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A model accounting for the finite spatial dimensions of the deposit patterns in evaporating sessile drops of
a colloidal solution on a plane substrate is proposed. The model is based on the assumption that the solute
particles occupy finite volume and hence these dimensions are of steric origin. Within this model, the geo-
metrical characteristics of the deposition patterns are found as functions of the initial concentration of the
solute, the initial geometry of the drop, and the time elapsed from the beginning of the drying process. The
model is solved analytically for small initial concentrations of the solute and numerically for arbitrary initial
concentrations of the solute. The agreement between our theoretical results and the experimental data is
demonstrated, and it is shown that the observed dependence of the deposit dimensions on the experimental
parameters can indeed be attributed to the finite dimensions of the solute particles. These results are universal
and do not depend on any free or fitting parameters; they are important for understanding evaporative depo-
sition and may be useful for creating controlled deposition patterns.
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I. INTRODUCTION

The problem of the so-called coffee-drop deposit has re-
cently aroused great interest. The residue left when coffee
dries on the countertop is usually darkest and hence most
concentrated along the perimeter of the stain. Ringlike stains,
with the solute segregated to the edge of a drying drop, are
not particular to coffee. Mineral rings left on washed glass-
ware, banded deposits of salt on the sidewalk during winter,
and enhanced edges in water color paintings are all examples
of the variety of physical systems displaying similar behav-
ior and understood by coffee-drop deposit terminology.

Understanding the process of drying of such solutions is
important for many scientific and industrial applications,
where the ability to control the distribution of the solute
during the drying process is at stake. For instance, in the
paint industry, the pigment should be evenly dispersed after
drying, and segregation effects are highly undesirable. Also,
in protein crystallography, attempts are made to assemble
two-dimensional crystals by using evaporation-driven con-
vection f1–3g, and hence solute concentration gradients
should be avoided. On the other hand, in the production of
nanowires f4g or in surface patterningf5g perimeter-
concentrated deposits may be of advantage. Recent impor-
tant applications of this phenomenon related to DNA stretch-
ing in a flow have emerged as wellf6g. For instance, a high-
throughput automatic DNA mapping was suggestedf7g,
where fluid flow induced by evaporation is used both for
stretching DNA molecules and depositing them onto a sub-
strate. Droplet drying is also important in the attempts to
create arrays of DNA spots for gene expression analysis.

Ringlike deposit patterns have been studied experimen-
tally by a number of groups. Difficulties of obtaining a uni-

form depositf8g, deformation of sessile drops due to a sol-
gel transition of the solute at the contact linef9,10g, stick-
slip motion of the contact line of colloidal liquidsf11,12g,
multiple ring formationf13g, and the effect of ring formation
on the evaporation of the sessile dropsf14g were all reported.
The evaporation of the sessile dropssregardless of the solute
presenced has also been investigated extensively. Constancy
of the evaporation flux was demonstratedf15,16g, and the
change of the geometrical characteristicsscontact angle, drop
height, contact-line radiusd during drying was measured in
detail f17–20g.

The most recent and complete experimental effort to date
on coffee-drop deposits was conducted by Deeganet al.
f21–24g. Most experimental data referred to in this work
originate from observations and measurements of this group.
They reported extensive results on ring formation and dem-
onstrated that these could be quantitatively accounted for.
The main ideas of the theory of solute transfer in such physi-
cal systems have also been developed in their workf21g. It
was observed that the contact line of a drop of liquid remains
pinned during most of the drying process. While the highest
evaporation occurs at the edges, the bulk of the solvent is
concentrated closer to the center of the drop. In order to
replenish the liquid removed by evaporation at the edge, a
flow from the inner to the outer regions must exist inside the
drop. This flow is capable of transferring all of the solute to
the contact line and thus accounts for the strong contact-line
concentration of the residue left after complete drying. This
theory is very robust since it is independent of the nature of
the solute and only requires pinning of the edge during dry-
ing swhich can occur in a number of possible ways: surface
roughness, chemical heterogeneities, etc.d. Among other
things, we will reproduce some of its results in this work.

Mathematically, the most complicated task is related to
determining the evaporation rate from the surface of the
drop. An analogy between the diffusive concentration fields
and the electrostatic potential fields was suggestedf25,26g,
so that an equivalent electrostatic problem can be solved in-
stead of the evaporation problem. Important analytical solu-
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tions to this equivalent problem in various geometries were
first derived by Lebedevf25g, and a few useful consequences
from these analytical results were later reported in Ref.f27g.

In this work, we continue development of the theory of
solute transfer and deposit growth. Most previous works ad-
dress the issue of the deposit mass accumulation at the drop
boundary; however, they treat the solute particles as if they
do not occupy any volume, and hence all the solute can be
accommodated at the one-dimensional singularity of the con-
tact line. In reality, the solute deposit accumulated at the
perimeter has some thickness, and the shape of the residue in
a round drop resembles a ring rather than the infinitely thin
circumference of a circle. The earlier efforts were aimed at
describing how themassof the contact-line deposit grows
with time and how it depends on such geometrical character-
istics of the drop as its radiussfor circular dropsf21,22gd or
its opening angle and the distance from the vertexsfor
pointed dropsf28,29gd. Little attempt has been made to de-
scribe the geometrical characteristics of the contact-line de-
posit itself, for instance, the width and the height of the
deposit ring. At the same time, there is solid experimental
data f23,24g on various geometrical characteristics of the
ring and their dependence on time, the initial solute concen-
tration, and the drop geometry. Here we develop a simple
model that addresses this lack of understanding of the geo-
metrical properties of the contact-line deposit and accounts
for the finite size of the deposit ring. We attribute the finite
volume of the deposit simply to the finite size of the solute
particles, i.e., we assume the particles do occupy some vol-
ume and hence cannot be packed more densely than a certain
concentration. The model is solved in the simplest case of
the circular geometry both analytically and numerically, and
the results of the two methods are compared with the experi-
mental data of Refs.f23,24g sand with each otherd. It turns
out that this model is sufficient to explain most of the col-
lected data. It should be noted that the model is as universal
and robustsin its range of validityd as the zero-volume
theory of Deeganet al. f21,22g since it is based on essen-
tially the same physical principles.

The notion that the profile of the deposit could be found
by the simple assumption that the solute becomes immobi-
lized when the volume fraction reaches a threshold was
originally suggested by Dupontf30g. Efforts to create a
model were conducted by Deeganf23,24g who formulated
some physical assumptions, wrote them down mathemati-
cally, and obtained some early-time exponents. Here we
present the entire problem, including its full formulation and
its analytical and numerical solutions. In the next section, we
formulate the model, describe the system, and address some
issues of the geometry and the evaporation rate. Then, we
derive the governing equations from the conservation of
mass and later solve them analytically for small initial con-
centrations of the solute and numerically for arbitrary initial
concentrations of the solute. A discussion section concludes
this work.

II. MODEL, ASSUMPTIONS, AND GEOMETRY

A. System

We consider a sessile droplet of solution on a horizontal
surfacessubstrated. The nature of the solute is not essential

for the mechanism. The typical diameter of the solute par-
ticles in Deeganet al. f21–24g was of the order of 0.1–1µm;
we will assume a similar order of magnitude throughout this
work. For smaller particles diffusion becomes important; for
larger particles sedimentation may play an important role.

The droplet is bounded by the contact line in the plane of
the substrate. Thissmacroscopicd contact line is defined as
the common one-dimensional boundary of all three phases
sliquid, air, and solid substrated. We will restrict our attention
to the case of round drops, which is both of most practical
importance and the easiest to treat mathematically.

We assume that the droplet is sufficiently small so that the
surface tension is dominant, and the gravitational effects can
be neglected. Mathematically, the balance of the gravita-
tional force and the surface tension is controlled by the ratio
of the smaximald hydrostatic pressurerghmax to the Laplace
pressure 2shmax/Ri

2, where r is the fluid density,g is the
gravitational constant,s is the surface tension at the liquid-
air interface,Ri is the drop radius in the plane of the sub-
strate, andhmax is the maximal height of the drop. For the
typical experimental conditions this ratiorgRi

2/2s is quite
small sabout 0.25d, and thus gravity is indeed unimportant
and the surface shape is governed mostly by the surface ten-
sion. Our treatment will produce the main-order term in the
expansion in this parameter, and since the parameter value is
not an order of magnitude smaller than 1, it may be neces-
sary to construct correctional terms for better quantitative
agreement. For the present purposes, even the main term
turns out to be sufficient to obtain agreement with the experi-
mental results.

Experimentally, the contact line remainspinned during
most of the drying process. Therefore, we do not assume that
the contact angleu between the liquid-air interface and the
plane of the substrate is constant in time. A strongly pinned
contact line can sustain a wide range ofsmacroscopicd con-
tact angles. The pinning mechanism can be described as self-
pinning, i.e., pinning by the deposit brought to the contact
line by the hydrodynamic flows caused by evaporation. A
pinned contact line entails fluid flow toward that contact line.
The “elasticity” of the liquid-air interface fixed at the contact
line provides the force driving this flow.

