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Evaporative deposition patterns: Spatial dimensions of the deposit
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A model accounting for the finite spatial dimensions of the deposit patterns in evaporating sessile drops of
a colloidal solution on a plane substrate is proposed. The model is based on the assumption that the solute
particles occupy finite volume and hence these dimensions are of steric origin. Within this model, the geo-
metrical characteristics of the deposition patterns are found as functions of the initial concentration of the
solute, the initial geometry of the drop, and the time elapsed from the beginning of the drying process. The
model is solved analytically for small initial concentrations of the solute and numerically for arbitrary initial
concentrations of the solute. The agreement between our theoretical results and the experimental data is
demonstrated, and it is shown that the observed dependence of the deposit dimensions on the experimental
parameters can indeed be attributed to the finite dimensions of the solute particles. These results are universal
and do not depend on any free or fitting parameters; they are important for understanding evaporative depo-
sition and may be useful for creating controlled deposition patterns.
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[. INTRODUCTION form deposit[8], deformation of sessile drops due to a sol-
] gel transition of the solute at the contact lif&10], stick-

The problem of the so-called coffee-drop deposit has resjip motion of the contact line of colloidal liquidgi1,12,
cently aroused great interest. The residue left when coffegultiple ring formation13], and the effect of ring formation
dries on the countertop is usually darkest and hence mosin the evaporation of the sessile dr¢fpd] were all reported.
concentrated along the perimeter of the stain. Ringlike stainsthe evaporation of the sessile drdpsgardless of the solute
with the solute segregated to the edge of a drying drop, arpresencghas also been investigated extensively. Constancy
not particular to coffee. Mineral rings left on washed glass-of the evaporation flux was demonstratglb, 16, and the
ware, banded deposits of salt on the sidewalk during winteichange of the geometrical characteristiosntact angle, drop
and enhanced edges in water color paintings are all examplégight, contact-line radijsduring drying was measured in
of the variety of physical systems displaying similar behav-detail[17-20. .
ior and understood by coffee-drop deposit terminology. The most recent an_d complete experimental effort to date

Understanding the process of drying of such solutions i®n coffee-drop deposits was conducted by Deeggral.
important for many scientific and industrial applications,[21-24. Most experimental data referred to in this work
where the ability to control the distribution of the solute Originate from observations and measurements of this group.
during the drying process is at stake. For instance, in thd hey reported extensive results on ring formation and dem-

S ; ; trated that these could be quantitatively accounted for.
paint industry, the pigment should be evenly dispersed afte?ns . ; .
drying, and segregation effects are highly undesirable. Also he main ideas of the theory of solute transfer in such physi-

: : al systems have also been developed in their itk It
In protein qrystallography, attempts are ma.de to'assembl as observed that the contact line of a drop of liquid remains
two-dimensional crystals by using evaporation-driven con

vection [1-3], and hence solute concentration gradientspmned during most of the drying process. While the highest

. _ . vaporation occurs at the edges, the bulk of the solvent is
should_be av0|ded._ On the other hand_, in the prc_)duct|on Otoncentrated closer to the center of the drop. In order to
nanowires [4] or in surface patterning[5] perimeter-

dqd , be of ad R ; replenish the liquid removed by evaporation at the edge, a
concentrated deposits may be of advantage. Recent Impaji,, from the inner to the outer regions must exist inside the

tant applications of this phenomenon related to DNA stretchy, ., “Thjs flow is capable of transferring all of the solute to

i?]g in iﬂow have emergDel:\ldAas wéd]. For instance, a réi{gh- the contact line and thus accounts for the strong contact-line
throughput automatic mapping was suggest@d  .,ncentration of the residue left after complete drying. This

whereh_flmdDﬂ&w |n|duc?d by g\aapora_t[on 'i used both fot:theory is very robust since it is independent of the nature of
stretching molecules and eposmng them onto a subg, e go1yte and only requires pinning of the edge during dry-
strate. Droplet drying is also important in the attempts to;

f DNA p X vsi ing (which can occur in a number of possible ways: surface
create arrays o spots for gene expression analysis. ., ,qhness, chemical heterogeneities, )etdmong other

r}hings, we will reproduce some of its results in this work.
Mathematically, the most complicated task is related to
determining the evaporation rate from the surface of the
drop. An analogy between the diffusive concentration fields
*Present address: Department of Physics, University of Michiganand the electrostatic potential fields was suggef2&g26],
500 E. University Ave., Ann Arbor, Ml 48109. Email address: so that an equivalent electrostatic problem can be solved in-
yopopov@umich.edu stead of the evaporation problem. Important analytical solu-

tally by a number of groups. Difficulties of obtaining a uni-
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tions to this equivalent problem in various geometries werdor the mechanism. The typical diameter of the solute par-
first derived by Lebedej25], and a few useful consequences ticles in Deegaret al.[21-24 was of the order of 0.1—{m;
from these analytical results were later reported in R&f].  we will assume a similar order of magnitude throughout this
In this work, we continue development of the theory of work. For smaller particles diffusion becomes important; for
solute transfer and deposit growth. Most previous works adkarger particles sedimentation may play an important role.
dress the issue of the deposit mass accumulation at the drop The droplet is bounded by the contact line in the plane of
boundary; however, they treat the solute particles as if theyhe substrate. Thismacroscopig contact line is defined as
do not occupy any volume, and hence all the solute can bthe common one-dimensional boundary of all three phases
accommodated at the one-dimensional singularity of the condiquid, air, and solid substrateWe will restrict our attention
tact line. In reality, the solute deposit accumulated at thdo the case of round drops, which is both of most practical
perimeter has some thickness, and the shape of the residueiimportance and the easiest to treat mathematically.
a round drop resembles a ring rather than the infinitely thin We assume that the droplet is sufficiently small so that the
circumference of a circle. The earlier efforts were aimed asurface tension is dominant, and the gravitational effects can
describing how themassof the contact-line deposit grows be neglected. Mathematically, the balance of the gravita-
with time and how it depends on such geometrical charactettional force and the surface tension is controlled by the ratio
istics of the drop as its radiu$or circular dropg21,22) or  of the (maxima) hgdrostatic pressurpgh,.x to the Laplace
its opening angle and the distance from the vertlor  pressure @h.,/R", wherep is the fluid densityg is the
pointed dropg28,29). Little attempt has been made to de- gravitational constanty is the surface tension at the liquid-
scribe the geometrical characteristics of the contact-line deair interface,R; is the drop radius in the plane of the sub-
posit itself, for instance, the width and the height of thestrate, anch,,,, is the maximal height of the drop. For the
deposit ring. At the same time, there is solid experimentatypical experimental conditions this ratjgR?/2¢ is quite
data[23,24 on various geometrical characteristics of thesmall (about 0.25, and thus gravity is indeed unimportant
ring and their dependence on time, the initial solute concenand the surface shape is governed mostly by the surface ten-
tration, and the drop geometry. Here we develop a simpl&jon. Our treatment will produce the main-order term in the
model that addresses this lack of understanding of the gesxpansion in this parameter, and since the parameter value is
metrical properties of the contact-line deposit and accountgot an order of magnitude smaller than 1, it may be neces-

forl the fir}itehsi(zje of t_he.deﬁosit rir?g.f.V\_/e at.tributfe rt]he fir|1ite sary to construct correctional terms for better quantitative
volume of the deposit simply to the finite size of the solute,yreement. For the present purposes, even the main term

particles, i.e., we assume the particles do occupy some vo urns out to be sufficient to obtain agreement with the experi-
ume and hence cannot be packed more densely than a cert ntal results

concentration. The model is solved in the simplest case o Experimentélly the contact line remaiminned during

the circular geometry both analytically and ““”?e”ca”% andmost of the drying process. Therefore, we do not assume that
the results of the two methods are compared with the exper h

the contact anglé® between the liquid-air interface and the
mental data of Refd.23,24 (and with each othér It turns | : Lo -
! el X ane of the substrate is constant in time. A strongly pinned
out that this model is sufficient to explain most of the col- P gy p

. : contact line can sustain a wide range(ofacroscopit con-
lected data. It should be noted that the model is as universgl . angles. The pinning mechanismgcém be desc?i)l;ed as self-
?hnd rObl];’SI;('n Its trarllgeZlofzzval_ldny _?S_ tge zgro-volume pinning, i.e., pinning by the deposit brought to the contact
_Tloryho eegaLe ‘."l‘l[ ! ] sllnce It 1S based on essen- g by the hydrodynamic flows caused by evaporation. A
tially the same physical principles. pinned contact line entails fluid flow toward that contact line.

