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Previous linear stability analyses of the Rayleigh-Taylor instability problem for elastic solids have been
restricted to calculating the cutoff wavelengthlc szero growth rated in the limit of Atwood numberA of unity.
Here, we rigorously derive the dispersion relations for solid/fluid and solid/solid interfaces and perform a
systematic investigation to compute the most unstable modessmaximum growth rated for all A. After rational-
izing the dispersion relations into multivariable polynomials, we compute the physically meaningful wave-
length l and growth rates for all unstable disturbances as a function of the mechanical properties of the
participating mediasshear moduli, dynamic viscosity, and density contrastd and acceleration. It is shown that at
these interfaces, the onset of instability can only arise via monotonically growing disturbances. For solid/fluid
and solid/solid interfaces, the locus of the most unstable wavelengthlm and growth ratesm pairs are calculated
to cover the entire range of behavior in dimensionless space. We find that under certain conditions, at solid/
fluid interfaces, two configurations with distinctA can have the samelm sa behavior that does not occur at
solid/solid interfacesd. In terms of estimatingsm,lm, andlc, the applicability of our results extends to layers
of finite thicknessh providedh.l /2. We suggest a plausible mechanism to explain the wavelength selection
process in nominally smooth magnetically imploded liners observed in recent experiments.
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I. INTRODUCTION

During the last 50 years, the Rayleigh-TaylorsRTd prob-
lem has been the subject of numerous theoretical, experimen-
tal, and numerical investigations. Most of these efforts have
focused primarily on the problem of two Newtonian fluids of
different thermophysical properties separated by an initially
planar interface subjected to acceleration from the lighter
toward the heavier fluid. A lucid conceptual presentation of
the RT phenomenology was given by Sharpf1g, who also
posed important issues that remain relevant todaysfor a re-
view on the Rayleigh-Taylor problem, the reader is referred
to Kull f2gd. In comparison to the vast amount of literature
devoted to the RT problem for fluid/fluid interfaces, the num-
ber of papers dealing with RT instabilities in solids is very
small.

Almost 40 years ago, Milesf3g performed the first theo-
retical study of the RT problem in an accelerated metal plate
of infinite extent but finite thickness. The methodology pro-
posed by Milesf3g for the analysis of RT instability in elas-
toplastic solids was adopted by several investigatorsf4–6g
who elucidated some of the basic processes and principles
that govern the growth of disturbances in these materials.
This methodology was clearly presented by Robinson and
Sweglef5g, who also reviewed the work published by other
authors before 1989. Bakhrakh and Kovalevf7,8g analyzed
the linear stability of a metal/inviscid-fluid interfacessee also
Ref. f9gd. Even though their work appeared in two paperssin
Russiand in 1978 and 1980, it was not cited in the Western
literature before 1993. In 1997, a report by Bakhrakhet al.
f9g containing a compilation of Russian papers on the RT
problem in solids became available in English. Using normal
modes analysis for two-dimensional disturbances, Bakhrakh
and Kovalev and Bakhrakhet al. f7–9g sBKd derived an
equation for the growth rate as a function of wave numberk.
In the limit of a low-density fluidfi.e., Atwood numberA of

unity; A=srsolid−rfluidd / srsolid+rfluiddg, they calculated the
cutoff wavelengthlcs=2p /kcd above which infinitesimal dis-
turbances in the elastic solid would grow exponentially with
time smetal plates accelerated by gas guns or high explosives
can be adequately described within this limitd. Druckerf10g
applied the theory of perfectly plastic solids to determine the
critical amplitude of a machined disturbance above which
large plastic deformations occur in an accelerated metal half-
space. In Drucker’s approximate analysisf10g, the critical
amplitude is independent of the wavelength of the distur-
bance, an approximation that is applicable in the short-
wavelength rangef9g.