We will deal with small contact anglessu!1d as this is
almost always the case in the experimental realizations,
including the experiments of Ref.f23g stypically, umax
,0.1−0.3d. It will also be seen necessary to assume that the
contact angle is small in order to obtain any analytical results
in a closed form. A drop with a small contact angle is nec-
essarilythin, i.e., its maximal height is much smaller than its
radius and the slope of the free surface is smallsu=hu!1d.
Thus, we consider small contact angles, or, equivalently, thin
drops.

We also considerslow flows, i.e., flows with low Rey-
nolds numbers, which amounts to the neglect of the inertial
terms in the Navier-Stokes equation.

The free surface is described by the local mean curvature,
which is spatially uniform at any given moment of time, but
changes with time as the droplet dries. Ideally, the surface
shape should be considered dynamically together with the
flow field inside the drop. However, as was shown earlier
f29,31g, for flow velocities much lower than the characteris-
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tic velocity v* =s /3h swheres is the surface tension andh
is the dynamic viscosityd, which is about 24 m/s for water
under normal conditions, one can consider the surface shape
independentlyof the flow and use the equilibrium result at
any given moment of time for finding the flow at that time.
Equivalently, the ratio of the viscous forces to the capillary
forces is the capillary numberCa=hṽ /s swhere ṽ is some
characteristic value of the flow velocity, which is of the order
of 1−10mm/sd, and this number is of the order of 10−8

−10−7 under typical experimental conditions. Thus, the cap-
illary forces are by far the dominant ones.

B. Geometry and surface shape

Cylindrical coordinatessr ,f ,zd will be used throughout
this work, as they are most natural for the geometry of inter-
est. The origin is chosen in the center of the circular footprint
of the drop on the substrate. The coordinatez is always nor-
mal to the substrate, and the substrate is described byz=0,
with z being positive on the droplet side of the space. The
coordinatessr ,fd are the polar radius and the azimuthal
angle, respectively, so that the contact line is described by
r =Ri, whereRi is the radius of the drop footprint. Due to the
axial symmetry of the problem and our choice of the coordi-
nates, no quantity depends on the azimuthal anglef.

Our model pictures the drop as a two-component system
sthe components being “the fluid” and “the solute”d, which
has two “phases”: “the liquid phase” in the middle of the
drop and “the deposit phase” near the contact line. Both
components are present in both phases, and the difference
between the phases lies only in the concentration of the sol-
ute in each phase. In the deposit phase, the volume fraction
of the solutep is high andfixedin both space and time. Thus,
p is just a constant number; one can think of it as comparable
to the close-packing fraction or unity.sThe case ofp=1 may
seem to be special as there is no fluid in the deposit phase;
however, for small initial concentrations of the solute this
case will be seen to lead to exactly the same main-order
results.d In the liquid phase, the volume fraction of the solute
x varies in space and changes with time, and it is relatively
small compared top. The initial volume fractionxi =xs0d is
constant throughout the drop; at later moments the solute
gets redistributed due to the flows, and the concentration
becomes different in different parts of the liquid phase. The
volume fraction of the fluid is thens1−pd in the deposit
phase ands1−xd in the liquid phase. Note that we do not
requirexi !p so far, although we do assumexi ,p. It should
also be emphasized that we do not presume there is any real
“phase difference” between the so-called phases: one phase
is just defined as having the maximal reachable solute frac-
tion p sthe solute cannot move in this phased while the other
phase is characterized by a lower solute fractionx sin this

phase the solute can move and hence its concentration can
change in time and spaced. Apart from this difference, the
phases are essentially identical. The idea that the solute loses
its mobility when its concentration exceeds some threshold
was suggested by Dupontf30g.

Since the drop is thin, we employ the vertically averaged
flow velocity

vsrd =
1

htsrdE0

htsrd

ussr,zddz, s1d

whereussr ,zd is the in-plane component of the local three-
dimensional velocityusr ,zd, andhtsrd is the thickness of the
drop at distancer from the center. By making this approxi-
mation, we implicitly assume that there is no vertical segre-
gation of the solute, and thus we turn our model into an
effectively two-dimensional one. This is done mostly for
simplicity and is not expected to affect our main conclusions
ssee Sec. Vd. Within this model, it is natural to assume that
the boundary between the phases is vertical. Thus, the par-
ticles get stacked uniformly at all heights when they are
brought to the phase boundary by the hydrodynamic flow
vsrd. This boundary can be pictured as a vertical wall at
some radiusRstd from the center of the drop, and this wall
propagates from the contact lineflocated atRi =Rs0dg toward
the center of the drop. Figure 1 illustrates the mutual location
of the two phases, and Fig. 2 schematically shows the time
evolution of the drying process and growth of the deposit
phase.

The geometrical parameters of the model are shown in
Fig. 3. The radius of the drop isRi, the radius of the phase
boundary isRstd, and Rs0d=Ri. The height of the phase
boundary isHstd, and the initial condition isHs0d=0. In the
liquid phase, we conveniently split the total height of the free
surfacehtsr ,td into the sum ofHstd andhsr ,td.

FIG. 1. Mutual location of the two ‘‘phases’’ in the drying drop:
L is ‘‘the liquid phase,’’ andD is ‘‘the deposit phase.’’

FIG. 2. Time evolution of the deposit phase growth: side view
sleftd and top viewsrightd. Only the deposit phase is shown. Thick-
ness of the ring is exaggerated compared to the typical experimental
results.

FIG. 3. Geometry of the problem. Vertical scale is exaggerated
in order to see the details; typicallyH!Ri andh!Ri.
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SinceH is independent ofr, the functionhsrd satisfies the
Young-Laplace equationsthe statement of the mechanical
equilibrium of the liquid-air interfaced

2K = −
Dp

s
, s2d

wheres is the surface tension,Dp is the pressure difference
across the liquid-air interface, andK is the mean curvature of
the surface, uniquely related to the surface shapeh by differ-
ential geometry. For typical drying conditions,Dp andh vary
with time slowly. As was shown earlierf29,31g, it is suffi-
cient to find the equilibrium surface shape first, and then
determine the velocity field for this fixed functional form of
h with time being just an adiabatic parameter, instead of
solving for all the dynamical quantities simultaneously.
Thus, the right-hand side of Eq.s2d does not depend on the
local coordinates of a point within the dropsalthough it does
depend on timed, and the equation itself expresses the global
condition of spatial constancy of the mean curvature
throughout the drop. It defines theequilibriumsurface shape
at any given moment of time.

The solution to Eq.s2d with boundary conditionhsRd=0
is just a spherical cap, and hence the shape of the upper part
of the dropsabove the dashed line in Fig. 3d is just a spheri-
cal cap:

hsr,td =Î R2std
sin2ustd

− r2 − Rstdcotustd. s3d

Hereustd is the angle between the liquid-air interface and the
substrate at the phase boundary, and functionsRstd andustd
are related via the right-hand side of Eq.s2d:

Rstd =
2s

Dpstd
sinustd. s4d

In the limit of small contact angles,u!1, the preceding
expression adopts an even simpler form:

hsr,td =
R2std − r2

2Rstd
ustd + Osu3d. s5d

Note that we do not assume thatustd and hsr ,td are neces-
sarily positive at all times: both can be negative at later dry-
ing stages, and the shape of the liquid-air interface may be
concave. Both convex and concave solutions forhsr ,td are
consistent with Eq.s2d; the right-hand side of this equation
can have either sign. By definition, bothustd andhsr ,td are
positive when the surface is convexsand hence they are posi-
tive at the beginning of the drying processd and negative
when the surface is concave. The initial value ofustd coin-
cides with the initial contact angleui =us0d.

Clearly, there are three unknown functions of time in this
geometry:ustd , Rstd, andHstd. However, these quantities are
not independent of each other. Since we assume that the
solute particles fill up the entire space between the substrate
and the liquid-air interface when being brought to the phase
boundary, the three geometrical functions are related by the
constraint

dH

dt
= − u

dR

dt
. s6d

Physically, the angles between the liquid-air interface and the
substrate are identical on both sides of the phase boundary
su= udH/dRud, and hencehsrd and its first derivative are con-
tinuous past this boundary. Thus, there are actually only two
independentfunctions of time,ustd and Rstd. Condition s6d
was first introduced by Deeganf23,24g.

The geometrical definitions above allow one to determine
the volumes of each of the two phases. The volume of the
liquid phase is simply

VL =E
0

Rstd

fhsr,td + Hstdg2pr dr = 2pSR3u

8
+

R2H

2
D + Osu3d.

s7d

Taking into account relations6d, an infinitesimal variation of
this volume can be expressed via the infinitesimal variations
of u andR:

dVL =
pR4

4
dS u

R
D + 2pHR dR. s8d

The first term is responsible for the motion of the liquid-air
interface, and the second term corresponds to the inward
shift of the phase boundary. It is also straightforward to ob-
tain an expression for the differential of the volume of the
deposit phase, which has only the term related to the inward
shift of the phase boundary:

dVD = − 2pHR dR. s9d

We will use the last two expressions in the following section.
We will also adopt the notation that the subscriptsL andD
refer to the liquid and deposit phases, respectively.