The n.ot|on that the proﬂle of the deposit could be. found.The “elasticity” of the liquid-air interface fixed at the contact
by the simple assumption that the solute becomes immobj-

fine provides the force driving this flow
lized when the volume fraction reaches a threshold was : ; [ .
o We will deal with I tact lg<1 th
originally suggested by Duponit30]. Efforts to create a e will deal with small contact angle®=<1) as this is

almost always the case in the experimental realizations
model were conducted by Deegf23,24 who formulated . : . : '
some physical assumptions, wrote them down mathematlInCIUdIng the experiments of Ref.23] (typically, Omax

. . <0.1-0.3. It will also be seen necessary to assume that the
cally, and obtained some early-time exponents. Here w

present the entire problem, including its full formulation and.%ontaCt angle is small in order to obtain any analyticall results

its analytical and numericai solutions. In the next section weIn a glosgd form: A drop with a small contact angle is nec-
' ' essarilythin, i.e., its maximal height is much smaller than its

"Pdius and the slope of the free surface is sr{aTlh|<1).

f hus, we consider small contact angles, or, equivalently, thin

drops.

issues of the geometry and the evaporation rate. Then,
derive the governing equations from the conservation o

mass and later solve them analytically for small initial con- . . .
y y We also consideslow flows, i.e., flows with low Rey-

centrations of the solute and numerically for arbitrary initial olds numbers, which amounts to the neglect of the inertial

concentrations of the solute. A discussion section concludeg . . ;
this work. terms in the Navier-Stokes equation.

The free surface is described by the local mean curvature,
Il. MODEL, ASSUMPTIONS, AND GEOMETRY which is spatially uniform at any given moment of time, but
changes with time as the droplet dries. Ideally, the surface
shape should be considered dynamically together with the
We consider a sessile droplet of solution on a horizontaflow field inside the drop. However, as was shown earlier
surface(substrate The nature of the solute is not essential[29,31], for flow velocities much lower than the characteris-

A. System
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FIG. 1. Mutual location of the two “phases” in the drying drop: < Ta
L is “the liquid phase,” andD is “the deposit phase.”

tic velocity v =o/37 (whereo is the surface tension ang D —

is the dynamic viscosily which is about 24 m/s for water y
" . time

under normal conditions, one can consider the surface shape

independentlyof the flow and use the equilibrium result at  FIG. 2. Time evolution of the deposit phase growth: side view

any given moment of time for finding the flow at that time. (left) and top view(right). Only the deposit phase is shown. Thick-

Equivalently, the ratio of the viscous forces to the capillaryness of the ring is exaggerated compared to the typical experimental

forces is the capillary numbeta=7v/o (wherev is some  results.

characteristic value of the flow velocity, which is of the order

of 1-10um/s), and this number is of the order of T0  phase the solute can move and hence its concentration can
le7 under typical experimental conditions. Thus, the capchange in time and spaceApart from this difference, the
illary forces are by far the dominant ones. phases are essentially identical. The idea that the solute loses
its mobility when its concentration exceeds some threshold
was suggested by Dupof&0].
Since the drop is thin, we employ the vertically averaged
Cylindrical coordinatesr, ¢,z) will be used throughout flow velocity
this work, as they are most natural for the geometry of inter-
est. The origin is chosen in the center of the circular footprint 1 (Mo
of the drop on the substrate. The coordinate always nor- v(r = mf us(r,2dz, 1)
mal to the substrate, and the substrate is describez=loy ‘ 0

with z being positive on the droplet side of the space. Th‘%Nhereus(r,z) is the in-plane component of the local three-
coordinates(r, ¢) are the polar radius and the azimuthal yimnensional velocitw(r,2), andhy(r) is the thickness of the

angle, respectively, so that the contact line is described by o gistance from the center. By making this approxi-
r=R;, whereR; is the radius of the drop footprint. Due to the oo e implicitly assume that there is no vertical segre-

axial symmetry of the problem and our choice of the Coordi'gation of the solute, and thus we turn our model into an

hates, no quantity depends on the azimuthal arigle effectively two-dimensional one. This is done mostly for
Our model pictures th“e drop.af, a tW,?'Compom?nt_SySterEimplicity and is not expected to affect our main conclusions
(the comE)onents“b(:-,:mg .the. fluid arld. the SOImeWh'Ch (see Sec. Y Within this model, it is natural to assume that
has two “phases’. “the liquid phase” in the middle of the y,o )5 ngary between the phases is vertical. Thus, the par-
drop and *the deposit ph_ase near the contact Ilne_. BO”ficles get stacked uniformly at all heights when they are
components are present in both phases, and the differen ‘?ought to the phase boundary by the hydrodynamic flow
between the phases lies only in the concentration of the so j(r). This boundary can be pictured as a vertical wall at

ute in each phase. In the deposit phase, the volume fractiogbme radiusR(t) from the center of the drop, and this wall

of the solutep is high andfixedin both space and time. Thus, ropagates from the contact liflecated aR =R(0)] toward

p is just a constant number; one can think of it as comparabl pag : . ! .

to the close-packing fraction or unit§The case op=1 may e center of the drop. Figure 1 |Ilustrate.s the mutual Iocat.|on
seem to be special as there is no fluid in the deposit phas%{/é?liigwnooﬂﬁzejr ?:d F;gée?szcgre\éna?ga% sorf]cm’: Ejh: ggi]te
however, for small initial concentrations of the solute this hase ying p 9 P

case will be seen to lead to exactly the same main-ord The geometrical parameters of the model are shown in
results) In the liquid phase, the volume fraction of the solute _. 9 P

x varies in space and changes with time, and it is relativel l)gu.n?j.aI;eisrlg?ti)usa%fdtg?O()jrzogi E{"htgeh(re?g#tjso?ftthh: SEZ:::
small compared tp. The initial volume fractiony; =x(0) is Eoundary isH(t), and the initial condition i$1(0)=0. In the

constant throughout the drop; at later moments the solute ™. . . .
gets redistributed due to the flows, and the concentratio quid phase, we conveniently split the total height of the free
' urfacehy(r,t) into the sum ofH(t) andh(r,t).

becomes different in different parts of the liquid phase. The®
volume fraction of the fluid is theril—p) in the deposit

OO0

B. Geometry and surface shape

phase and1-y) in the liquid phase. Note that we do not h(r,t) ot

requirey; <p so far, although we do assumye<p. It should 0; ——COaT

also be emphasized that we do not presume there is any real . fH(.t) \

“phase difference” between the so-called phases: one phase R; R(@)

is just defined as having the maximal reachable solute frac-

tion p (the solute cannot move in this phasehile the other FIG. 3. Geometry of the problem. Vertical scale is exaggerated

phase is characterized by a lower solute fractjofin this  in order to see the details; typicaly<R, andh<R.
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SinceH is independent of, the functionh(r) satisfies the dH dr
Young-Laplace equatioiithe statement of the mechanical dt = 9&- (6)
equilibrium of the liquid-air interface

Physically, the angles between the liquid-air interface and the

_Ap ) substrate are identical on both sides of the phase boundary

o’ (6=|dH/dR)), and henceén(r) and its first derivative are con-
) i ) ) tinuous past this boundary. Thus, there are actually only two
whereo is the surface tensiod\p is the pressure difference independenfunctions of time,d(t) and R(t). Condition (6)
across the liquid-air interface, aidis the mean curvature of |\ - first introduced by Deegd@i3,24).
the surface, uniquely related to the surface sftapg differ- The geometrical definitions above allow one to determine

ential geometry. For typical drying conditionsp andhvary e \olumes of each of the two phases. The volume of the
with time slowly. As was shown earlig29,31], it is suffi- liquid phase is simply
cient to find the equilibrium surface shape first, and then
determine the velocity field for this fixed functional form of RO R°H
h with time being just an adiabatic parameter, instead ofVL:f [h(r,t) + H(t) J27rr dr :2”(? + T) +0(6).
solving for all the dynamical quantities simultaneously. 0
Thus, the right-hand side of E¢R) does not depend on the (7)
local coordlnates of a point W't.hm .the dréalthough it does Taking into account relatiof6), an infinitesimal variation of
depe_n_d on time an_d the equation itself expresses the gIObalthis volume can be expressed via the infinitesimal variations
condition of spatial constancy of the mean curvature ¢ g R
throughout the drop. It defines tleguilibrium surface shape
at any given moment of time. iy 0

The solution to Eq(2) with boundary conditiorh(R)=0 dv, = Td(§> +27HR dR (8)
is just a spherical cap, and hence the shape of the upper part
of the drop(above the dashed line in Fig) B just a spheri- The first term is responsible for the motion of the liquid-air
cal cap: interface, and the second term corresponds to the inward

shift of the phase boundary. It is also straightforward to ob-
R(t) tain an expression for the differential of the volume of the
SirPa(t) deposit phase, which has only the term related to the inward
shift of the phase boundary:
Hered(t) is the angle between the liquid-air interface and the