The various analyses by the aforementioned investigators
provided insights into and an understanding about the behav-
ior of RT instabilities in elastoplastic solids. However, it was
not until 1991 when the theoretical work of Nizovtsev and
Raevskii f11g sNRd appeared that reasonable quantitative
agreement with both numerical simulationsf12g and experi-
mentsf13,14g was achievedf9,15g. NR followed an entirely
different approach from that of Milesf3g and his followers
f4–6g and Druckerf10g. They resorted to a combination of
thin-plate theory, asymptotic matching, and physical insight
that led to an equation relating the amplitude and wavelength
of a machined disturbance together with the mechanical
properties of the solid plate, its thickness, and acceleration
sNR’s work did not appear in Western literature until 1993
f15g and later in 1997f9gd. The first ingredient in the NR
analysis required an expression forlc during the elastic
growth of disturbances in a plate of finite thicknesssfor A
=1d. They derived an approximate relationship, within the
elastic limit, that turned out to be reasonably accurate when
compared to the exact solution derived seven years later by
Plohr and SharpsPSd f16g sthe error in theirlc, which is a
function of layer thickness and driving parameters, is within
12%d. For the problem of an accelerated elastic finite thick-
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ness platesfor A=1d, PS derived an exact analytic expression
for the dispersion relationsin implicit formd and from it the
cutoff wavelength. PS approached the RT analysis by recast-
ing the governing equations into an initial/boundary value
problem and then applying the Laplace transform method to
find an analytic solution for the stream function. The NR
stability boundary for the onset of plastic flow seems reason-
ably to agree with some experiments in metals accelerated by
high explosivesf9,13,14g, although, as pointed out by Di-
monte f17g, it is not clear what the actual values for the
mechanical properties are at these extreme conditions. Using
a carefully characterized soft solid in which the mechanical
properties were measured independently from the experi-
ment, Dimonteet al. f18g performed experiments to deter-
mine the onset of RT instability. On average, the NR theory
agrees with these experimentsf18g to within 20% sranging
from 3% to 37% over eight experimentsd.

An area of active research at Los Alamos National Labo-
ratory is the experimental and theoretical development of
equations of statesEOSd for a variety of metals subjected to
very high strain rates exceeding the levels reached by today’s
two-stage gas gunssless than 1 TPa impact pressured. Ultra-
high strain rates can be reached by magnetic implosion of
impactor liners on targets that could develop pressures as
high as 10 TPa, and peak accelerations could be as high as
1010 m/s2 f19,20g. One concern during tests of this nature is
the distortion of the impactor before it collides with the tar-
get sample to be studied, which would adversely affect ex-
perimental measurements. Reinovskyet al. f20g conducted
the first experimental confirmation of RT instability growth
in magnetically imploded aluminum cylindrical shellssnomi-
nally smooth and with machined disturbancesd. As pointed
out by Keinigset al. f19g, liner design is an important com-
ponent in developing successful EOS measurements using
magnetic implosion. These authorsf19g have discussed the
advantages of using composite impactor liners with an inner
layer of tungsten and an outer layer of aluminum, particu-
larly in the TPa range. The ideal high-performance liner de-
sign would prevent instability feedthroughf19g by preclud-
ing the imprinting of instabilities in the outer layer to be
transferred to the inner region of the liner. Depending on a
particular liner design, instability feedthrough could occur
when disturbances in the outer layer of the shell grow sub-
stantially during implosionf21g. At some stage in this pro-
cess, before impacting the target, the entire liner could re-
main as a solid, a molten metal, or a combination of solid
and melt. In this situation, there are two interfaces that could
give rise to RT instabilities, namely the liquid layer with a
massless medium and the solid adjacent to the liquid metal.
If the initial disturbances in the liner have large amplitude,
feedthrough could occur before meltingf20g. If a liner de-
sign were as smooth as it could possibly be manufactured,
the imperfection amplitudes and wavelength could lie on the
stable side of the stability boundary leading to no growth of
disturbances, provided the liner retained its strength as it
implodes. However, typical magnetic driving conditionsf20g
could be sufficiently high to cause thermal softening and/or
melting of the outer layersin either a uniform or composite
liner shelld, a few microseconds after implosion is initiated,
making it susceptible to RT instabilities and possible