C. Evaporation rate

In order to determine the flow caused by evaporation, one
needs to know the flux profile of the liquid leaving each
point of the surface. This quantity is independent of the pro-
cesses going on inside the drop and must be determined prior
to considering any such processes.

The functional form of the evaporation rateJsrd sdefined
as the evaporative mass loss per unit surface area per unit
timed depends on the rate-limiting step, which can, in prin-
ciple, be either the transfer rate across the liquid-vapor inter-
face or the diffusive relaxation of the saturated vapor layer
immediately above the drop. We assume that the rate-
limiting step is the diffusion of the saturated vapor. Indeed,
the transfer rate across the liquid-vapor interface is charac-
terized by a time scale of the order of 10−10 s, while the
diffusion process has characteristic times of the order of
Ri

2/D swhereD is the diffusion constant for vapor in air and
Ri is the characteristic size of the dropd, which is of the order
of seconds for water drops under typical drying conditions.
The diffusion-limited evaporation rapidly attains a steady
state. Indeed, the ratio of the time required for the vapor-
phase water concentration to adjust to the changes in the
droplet shapesR2/Dd to the droplet evaporation timetf is of
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the order ofsns−n`d /r<10−5, wherens is the density of the
saturated vapor just above the liquid-air interface,n` is the
ambient vapor density, andr is the fluid densityf27g, i.e., the
vapor concentration adjusts rapidly compared to the evapo-
ration time.

As the rate-limiting process is the diffusion, the vapor
densityn above the liquid-vapor interface obeys the diffu-
sion equation. Since the process is quasisteady, this diffusion
equation reduces to the Laplace equation

¹2n = 0. s10d

This equation is to be solved together with the following
boundary conditions:sad along the surface of the drop the air
is saturated with vapor and hencen at the interface is the
constant density of the saturated vaporns, sbd far away from
the drop the density approaches the constant ambient vapor
densityn`, and scd the vapor cannot penetrate the substrate
and hence]zn=0 at the substrate outside of the drop. Having
found the vapor density, one can obtain the evaporation rate
J=−D ¹n, whereD is the diffusion constant.

This boundary problem is mathematically equivalent to
that of a charged conductor of the same geometry at constant
potential if we identifyn with the electrostatic potential and
J with the electric field. Moreover, since there is no compo-
nent ofJ normal to the substrate, we can further simplify the
boundary problem by considering a conductor of the shape
of our drop plus its reflection in the plane of the substrate in
the full space instead of viewing only the semi-infinite space
bounded by the substratesFig. 4d. This reduces the number
of boundary conditions to only two:sad n=ns on the surface
of the conductor, andsbd n=n` at infinity. The shape of the
conductorsthe drop and its reflection in the substrated is now
symmetric with respect to the plane of the substrate and re-
sembles a symmetrical double-convex lens comprised of two
spherical caps. This equivalent electrostatic problem of find-
ing the electric field around the conductor at constant poten-
tial in the infinite space is much simpler than the original
problem in the semi-infinite space. The reflection technique
for finding the evaporation field on the basis of the analogy
between the diffusion and the electrostatics was originally
used by Deeganet al. f21,22g.

Even in the circular geometry the equivalent problem is
still quite complicated despite the visible simplicity. We con-
sider an object whose symmetry does not match the symme-
try of any simple orthogonal coordinate system of the three-
dimensional space. In order to solve the Laplace equation,

one is forced to introduce a special coordinate systemsthe
so-called toroidal coordinatesd with heavy use of special
functions. The full solution to this problem is provided in the
Appendix.

The evaporation rate depends only on the overall shape of
the drop, and evaporation occurs in the same fashion from
both phases. We assume that the evaporation is not influ-
enced by any motion of the solute inside the drop, and the
necessary amount of fluid can always be supplied to the re-
gions of highest evaporation near the contact line. Physically,
high evaporation near the edge is what brings the solute to
the contact line, and we assume that presence of the deposit
does not obstruct the motion of the fluidsFig. 5d. Since the
drop is thin and the contact angle is small, we will use the
expression

Jsrd =
2

p

Dsns − n`d
ÎRi

2 − r2
s11d

for the evaporation ratesderived in the Appendix for no-
solute drops in the limitu!1d, which has a reciprocal
square-root divergence near the contact line as intuitively
expected from the electrostatics. The real situation may be
different from that assumed above whenp is large or com-
parable to 1, and the edge of the area where the evaporation
occurs may be located near the boundary of the phases in-
stead of the contact line. However, for small initial concen-
trations of the solute, the main-order result will be insensi-
tive to the exact location of the singularity of the evaporation
rate: whether it is located at the contact line or near the
boundary of the phases. We will further comment on this
case of the “dry deposit” when we obtain the full system of
equations.

III. PRINCIPAL EQUATIONS

A. Global conservation of fluid

The essence of the entire theory can best be summarized
in one sentence: “It is all about the conservation of mass.”
Indeed, as we will see by the end of this section, all three
governing equations obtained here represent the conservation
of masssor volumed in one form or another.

We start from the global conservation of fluid in the drop.
Since the amount of solute within the drop does not change
during the drying process, the change of the entire drop vol-

FIG. 4. Illustration of the analogy between the evaporation rate
J for a liquid drop and the electric fieldE for a conductor. Consid-
eration of the dropsor conductord and its reflection in the plane of
the substrate significantly simplifies the boundary problem.

FIG. 5. Presence of particles in the deposit does not obstruct
fluid evaporation at the edge of the drop. All the necessary fluid is
supplied, and it is this motion of the fluid that brings the particles to
the deposit phase. Also shown schematically is the fact that the
boundary between the phases is vertical and the particles get
stacked at full height between the substrate and the free surface of
the drop.
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ume is equal to the change of the amount of fluid. This fluid
gets evaporated from the surface, and the total change of the
fluid volume equals the amount evaporated from the surface:

dVtot = dVF
surf. s12d

By convention, the superscriptsF andS refer to the fluid and
the solute components, respectivelyswhile the subscriptsL
and D continue to denote phasesd. The total change of the
drop volume is the sum of the volume changes of each
phase:

dVtot = dVL + dVD =
pR4

4
dS u

R
D , s13d

where dVL and dVD were found in the preceding section
fEqs.s8d and s9dg. The volume of fluid evaporated from the
surface can be determined from the known evaporation rate:

UdVF

dt
U

surf
= −E

0

Ri Jsrd
r

Î1 + s]rhd22pr dr = −
4Dsns − n`dRi

r
,

s14d

wherer is the fluid density. We neglected the gradient ofhsrd
with respect to unityswhich is always legitimate for thin
dropsd and usedJsrd of Eq. s11d. Thus, Eqs.s12d, s13d, and
s14d yield the first main differential equation of this section:

R4 d

dt
S u

R
D = −

16Dsns − n`dRi

pr
. s15d

This equation represents the global conservation of fluid in
the drop and relates the time dependencies ofustd andRstd.

B. Local conservation of mass

The next equation represents thelocal conservation of
mass. There are two components in the liquid phase, and
hence we write a separate equation for each of them. Since a
free particle of the appropriate size reaches the speed of the
flow in about 50 ns in water under normal conditionsf32g,
the solute particles are simply carried along by the flow, and
the velocities of each component are identical at each point
within the liquid phasefand equal to the depth-averaged fluid
velocity v defined in Eq.s1dg. The local conservation offluid
can be written in the form

= · fs1 − xdsh + Hdvg +
J

r
Î1 + s=hd2 + ]tfs1 − xdsh + Hdg = 0,

s16d

where x is the volume fraction of solute at a given point
within the liquid phase, and each of the quantitiessh
+Hd , J, x, andv is a function of distancer and timet. fWe
drop thes=hd2 part of the second term everywhere in this
work since it is always small compared to unity for small
contact angles.g This equation represents the fact that the rate
of change of the fluid amount in a volume elementscolumnd
above an infinitesimal area on the substratesthird termd is
equal to the negative of the sum of the net flux of fluid out of
the columnsfirst termd and the amount of fluid evaporated

from the surface element on top of that columnssecond
termd; Fig. 6 illustrates the idea. A similar equation can also
be written for the local conservation ofsolute, but without
the evaporation term:

= · fxsh + Hdvg + ]tfxsh + Hdg = 0. s17d

Adding the two equations and employing the linearity of the
differential operations, one obtains

= · fsh + Hdvg +
J

r
+ ]tsh + Hd = 0. s18d

This relation could have been obtained if we considered only
one component with volume fraction 1 in the liquid phase,
and this equivalence should be of no surprise: when the sol-
ute moves in exactly the same fashion as the fluid does, any
differentiation between the two is completely lostsfrom the
point of view of the conservation of volumed. Note that if
evaporation were too intense, this equivalence would not
hold, as there might be an insufficient amount of fluid com-
ing into a volume element, and the solution could get com-
pletely dry sonly the solute component would be leftd. We
implicitly assume this is not the case for our liquid phase
where the solute fraction is relatively small and the evapora-
tion is not too strong.