2K=

h(r,t) = -r?2=R(t)cot H(t). (3)

substrate at the phase boundary, and functRits and 6(t) dVp =-27HRdR ©)
are related via the right-hand side of Eg): We will use the last two expressions in the following section.
5 We will also adopt the notation that the subscriptand D
R(t) = A ((Tt)sin ot). (4) refer to the liquid and deposit phases, respectively.
p
In the limit of small contact angles§<1, the preceding C. Evaporation rate
expression adopts an even simpler form: In order to determine the flow caused by evaporation, one
5 5 needs to know the flux profile of the liquid leaving each
hr.t) = Rt —r a(t) + O(6°) (5)  boint of the surface. This quantity is independent of the pro-
' 2R(t) ' cesses going on inside the drop and must be determined prior
to considering any such processes.
Note that we do not assume thé(t) andh(r,t) are neces- The functional form of the evaporation ralé) (defined

sarily positive at all times: both can be negative at later dry45 the evaporative mass loss per unit surface area per unit
ing stages, and the shape of the liquid-air interface may bgme) depends on the rate-limiting step, which can, in prin-
concave. Both convex and concave solutionsHr,t) are  ¢iple be either the transfer rate across the liquid-vapor inter-
consistent with Eq(2); the right-hand side of this equation face or the diffusive relaxation of the saturated vapor layer
can have either sign. By definition, bottit) andh(r.t) are  jmmediately above the drop. We assume that the rate-
positive when the surface is conveand hence they are posi- |imiting step is the diffusion of the saturated vapor. Indeed,
tive at the beginning of the drying procgsand negative the transfer rate across the liquid-vapor interface is charac-
when the surface is concave. The initial valuetdf) coin-  terized by a time scale of the order of #Ds, while the
cides with the initial contact anglé = 6(0). diffusion process has characteristic times of the order of
Clearly, there are three unknown functions of time in thisRl?/D (whereD is the diffusion constant for vapor in air and
geometry:6(t), R(t), andH(t). However, these quantities are R is the characteristic size of the dipmvhich is of the order
not independent of each other. Since we assume that thef seconds for water drops under typical drying conditions.
solute particles fill up the entire space between the substratehe diffusion-limited evaporation rapidly attains a steady
and the liquid-air interface when being brought to the phasatate. Indeed, the ratio of the time required for the vapor-
boundary, the three geometrical functions are related by thphase water concentration to adjust to the changes in the
constraint droplet shapéR?/D) to the droplet evaporation tirmg is of
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JorE drop or
conductor

h+H

~ P
~_ substrate ’Ih+H/’//

- -

its reflection ) ) )
in substrate FIG. 5. Presence of particles in the deposit does not obstruct

fluid evaporation at the edge of the drop. All the necessary fluid is
FIG. 4. lllustration of the analogy between the evaporation ratesupplied, and it is this motion of the fluid that brings the particles to
J for a liquid drop and the electric fiell for a conductor. Consid- the deposit phase. Also shown schematically is the fact that the
eration of the drogor conductor and its reflection in the plane of boundary between the phases is vertical and the particles get
the substrate significantly simplifies the boundary problem. stacked at full height between the substrate and the free surface of
the drop.

the order of(n,—n..)/ p~= 107°, wheren is the density of the

saturated vapor just above the liquid-air interfacg,is the  one is forced to introduce a special coordinate systdma
ambient vapor density, anglis the fluid density27], i.e., the  so-called toroidal coordinatesvith heavy use of special
vapor concentration adjusts rapidly compared to the evapdunctions. The full solution to this problem is provided in the
ration time. Appendix.

As the rate-limiting process is the diffusion, the vapor The evaporation rate depends only on the overall shape of
densityn above the liquid-vapor interface obeys the diffu- the drop, and evaporation occurs in the same fashion from
sion equation. Since the process is quasisteady, this diffusidnoth phases. We assume that the evaporation is not influ-
equation reduces to the Laplace equation enced by any motion of the solute inside the drop, and the

V2n=0 (10) necessary amount of fluid can always be supplied to the re-

' gions of highest evaporation near the contact line. Physically,

This equation is to be solved together with the following high evaporation near the edge is what brings the solute to
boundary conditions(a) along the surface of the drop the air the contact line, and we assume that presence of the deposit
is saturated with vapor and henoeat the interface is the does not obstruct the motion of the fluiBig. 5). Since the
constant density of the saturated vapgr(b) far away from  drop is thin and the contact angle is small, we will use the
the drop the density approaches the constant ambient vapexpression
densityn,,, and(c) the vapor cannot penetrate the substrate 2D(n.-n,)
and hence),n=0 at the substrate outside of the drop. Having Jr)=——=—=—=- (11)
found the vapor density, one can obtain the evaporation rate ™ \rRiz— r2
J=-D Vn, whereD is the diffusion constant. for th i ¢ ived in the A dix f i

This boundary problem is mathematically equivalent to or the evaporation ra é(_]lerlve In the€ Appendix for no
that of a charged conductor of the same geometry at constaﬁ?lme drops n the limito<1), which ha; a rec[prog:.al
potential if we identifyn with the electrostatic potential and Square-root divergence near .the contact Ime as intuitively
J with the electric field. Moreover, since there is no COmpo_expected from the electrostatics. The real situation may be

nent ofJ normal to the substrate, we can further simplify thedlfferent from that assumed above whens large or com-

S arable to 1, and the edge of the area where the evaporation
boundary problem by considering a conductor of the Shapgccurs may be located near the boundary of the phases in-

of our drop plus its reflection in the plane of the substrate in . o
the full space instead of viewing only the semi-infinite spaceSte‘f’ld of tfhehcont?ct l'nﬁ' Hovyeve:j, for Sm?” 'ql't'g‘l concen-
soundod b th subsaig. . T reduces the mumber [°1°% 01 S0, e i e st e et
of boundary conditions to only twda) n=n, on the surface rate: whether it is located at thegcontgct line or rp1ear the
of the conductor, an¢b) n=n., at infinity. The shape of the b .d f the bh We will furth i thi
conductor(the drop and its reflection in the substpagenow ounadary 0“ ep as‘??- e will further. comment on this
symmetric with respect to the plane of the substrate and resase (.)f the "dry deposit” when we obtain the full system of
sembles a symmetrical double-convex lens comprised of twgquatlons.
spherical caps. This equivalent electrostatic problem of find-
ing the electric field around the conductor at constant poten- lll. PRINCIPAL EQUATIONS
tial in the infinite space is much simpler than the original
problem in the semi-infinite space. The reflection technique
for finding the evaporation field on the basis of the analogy The essence of the entire theory can best be summarized
between the diffusion and the electrostatics was originalljin one sentence: “It is all about the conservation of mass.”
used by Deegast al.[21,22. Indeed, as we will see by the end of this section, all three
Even in the circular geometry the equivalent problem isgoverning equations obtained here represent the conservation
still quite complicated despite the visible simplicity. We con- of mass(or volume in one form or another.
sider an object whose symmetry does not match the symme- We start from the global conservation of fluid in the drop.
try of any simple orthogonal coordinate system of the threeSince the amount of solute within the drop does not change
dimensional space. In order to solve the Laplace equatiorduring the drying process, the change of the entire drop vol-

A. Global conservation of fluid
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ume is equal to the change of the amount of fluid. This fluid
gets evaporated from the surface, and the total change of the
fluid volume equals the amount evaporated from the surface:

/’%J\
thot = dVFsurf- (12) é

By convention, the superscripisandSrefer to the fluid and 'V
the solute components, respectivélyhile the subscriptd M
and D continue to denote phage§he total change of the ot

drop volume is the sum of the volume changes of each

phase: \_/

R (6
dVige=dV +dVp = %d<§> : (13

FIG. 6. Conservation of mass: the liquid-vapor interface is low-

. . . ered exactly by the amount of fluid evaporated from the surface
where dV, and dVp were found in the preceding section plus the difference between the outflow and the influx of fluid from

[Egs.(8) and(9)]. The yolume of fluid evaporated from the the adjacent regions.
surface can be determined from the known evaporation rate:

avt

4D(ng—n,,)R, from the surface element on top of that colurtsecond
dt '

term); Fig. 6 illustrates the idea. A similar equation can also
be written for the local conservation gblute but without
(14)  the evaporation term:

R.
() ———
=—f —( )v’1+(&,h)227rrdr:—
o P p

surf

wherep is the fluid Qensity. Wg neglected th_e_ gradienh(rf)_ V -[x(h+H)WV]+a[x(h+H)]=0. (17)
with respect to unity(which is always legitimate for thin _ . . _ .

drops and usedl(r) of Eq. (11). Thus, Egs(12), (13), and Addmg the two equatlons and employlng the linearity of the
(14) yield the first main differential equation of this section: differential operations, one obtains

d ( 0) _16D(ng-n.)R
dt\R P '
This equation represents the global conservation of fluid inrhis relation could have been obtained if we considered only
the drop and relates the time dependencieg(bfandR(t). one component with volume fraction 1 in the liquid phase,
and this equivalence should be of no surprise: when the sol-
_ ute moves in exactly the same fashion as the fluid does, any
B. Local conservation of mass differentiation between the two is completely I¢fbm the
The next equation represents tlecal conservation of point of view of the conservation of volumeNote that if
mass. There are two components in the liquid phase, angvaporation were too intense, this equivalence would not
hence we write a separate equation for each of them. Sincel®ld, as there might be an insufficient amount of fluid com-
free particle of the appropriate size reaches the speed of tfigg into a volume element, and the solution could get com-
flow in about 50 ns in water under normal conditidi®],  pletely dry (only the solute component would be Jefive
the solute particles are simply carried along by the flow, andmplicitly assume this is not the case for our liquid phase
the velocities of each component are identical at each poirwhere the solute fraction is relatively small and the evapora-
within the liquid phasé¢and equal to the depth-averaged fluid tion is not too strong.