feedthrough to the inner layer of the linerf19g.
If high temperatures were reached without melting in a

composite liner design, thermal softening would effectively
reduce the shear moduli of the metal layers. Absent melting,
a sufficiently softened metal/metal interface could also be
susceptible to growth of elastic instabilities whose length
scales are comparable to the characteristic dimensions of the
liner. To the best of the author’s knowledge, the stability of
solid/solid interfaces has not been studied previously. The
shear modulus decreases linearly with increasing temperature
and can reach very low values near the melting point. Nu-
merical simulations of imploding liners have shown that the
wavelength of imprinted disturbances differs significantly
from the evolving disturbances that grow at the outer region
of the molten layerf19g. Therefore, knowledge about the
nature of the growth of disturbances at solid/fluid and solid/
solid interfaces will aid in our understanding of instability
feedthrough. It is also important to discern among the spec-
trum of unstable disturbances which ones will have thefast-
est rate of growthat a specific interface.

The scope of previous linear stability analyses at metal/
fluid interfaces was narrow in that they were restricted toA
=1, focused on the cutoff wavelength to establish the insta-
bility criteria, and a systematic investigation to identify and
calculate the fastest-growing disturbances together with their
dependence on the driving parameters was not conducted. At
a solid-metal/molten-metal interface, not only isAÞ1, but
also the viscosity of the melt may not be neglected at suffi-
ciently high accelerations, especially if the adjoining metal
has softened considerably. In fact, as shown in this paper,
viscosity and the degree of softening affect the selection of
the wavelengths that lead to the fastest-growing distur-
bances. Here we consider the linear stability of disturbances
at two different kinds of interfaces, namely a linear-elastic-
solid/viscous-liquid and between two different linear-elastic-
solids, and after rationalizing the dispersion relations, we
derive exact relationships in the form of multivariable poly-
nomials with which the instability loci for the most unstable
disturbances can be determined.

The paper is organized as follows. First, we present the
governing equations and derive the dispersion relations from
the linearized disturbance equations for solid/fluid and solid/
solid interfaces. We discuss our analytical approach to the
problem, based on the rationalization of the dispersion rela-
tions by dialytic eliminationf22,23g. This is followed by a
presentation of the results and a brief discussion about the
relationship of our analyses with recent experimentsf20g.

II. FORMULATION AND LINEAR STABILITY
ANALYSES

A. Solid/fluid interface

We consider a layer of an incompressible Hookean solid
overlying a layer of a Newtonian incompressible fluid. These
continuous media lie on opposite sides of an initially planar
interface located atz=0. The fluid 1 and the solid 2 occupy
the domains −̀ ,zø0 and 0øz,`, respectively, and have
densitiesr1 and r2. To allow for a general derivation, the
shear modulusG of the solid, the dynamic viscositym of the
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fluid, and both densities are all functions ofz. The media are
subjected to a steady, uniform accelerationa=−aez perpen-
dicular to the initial interface.

The momentum equation in Cartesian coordinates in a
Eulerian reference frame for a continuum medium is

rS ]Ui

]t
+ Uj

]Ui

]xj
D = −

]P

]xi
+

]Sij

]xj
+ rai , s1d

wherer is the density of the medium,t is the time variable,
xi are the coordinate directionssx1=x, x2=y, x3=zd, Ui are
the corresponding velocity components,P is the hydrostatic
pressure,Sij are the components of the deviatoric stress ten-
sor, andai are the acceleration components. For a Hookean
solid, the constitutive equation is

