,x3uvdev on x1 andx3.

V. RESULTS

We have carried out calculations ofCsx1,x3;x18 ,x3uvd for
three different one-dimensional randomly rough silver sur-
faces. All three are characterized by an rms heightd=5 nm.
One of themssurfaceAd is characterized by a transverse
correlation lengtha=100 nm; the secondssurfaceBd is char-
acterized by a transverse correlation lengtha=200 nm; while
the thirdssurfaceCd is characterized by a transverse correla-
tion length a=400 nm. The wavelength of the incident,
p-polarized light isl=457.9 nm, and the dielectric function
of silver at this wavelength isesvd=7.5+i0.24 f18g.

The three surfaces differ significantly in their scattering
properties. SurfaceA, when illuminated at normal incidence,
produces a well-defined peak in the retroreflection direction
in the contribution to the mean differential reflection coeffi-
cient from the light that has been scattered incoherentlysdif-
fuselyd, k]R/]uslincoh fFig. 1sadg. This is the well known en-
hanced backscattering effect. This peak is weaker but still
visible in the angular dependence ofk]R/]uslincoh when sur-
faceB is illuminated at normal incidencefFig. 1sbdg. Surface
C, when illuminated at normal incidence, displays no such
peak ink]Rp/]uslincoh fFig. 1scdg. fIn fact, if the vertical scale
in Fig. 1scd were magnified significantly, a peak in the ret-
roreflection direction would be observed, but it is too weak
to be seen on the scale of Fig. 1scd.g What is displayed in Fig.
1scd is essentially a scaled version of the power spectrum of
the surface roughness. These differences in the scattering be-
haviors of the three surfaces will manifest themselves in the
results of the calculations ofCsx1,x3;x18 ,x3uvd for each of
them.

In Figs. 2sad–2sdd plots of the correlation function
Csx1,x3;x18 ,x3uvd = uRskdu2expfiksx1 − x18dg + Csx1;x18 uvdhom

+Csx1,x3;x18 ,x3uvdev as a function ofsx1−x18d /l and x3/l
are presented for the case whenp-polarized light of wave-

length l is incident normally onsad surfaceA and onsbd
surfaceC; and scd and sdd when the light is incident at an
angleu0=20° on surfaceA.

The correlation functions shown in Figs. 2sad and 2sbd
decrease with increasingx3 over a distance of the order ofl
to a constant that is the value ofuRskdu2+Csx1;x1uvdhom for
x1−x18=0. The only contribution toCsx1,x3;x1,x3uvd that
depends on the distance from the mean surface,
Csx1,x3;x1,x3uvdev, atx3=0 can reach quite large values due
to the strong enchancement of the surface polariton field at
the surface. For surfaceA fFigs. 2sad, 2scd, and 2sddg it is of
the same order of magnitude asuRskdu2+Csx1;x1uvdhom sit is
approximately a factor of two largerd, and is three orders of
magnitude smaller for surfaceC fFig. 1sadg than it is for
surfaceA. This is because the roughness induced excitation
of surface plasmon polaritons is considerably weaker for this
surface. Although on the scale of this figure it appears as if
uRskdu2+Csx1;x1uvdhom has the same value for surfaceC as it
does for surfaceA, in fact it differs slightly due to different
values of uRs0du2 s0.95293 for surfaceA and 0.96067 for
surfaceCd, and Csx1;x18 uvdhom s0.02775 for surfaceA and
0.01998 for surfaceC at x1−x18=0d. When light is incident
normally on a surface,k=0, the functionXsqukd, given by
Eqs.s4.22d ands4.23d is an even function ofq, and the single
scattering contributions to the correlation functions
Csx1;x18 uvdhom and Csx1,x3;x18 ,x3uvdev are real, while their
imaginary parts are determined solely by the contributions
from the multiple scattering processes and are negligibly
small. However, this is not the case at oblique incidence,
which is clearly illustrated in Fig. 2sdd.

The dependence of the correlation functions
Csx1,x3;x18 ,x3uvd on sx1−x18d shown in Figs. 2sad–2sdd is,
however, quite different for surfacesA andC and for surface
A at different angles of incidence. In the near fieldsx3

øld Csx1,x3;x18 ,x3uvd oscillates with a single period, while
the amplitude of these oscillations depends, of course, on the
parametersd and a characterizing the surface roughness.
These oscillations are due to the excitation of surface plas-