velocity v defined in Eq(1)]. The local conservation dfuid In circular geometry, due to the symmetry, the flow is
can be written in the form radial and independent @f. Thus, Eq.(18) can be resolved

with respect to the radial component of the velocity:

16 U’(r’t):_r(hiH)ﬂG”thth)rdr' (19

where y is the volume fraction of solute at a given point Straightforward integration witi(r,t) of Eq. (5), dH/dt of
within the liquid phase, and each of the quantitigs Eg.(6), andJ(r) of Eq.(11), and employment of Eq15) for
+H), J, x, andv is a function of distance and timet. [We  d(6/R)/dt yield

drop the(Vh)? part of the second term everywhere in this

R (15 Y [(h+ H]+ 2+ a(h+H) = 0. (18)
p

V [ = x)(h+ HV]+ ST+ (V2 + af(1 - )(h+ H)] =0,
p

work since it is always small compared to unity for small vi(r.) = 2D(ns—n.) R v1-(r/R)*~[1 - (/R
contact angle$ This equation represents the fact that the rate Y P r (RO2)[1-(r/R?]+H
of change of the fluid amount in a volume elemédlumn (20)

above an infinitesimal area on the substrédtérd term is
equal to the negative of the sum of the net flux of fluid out of This expression for the flow velocity at each pointvithin
the column(first term and the amount of fluid evaporated the liquid phase in terms of the time-dependent geometrical
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characteristics of the drog(t), R(t), and H(t) is a direct
consequence of the local conservation of mass.

With the velocity in hand, we can compute the time it
takes an element of fluid initially located at distarrcdérom

the center to reach the contact line. First, only the particles

initially located near the contact line reach that contact line
As time goes by, the particles initially located further away

from the contact line and in the inner parts of the drop reach

the contact line. Finally, the particles initially located in the
innermost parts of the drofi.e., near its centgrreach the
contact line as well. The more time elapses, the more par

ticles reach the contact line and the larger the area is wher

they were spread around initially. One can view this proce
as inward propagation of the inner boundary of the set of th
initial locations of the particles that have reached the conta
line by timet. As is easy to understand, the velocity of this

front is equal to the negative of the vector of the fluid veloc- .

ity at each pointthe fluid and the particles move together
toward the contact line while this front moves away from it;
hence the minus signWe label byr;(t) the initial location of
the solute particles that reach the phase bouncang be-
come part of the deposit ringat time t. Since the solute

particles from the outer areas of the drop reach the deposn

phase sooner than the particles from the inner areas, thi
function is monotonically decreasing, and its derivative is,
simply related tov, found in the preceding paragrapBq.

(20)]:

dri
i =v,(r;,b). (21)
Thus, the second principal equation of this section is
dri _ 2D(ng—n.)R v1- 1-(r/R)2-[1- (/R
dt ap 1, (RO)[1-(r/R?]+H
(22

This equation relates;(t) to the time dependencies of the
geometrical parameters of the drpit), R(t), andH(t)].

C. Global conservation of solute

The volume of solute in the deposit pha;% at timet is
equal to the volume of solute outside the circle of radijus
at time O[since all the solute betweer(t) and R, becomes
part of the deposit by timg. The latter volume can be found
by integratingh(r,0) over the area swept by the fluid on its
way fromr; to the contact line and multiplying the result by
the initial volume fraction of solutg;:

r\2]2
.

Ri
V§=Xif h(r,0)27r dr :Vs[l —(—
r

where VS:wxiR?aiM is the total volume of solute in the
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already determinedV;, of Eq. (9), we obtain the third prin-
cipal equation of this section:

el [

dt R
This equation represents the global conservation of solute in
the drop.

Thus, we have four unknown functions of time,
6(t), R(t), H(t), andr,(t), and four independent differential
equatlons for these functions, Ed8), (15), (22), and(25).

In reality, we need only three of these functiomst), R(t),

ndH(t); however, there is no simple way to eliminaté&)

2
) ] ——4pHRd—R (25)

aving solved this system of equations, we will be able to
ully characterize the dimensions of the deposit phase and
describe the evolution of the deposit ring. The following sec-

S
iom the full system and reduce the number of equations.

tion is devoted to the details and the results of this solution.
Here we will only comment on how this system changes
in the case of the completely dry depopit 1. In this case
there is no evaporation from the surface of the deposit phase,
and the effective edge of the evaporating area is somewhere
n the vicinity of the phase boundary. Assuming the same
eciprocal square-root divergence of the evaporation rate at
=R instead ofr =R, [which mathematically means substitu-
tion of R in place ofR in Eg. (11)] and conducting a deri-
vation along the lines of this section, one can obtain a very
similar system of four differential equations. These equations
would be different from Eqg6), (15), (22), and(25) in only
two minor details. First, Eq915) and (22) would lose all
indicesi at all occasions oR; (i.e., one should substitufe
for all R; in both equations Secondp should be set to 1 in
Eq. (25). Apart from these details, the two systems would be
identical. As we will see in the following section, this differ-
ence between the two systems is not important in the main
order in a small parameter introduced below, and thus this
“dry-deposit” case does not require any special treatment,
contrary to the intuitive prudence.

IS

IV. RESULTS

A. Analytical results in the limit of small initial concentrations
of the solute

So far we have not introduced any small parameters other
than the initial contact anglé,<1. In particular, Eqs(6),
(15), (22), and (25 were obtained without assuming any
relation betweerp and y; other than the nonrestrictive con-
dition y;<p. In order to find the analytical solution to this
system, we will have to assume thgt<p. Then, we will
solve the same system of differential equations numerically
for an arbitrary relation betweeg andp.

The assumptiony;<<p physically means that the solute

drop. On the other hand, the volume of solute in the depositoncentration in the liquid phase is small—it is much smaller

phase is just the constant fractignof the volume of the
entire deposit phase:

Equating the right-hand sides of these two equations, takin

than the concentration of close packing or any other compa-
rable number of the order of 1. This is the case for most
practical realizations of the ring deposits in experiments and
observations: the solute concentration rarely exceeds 10% of
golume, and in most cases it is far lower. If the volume

the time derivatives of both sides, and making use of thdraction of the solute is small, then the solute volume is also
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small compared to the volume of the entire drop. Hence, the Substitution of all the definitions of the preceding para-
deposit phase, which consists mostly of the solute, must alsgraph into the original system of equatio(®, (15), (22),
have a small volume compared to the volume of the entirand (25) and retention of only the leading and the first cor-
drop. Thus, if the initial volume fractioy; is small, then the rectional terms ire yield the following simplified system of
dimensions of the deposit ring must be small compared tequations:

the corresponding dimensions of the entire drop.

Let us now introduce a parameterthat is small when @ ;*ﬂv (33)
xi/p is small. We do not fix its functional dependence on dr dr’
xi/p for the moment:
Xi do  ~dw ~ dé
e=fl=|<1, (26) —+eb—-3eW—=-1, (39
p dr dr dr
wheref is an arbitrary increasing function of its argument. - \/: ~ -
Then we postulate that the ring width is proportional to this dV_ VV- VA1 - 4wV - 1)] 35)
parameter: A7 JH[L - W2V - 1)] + el
R(t) =R[1-eW(®)], (27) -
- ) . . ) Xi~dV ~dW ~
where W(t) is an arbitrary dimensionless function and we EVE =462HE(1—6V\0- (36)

explicitly introduced the dimensionality viR. Obviously,
W(0)=0. So far we simply wrote mathematically that the AS is apparent from the last equation, the parametenust

ring width is small whenever the initial volume fraction of P& proportional toyi/p. Since the separation of the ring
the solute is small. Next, we introduce a dimensionless variwidth into e and W in Eq. (27) is absolutely arbitrary, the

able for the angléi(t): parametere is defined up to a constant multiplicative factor.
- Therefore, wesetthis factor in such a way thaf is equalto
o) = 6,6(t), (28)  xilp:
where bothd(t) and 6, are small, while the newly introduced Xi
function 6(t) is arbitrary[in particular, §(0)=1]. Due to the Y B (37

geometrical constrair{), the height of the ringd(t) must be
linear in the small parameteesand ¢, and directly propor-
tional to the only dimensional scak:

This fixes the functiorf from the original definition(26).

The differential equations in the systdB8)—(36) are still
coupled. However, in the maizeroth order ine, the equa-
H(t) = e@RH(1), (29)  tions clearlydecouple the second equation can be solved

with respect to@(r) independently of all the others, then the

where ﬁ(t) is yet another dimensionless function of time . . . ~ .