]Sij

]t
= GS ]Ui

]xj
+

]Uj

]xi
D . s2d

Conservation of mass requires that

]Ui

]xi
= 0, s3d

and to ensure the constancy of the density of individual par-
ticles during motionf24g,

]r

]t
+ Ui

]r

]xi
= 0. s4d

For a Newtonian fluid, the constitutive equation is

Sij = mS ]Ui

]xj
+

]Uj

]xi
D . s5d

Chandrasekharf24g studied the linearized RT instability at a
fluid/fluid interface, and more recently, Mikaelianf25g gen-
eralized the analysis to layers of finite thickness. In the case
of Hookean solids, the derivation of the linearized perturba-
tion equations is analogous to that for fluidsf24g, and some
details will be omitted. To carry out a normal modes analy-
sis, it is assumed that disturbances occur in thex-y plane and
are superimposed to the motionless basic state according to

5
Ui

P

r

Sij

6 =5
0

p̄szd
r̄szd

0
6 + «5

uiszd
pszd
dszd
sijszd

6expfst + iskxx + kyydg,

s6d

where s is the disturbance growth rate;kx and ky are the
wave numbers for disturbances that propagate horizontally;
uiszd ,pszd ,dszd, andsijszd are disturbance amplitudes for the
velocity, pressure, density, and stress, respectively; the bar
denotes the basic state; and«!1. Because of the horizontal
isotropy in this geometry, two-dimensional disturbances need
only be considered with a wave numberk defined byk
=skx

2+ky
2d1/2. The linearized perturbation equations are ob-

tained upon substitution of Eq.s6d into Eqs.s1d–s4d and ne-
glecting terms ofOs«2d and higher. After some algebra, it
can be shown that these equations can be reduced to a single

ordinary differential equation for the velocity disturbance
wszdf=u3sx3dg in the vertical direction

Gwsivd + 2G8wsiii d − s2k2G − G9 + s2r̄dw9 − s2k2G8

+ s2r̄8dw8 + k2sk2G + G9 − ar̄8 + s2r̄dw = 0, s7d

where the prime denotes derivative with respect toz. Here-
after, we specialize the analysis to the case in which the
mechanical properties in both the fluid and solid layers are
constant. This and the boundary conditions at infinitywsz
→ ±`d=0 simplify the general solution of Eq.s7d sand its
counterpart for the fluid regiond. Upon application of the
kinematic and dynamic conditions at the solid/fluid interface,
a linear system of equations in the amplitude of the distur-
bances is obtained. By requiring that nontrivial solutions ex-
ist, the characteristic equationsdispersion relationd
Csfsr1,r2,m ,G,a,k,sd=0 that relates the growth rate, the
wave number of disturbances, and the controlling parameters
is obtained. In terms of dimensionless variables, the disper-
sion relation can be written as

Csfsr,m,k,ad = F1sr,k,ad +
m

b1
F2sr,m,k,ad = 0, s8d

where the dimensionless variables area2=ss /ad2G/r2, k
=Gk/ sr2ad, r =r1/r2, m2=amsr2/G3d1/2, b1=sra+m2k2d1/2,
b2=sa2+k2d1/2, and the functions F1sr ,k ,ad and
F2sr ,m,k ,ad are given by

F1 = s1 + rda4 − s1 − r − 4kdka2 + 4sk − b2dk3, s9d

F2 = rs1 + rdb2a4 − s1 − rdfs1 − rda2 + rb2gka2 + h1 − r2

− 4fmab1 + rs1 − m2adb2gjk2a2 + 4fb2 − mas2 − m2ad

3sb1 + mb2dg − 4s1 − m2ad2k5 − 4fs1 − rds1 − m2ada

− ms2 − m2adb1b2gk3a. s10d

If the fluid layer is inviscid, thenm=0, and Eq.s8d becomes
F1=0 and is equivalent to the characteristic equation derived
by Bakhrakh and Kovalev and Bakhrakhet al. f7–9g sBKd in
dimensional formsafter the substitutiona=−gd. Robinson
and Sweglef5g arrived at an equation similar to Eq.s9d but
with r =0.