FIG. 1. The contribution to the mean differential reflection co-
efficient from the light scattered incoherently whenp-polarized
light is incident normally on a one-dimensional randomly rough
silver surface.sad SurfaceA; sbd surfaceB; scd surfaceC.
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mon polaritons supported by the rough metallic surfaces, and
their period is the surface plasmon polariton wavelength
lspsvd. Only the contributionCsx1,x3;x18 ,x3uvdev to the cor-
relation function displays this type of oscillations. In the case
of oblique incidenceCsx1,x3;x18 ,x3uvd displays additional
oscillations fsee Figs. 2scd and 2sddg of a larger period,
l /sinu0, which are due to the presence of the factor
expfiksx1−x18dg in the contribution from the specularly re-
flected fielduRskdu2expfiksx1−x18dg. These oscillations are car-
ried out to the far field also. However, in the far field
Csx1,x3;x18 ,x3uvd as a function ofx1−x18 oscillates even
when light is incident normally on the surfacefsee, as an
example, the inset to Fig. 2sadg. The period of these oscilla-
tions isl, and they are due to the excitation of lateral waves.
Below we discuss in detail the different contributions to the
correlation function and the origin of the processes that give
rise to the oscillations of the correlation function.

We next turn to a consideration of the dependence of
Csx1;x18 uvdhom on the differencesx1−x18d. In Fig. 3sad we
have plotted the real part of this function for the scattering of
p-polarized light incident normally on surfacesA, B, andC.
For the roughness and experimental parameters assumed in
calculating this function the imaginary part ofCsx1;x18 uvdhom

is 17 orders of magnitude smaller than the real part, and will
not be considered further here. For the two smaller correla-
tion lengths ReCsx1;x18 uvdhom is an oscillatory function of
sx1−x18d with a period given byT1=l, the wavelength of the
incident light. These oscillations are associated with the
branch points of the integrand in Eq.s4.28d at q= ± sv /cd,
i.e., they are due to the excitation of lateral waves. After the
few first oscillations, which are strongly influenced by the
central peak in ReCsx1;x18 uvdhom, which has quite a different
origin, the amplitude of these oscillations decreases with in-
creasing distancex1−x18 algebraically asux1−x18u

−3/2. It de-
pends strongly on the correlation length of the surface rough-
ness, as expf−spa/ld2g and, consequently, for a correlation
lengtha=400 nmssurfaceCd is so small that the oscillations
are not visible on the scale of this figure. The form of
ReCsx1;x18 uvdhom between the first minima on either side of
the maximum atx1−x18=0, i.e., for −l& sx1−x18d&l, reflects
the surface height autocorrelation functionWsux1−x18 u d. It is
closer toWsux1−x18 u d the larger is the correlation lengtha.
This is easy to understand from an analysis of the integral
s4.28d. Indeed, for a weakly rough surface the main contri-
bution to the integral comes from the single scattering con-
tribution Xsqukd which contains the power spectrum of the

FIG. 2. The real part of the correlation functionCsx1,x3;x18 ,x3uvd as a function ofsx1−x18d /l and x3/l when p-polarized light of
wavelengthl is incident normally onsad surfaceA andsbd on surfaceC; and the realscd and imaginarysdd parts of the correlation function
Csx1,x3;x18 ,x3uvd as a function ofsx1−x18d /l andx3/l when light is incident at an angleu0=20° on surfaceA.
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surface roughness. The larger the correlation length the nar-
rower the power spectrum. As a result the integrand in Eq.
s4.28d. becomes a function that is highly peaked aroundq
=0. On removing the slowly varying parts of the integrand
outside the integral, we find that at normal incidence
Csx1;x18 uvdhom with quite a high accuracy has the form

Csx1;x18uvdhom< 16p2S d

l
D2UÎesvd − 1

Îesvd + 1
U2

3expf− sx1 − x18d
2/a2g. s5.1d

This is illustrated in Fig. 3sbd, where we have plotted
ReCsx1;x18 uvdhom as a function ofx1−x18 for the same values
of the experimental parameters used in obtaining Fig. 3sad,
for surfaceC. Also plotted is the function 0.019 expf−sx1

−x18d
2/a2g, where the value of the coefficient in front of the

Gaussian is estimated from Eq.s5.1d. The former curve lies
directly on top of the latter. For smaller correlation lengths
the contribution toCsx1;x18 uvdhom given by Eq.s5.1d is also
dominant for small values ofux1−x18 u &l, but becomes dis-
torted by the contribution from the lateral waves.