~ o~ ~ third equation can be solved with respect\Mor) indepen-
[H(O)_‘O]’ _rel_ated to the funcnonW_(t) a”‘?' o(t) by an ex- dently of the first and the fourth, and finally the first and the
pression su_mlar to Eq6). The last d|men3|0nless_var|able IS fourth equations can be solved together as well. Thus, one
introduced in place of the fourth unknown functioft): can obtain the following main-order solution to the system of

~ (ri(t))z equations above with the appropriate initial conditions:
Vi)=1-\—"], (30 ~
R an=1-r, (38)
with the initial condition\~/(0):0. Thus, we introduced four _
new dimensionless variables in place of the four original V(1) =[1-(1-7%?5, (39
ones and explicitly separated their dependence on small pa-
rameterse and 6,. Finally, we define the dimensionless time ~ \/1{ (7 4) (7 4>J
ras H(n=1/Z|Bl .5 ) —Ba-»24 Z.5 /| (40)
3 33 33
T= ! (31 3/1471/3
ty W(r :f 1 [1-a 7)1,4] dr'.  (41)
where t; is a combination of system parameters with the 0 8H(7') (1-7)
dimensionality of time: Here B(a,b) =221 -x)"1dx is the complete beta func-
mpR26; tion, B,(a,b) = [5x3"(1-x)*1dx is the incomplete beta func-

(32 tion (>0, b>0, and O<z=<1), and the integral in the last
equation cannot be expressed in terms of the standard el-

In the limit x;/p— 0 this combination represents the time atementary or special functions. In a similar fashion, systems

which all the solute reaches the deposit phase; for fipitp  of equations of the higher orders ércan be writterjonly the

it does not have such a simple interpretation. first-order corrections are kept in the systé®8)—(36)], and

tht=———m.
'~ 16D(ng-n..)
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1.0 3/
- ] (1_1) 4+[1_<ri(t)>2]3/2:1’ .
ol ] i R

which is identical to Eq(3.24) of Ref.[31] obtained for the
zero-volume solute. Clearly,=R, whent=0, andr;=0 when
t=t;. According to Eqs(23) and(30), the fraction of solute
in the deposit phase3/ Vs is

Vi £ \3/4]413
vV [1_(1_t_> } “49
f

L N gy, [plotted by the solid line in Fig. ®)]. This fraction is 0 at
5 - 06 . 560 550 50D t=0 and becomes 1 &tt;. Thus,t; can also be interpreted as
Time (sec) the time at which all the solute particles become part of the
deposit phase. So far, the results of this finite-volume model
FIG. 7. Mass of a drying drop as a function of time. Experimen-coincide with the results of the zero-volume case considered
tal results, after Ref§23,24. The line running through the data is earlier[21,27].
a linear fit. (Courtesy Robert Deegan. However, the third and the fourth equatidigsys.(40) and
(41)] represent additional results. In the dimensional vari-
the higher-order terms can also be constructed up to an arbibles they yield the height of the phase boundargnd the

Mass (mg)

trary order. width of the deposit ringV=R,-R, respectively,

A system of equations similar to our systei33)—(36)
was presented by Deegan [ia3,24]. However, some terms H(t) = \/7 ) RH( > (45)
of the first order in concentration were missing and no ana- t

lytical solution to the system of equations was obtained in

those works. Here we derive the equations in a systematic

way and provide their analytical solution. W) = R|W<t ) (46)

How do our resultd38)—(41) translate into the original ~ f

variables? The first two of thefiEgs. (38) and(39)] repro-  where the functionsi(7) andW(7) are plotted in Figs. @)

duce earlier results. In terms of the dimensional variables Ecand 8d) (the solid curves These results provide the sought

(38) represents the linear decrease of the angle between tliependence of the geometrical characteristics of the deposit

liquid-air interface and the substrate at the phase boundamyng on all the physical parameters of interest: on the initial

with time: geometry of the drogR, and ), on the initial solute con-
centration(y;), and on the time elapsed since the beginning
of the drying processt). If the time is considered as a pa-

ot = 6 1 _t_f (42) rameter, they can also be used to obtain the geometrical pro-

file of the deposifi.e., the dependence of the height on the

width), which we plot by the solid line in Fig. 9. Note that

the vertical scale of this plot is highly expanded compared to

the horizontal scale since there is an extra factof, ef1 in

[plotted by the solid line in Fig. @) below]. This is a direct
analog of Eq.(A11) for the contact angle in the no-solute
;ﬁ;?e 2 sm|sthcée?£lsf;orgf ttﬁi ?I?]]:LZII\I/%TU?:]%EEOE&ZG)]dsge:&i on the expression for the height; in the actual scale the height is
time in exactly the same fashion as the contact angle in thgmch smaller than it appears in Fig. 9.

no-solute case does. This expression also provides an inter- It is straightforward to obtain the asymptoticstéf7) and
pretation oft;: it is the time at which the free surface of the W(7) for early and late drying stages. At early times, both the

liquid phase becomes flat. Befotethis surface is convex, height and the width scale with the drying time as a power
aftert; it becomes concave and bows inwduhtil it touches  |aw with exponent 2/3:

the substrate Thus,t; is generallynot the total drying time. (302"

In the limit y;/p— O the height of the deposit ring is going to - \/Z _ T

zero and the two times are the same. For finite values of this H GR 278 [1+0(n] (r=<1), 47

parameter the total drying time is longer than the time at

which the liquid-air interface becomes flat. Equatidg) has Yi_ (323

been verified in the experimeni&3,24 where the mass of W= /=R NE [1+0(7n)] (7<1). (48)

the drop was measured as a function of ti(Rey. 7). Since P

the mass of a thin drop is directly proportional #épthese  Thus, at early timesd~ 6W, which can also be deduced

results confirm the linearity of(t) during most of the drying directly from Eq.(6) without obtaining the complete solution

process. above.[The early-time exponent 2/3 was first obtained by
The second equatiof89) has a direct analog in the case Deegan 23] without deriving the full time dependencé0)

of the zero-size solute particles. In the original variables itand (41).] At the end of the drying process, the height and

can be rewritten as the width approach finite valugsvhich, apart from the di-
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FIG. 8. Results for the dependence of the geometrical characteristics of the drop dnltireach plot, the solid curve is the analytical
result in the limit y;/p— 0, while the other curves are the numerical results. Different numerical curves correspond to different initial
concentrations of the solute; values of paramgtép are shown at each curv@) Angle 6 between the liquid-air interface and the substrate
at the phase boundartb) Volume fraction of the solute in the deposit pha@lvs. (c) Height of the phase boundaiy (in units of
&R\ x;/p). (d) Width of the deposit ringV (in units of R\ x;/p)-

mensional scales, are universal, i.e., consjeanisl do so as obtained for the dependence of the ring width on the radius,
power laws of(t;—t) with two different exponents: in exact agreement with our findings.
s Comparison to the experimental data for the dependence
X =~ (1-7 52 on the initial concentration of the solute is slightly less
H~ p aiRi{H(l) 14;'(1) *0(-17 (49) trivial. Our results predict that both the heigHt and the
width W scale with the initial concentration a&'? (at least,
in the leading order for small concentratigprihe same scal-
ing prediction was also made by Deed@3,24]. However,
3/4 his experimental results show a different exponeny;othe
|~ 1- + + i if-
We %R{W(l) B % +O(1- 7)3,2] (1-r<1), values 0.78+0.10 and 0.86+0.10 were obtained for two dif

1-7<1),

03 e
(50) e
~ ~ % o
whereH(1) andW(1) are simply numbers: % 021
~ 1 (74 ‘Eﬂ —— analytical
H(1) = —B(—,—) ~ 0.297, 51 £ o4 /S | 0001
V3®l33 Gy EFey S o0
-------- 0.01
1 Y4z 0.1
~ 1 [1-(1- ! . . .
W(1) = = ol 7)1/4] dr=0.609. (52 * b0 025 050 0.75
0 8H(7) 1-7 Width W/(eR)

Clearly, dH/dW=6(1-7) and hence vanishes when- 1. FIG. 9. Deposit ring profile: dependence of the height of the
This fact can also be observed in the flattening of the anaphase boundary on the width of the deposit ringV. The solid
lytical graph in Fig. 9 at late times. curve is the analytical result in the limit/p— 0; the other curves

The dependence of the height and the width on the radiugre the numerical results. Different numerical curves correspond to
of the dropR;, while intuitively obvious(sinceR; is the only different initial concentrations of the solute; values of the parameter
scale in this problem with the dimensionality of the length ;/p are shown at each curve. The vertical scale is different from
has been verified in experimeri3,24). A linear fit has been the horizontal scale by a factor ¢f<1.
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FIG. 12. Depinning time normalized by the extrapolated drying

time vs initial concentration of the solute. Experimental results,

after Refs[23,24]. The line running through the data is a linear fit

factor of 5 to avoid mixing of the data points related to the dif'ferentin the d.ouble-logarithmic S(fale' which upon conversion to the linear

particle sizes. The lines running through the data are linear fits ir?cale yields a power law with exponent 0.26+0.(Bourtesy Rob-

the double-logarithmic scale, which upon conversion to the lineaf" Deegan.

scale yield power laws with exponents 0.78+0.10 and 0.86+0.10.