In circular geometry, due to the symmetry, the flow is
radial and independent off. Thus, Eq.s18d can be resolved
with respect to the radial component of the velocity:

vrsr,td = −
1

rsh + HdE0

r S J

r
+ ]th + ]tHDr dr . s19d

Straightforward integration withhsr ,td of Eq. s5d, dH/dt of
Eq. s6d, andJsrd of Eq. s11d, and employment of Eq.s15d for
dsu /Rd /dt yield

vrsr,td =
2Dsns − n`d

pr

Ri

r

Î1 − sr/Rid2 − f1 − sr/Rd2g2

sRu/2df1 − sr/Rd2g + H
.

s20d

This expression for the flow velocity at each pointr within
the liquid phase in terms of the time-dependent geometrical

FIG. 6. Conservation of mass: the liquid-vapor interface is low-
ered exactly by the amount of fluid evaporated from the surface
plus the difference between the outflow and the influx of fluid from
the adjacent regions.
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characteristics of the dropustd , Rstd, and Hstd is a direct
consequence of the local conservation of mass.

With the velocity in hand, we can compute the time it
takes an element of fluid initially located at distancer i from
the center to reach the contact line. First, only the particles
initially located near the contact line reach that contact line.
As time goes by, the particles initially located further away
from the contact line and in the inner parts of the drop reach
the contact line. Finally, the particles initially located in the
innermost parts of the dropsi.e., near its centerd reach the
contact line as well. The more time elapses, the more par-
ticles reach the contact line and the larger the area is where
they were spread around initially. One can view this process
as inward propagation of the inner boundary of the set of the
initial locations of the particles that have reached the contact
line by time t. As is easy to understand, the velocity of this
front is equal to the negative of the vector of the fluid veloc-
ity at each pointsthe fluid and the particles move together
toward the contact line while this front moves away from it;
hence the minus signd. We label byr istd the initial location of
the solute particles that reach the phase boundarysand be-
come part of the deposit ringd at time t. Since the solute
particles from the outer areas of the drop reach the deposit
phase sooner than the particles from the inner areas, this
function is monotonically decreasing, and its derivative is
simply related tovr found in the preceding paragraphfEq.
s20dg:

dri

dt
= − vrsr i,td. s21d

Thus, the second principal equation of this section is

dri

dt
= −

2Dsns − n`d
pr

Ri

ri

Î1 − sr i/Rid2 − f1 − sr i/Rd2g2

sRu/2df1 − sr i/Rd2g + H
.

s22d

This equation relatesr istd to the time dependencies of the
geometrical parameters of the dropfustd , Rstd, andHstdg.

C. Global conservation of solute

The volume of solute in the deposit phaseVD
S at time t is

equal to the volume of solute outside the circle of radiusr istd
at time 0fsince all the solute betweenr istd andRi becomes
part of the deposit by timetg. The latter volume can be found
by integratinghsr ,0d over the area swept by the fluid on its
way from r i to the contact line and multiplying the result by
the initial volume fraction of solutexi:

VD
S = xiE

ri

Ri

hsr,0d2pr dr = VSF1 −S r i

Ri
D2G2

, s23d

where VS=pxiRi
3ui /4 is the total volume of solute in the

drop. On the other hand, the volume of solute in the deposit
phase is just the constant fractionp of the volume of the
entire deposit phase:

VD
S = pVD. s24d

Equating the right-hand sides of these two equations, taking
the time derivatives of both sides, and making use of the

already determineddVD of Eq. s9d, we obtain the third prin-
cipal equation of this section:

xiRi
3uiF1 −S r i

Ri
D2G d

dt
F1 −S r i

Ri
D2G = − 4pHR

dR

dt
. s25d

This equation represents the global conservation of solute in
the drop.

Thus, we have four unknown functions of time,
ustd , Rstd , Hstd, and r istd, and four independent differential
equations for these functions, Eqs.s6d, s15d, s22d, and s25d.
In reality, we need only three of these functions,ustd , Rstd,
andHstd; however, there is no simple way to eliminater istd
from the full system and reduce the number of equations.
Having solved this system of equations, we will be able to
fully characterize the dimensions of the deposit phase and
describe the evolution of the deposit ring. The following sec-
tion is devoted to the details and the results of this solution.

Here we will only comment on how this system changes
in the case of the completely dry depositp=1. In this case
there is no evaporation from the surface of the deposit phase,
and the effective edge of the evaporating area is somewhere
in the vicinity of the phase boundary. Assuming the same
reciprocal square-root divergence of the evaporation rate at
r =R instead ofr =Ri fwhich mathematically means substitu-
tion of R in place ofRi in Eq. s11dg and conducting a deri-
vation along the lines of this section, one can obtain a very
similar system of four differential equations. These equations
would be different from Eqs.s6d, s15d, s22d, ands25d in only
two minor details. First, Eqs.s15d and s22d would lose all
indicesi at all occasions ofRi si.e., one should substituteR
for all Ri in both equationsd. Second,p should be set to 1 in
Eq. s25d. Apart from these details, the two systems would be
identical. As we will see in the following section, this differ-
ence between the two systems is not important in the main
order in a small parameter introduced below, and thus this
“dry-deposit” case does not require any special treatment,
contrary to the intuitive prudence.

IV. RESULTS

A. Analytical results in the limit of small initial concentrations
of the solute

So far we have not introduced any small parameters other
than the initial contact angleui !1. In particular, Eqs.s6d,
s15d, s22d, and s25d were obtained without assuming any
relation betweenp andxi other than the nonrestrictive con-
dition xi ,p. In order to find the analytical solution to this
system, we will have to assume thatxi !p. Then, we will
solve the same system of differential equations numerically
for an arbitrary relation betweenxi andp.

The assumptionxi !p physically means that the solute
concentration in the liquid phase is small—it is much smaller
than the concentration of close packing or any other compa-
rable number of the order of 1. This is the case for most
practical realizations of the ring deposits in experiments and
observations: the solute concentration rarely exceeds 10% of
volume, and in most cases it is far lower. If the volume
fraction of the solute is small, then the solute volume is also
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small compared to the volume of the entire drop. Hence, the
deposit phase, which consists mostly of the solute, must also
have a small volume compared to the volume of the entire
drop. Thus, if the initial volume fractionxi is small, then the
dimensions of the deposit ring must be small compared to
the corresponding dimensions of the entire drop.

Let us now introduce a parametere that is small when
xi /p is small. We do not fix its functional dependence on
xi /p for the moment:

e = fSxi

p
D ! 1, s26d

where f is an arbitrary increasing function of its argument.
Then we postulate that the ring width is proportional to this
parameter:

Rstd = Rif1 − eW̃stdg, s27d

where W̃std is an arbitrary dimensionless function and we
explicitly introduced the dimensionality viaRi. Obviously,

W̃s0d=0. So far we simply wrote mathematically that the
ring width is small whenever the initial volume fraction of
the solute is small. Next, we introduce a dimensionless vari-
able for the angleustd:

ustd = uiũstd, s28d

where bothustd andui are small, while the newly introduced

function ũstd is arbitraryfin particular,ũs0d=1g. Due to the
geometrical constraints6d, the height of the ringHstd must be
linear in the small parameterse and ui and directly propor-
tional to the only dimensional scaleRi:

Hstd = euiRiH̃std, s29d

where H̃std is yet another dimensionless function of time

fH̃s0d=0g, related to the functionsW̃std and ũstd by an ex-
pression similar to Eq.s6d. The last dimensionless variable is
introduced in place of the fourth unknown functionr istd:

Ṽstd = 1 −S r istd
Ri

D2

, s30d

with the initial conditionṼs0d=0. Thus, we introduced four
new dimensionless variables in place of the four original
ones and explicitly separated their dependence on small pa-
rameterse andui. Finally, we define the dimensionless time
t as

t =
t

tf
, s31d

where tf is a combination of system parameters with the
dimensionality of time:

tf =
prRi

2ui

16Dsns − n`d
. s32d

In the limit xi /p→0 this combination represents the time at
which all the solute reaches the deposit phase; for finitexi /p
it does not have such a simple interpretation.