B. Solid/solid interface

For a solid/solid interface, we consider two layers of in-
compressible Hookean media lying on opposite sides of an
initially planar interface located atz=0. Solids 1 and 2 oc-
cupy the domains −̀,zø0 and 0øz,`, respectively, and
have densitiesr1 and r2 and shear moduliG1 and G2. As
before, both solids are subjected to a steady, uniform accel-
erationa=−aez perpendicular to the initial interface. In this
case, Eq.s7d is applied to both sides of the interface, assum-
ing that the mechanical properties are constant. Enforcing the
appropriate boundary conditions and the conditions at the
solid/solid interface leads to the dispersion relation
Csssr1,r2,G1,G2,a,k,sd=0, which in dimensionless form is
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Csssr,R,k,ad = F1sr,k,ad +
R

b3
F3sr,R,k,ad = 0, s11d

whereR2=G1/G2, b3=sra2+R2k2d1/2, F1sr ,k ,ad is given by
Eq. s9d, andF3sr ,R,k ,ad is

F3 = rs1 + rdb2a4 − s1 − rdfs1 − rda2 + rb2gka2 + h1 − r2

− 4fRb3 + rs1 − R2db2gjk2a2 + 4fs1 − R2d2b2 − Rs2

− R2db3g − 4s1 − R2d2k5 − 4fs1 − rds1 − R2da2 − Rs2

− R2db2b3gk3. s12d

If the lighter medium has no strengthsG1=0d, Eq. s11d re-
duces to the same limit as that of Eq.s8d for a solid/fluid
interface in which the fluid region is inviscidsm=0d.

III. ANALYTICAL APPROACH

A. Cutoff wave numbers

For a given set of controlling parameters in either a solid/
fluid or a solid/solid interface, the nature of the disturbances
is specified by their growth rate through the dispersion rela-
tions Csfsr ,m,k ,ad=0 and Csssr ,R,k ,ad=0, Eqs. s7d and
s11d, respectively. Disturbances that neither grow nor decay
are neutralsa=0d and demarcate the stability boundary cor-
responding to the cutoff perturbations of dimensionless wave
numberkc. Thus, disturbances whose wave numbers are in
the range 0øk,kc are unstable, and within this range there
will be a disturbance with a maximum growth rate, i.e., the
fastest growing in the linear regime. For a solid/fluid inter-
face, a general expression forkc can be determined by ex-
panding Eq.s8d as a Taylor series arounda=0,

2mCsf

ra3 = 2k + r − 1 +Osad,

therefore the dimensionless cutoff wave number is

kc =
1 − r

2
=

A

1 + A
, s13d

whereA=s1−rd / s1+rd and kc is a function of the density
ratio only. In terms of dimensional variables,

kc =
sr2 − r1da

2G
, s14d

which is the result derived by previous authorsf7–9,16g.
Those authors arrived at the above result under the assump-
tion thatA=1 sor r =0d, but this approximation is not neces-
sary. Similarly, for a solid/solid interface, the leading-order
expansion of Eq.s11d in a is

2RCss

rs1 + R2da4 = 2s1 + R2dk + r − 1 +Osad

and

kc =
1 − r

2s1 + R2d
=

A

s1 + Ads1 + R2d
. s15d

Therefore, for a solid/solid interface,kc is both a function of
the density ratio and of the shear moduli ratioR. The dimen-

sional version of Eq.s15d for the cutoff wave number is

kc =
sr2 − r1da
2sG1 + G2d

. s16d

It is important to note that for a solid/fluid interface,kc does
not involve the viscosity of the fluid that “pushes” against
the solid, whereas for a solid/solid interface,kc is a function
of the mechanical properties of both materials.