(Courtesy Robert Deegan. been explained in full theoretically y&#An important obser-
vation, however, is that the depinning tinfies., the time at
which the detachment occurs and the ring stops growing

. . . . depends on the initial concentration of the solute. This de-
h ff nce? T - |
ferent partlcles SIZGG:Ig. 1@. Why the difference? The an . | Wi | r by D !F . 12), and the

swer lies in the fact that the width measured in the experi! ; .
ments[23,24) is not the full width of the ring at the end of resulting exponent was determined to be 0.26+0.08. Thus,

: . . . he width of the ri inni [ ith the initial
the drying process, but rather the width of the ringlapin- f:oilrgg:ragorg gfrtlr?g sélﬂt;plggmw" scales with the Initia
ning. Depinning is the process of detachment of the liquid

phase from the deposit rin@grig. 11). This detachment was 5
observed experimentally in colloidal suspensions but has not Wy o Xillz\%

FIG. 10. Ring width normalized by the drop radius vs initial
concentration of the solute for two different particle sizes. Experi-
mental results, after Reff23,24]. The two data sets are offset by a

.:::_(:) oc X?.%(X?.ZGiO.Oﬁ, (53)

wherety is the depinning timéty/t; = x*2°*%%. As is appar-
ent from Fig. 12, the typical values of the depinning time are
of the order of(0.4-0.8t;. In this time range, the function

WI(t) is virtually linear [the analytical curve in Fig. (8)].
Therefore, the dependence \&f; on x; has an overall expo-
nent of the order of 0.76+0.08. It is now clear that both
experimental results 0.78+0.10 and 0.86+0.10 fall within
the range of the experimental uncertainty of this approximate
predicted value, and the theoretical dependence of the ring
width on the initial concentration agrees with the experimen-
tal results quite well.

Note that Deegaf23,24] did not report direct measure-
ments of the height of the deposit ring. The height was

Ywhile the full explanation is yet to be developed, the naive rea-
son for the depinning seems relatively straightforward. pimaing
force depends only on the materials involved and is relatively in-
sensitive to the value of the contact angle. At the same time, the
depinningforce is simply the surface tension, which is directed

FIG. 11. A photographic sequence demonstrating a depinninglong the liquid-air interface and which increases as the contact

event. Experimental results, after Reff23,24]. The view is from  angle decreasdsince only the horizontal component of this force
above, and the solid white band in the lower part of the frame is theés importanj. Thus, the relatively constant pinning force cannot
ring; the rest of the drop is above the ring. The time between theompensate for the increasing depinning force, and after the contact
first and the last frames is approximately 6 s; the major axis of thengle decreases past some threshold, the depinning force wins and
hole is approximately 150m. (Courtesy Robert Deegan. causes the detachment.
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calculatedfrom the data in hand, and thus a direct compari-terminate all the curves in all the graphs at the valug/gf
son to the experimental data is not available for the height.when all the solute reaches the deposit phase. In our model,
The square-root dependence of the height and the width turns out that the time the last solute particles reach the
on the concentration is in good agreement with generafleposit ring and the time the center point of the liquid-air
physical expectations. Indeed, the volume of the deposit ringhterface touches the substrate are about the same. For all the
is roughly proportional to the product of the height and thelnitial concentrations, the two times were numerically found
width. On the other hand, the height is of the same order ofo be within 0.1% of each other, and the curves are termi-
magnitude as the width since the ratio of the two is of theh@ted at exactly this moment. Of course, in reality a small
order of 6 (which is a constant Thus, both the height and fraction of solute should stay in the liquid phase as long as

: : - the liquid phase exists, and so the moment the last solute
the width scale approximately as the square root of the rin \ ' ©
volume. Finally, the volume of the deposit ring is propor- articles reach the deposit phase shouldtier the moment

: L2 : ) the center point touches the substrate; however, the amount
tional to the initial volume fraction of the solute: the more ¢ oy, o remaining in the liquid phase at touchdown is in-
solute is present initially, the larger is the volume of the

. ignifi ically all th it h I
deposit ring at the end. Therefore, both the height and th%?r?:ggém’ and practically all the deposit has already

width must scale as the square root of the initial volume N merical results for angl® as a function of time are

fraction. It is rewarding that our complex calculation leads togpown in Fig. 8a). All the curves behave almost linearlgs
the same results as this simple physical argument. _ expecteft however, the slope increases with concentration:

Thus, the complete analytical solution to our model iSformation of the ring in the drops with more solute finishes
available in the limity;/p—0, and this solution compares faster (on the relative scale of). The end of each curve
favorably with the experimental data. Since the main-ordegjemonstrates the value of the angleat the moment the
solution iny;/p is perfectly adequate, the difference betweenjjquid-air interface touches the substrate. The analytical ex-
the original system of equations and the one for th_e "Com'pression for this angle i®,=-2H/R for a thin drop. The
pletely dry” case is not important. Indeed, the main-ordergpsojute value of this angle increases with concentration,
results are identical in both cases, because one case is diff§{hich is quite natural since for small concentrations the
ent from the other only by the presencefoinstead ofR in  pejght of the ring grows as a square root of the concentration
a few places in the main equations, and this difference is ofyhijle the radius of the liquid phase does not change substan-
the correctional order in;/p. tially. Clearly, the numerical results converge to the analyti-
cal curve whery;/p—0.

Growth of the volume fraction of solute in the deposit
phaseVS/VS with time is shown in Fig. &) for various
solute concentrations. This graph reconfirms the observation

Apart from approaching the original system of equationsof the preceding paragraph that the solute transfer happens
(6), (15), (22), and(25) analytically, we also solve it numeri- faster (in units of t;) for denser colloidal suspensions. All
cally. During this numerical procedure we do not presumecurves are terminated when volume fractmgﬁlvs becomes
that x;/p is small, nor do we expand any quantities or equa-equal to 1.(The apparent termination of the curve fgr/p
tions in e or any other small parameters. Our main purpose is=0.1 earlier than that is an artifact of the plotting softwpre.
to reproduce the results of the first part of this section and t@\s the corresponding analytical results do, the numerical
determine the range of validity of our analytical asymptotics.plots of Figs. 83 and 8b) should presumably hold true

The typical values ofy;/p in most experimental realiza- independently of the geometrical details of the solute accu-
tions are of the order of 0.001-0.01 and thus, only the conmulation in the ring(which cannot be expected from the
centrations below approximately 0.1 are of practical interestfollowing plots for the ring height and widih
(Note thaty;/p=0.1 corresponds to a quite substantial value The next two graphs represent the numerical results for
of the small parametee=10.1~0.32) Thus, we will con-  the heigh{Fig. 8(c)] and the widtH Fig. 8(d)] of the deposit
centrate on this range of;/p when describing the results ring as functions of time. The ring profile, i.e., the depen-
despite the fact that the numerical procedure cafabd has dence of the height on the width, is also shown in Fig. 9. As
been conducted for any ratiq;/p. The general trend is il- the graphs depict, the ring becomes wider and logirethe
lustrated well by the results in this range of concentrationsreduced variablggor higher initial concentrations of the sol-

In the case ofy; comparable tg our model is not expected ute. Since the volume of the ring is roughly proportional to
to produce any sensible results, as the entire separation of tiige product of the height and the width, the decrease in
drop into the two phaseghe liquid phase and the deposit height must be of the same magnitude as the increase in
phasg is based on the assumption that the mobility of thewidth. This can be qualitatively observed in the graphs.

B. Numerical results for arbitrary initial concentrations
of the solute

solute is qualitatively different in the two regions. Wheris As a final piece of the numerical results, we create a
comparable tg the two phases are physically indistinguish- double-logarithmic plot for the dependence of the height and
able, while the model still assumes they are different. the width on the initial concentration of the solytg. 13.