Substitution of all the definitions of the preceding para-
graph into the original system of equationss6d, s15d, s22d,
and s25d and retention of only the leading and the first cor-
rectional terms ine yield the following simplified system of
equations:

dH̃

dt
= ũ

dW̃

dt
, s33d

dũ

dt
+ eũ

dW̃

dt
− 3eW̃

dũ

dt
= − 1, s34d

dṼ

dt
=

ÎṼ − Ṽ2f1 − 4eW̃sṼ−1 − 1dg

2ũṼf1 − eW̃s2Ṽ−1 − 1dg + 4eH̃
, s35d

xi

p
Ṽ

dṼ

dt
= 4e2H̃

dW̃

dt
s1 − eW̃d. s36d

As is apparent from the last equation, the parametere2 must
be proportional toxi /p. Since the separation of the ring

width into e and W̃ in Eq. s27d is absolutely arbitrary, the
parametere is defined up to a constant multiplicative factor.
Therefore, wesetthis factor in such a way thate2 is equalto
xi /p:

e =Îxi

p
. s37d

This fixes the functionf from the original definitions26d.
The differential equations in the systems33d–s36d are still

coupled. However, in the mainszerothd order ine, the equa-
tions clearlydecouple: the second equation can be solved

with respect toũstd independently of all the others, then the

third equation can be solved with respect toṼstd indepen-
dently of the first and the fourth, and finally the first and the
fourth equations can be solved together as well. Thus, one
can obtain the following main-order solution to the system of
equations above with the appropriate initial conditions:

ũstd = 1 −t, s38d

Ṽstd = f1 − s1 − td3/4g2/3, s39d

H̃std =Î1

3
FBS7

3
,
4

3
D − Bs1 − td3/4S7

3
,
4

3
DG , s40d

W̃std =E
0

t 1

8H̃st8d

f1 − s1 − t8d3/4g1/3

s1 − t8d1/4 dt8. s41d

Here Bsa,bd=e0
1xa−1s1−xdb−1dx is the complete beta func-

tion, Bzsa,bd=e0
zxa−1s1−xdb−1dx is the incomplete beta func-

tion sa.0, b.0, and 0øzø1d, and the integral in the last
equation cannot be expressed in terms of the standard el-
ementary or special functions. In a similar fashion, systems
of equations of the higher orders ine can be writtenfonly the
first-order corrections are kept in the systems33d–s36dg, and

YURI O. POPOV PHYSICAL REVIEW E71, 036313s2005d

036313-8



the higher-order terms can also be constructed up to an arbi-
trary order.

A system of equations similar to our systems33d–s36d
was presented by Deegan inf23,24g. However, some terms
of the first order in concentration were missing and no ana-
lytical solution to the system of equations was obtained in
those works. Here we derive the equations in a systematic
way and provide their analytical solution.

How do our resultss38d–s41d translate into the original
variables? The first two of themfEqs.s38d and s39dg repro-
duce earlier results. In terms of the dimensional variables Eq.
s38d represents the linear decrease of the angle between the
liquid-air interface and the substrate at the phase boundary
with time:

ustd = uiS1 −
t

tf
D s42d

fplotted by the solid line in Fig. 8sad belowg. This is a direct
analog of Eq.sA11d for the contact angle in the no-solute
case, as is clear from the definition oftf fEq. s32dg. So, the
angleu in the case of the finite-volume solute depends on
time in exactly the same fashion as the contact angle in the
no-solute case does. This expression also provides an inter-
pretation oftf: it is the time at which the free surface of the
liquid phase becomes flat. Beforetf this surface is convex,
after tf it becomes concave and bows inwardsuntil it touches
the substrated. Thus,tf is generallynot the total drying time.
In the limit xi /p→0 the height of the deposit ring is going to
zero and the two times are the same. For finite values of this
parameter the total drying time is longer than the time at
which the liquid-air interface becomes flat. Equations42d has
been verified in the experimentsf23,24g where the mass of
the drop was measured as a function of timesFig. 7d. Since
the mass of a thin drop is directly proportional tou, these
results confirm the linearity ofustd during most of the drying
process.

The second equations39d has a direct analog in the case
of the zero-size solute particles. In the original variables it
can be rewritten as

S1 −
t

tf
D3/4

+ F1 −S r istd
Ri

D2G3/2

= 1, s43d

which is identical to Eq.s3.24d of Ref. f31g obtained for the
zero-volume solute. Clearly,r i =Ri whent=0, andr i =0 when
t= tf. According to Eqs.s23d and s30d, the fraction of solute
in the deposit phaseVD

S /VS is

VD
S

VS = Ṽ2 = F1 −S1 −
t

tf
D3/4G4/3

s44d

fplotted by the solid line in Fig. 8sbdg. This fraction is 0 at
t=0 and becomes 1 att= tf. Thus,tf can also be interpreted as
the time at which all the solute particles become part of the
deposit phase. So far, the results of this finite-volume model
coincide with the results of the zero-volume case considered
earlier f21,22g.

However, the third and the fourth equationsfEqs.s40d and
s41dg represent additional results. In the dimensional vari-
ables they yield the height of the phase boundaryH and the
width of the deposit ringW;Ri −R, respectively,

Hstd =Îxi

p
uiRiH̃S t

tf
D , s45d

Wstd =Îxi

p
RiW̃S t

tf
D , s46d

where the functionsH̃std andW̃std are plotted in Figs. 8scd
and 8sdd sthe solid curvesd. These results provide the sought
dependence of the geometrical characteristics of the deposit
ring on all the physical parameters of interest: on the initial
geometry of the dropsRi and uid, on the initial solute con-
centrationsxid, and on the time elapsed since the beginning
of the drying processstd. If the time is considered as a pa-
rameter, they can also be used to obtain the geometrical pro-
file of the depositsi.e., the dependence of the height on the
widthd, which we plot by the solid line in Fig. 9. Note that
the vertical scale of this plot is highly expanded compared to
the horizontal scale since there is an extra factor ofui !1 in
the expression for the height; in the actual scale the height is
much smaller than it appears in Fig. 9.

It is straightforward to obtain the asymptotics ofH̃std and

W̃std for early and late drying stages. At early times, both the
height and the width scale with the drying time as a power
law with exponent 2/3:

H <Îxi

p
uiRi

s3td2/3

27/3 f1 + Ostdg st ! 1d, s47d

W<Îxi

p
Ri

s3td2/3

27/3 f1 + Ostdg st ! 1d. s48d

Thus, at early timesH<uiW, which can also be deduced
directly from Eq.s6d without obtaining the complete solution
above.fThe early-time exponent 2/3 was first obtained by
Deeganf23g without deriving the full time dependences40d
and s41d.g At the end of the drying process, the height and
the width approach finite valuesswhich, apart from the di-

FIG. 7. Mass of a drying drop as a function of time. Experimen-
tal results, after Refs.f23,24g. The line running through the data is
a linear fit.sCourtesy Robert Deegan.d
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mensional scales, are universal, i.e., constantsd and do so as
power laws ofstf − td with two different exponents:

H <Îxi

p
uiRiFH̃s1d −

s1 − td7/4

14H̃s1d
+ Os1 − td5/2G s49d

s1 − t ! 1d,

W<Îxi

p
RiFW̃s1d −

s1 − td3/4

6H̃s1d
+ Os1 − td3/2G s1 − t ! 1d,

s50d

whereH̃s1d andW̃s1d are simply numbers:

H̃s1d =Î1

3
BS7

3
,
4

3
D < 0.297, s51d

W̃s1d =E
0

1 1

8H̃std

f1 − s1 − td3/4g1/3

s1 − td1/4 dt < 0.609. s52d

Clearly, dH/dW=uis1−td and hence vanishes whent→1.
This fact can also be observed in the flattening of the ana-
lytical graph in Fig. 9 at late times.

The dependence of the height and the width on the radius
of the dropRi, while intuitively obviousssinceRi is the only
scale in this problem with the dimensionality of the lengthd,
has been verified in experimentsf23,24g. A linear fit has been

obtained for the dependence of the ring width on the radius,
in exact agreement with our findings.

Comparison to the experimental data for the dependence
on the initial concentration of the solute is slightly less
trivial. Our results predict that both the heightH and the
width W scale with the initial concentration asxi

1/2 sat least,
in the leading order for small concentrationsd. The same scal-
ing prediction was also made by Deeganf23,24g. However,
his experimental results show a different exponent ofxi: the
values 0.78±0.10 and 0.86±0.10 were obtained for two dif-

FIG. 8. Results for the dependence of the geometrical characteristics of the drop on timet. In each plot, the solid curve is the analytical
result in the limit xi /p→0, while the other curves are the numerical results. Different numerical curves correspond to different initial
concentrations of the solute; values of parameterxi /p are shown at each curve.sad Angle u between the liquid-air interface and the substrate
at the phase boundary.sbd Volume fraction of the solute in the deposit phaseVD

S /VS. scd Height of the phase boundaryH sin units of
uiRi

Îxi /pd. sdd Width of the deposit ringW sin units of Ri
Îxi /pd.