When the angle of incidence is increased fromu0=0° to
u0=20°, with all the roughness and remaining experimental
parameters retaining the values used in obtaining Fig. 3sad,
the resulting function ReCsx1;x18 uvdhom plotted againstsx1

−x18d is presented in Fig. 3scd. In this case the oscillations of
this function have two periods: a periodT1=l arising from
the branch points atq= ±v /c of the integrand in Eq.s4.28d,
and a larger periodT2=l /sinu0 arising from the poles of the
integrand in Eq.s4.28d at q=−k± i2G. The latter oscillations
have considerably smaller amplitude than the former, be-
cause they are due to multiple scattering processes. Their
amplitude can be estimated from Eq.s4.28d, and is

<2pa2d4cos2 u0
v2

c2

C2svd
G

U esvd − 1

e2svd
U4

uGskdu4

3H2Dsvdueu2
v2

c2 uksp
2 − k2uexpf− sk − kspd2a2/4g

3expf− sk + kspd2a2/4g + Dspsvduekspk + askdaskspdu4

3expf− sk + kspd2a2/2g + Dspsvduekspk − askdaskspdu4

3expf− sk − kspd2a2/2gJ . s5.2d

To demonstrate the presence of the oscillations of the larger
period in Fig. 3sdd we present plots of the function
ReCsx1;x18 uvdhom calculated for the surfaces we denotedA8
and C8, which are characterized by the same correlation

FIG. 3. sad ReCsx1;x18 uvdhom as a function ofsx1−x18d /l whenp-polarized light of wavelengthl is incident normally on surfaceAs——d,
surfaceBs– – – –d, and surfaceCs - - - - -d sbd ReCsx1;x18 uvdhom sL L L Ld as a function ofsx1−x18d /l when p-polarized light of
wavelengthl is incident normally on surfaceC, together with a plot ofA expf−sx1−x18d

2/a2g as a function ofsx1−x18d /l, where a
=400 nm;scd ReCsx1;x18 uvdhom as a function ofsx1−x18d /l whenp-polarized light of wavelengthl is incident at an angleu0=20° on surface
As——d, surfaceBs– – – –d, and surfaceCs- - - - - -d; sdd ReCsx1;x18 uvdhom as a function ofsx1−x18d /l whenp-polarized light of wavelength
l is incident at an angleu0=20° on surfaceA8 s——d andC8s- - - - - -d.
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lengths as the surfacesA and C but by an rms heightd
=15 nm.

Finally, we examine the dependence of
Csx1,x3;x18 ,x3uvdev on sx1−x18d at a fixed value ofx3 in the
near field. In Fig. 4sad we plot ReCsx1,x3;x18 ,x3uvdev for
surfaceA as a function ofx1−x18 for a value ofx3=l /10. The
angle of incidence isu0=0°. ReCsx1,x3;x18 ,x3uvdev is seen
to be a rapidly oscillating function ofsx1−x18d. The period of
these oscillations islspsvd=2p /kspsvd, as can be seen from
Fig. 4sbd, and they arise from the poles ofGsqd at q
= ± fkspsvd+ iDsvdg in the integrand of Eq.s4.29d, i.e., they
arise due to the excitation of surface plasmon polaritons.
Keeping in mind that the dominant contribution to the inte-
gral in Eq.s4.29d comes from the first term in its integrand,
namely the contribution from single scattering processes, the
pole contribution to it can be easily estimated with the result
that at normal incidence we obtain

Csx1,x3;x18,x3uvdev < 8pÎpad2v3

c3

ue1svdu3/2

fe1svd + 1g2

3expf− ksp
2 a2/4gcosfkspsx1 − x18dg

3expf− 2Dsvdux1 − x18ug

3expf− 2x3sv/cdRe„1/Î− esvd − 1…g.

s5.3d

Thus these oscillations have an exponentially decreasing en-
velope function of the formCmaxexpf−ux1−x18 u /Lspsvdg,
where Lspsvd is the energy mean free path of the surface
plasmon polariton of frequencyv supported by the randomly
rough vacuum-metal interface. It is given byLspsvd
=f2Dsvdg−1, and in the present case has the valueLspsvd
=62.2l. When the transverse correlation length of the sur-
face roughness is increased toa=400 nmssurfaceCd, with
the remaining roughness and experimental parameters retain-
ing the values used in obtaining Figs. 4,
ReCsx1,x3;x18 ,x3uvdev has the same oscillatory dependence
on sx1−x18d as it does whena=100 nm, with the same period
lspsvd and an exponentially decreasing envelope function
with the same decay lengthLspsvd sFig. 5d. The only signifi-
cant effect of the fourfold increase in the value ofa is that
the amplitude of the exponentially decreasing envelope of
the oscillations,Cmax, is reduced by a factor of 103. This is
because for the value ofkspsvd arising from the values ofl
andesvd assumed in the present work, a fourfold increase in
a produces a three orders of magnitude decrease in the power
spectrum of the surface roughnessÎpa expf−ksp

2 svda2/4g,
which means that the efficiency of the excitation of surface
plasmon polaritons is three orders of magnitude weaker for
the surfaceC than for the surfaceA.