We present our numerical results for the same quantitie$he predicted square-root dependence on the initial concen-
(and in the same ordeas in our analytical resultg}2) and  tration is seen to hold true for volume fractions up to ap-
(44)—(46). Since for arbitraryy;/p the timet; is not exactly  proximately 10%?p for the height and up to approximately
the total drying time, there is a question of whéat what  1073/%p for the width. The deviations for higher volume frac-
time) to terminate the numerical curves. By convention, wetions are due to the increasing role of the correctional terms
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the substrate, and the final shape of the deposit ring must
have a vertical wall at its inner side. We believe this is an
artifact of our model, which is inherently two dimensional
when flows inside the drop are concerned. Thus, the vertical
distribution of the solute was assumed homogengtis
phase boundary is vertical and the particles get stacked uni-
formly at all height$, and we used the depth-averaged ve-
locity (1) throughout this work. This is equivalent to assum-
ing that vertical mixing is complete. This assumption is quite
important, and the results are expected to get modified if the
true three-dimensional velocity profile is used instead of the
depth-averaged velocity. We expect that if a three-
dimensional model were built and the dependence were
taken into account for all the quantities then the discontinu-
ous wall of the phase boundary would get smoothed and the
height would continuously return to zero. The question re-
mains whether such a model would be solvable analytically.
Our model relies on the assumption that solute mobility is
different in the so-called liquid and deposit phases. In es-
in e compared to the main-order terms represented by thgence, we assume that the mobility is 0 in the deposit phase
solid lines. In this graph, as in all the results of this sectionand 1 in the liquid phase. This assumption, while artificial in
it is clear that our main-order analytical results provide anits nature, seems relatively reasonable when applied to this
adequate description of all the functional dependencies in theystem. Indeed, in physical situations near close packing, the
range of the initial concentrations of experimental impor-|oss of mobility typically occurs over a quite narrow range of
tance(0.001-0.0}. the concentration values, and hence our assumption should
In general, our numerical results complement and reinwork satisfactorily when the difference betwegnandp is
force our analytical results, providing a cross-check of bothorders of magnitude. The higher the initial concentration is
methods. and the closer the two values are, the less this assumption
holds true and the more artificial the difference between the
V. DISCUSSION two phqses is. Thus, th_e validity of any model ba_sed on Fhis
separation of the mobility scales decreases for higher initial
Both the analytical results of Eg&12) and(44)—(46) and  concentrations of the solute.
the numerical graphs of Figs. 8 and 9 may be reproduced The model assumes that the free-surface slope between
experimentally giving validation to the proposed model.the liquid and the deposit phases is continuous. In fact, as-
Measurements of the profiles in Fig. 9 should be particularlysumption (6) expressing this continuity is one of the four
easy to condudince there is no time dependence involved basic equations of this work. This assumption seems quite
and may confirm or refute the predicted robustness and theatural as well. Indeed, if the liquid is present on both sides
universality of the deposition profiles. of the phase boundary, the change in the slope of its free
While the main principles of the proposed model weresurface would cost extra energy from the extra curvature at
laid down by Deegaf23,24), its analytical solution for small the phase boundary, since the liquid-air interface possesses
concentrations and its numerical solution for arbitrary con-effective elasticity. The presence of this extra endigythe
centrations are obtained here. The availability of the exacextra pressuneat the location of the phase boundary is not
analytical solution demonstrated that the theoretical scalingustified by any physical reasons as all the processes are slow
of the deposit width at depinning with solute concentrationand the surface is in equilibrium. In equilibrium, the surface
indeed agrees with both measured values of the exponentshape must have constant curvature past the phase boundary
The earlier estimate of Ref$23,24 based solely on the since the entire separation into the two phases is quite artifi-
early-time exponent had an overlap with only one of thecial as discussed above. The presence of the particles below
concentration exponents. Our numerical results also quantifthe liquid-air interface does not influence the surface tension,
the range of solute concentrations where the predictednd thus the liquid surfad@nd its slopgshould be continu-
square-root dependence of the width holds true. In generafus at the phase boundary. If the density of the particles
Deegan’s results were not sufficient to obtain the proper scalnatches the density of the liquigvhich was the case in the
ing of the width with time anywhere beyond the early drying experiments nothing prevents the particles from filling up
stages; the results of this work provide that time scaling at althe entire space between the substrate and the liquid-air in-
drying stages. All the presented results suggest that the déerface, thus providing the growth of the upper edge of the
posit ring profile and its growth can be fully accounted for ondeposit phasalong the liquid-air interface. This is particu-
the basis of the finite volume of the solute particles only andarly true for the thin drops discussed here, where vertical
that the governing functional dependences waiversal mixing is intensive, where the free surface is nearly horizon-
One may notice that the curves in Fig. 9 end at somdal, and where the problem is essentially two dimensional.
positive (nonzerd height. This indicates that the solute is However, the equality of the slopes on both sides of the
exhausted before the profile curves have a chance to return phase boundary does not seem inevitable, and one may think

log, [H/(€0R)], log [W/(ER)]

IS
.

log, [x/p]

FIG. 13. Numerical results: log-log plot of the dependence of
the height of the phase boundatyand the width of the deposit ring
W on the initial volume fraction of the solutg. The main-order
analytical resultsH o \y;/p and W \m are also provided for
comparison.
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of situations when it does get violated. One example mightenter point touches the substiatde surface shape is no
be the late drying times, when the deposit growth is very fastonger spherical. Moreover, a new element of the contact line
[Fig. 8(b)] and hence the deposition may occur in some nonis introduced in the center of the drop in addition to the
regular manner inconsistent with this slow-process descriporiginal contact line at the perimeter, and the entire evapora-
tion. Other examples may be related to gravilightly un-  tion profile gets modified in addition to the modified surface
equal densities of the particles and the fjuid convection.  shape, thus influencing all the other quantities. Our treatment
This assumption can possibly be checked experimentalijjoes not account for the small fraction of the drying process
and_ if condition(6) is found _V|olated, an equwalent CON- securring after this touchdowgwhich is a change in topol-
straint dependent on the details of the deposit-growth mechgyay of the free surface, and thus requires a separate treatment
nism must be constructed in place of E6).

X ! . fter it has h nedFirst of all, the amount of liquid re-
Another inherent assumption of our model is related toa ter it has happenedFirst of all, the amount of liquid re

the evaporation ratd(r). Presence of the solute inside the maining in the drop at this moment is of the order of

. . compared to the original volume, and hence it would not
drop was assumed not to affect the evaporation from its sur- b g

face. This is generally true when the evaporation is not toémd."cy our maln.—order analytical results. Secon_d, as our nu-
merical calculations show, at touchdown practically all the

fast and the deposit phase is not too thick and not too con- lute is already in the d it oh d th o
centrated. When these conditions are not obeyed, the pre§9u € IS aready In the deposit phase, and e remaining
mount of solute in the liquid phase is insignificant. Thus,

ence of a thick or concentrated layer of the solute in the wa@*™"° ! ;
of the liquid moving from the phase boundary to the contactVithin our model, the remainder of the drying process cannot

line may create a strong viscous force. This viscous forcénodify the deposit ring substantially, and hence this neglect
would prevent the necessary amount of fluid from being supof the late-time regime seems well justified. Experimentally,
plied to the intense-evaporation region near the contact lindhe inner part of the deposit ring is different from our pre-
Generally, we assumed throughout this work that the viscougiction (which is a vertical wa)l and appears to have a
stresses are not important’ and this is valid whenever Spread shelf. The presence of this tail in the deposit distribu-
< ¢/37. In the deposit phase, the velocity is large due to thelion can be caused by several features absent in our model.
proximity to the contact-line divergence of the evaporationlts inherent two-dimensionality may be one of these short-
rate, and the effective viscosity is large due to the high concomings(as discussed abokehe account of the dynamical
centration of the solute. Thus, this condition may get violated?rocesses occurring after the deposit phase has already been
and the viscosity may become important in the deposiformed (e.g., avalanches of the inner wathay be another
phase, slowing down the supply of the liquid and ultimatelymissing feature. The absence of a treatment of the late-time
making the deposit dry. Obviously, this affects the evaporategime may be among these reasons influencing the final
tion rate, and the functional form of the evaporation prof”edistribution of the deposit as well. A more detailed account
changes. The simple assumption that the evaporation raff the effects of this late-time regime might be required in
stays of the same functional form, but with the divergence athe future.

the phase boundariat R) instead of the contact lin@t R)),

was shown above not to affect our main-order results. Thus, ACKNOWLEDGMENTS

our results appear to be relatively insensitive to the exact
location of this divergence within th@arrow deposit phase.
(In reality the evaporation edge would be somewhere be
tween the original contact line and the phase boundary, i.e
the real situation is intermediate between the two consid
ered) However, the deposit could modify the evaporation
rateJ(r) in other ways. When there is a dry deposit ring just
outside the liquid phase, the entire functional formlahay APPENDIX: EVAPORATION RATE

cha_nge, and the Laplace equation for an equi_v_alent electro- g purpose of this section is to obtain the evaporation
static problem must be solved anew with additional bound-

" . rate from the free surface of a round sessile drop on the
ary conditions responsible for the presence of the dry SOIu.'[Eubstrate. Since presence of the solute is irrelevant to this

rim and the_modifigd evaporation at the edge. As we show II?)urpose(at least for its low concentrationsne may assume
the Appendix, this is th_e most complicated part of the prOb'that the solute is simply absent and the drop is just pure
lem, and the mathematics can become prohibitively complex, aier W first consider the generic problem with an arbitrary
Thus, finding the exact form of may be a formidable task. st angle, and then find the appropriate limit of interest
One way around is in creating such evaporating conditions, <1 f the radius of the drop footprint on the substrat&is

that the func.tlonal profile is S|mplgr, for instanckis Justa ihen jts surface shape for an arbitrary contact angle is given
constant. This would be more difficult to control experimen-p,,

tally, but would be much easier to treat analytically. The
unavailability of the exact analytical form fdrseems to be Ri2 )
the biggest open question in this class of probl¢a;31]. h(r,t) = \/ = -r°=Rcota(t). (A1)
PE "o . sirfa(t)
The equilibrium surface shape of the liquid phase is a
spherical cafg5). This is a rigorous result valid during most Our results are presented here in their closed analytical form