FIG. 9. Deposit ring profile: dependence of the height of the
phase boundaryH on the width of the deposit ringW. The solid
curve is the analytical result in the limitxi /p→0; the other curves
are the numerical results. Different numerical curves correspond to
different initial concentrations of the solute; values of the parameter
xi /p are shown at each curve. The vertical scale is different from
the horizontal scale by a factor ofui !1.
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ferent particles sizessFig. 10d. Why the difference? The an-
swer lies in the fact that the width measured in the experi-
mentsf23,24g is not the full width of the ring at the end of
the drying process, but rather the width of the ring atdepin-
ning. Depinning is the process of detachment of the liquid
phase from the deposit ringsFig. 11d. This detachment was
observed experimentally in colloidal suspensions but has not

been explained in full theoretically yet.1 An important obser-
vation, however, is that the depinning timesi.e., the time at
which the detachment occurs and the ring stops growingd
depends on the initial concentration of the solute. This de-
pendence was also measured by DeegansFig. 12d, and the
resulting exponent was determined to be 0.26±0.08. Thus,
the width of the ring at depinningWd scales with the initial
concentration of the solutexi as

Wd ~ xi
1/2W̃S td

tf
D ~ xi

0.5W̃sxi
0.26±0.08d, s53d

wheretd is the depinning timestd/ tf ~xi
0.26±0.08d. As is appar-

ent from Fig. 12, the typical values of the depinning time are
of the order ofs0.4−0.8dtf. In this time range, the function

W̃std is virtually linear fthe analytical curve in Fig. 8sddg.
Therefore, the dependence ofWd on xi has an overall expo-
nent of the order of 0.76±0.08. It is now clear that both
experimental results 0.78±0.10 and 0.86±0.10 fall within
the range of the experimental uncertainty of this approximate
predicted value, and the theoretical dependence of the ring
width on the initial concentration agrees with the experimen-
tal results quite well.

Note that Deeganf23,24g did not report direct measure-
ments of the height of the deposit ring. The height was

1While the full explanation is yet to be developed, the naive rea-
son for the depinning seems relatively straightforward. Thepinning
force depends only on the materials involved and is relatively in-
sensitive to the value of the contact angle. At the same time, the
depinning force is simply the surface tension, which is directed
along the liquid-air interface and which increases as the contact
angle decreasesssince only the horizontal component of this force
is importantd. Thus, the relatively constant pinning force cannot
compensate for the increasing depinning force, and after the contact
angle decreases past some threshold, the depinning force wins and
causes the detachment.

FIG. 10. Ring width normalized by the drop radius vs initial
concentration of the solute for two different particle sizes. Experi-
mental results, after Refs.f23,24g. The two data sets are offset by a
factor of 5 to avoid mixing of the data points related to the different
particle sizes. The lines running through the data are linear fits in
the double-logarithmic scale, which upon conversion to the linear
scale yield power laws with exponents 0.78±0.10 and 0.86±0.10.
sCourtesy Robert Deegan.d

FIG. 11. A photographic sequence demonstrating a depinning
event. Experimental results, after Refs.f23,24g. The view is from
above, and the solid white band in the lower part of the frame is the
ring; the rest of the drop is above the ring. The time between the
first and the last frames is approximately 6 s; the major axis of the
hole is approximately 150µm. sCourtesy Robert Deegan.d

FIG. 12. Depinning time normalized by the extrapolated drying
time vs initial concentration of the solute. Experimental results,
after Refs.f23,24g. The line running through the data is a linear fit
in the double-logarithmic scale, which upon conversion to the linear
scale yields a power law with exponent 0.26±0.08.sCourtesy Rob-
ert Deegan.d
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calculatedfrom the data in hand, and thus a direct compari-
son to the experimental data is not available for the height.

The square-root dependence of the height and the width
on the concentration is in good agreement with general
physical expectations. Indeed, the volume of the deposit ring
is roughly proportional to the product of the height and the
width. On the other hand, the height is of the same order of
magnitude as the width since the ratio of the two is of the
order of ui swhich is a constantd. Thus, both the height and
the width scale approximately as the square root of the ring
volume. Finally, the volume of the deposit ring is propor-
tional to the initial volume fraction of the solute: the more
solute is present initially, the larger is the volume of the
deposit ring at the end. Therefore, both the height and the
width must scale as the square root of the initial volume
fraction. It is rewarding that our complex calculation leads to
the same results as this simple physical argument.

Thus, the complete analytical solution to our model is
available in the limitxi /p→0, and this solution compares
favorably with the experimental data. Since the main-order
solution inxi /p is perfectly adequate, the difference between
the original system of equations and the one for the “com-
pletely dry” case is not important. Indeed, the main-order
results are identical in both cases, because one case is differ-
ent from the other only by the presence ofR instead ofRi in
a few places in the main equations, and this difference is of
the correctional order inxi /p.

B. Numerical results for arbitrary initial concentrations
of the solute

Apart from approaching the original system of equations
s6d, s15d, s22d, ands25d analytically, we also solve it numeri-
cally. During this numerical procedure we do not presume
that xi /p is small, nor do we expand any quantities or equa-
tions ine or any other small parameters. Our main purpose is
to reproduce the results of the first part of this section and to
determine the range of validity of our analytical asymptotics.

The typical values ofxi /p in most experimental realiza-
tions are of the order of 0.001-0.01 and thus, only the con-
centrations below approximately 0.1 are of practical interest.
sNote thatxi /p=0.1 corresponds to a quite substantial value
of the small parametere=Î0.1<0.32.d Thus, we will con-
centrate on this range ofxi /p when describing the results
despite the fact that the numerical procedure can besand has
beend conducted for any ratioxi /p. The general trend is il-
lustrated well by the results in this range of concentrations.
In the case ofxi comparable top our model is not expected
to produce any sensible results, as the entire separation of the
drop into the two phasessthe liquid phase and the deposit
phased is based on the assumption that the mobility of the
solute is qualitatively different in the two regions. Whenxi is
comparable top the two phases are physically indistinguish-
able, while the model still assumes they are different.

We present our numerical results for the same quantities
sand in the same orderd as in our analytical resultss42d and
s44d–s46d. Since for arbitraryxi /p the timetf is not exactly
the total drying time, there is a question of wheresat what
timed to terminate the numerical curves. By convention, we

terminate all the curves in all the graphs at the value oft / tf
when all the solute reaches the deposit phase. In our model,
it turns out that the time the last solute particles reach the
deposit ring and the time the center point of the liquid-air
interface touches the substrate are about the same. For all the
initial concentrations, the two times were numerically found
to be within 0.1% of each other, and the curves are termi-
nated at exactly this moment. Of course, in reality a small
fraction of solute should stay in the liquid phase as long as
the liquid phase exists, and so the moment the last solute
particles reach the deposit phase should beafter the moment
the center point touches the substrate; however, the amount
of solute remaining in the liquid phase at touchdown is in-
significant, and practically all the deposit has already
formed.

Numerical results for angleu as a function of time are
shown in Fig. 8sad. All the curves behave almost linearlysas
expectedd; however, the slope increases with concentration:
formation of the ring in the drops with more solute finishes
faster son the relative scale oftfd. The end of each curve
demonstrates the value of the angleut at the moment the
liquid-air interface touches the substrate. The analytical ex-
pression for this angle isut=−2H /R for a thin drop. The
absolute value of this angle increases with concentration,
which is quite natural since for small concentrations the
height of the ring grows as a square root of the concentration
while the radius of the liquid phase does not change substan-
tially. Clearly, the numerical results converge to the analyti-
cal curve whenxi /p→0.

Growth of the volume fraction of solute in the deposit
phaseVD

S /VS with time is shown in Fig. 8sbd for various
solute concentrations. This graph reconfirms the observation
of the preceding paragraph that the solute transfer happens
faster sin units of tfd for denser colloidal suspensions. All
curves are terminated when volume fractionVD

S /VS becomes
equal to 1.sThe apparent termination of the curve forxi /p
=0.1 earlier than that is an artifact of the plotting software.d
As the corresponding analytical results do, the numerical
plots of Figs. 8sad and 8sbd should presumably hold true
independently of the geometrical details of the solute accu-
mulation in the ringswhich cannot be expected from the
following plots for the ring height and widthd.

The next two graphs represent the numerical results for
the heightfFig. 8scdg and the widthfFig. 8sddg of the deposit
ring as functions of time. The ring profile, i.e., the depen-
dence of the height on the width, is also shown in Fig. 9. As
the graphs depict, the ring becomes wider and lowersin the
reduced variablesd for higher initial concentrations of the sol-
ute. Since the volume of the ring is roughly proportional to
the product of the height and the width, the decrease in
height must be of the same magnitude as the increase in
width. This can be qualitatively observed in the graphs.

As a final piece of the numerical results, we create a
double-logarithmic plot for the dependence of the height and
the width on the initial concentration of the solutesFig. 13d.
The predicted square-root dependence on the initial concen-
tration is seen to hold true for volume fractions up to ap-
proximately 10−1/2p for the height and up to approximately
10−3/2p for the width. The deviations for higher volume frac-
tions are due to the increasing role of the correctional terms

YURI O. POPOV PHYSICAL REVIEW E71, 036313s2005d

036313-12



in e compared to the main-order terms represented by the
solid lines. In this graph, as in all the results of this section,
it is clear that our main-order analytical results provide an
adequate description of all the functional dependencies in the
range of the initial concentrations of experimental impor-
tances0.001-0.01d.

In general, our numerical results complement and rein-
force our analytical results, providing a cross-check of both
methods.

V. DISCUSSION

Both the analytical results of Eqs.s42d ands44d–s46d and
the numerical graphs of Figs. 8 and 9 may be reproduced
experimentally giving validation to the proposed model.
Measurements of the profiles in Fig. 9 should be particularly
easy to conductssince there is no time dependence involvedd
and may confirm or refute the predicted robustness and the
universality of the deposition profiles.