VI. CONCLUSIONS

We can draw several conclusions from the results ob-
tained in this investigation. The first is that the spatial coher-
ence of the electromagnetic field scattered from a one-
dimensional randomly rough metal surface measured in the
far field, i.e., several wavelengths away from the surface,
does not change with distance from the surface. The second
is that in the near field the spatial coherence depends signifi-
cantly on the distance from the surface. Its magnitude de-
pends strongly on the magnitude of the transverse correlation
length of the surface roughnessa for a fixed value of the rms
height of the surface, and decreases asa increases. The third
is that the spatial coherence of the electromagnetic field mea-
sured in the far field as a function ofx1−x18 at a fixed dis-
tance from the mean scattering surface mimics the surface
height autocorrelation function for small values ofsx1−x18d

FIG. 4. sad A plot of Csx1,x3;x18 ,x3uvdev as a function ofsx1

−x18d for x3=l /10 whenp-polarized light of wavelengthl is inci-
dent normally on surfaceA, together with a plot ofCmaxexpf−ux1

−x18 u /Lspsvdg; sbd an enlargement ofsad in the region of smallsx1

−x18d /l.

FIG. 5. The same as Fig. 4 but for surfaceC.
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and oscillates with two periods,T1=l and T2=l /sinu0,
whereu0 is the angle of incidence. The oscillations with the
first period arise from the branch points atq= ± sv /cd present
in the Green’s functionGsqd in the integrand in Eq.s4.28d,
and their amplitude greatly decreases with an increase of the
transverse correlation length of the surface roughness. The
oscillations with the second period arise from the denomina-
tor sq+kd2+4G2 in the integrand in Eq.s4.29d. The fourth is
that the spatial coherence of the electromagnetic field mea-
sured in the near field as a function ofx1−x18 at a fixed
distance from the mean scattering surface oscillates with the
period T=lspsvd, where lspsvd=2p /kspsvd is the wave-
length of the surface plasmon polaritons supported by the
vacuum-metal interface. The exponential decay of the ampli-
tude of these oscillations is characterized by the decay length
Lspsvd, the energy mean free path of the surface plasmon
polaritons of frequencyv supported by the randomly rough
vacuum-metal interface.

In closing we note that from an experimental standpoint it
may be easier to measure the correlation function of the total
magnetic field in the vacuum region,

Gsx1,x3ux18,x38uvd = kH2sx1,x3uvdH2
*sx18,x38uvdl, s6.1d

where H2sx1,x3uvd is given by Eq.s3.1d. The relation be-
tweenGsx1,x3;x18 ,x38 uvd andCsx1,x3;x18 ,x38 uvd is

Gsx1,x3;x18,x38uvd = Csx1,x3;x18,x38uvd + expfiksx1 − x18d

− ia0skdsx3 − x38dg + 2 expfiksx1

− x18dgRehRskdexpfia0skdsx3 + x38dgj.

s6.2d

On settingx3=x38 we obtain

Gsx1,x3;x18,x3uvd = Csx1,x3;x18,x3uvd + h1 + 2 Re„Rskd

3expf2ia0skdx3g…jexpfiksx1 − x18dg

= Csx1,x3;x18,x3uvd + h1 + 2Askd

3cosf2a0skdx3 + fskdgj

3expfiksx1 − x18dg, s6.3d

where

Askd = uRskdu, tanfskd =
Im Rskd
ReRskd

. s6.4d

If for a given value ofk=sv /cdsinu0 we can determine the
amplitudeAskd and phasefskd of Rskd, then Eq.s6.3d allows
us to obtain Csx1,x3;x18 ,x3uvd from a determination of
Gsx1,x3;x18 ,x3uvd for that value ofk. To do this we setx1

=x18 and obtain

Gsx1,x3;x1,x3uvd = Csx1,x3;x1,x3uvd + 1 + 2Askd

3cosf2a0skdx3 + fskdg. s6.5d

A measurement ofGsx1,x3;x1,x3uvd=kuH2sx2,x3uvdu2l in the
far field x3@l, whereCsx1,x3;x1,x3uvd=kuH2sx2,x3uvdscu2l
is now a constant whose value depends onk, Cskd, yields

Gsx1,x3;x1,x3uvd = Cskd + 1 + 2Askd

3cosf2a0skdx3 + fskdg, x3 @ l.

s6.6d

The oscillations of the intensity of the total magnetic field in
the vacuum region as a function ofx3 are just the well known
Wiener fringesf19g. From the result given by Eq.s6.6d. the
values of Askd and fskd can be determined, and hence
Csx1,x3;x18 ,x3uvd for that value ofk.
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