of the drying process. However, whé(0,t) becomes nega- and some of them correct earlier expressions of this two-
tive and exceeds$i(t) in its absolute valudi.e., when the century-old problem.
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pont and Robert R. Deegan. This work was supported in part
By the National Science Foundation MRSEC Program under
Grant No. DMR-0213745.
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Our task involves solution of the equivalent electrostatic Rssinha
problem(the Laplace equatigrfor a conductor of the shape =
of the drop plus its reflection in the plane of the substrate
(kept at constant potential, as a boundary condititmthe  The expressioffA5) is valid for anarbitrary contact angle
case of the round drop the shape of this conductor resemblegid corrects an earlier expression of Re#7] [Eq. (28)]

a symmetrical double-convex lens comprised of two spheriwhere a factor ofy2 in the second term inside the large
cal caps. The orthogonal coordinates that match the symmequare brackets is missing.
try of this object(so that one of the coordinate surfaces co- The expression for the evaporation rate is not operable
incides with the surface of the lenare called the toroidal analytically in most cases, as it represents an integral of a
coordinates(«, 8, ¢), where the coordinates and 8 are  nontrivial special functioriwhich, in its turn, is an integral
related to the cylindrical coordinatesandz by of some simpler elementary functiondn most cases, it is
) ) necessary to have recourse to asymptotic expansions in the
[ = Risinha 5= Risin 3 (A2) contact angled in order to obtain any meaningful analytical
cosha - cosg’ cosha - cosp’ expressions. However, there is one exception to this general
, ) ) statement. An important quantity is the total rate of water
and the azimuthal anglg has the same meaning as in the 4o |oss by evaporatiatM/dt, which sets the time scale
cylindrical coordinates. Solution of the Laplace equation ing,, o/ the processes. This total rate can be expressed as an

t_oroidal coordinates involv_es L_egendre functions of frac'integral of the evaporation ratelefined as the evaporative
tional degree and was derived in a book by Lebef8].  n\5qq joss per unit surface area per unit limeer the surface
The electrostatic potential or vapor density is independent of (o drop:

the azimuthal angleb and reads

f=——m—mm. A6
cosha + cosé (A6)

!,— dM
n(a, B) = n.. + (ns— n,.)V2(cosha - cosp) dt J L+ drdg
A
“ cosh# 2m -
v f coshér cosh2m l8)TP—1/2+iT(COSha)dT. A 1+ (2.2
o coshmrcostim—6)r :‘f IOV + (gh)?2ar dr, (A7)
0

(A3)

Heren, is the density of the saturated vapor just above thevhere the first integration is over the substrate dezccu-
liquid-air interface(or the potential of the conductom,, is ~ Pied by the drop. This expression actually involves triple
the ambient vapor densitor the value of the potential at integration: one in the expression above as an integral of
infinity), and P_y,.;.(x) are the Legendre functions of the J(r), another in the expression fdfr) as an integral of the
first kind (they are real valugd The surface of the lens is Legendre function of the first kind, and the third as an inte-
described by the two coordinate surfages==-6 and g,  9ral representation of the Legendre function in terms of the
=m+0, and theB derivative is normal to the surface. The elementary functions. However, it is possible to simplify the

evaporation rate from the surface of the drop is thereforé@Pove expression significantly and reduce the number of in-
given by tegrations from three to one. Investing some technical effort

and using Eq.(2.17.1.10 of Ref. [33], one can obtain a

1 substantially simpler result that does not involve any special
Ia) = Dh_ﬁ’?ﬂ”(“'ﬁ)ﬁﬂﬁﬂl functions at all:
cosha - cosp dMm sing
=D———— (e, B) g=37—p) (A4) M RDMN—n| 2N
B B=3m-0 D(ng—n,,
Ri at - RPN T oee

where D is the diffusion constant and;=R/(cosha * 1 + cosh ?r
—-cosp) is the metric coefficient in coordinaje. [Note that f Ttani{(w— o)rldr|. (A8)
an incorrect expression far with a plus sign in the metric o sSiherr

coefficient was used in EGA2) of Ref.[21].] Thus, an exact Thi it toqeth ith th ion for th | ¢
analytical expression for the absolute value of the evapora- Is result together with the expression for the total mass o

tion rate as a function af is available: water
R.
D(ng—n.)| 1. 5 a _ J ' __;c0S860-3cosf+2
= = | M = h(r,t)27r dr = . .
J(r) R {Zsm 6+ v2(cosha + cos6) a5 (r,t)2m mpR; g

(A9)

X f COShHTtanl{(Tr— 0)7] P_llzﬂ-T(COSha)TdT] ,
o coshmr (wherep is the water densijyprovide a direct method for
(A5) finding the time dependence @ffor an arbitrary value of
the contact angle. Combining the time derivative of the last
where the toroidal coordinate is uniquely related to the expression with resultA8), one can obtain a single differen-

polar coordinate on the surface of the drop: tial equation foré as a function of time:
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d6  D(ng-n, sing 1007 Z
_:_M(l_'_cose)z _____ g‘=7(:/8
dt pR? 1+ cosf ol N [ o
1+ cosh 2 ] et
4 j — T ant(w - 6)7]dr|. (A10) : o=
o Sinh2rr g

Having determined the dependeng@) from this equation, 21

one can obtain the time dependence of any other quantity 000
dependent on the contact angle, for instance, the time depen- T00
dence of the mass from relati¢A9), or any other geometri- Time tft,

cal quantity considered earlier.

In practice, however, the analytical calculations in closed FIG. 14. Numerical results: dependence of water mdssn
form cannot be conducted any further for arbitrary contactime t. Different curves correspond to different initial contact
angles, and we will use the limit of small contact angles inangles; values of parametér are shown at each curve. The ana-
all the subsequent analytical calculations. Besides being tH¥tical result{Eq. (A13)] in the limit 6 —0 is also providedthe
limit of our interest and most practical importance, this limit Sid curve.
is also perfectly adequate even for quite substantial angles, as

1.5

will be seen in a moment. experimentally measured dependeiéé), as is clear from
Expanding the right-hand side of E@\10) in small 9, we  the comparison of Fig. 1&heory and Fig. 7(experimenkt
immediately obtain that the contact angle decredisesirly The expression for the evaporation rd#5) becomes
with time in the main order of this expansion: particularly simple in the limit of small contact angles. Em-
ploying one of the integral representations of the Legendre
t function in terms of the elementary functiof&q. (7.4.7) of
0= 6i(1 - t—), (All)  Ref.[25]], it is relatively straightforward to obtain the fol-
f lowing result:
where we introduced the total drying timedefined in terms D(ng—n.,) 2 a
of the initial contact angle, = 6(0): J(r) = T;COShE (60— 0), (A14)
|
mpR26; which, upon the identification cost=(R?+r?)/(RZ-r?) for

b= 16D(ng—N,,) (A12) 0=0, can be further reduced to Ed1). Thus, for thin drops

the expression for the evaporation rate reduces to an ex-
In the main order, the total rate of water mass loss is constafemely simple result featuring the reciprocal square-root di-

and the water mass also decreases with time linearly: vergence near t_he ed_ge of t'he drop. The same result could
have been obtained directly if we solved an equivalent elec-
R36. trostatic problem for an infinitely thin disk instead of the
mpR’6, t . . .
M = T(l - t_) (A13) double-convex lens. It is particularly rewarding that after all
f

the laborious calculations the asymptotic of our result is in
o ) . o exact agreement with the predictions of a textb¢sde Ref.
This linear time dependence during the vast majority of thg3s) for the derivation of the reciprocal square-root diver-
drying process was directly confirmed in experimentsgence of the electric field near the edge of a conducting plane
[23,24]; see Fig. 7. The dependence of the evaporation ratg the three-dimensional space&quation(11) is the result
(A8) on radius(linearity in R) was also confirmed experi- e were looking for in our case of the thin circular drops.
mentally and is known to hold true for the case of diffusion-  For the sake of completeness, it is also interesting to note
limited evaporatiorj34]. . _ the opposite limit of the expressidA5), when the surface of

In Fig. 14, we plot the exact numerical solution fd(t)  the drop is a hemispher@=/2). In this limit, a similar
based on EqgA9) and(A10) for several values of the initial cajculation can be conducted, and the uniform evaporation
contact angles, together with the small-angle asymptotic of yate is recovered:
Eq. (A13). In this figure,M; is the initial mass of water in the
drop defined by the prefactor in EA13). [Note thatt; is D(ng—n..)
not the total drying time for each; instead, it is just the () = R (60— ml2). (A15)
combination of the problem parameters defined in(B42),
which coincides with the total drying time only when This resultis also in perfect agreement with the expectations;
6,— 0.] Figure 14 demonstrates that the small-angle approxithe same result could have been obtained if we directly
mation works amazingly well up to angles as large as 45°solved the Laplace equation for a sphéitee hemispherical
and therefore no precision or generality is lost by working indrop and its reflection in the substrat&he uniform evapo-
the limit of small contact angles for the typical experimentalration rate is a result of the full spherical symmetry of such a
values ofé,. Lastly, we note that the large-angle correctionssystem. Similar exact results can also be obtained for a few
may be responsible for the observed nonlinearity of theother discrete values of the contact an@ge., for =1/4).
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