While the main principles of the proposed model were
laid down by Deeganf23,24g, its analytical solution for small
concentrations and its numerical solution for arbitrary con-
centrations are obtained here. The availability of the exact
analytical solution demonstrated that the theoretical scaling
of the deposit width at depinning with solute concentration
indeed agrees with both measured values of the exponents.
The earlier estimate of Refs.f23,24g based solely on the
early-time exponent had an overlap with only one of the
concentration exponents. Our numerical results also quantify
the range of solute concentrations where the predicted
square-root dependence of the width holds true. In general,
Deegan’s results were not sufficient to obtain the proper scal-
ing of the width with time anywhere beyond the early drying
stages; the results of this work provide that time scaling at all
drying stages. All the presented results suggest that the de-
posit ring profile and its growth can be fully accounted for on
the basis of the finite volume of the solute particles only and
that the governing functional dependences areuniversal.

One may notice that the curves in Fig. 9 end at some
positive snonzerod height. This indicates that the solute is
exhausted before the profile curves have a chance to return to

the substrate, and the final shape of the deposit ring must
have a vertical wall at its inner side. We believe this is an
artifact of our model, which is inherently two dimensional
when flows inside the drop are concerned. Thus, the vertical
distribution of the solute was assumed homogeneoussthe
phase boundary is vertical and the particles get stacked uni-
formly at all heightsd, and we used the depth-averaged ve-
locity s1d throughout this work. This is equivalent to assum-
ing that vertical mixing is complete. This assumption is quite
important, and the results are expected to get modified if the
true three-dimensional velocity profile is used instead of the
depth-averaged velocity. We expect that if a three-
dimensional model were built and the dependence onz were
taken into account for all the quantities then the discontinu-
ous wall of the phase boundary would get smoothed and the
height would continuously return to zero. The question re-
mains whether such a model would be solvable analytically.

Our model relies on the assumption that solute mobility is
different in the so-called liquid and deposit phases. In es-
sence, we assume that the mobility is 0 in the deposit phase
and 1 in the liquid phase. This assumption, while artificial in
its nature, seems relatively reasonable when applied to this
system. Indeed, in physical situations near close packing, the
loss of mobility typically occurs over a quite narrow range of
the concentration values, and hence our assumption should
work satisfactorily when the difference betweenxi and p is
orders of magnitude. The higher the initial concentration is
and the closer the two values are, the less this assumption
holds true and the more artificial the difference between the
two phases is. Thus, the validity of any model based on this
separation of the mobility scales decreases for higher initial
concentrations of the solute.

The model assumes that the free-surface slope between
the liquid and the deposit phases is continuous. In fact, as-
sumption s6d expressing this continuity is one of the four
basic equations of this work. This assumption seems quite
natural as well. Indeed, if the liquid is present on both sides
of the phase boundary, the change in the slope of its free
surface would cost extra energy from the extra curvature at
the phase boundary, since the liquid-air interface possesses
effective elasticity. The presence of this extra energysor the
extra pressured at the location of the phase boundary is not
justified by any physical reasons as all the processes are slow
and the surface is in equilibrium. In equilibrium, the surface
shape must have constant curvature past the phase boundary
since the entire separation into the two phases is quite artifi-
cial as discussed above. The presence of the particles below
the liquid-air interface does not influence the surface tension,
and thus the liquid surfacesand its sloped should be continu-
ous at the phase boundary. If the density of the particles
matches the density of the liquidswhich was the case in the
experimentsd, nothing prevents the particles from filling up
the entire space between the substrate and the liquid-air in-
terface, thus providing the growth of the upper edge of the
deposit phasealong the liquid-air interface. This is particu-
larly true for the thin drops discussed here, where vertical
mixing is intensive, where the free surface is nearly horizon-
tal, and where the problem is essentially two dimensional.
However, the equality of the slopes on both sides of the
phase boundary does not seem inevitable, and one may think

FIG. 13. Numerical results: log-log plot of the dependence of
the height of the phase boundaryH and the width of the deposit ring
W on the initial volume fraction of the solutexi. The main-order
analytical resultsH~Îxi /p and W~Îxi /p are also provided for
comparison.
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of situations when it does get violated. One example might
be the late drying times, when the deposit growth is very fast
fFig. 8sbdg and hence the deposition may occur in some non-
regular manner inconsistent with this slow-process descrip-
tion. Other examples may be related to gravitysslightly un-
equal densities of the particles and the fluidd or convection.
This assumption can possibly be checked experimentally,
and if condition s6d is found violated, an equivalent con-
straint dependent on the details of the deposit-growth mecha-
nism must be constructed in place of Eq.s6d.

Another inherent assumption of our model is related to
the evaporation rateJsrd. Presence of the solute inside the
drop was assumed not to affect the evaporation from its sur-
face. This is generally true when the evaporation is not too
fast and the deposit phase is not too thick and not too con-
centrated. When these conditions are not obeyed, the pres-
ence of a thick or concentrated layer of the solute in the way
of the liquid moving from the phase boundary to the contact
line may create a strong viscous force. This viscous force
would prevent the necessary amount of fluid from being sup-
plied to the intense-evaporation region near the contact line.
Generally, we assumed throughout this work that the viscous
stresses are not important, and this is valid wheneverv
!s /3h. In the deposit phase, the velocity is large due to the
proximity to the contact-line divergence of the evaporation
rate, and the effective viscosity is large due to the high con-
centration of the solute. Thus, this condition may get violated
and the viscosity may become important in the deposit
phase, slowing down the supply of the liquid and ultimately
making the deposit dry. Obviously, this affects the evapora-
tion rate, and the functional form of the evaporation profile
changes. The simple assumption that the evaporation rate
stays of the same functional form, but with the divergence at
the phase boundarysat Rd instead of the contact linesat Rid,
was shown above not to affect our main-order results. Thus,
our results appear to be relatively insensitive to the exact
location of this divergence within thesnarrowd deposit phase.
sIn reality the evaporation edge would be somewhere be-
tween the original contact line and the phase boundary, i.e.,
the real situation is intermediate between the two consid-
ered.d However, the deposit could modify the evaporation
rateJsrd in other ways. When there is a dry deposit ring just
outside the liquid phase, the entire functional form ofJ may
change, and the Laplace equation for an equivalent electro-
static problem must be solved anew with additional bound-
ary conditions responsible for the presence of the dry solute
rim and the modified evaporation at the edge. As we show in
the Appendix, this is the most complicated part of the prob-
lem, and the mathematics can become prohibitively complex.
Thus, finding the exact form ofJ may be a formidable task.
One way around is in creating such evaporating conditions
that the functional profile is simpler, for instance,J is just a
constant. This would be more difficult to control experimen-
tally, but would be much easier to treat analytically. The
unavailability of the exact analytical form forJ seems to be
the biggest open question in this class of problemsf29,31g.

The equilibrium surface shape of the liquid phase is a
spherical caps5d. This is a rigorous result valid during most
of the drying process. However, whenhs0,td becomes nega-
tive and exceedsHstd in its absolute valuesi.e., when the

center point touches the substrated, the surface shape is no
longer spherical. Moreover, a new element of the contact line
is introduced in the center of the drop in addition to the
original contact line at the perimeter, and the entire evapora-
tion profile gets modified in addition to the modified surface
shape, thus influencing all the other quantities. Our treatment
does not account for the small fraction of the drying process
occurring after this touchdownswhich is a change in topol-
ogy of the free surface, and thus requires a separate treatment
after it has happenedd. First of all, the amount of liquid re-
maining in the drop at this moment is of the order ofe
compared to the original volume, and hence it would not
modify our main-order analytical results. Second, as our nu-
merical calculations show, at touchdown practically all the
solute is already in the deposit phase, and the remaining
amount of solute in the liquid phase is insignificant. Thus,
within our model, the remainder of the drying process cannot
modify the deposit ring substantially, and hence this neglect
of the late-time regime seems well justified. Experimentally,
the inner part of the deposit ring is different from our pre-
diction swhich is a vertical walld and appears to have a
spread shelf. The presence of this tail in the deposit distribu-
tion can be caused by several features absent in our model.
Its inherent two-dimensionality may be one of these short-
comingssas discussed aboved; the account of the dynamical
processes occurring after the deposit phase has already been
formed se.g., avalanches of the inner walld may be another
missing feature. The absence of a treatment of the late-time
regime may be among these reasons influencing the final
distribution of the deposit as well. A more detailed account
of the effects of this late-time regime might be required in
the future.
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APPENDIX: EVAPORATION RATE