B. Most unstable disturbances

Solid/fluid and solid/solid interfaces will have the same
stability behavior provided the fluid is inviscid in the former
and the lighter solid has no shear strength in the latter. There-
fore, when inertia is the determining factor that characterizes
the behavior of the lighter layer, thenCsfsr ,0 ,k ,ad
=Csssr ,0 ,k ,ad, in which case the characteristic equation is
F1sr ,k ,ad=0. For this limiting case, it will be shown that
exact analytic solutions can be deduced for the fastest grow-
ing disturbances for all Atwood numbers. The importance of
a systematic analysis within this limit is twofold. First, it
shares distinctive features with the stability and growth of
disturbances for the general casessi.e., when the shear
stresses within the lower layer cannot be neglected in either
solid/fluid or solid/solid interfacesd. Second, the mathemati-
cal methodology for the treatment of the dispersion relation,
which carries over the general cases, can be presented in
detail. Thus, we begin by examining the stability of inter-
faces governed by Eq.s9d.

From the point of view of analysis, one difficulty in deal-
ing with these kinds of dispersion relations lies in the fact
that both of the dimensionless variables of interest, i.e., the
growth rate and wave number, appear as sums raised to a
noninteger power. Equationss8d ands11d contain linear com-
binations of the unrationalized termsb1,b2,b3,b1b2, and
b2b3. Rationalization of the dispersion relation allows for an
analytic treatment of the stability boundary in terms of mul-
tivariable polynomial equations. Within this framework, it
can readily be established whether or not the onset of insta-
bility is through monotonically or oscillatory growing distur-
bances because the dispersion relation can be written in the
form

H1sr,f,v,kd + ivH2sr,f,v,kd = 0, s17d

whereH1 and H2 are real-valued polynomials,f could be
eitherm or R, and the oscillation frequency of disturbancesv
is related to the growth rate througha= iv. For there to be
oscillatory onset,H2 must exist, the roots ofH2=0 must be
positive real numbersfImsvd=0 andv.0g, and for those
roots to be physically meaningful they must satisfy the un-
rationalized dispersion relation. If these conditions are not
satisfied, then the system can only become unstable via
monotonically growing disturbancesssteady onsetd.

We proceed to rationalize Eq.s9d swhich contains a single
unrationalized term, i.e.,b2d to transform it into a polyno-
mial in a ,k, and r. A general procedure for the rationaliza-
tion of equations is by dialytic elimination of the radical
terms through the computation of Sylvester’s resultant
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f22,23g. We denote the rationalized form ofF1sr ,k ,ad=0,
after eliminatingb2, as f1sr ,k ,ad=0, which can be written
as

f1 = a6 −
2s1 − r − 4kdk

1 + r
a4 + HS1 − r

1 + r
D2

− 8F1 − r − s3 + rdk
s1 + rd2 GkJk2a2 −

8s1 − r − 2kd
s1 + rd2 k5 = 0.

s18d

In rationalized form, the characteristic equation is trans-
formed into a multivariable polynomial that is cubic ina2

and from its discriminant it can be shown that there is only
one real root that corresponds to the physically meaningful
solution for the growth rate. The interface will be unstable
for all configurations that lead to values ofa2.0, neutrally
stable fora2=0, and stable otherwise. Since Eq.s18d only
has even powers ofa, this implies thatH2 in Eq. s17d is
identically zero, and thus oscillatory onset is not possible in
this system.