The purpose of this section is to obtain the evaporation
rate from the free surface of a round sessile drop on the
substrate. Since presence of the solute is irrelevant to this
purposesat least for its low concentrationsd, one may assume
that the solute is simply absent and the drop is just pure
water. We first consider the generic problem with an arbitrary
contact angleu, and then find the appropriate limit of interest
u!1. If the radius of the drop footprint on the substrate isRi,
then its surface shape for an arbitrary contact angle is given
by

hsr,td =Î Ri
2

sin2ustd
− r2 − Ricotustd. sA1d

Our results are presented here in their closed analytical form
and some of them correct earlier expressions of this two-
century-old problem.
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Our task involves solution of the equivalent electrostatic
problemsthe Laplace equationd for a conductor of the shape
of the drop plus its reflection in the plane of the substrate
skept at constant potential, as a boundary conditiond. In the
case of the round drop the shape of this conductor resembles
a symmetrical double-convex lens comprised of two spheri-
cal caps. The orthogonal coordinates that match the symme-
try of this objectsso that one of the coordinate surfaces co-
incides with the surface of the lensd are called the toroidal
coordinatessa ,b ,fd, where the coordinatesa and b are
related to the cylindrical coordinatesr andz by

r =
Risinha

cosha − cosb
, z=

Risinb

cosha − cosb
, sA2d

and the azimuthal anglef has the same meaning as in the
cylindrical coordinates. Solution of the Laplace equation in
toroidal coordinates involves Legendre functions of frac-
tional degree and was derived in a book by Lebedevf25g.
The electrostatic potential or vapor density is independent of
the azimuthal anglef and reads

nsa,bd = n` + sns − n`dÎ2scosha − cosbd

3 E
0

` coshut coshs2p − bdt
coshpt coshsp − udt

P−1/2+itscoshaddt.

sA3d

Here ns is the density of the saturated vapor just above the
liquid-air interfacesor the potential of the conductord, n` is
the ambient vapor densitysor the value of the potential at
infinityd, and P−1/2+itsxd are the Legendre functions of the
first kind sthey are real valuedd. The surface of the lens is
described by the two coordinate surfacesb1=p−u and b2
=p+u, and theb derivative is normal to the surface. The
evaporation rate from the surface of the drop is therefore
given by

Jsad = D
1

hb

]bnsa,bdb=2p+b1

= D
cosha − cosb

Ri
]bnsa,bdb=3p−u, sA4d

where D is the diffusion constant andhb=Ri / scosha
−cosbd is the metric coefficient in coordinateb. fNote that
an incorrect expression forJ with a plus sign in the metric
coefficient was used in Eq.sA2d of Ref. f21g.g Thus, an exact
analytical expression for the absolute value of the evapora-
tion rate as a function ofr is available:

Jsrd =
Dsns − n`d

Ri
F1

2
sinu + Î2scosha + cosud3/2

3 E
0

` coshut

coshpt
tanhfsp − udtgP−1/2+itscoshadt dtG ,

sA5d

where the toroidal coordinatea is uniquely related to the
polar coordinater on the surface of the drop:

r =
Risinha

cosha + cosu
. sA6d

The expressionsA5d is valid for anarbitrary contact angleu
and corrects an earlier expression of Ref.f27g fEq. s28dg
where a factor ofÎ2 in the second term inside the large
square brackets is missing.

The expression for the evaporation rate is not operable
analytically in most cases, as it represents an integral of a
nontrivial special functionswhich, in its turn, is an integral
of some simpler elementary functionsd. In most cases, it is
necessary to have recourse to asymptotic expansions in the
contact angleu in order to obtain any meaningful analytical
expressions. However, there is one exception to this general
statement. An important quantity is the total rate of water
mass loss by evaporationdM /dt, which sets the time scale
for all the processes. This total rate can be expressed as an
integral of the evaporation ratesdefined as the evaporative
mass loss per unit surface area per unit timed over the surface
of the drop:

dM

dt
= −E

A

JsrdÎ1 + s¹hd2r dr df

= −E
0

Ri

JsrdÎ1 + s]rhd22pr dr , sA7d

where the first integration is over the substrate areaA occu-
pied by the drop. This expression actually involves triple
integration: one in the expression above as an integral of
Jsrd, another in the expression forJsrd as an integral of the
Legendre function of the first kind, and the third as an inte-
gral representation of the Legendre function in terms of the
elementary functions. However, it is possible to simplify the
above expression significantly and reduce the number of in-
tegrations from three to one. Investing some technical effort
and using Eq.s2.17.1.10d of Ref. f33g, one can obtain a
substantially simpler result that does not involve any special
functions at all:

dM

dt
= − pRiDsns − n`dF sinu

1 + cosu

+ 4E
0

` 1 + cosh 2ut

sinh 2pt
tanhfsp − udtgdtG . sA8d

This result together with the expression for the total mass of
water

M = rE
0

Ri

hsr,td2pr dr = prRi
3cos3u − 3 cosu + 2

3 sin3u

sA9d

swherer is the water densityd provide a direct method for
finding the time dependence ofu for an arbitrary value of
the contact angle. Combining the time derivative of the last
expression with resultsA8d, one can obtain a single differen-
tial equation foru as a function of timet:
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du

dt
= −

Dsns − n`d
rRi

2 s1 + cosud2F sinu

1 + cosu

+ 4E
0

` 1 + cosh 2ut

sinh 2pt
tanhfsp − udtgdtG . sA10d

Having determined the dependenceustd from this equation,
one can obtain the time dependence of any other quantity
dependent on the contact angle, for instance, the time depen-
dence of the mass from relationsA9d, or any other geometri-
cal quantity considered earlier.

In practice, however, the analytical calculations in closed
form cannot be conducted any further for arbitrary contact
angles, and we will use the limit of small contact angles in
all the subsequent analytical calculations. Besides being the
limit of our interest and most practical importance, this limit
is also perfectly adequate even for quite substantial angles, as
will be seen in a moment.

Expanding the right-hand side of Eq.sA10d in smallu, we
immediately obtain that the contact angle decreaseslinearly
with time in the main order of this expansion:

u = uiS1 −
t

tf
D , sA11d

where we introduced the total drying timetf defined in terms
of the initial contact angleui =us0d:

tf =
prRi

2ui

16Dsns − n`d
. sA12d

In the main order, the total rate of water mass loss is constant
and the water mass also decreases with time linearly:

M =
prRi

3ui

4
S1 −

t

tf
D . sA13d

This linear time dependence during the vast majority of the
drying process was directly confirmed in experiments
f23,24g; see Fig. 7. The dependence of the evaporation rate
sA8d on radiusslinearity in Rid was also confirmed experi-
mentally and is known to hold true for the case of diffusion-
limited evaporationf34g.

In Fig. 14, we plot the exact numerical solution forMstd
based on Eqs.sA9d andsA10d for several values of the initial
contact angleui together with the small-angle asymptotic of
Eq. sA13d. In this figure,Mi is the initial mass of water in the
drop defined by the prefactor in Eq.sA13d. fNote thattf is
not the total drying time for eachui; instead, it is just the
combination of the problem parameters defined in Eq.sA12d,
which coincides with the total drying time only when
ui →0.g Figure 14 demonstrates that the small-angle approxi-
mation works amazingly well up to angles as large as 45°,
and therefore no precision or generality is lost by working in
the limit of small contact angles for the typical experimental
values ofui. Lastly, we note that the large-angle corrections
may be responsible for the observed nonlinearity of the

experimentally measured dependenceMstd, as is clear from
the comparison of Fig. 14stheoryd and Fig. 7sexperimentd.

The expression for the evaporation ratesA5d becomes
particularly simple in the limit of small contact angles. Em-
ploying one of the integral representations of the Legendre
function in terms of the elementary functionsfEq. s7.4.7d of
Ref. f25gg, it is relatively straightforward to obtain the fol-
lowing result:

Jsrd =
Dsns − n`d

Ri

2

p
cosh

a

2
su → 0d, sA14d

which, upon the identification cosha=sRi
2+r2d / sRi

2−r2d for
u=0, can be further reduced to Eq.s11d. Thus, for thin drops
the expression for the evaporation rate reduces to an ex-
tremely simple result featuring the reciprocal square-root di-
vergence near the edge of the drop. The same result could
have been obtained directly if we solved an equivalent elec-
trostatic problem for an infinitely thin disk instead of the
double-convex lens. It is particularly rewarding that after all
the laborious calculations the asymptotic of our result is in
exact agreement with the predictions of a textbookssee Ref.
f35g for the derivation of the reciprocal square-root diver-
gence of the electric field near the edge of a conducting plane
in the three-dimensional spaced. Equations11d is the result
we were looking for in our case of the thin circular drops.

For the sake of completeness, it is also interesting to note
the opposite limit of the expressionsA5d, when the surface of
the drop is a hemispheresu=p /2d. In this limit, a similar
calculation can be conducted, and the uniform evaporation
rate is recovered:

Jsrd =
Dsns − n`d

Ri
su → p/2d. sA15d

This result is also in perfect agreement with the expectations;
the same result could have been obtained if we directly
solved the Laplace equation for a spheresthe hemispherical
drop and its reflection in the substrated. The uniform evapo-
ration rate is a result of the full spherical symmetry of such a
system. Similar exact results can also be obtained for a few
other discrete values of the contact anglese.g., foru=p /4d.

FIG. 14. Numerical results: dependence of water massM on
time t. Different curves correspond to different initial contact
angles; values of parameterui are shown at each curve. The ana-
lytical result fEq. sA13dg in the limit ui →0 is also providedsthe
solid curved.
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