The most unstable disturbances are those with a maxi-
mum value ofa2 in the a-k plane and thus satisfy]a2/]k
=0. Therefore, a relationship that is satisfied at the maximum
value of the growth rateam corresponding to a wave number
km is obtained by implicit differentiation off1sr ,k ,ad=0
with respect tok, solving for ]a2/]k, and equating to zero,

s1 − r − 8kda4 − H s1 − rd2

1 + r
− 4F3s1 − rd − 4s3 + rdk

1 + r
GkJka2

+ 4F5s1 − rd − 12k

1 + r
Gk4 = 0. s19d

After dialytically eliminatinga2 from Eqs.s18d and s19d, a
quartic equation for the most unstable dimensionless wave
numberkm is obtained, which in terms of the Atwood num-
ber becomes

f11 +As3 + 8Adgkm
4 +

Af9 − As7 + 32Adg
2s1 + Ad

km
3

+
A2s3 + 50Ad

4s1 + Ad
km

2 −
3A3s9 + 10Ad

8s1 + Ad2 km +
3A4

8s1 + Ad2 = 0.

s20d

Similarly, k can be eliminated between Eqs.s18d and s19d,

f11 +As3 + 8Adg2am
8

−
A2f63 + 3As156 + 157Ad + 2A3s9 + 8Adg

1 + A
am

6

+
A4s486 + 873A + 4A3d

4s1 + Ad
am

4 −
27A6s19 + 20Ad

16s1 + Ad2 am
2

+
27A8

16s1 + Ad2 = 0, s21d

resulting in a quartic polynomial inam
2 . The departure from

the classical RT growth ratesi.e., for inviscid fluidsd can be
quantified by the ratiohm=am/ sAkmd1/2f=sm/ sAakmd1/2g for

which an equation can be found readily from Eqs.s18d and
s19d,

s11 + 3A + 8A2dhm
8 − 2s15 − 5A + 4A2dhm

6 + s39 − 12A

+ 2A2dhm
4 −

3

2
s15 − 2Adhm

2 +
9

2
= 0. s22d

To rationalize the entire characteristic equations8d, two
separate dialytic eliminations are necessary to eliminateb1
andb2. At each elimination step, the order of the multivari-
able polynomials and the number of independent terms in-
creases. Let us denote a dialytic elimination step between
two expressions byDh· , ·j and the unrationalized termj to
be eliminated is denoted by a superscript in parentheses
Cx

sjdsx=sf,ssd. For a solid/fluid interface, the steps required
for rationalization to eliminateb1 andb2 are

Csf
sb1d = DhCsf,ra + m2k2 − b1

2j, s23d

Csf
sb1,b2d = DhCsf

sb1d,a2 + k2 − b2
2j, s24d

which yield a 14th-order multivariable polynomial ina,

Csf
sb1,b2d = o

n=0

14

qnsr,m,kdan = 0, s25d

whereqn is thenth coefficient of the rationalized dispersion
relation sthe explicit form of eachqn is not transcribed here
because the expressions are considerably longd. Substituting
a= iv in Eq. s25d leads to

o
n=0

7

qrnsr,m,kdv2n + ivo
n=0

6

qinsr,m,kdv2n = 0, s26d

whereqrn andqin are the coefficients for the real and imagi-
nary parts of the dispersion relation, respectively. Even
though theH2 polynomial inv fsee Eq.s17dg exists, the roots
of H2=0 from Eq. s26d are not physically meaningful, and
thus there is no oscillatory onset. This is not a surprising
result because in neither the fluid/fluid nor in the solid/
vacuum systems is oscillatory onset possible, as shown by
Menikoff et al. f26g and by PSf16g, respectively. For a solid/
solid interface, two rationalization steps are needed as well,

Css
sb2d = DhCss,a

2 + k2 − b2
2j, s27d

Css
sb2,b3d = DhCss

sb2d,ra2 + R2k2 − b3
2j, s28d

to yield a polynomial in even powers ofa,

Css
sb2,b3d = o

n=0

6

Qnsr,R,kda2n = 0, s29d

whereQn is thenth coefficient of the rationalized dispersion
relation. Since Eq.s29d has no imaginary part, i.e.,H2 is
identically zero, only monotonically growing disturbances
are physically meaningful at the onset of instability.

IV. RESULTS

We begin this section with the interfacial stability of a
solid overlying a layer that possesses inertia without viscos-
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ity sm=0d or strengthsR=0d. This is followed by results for
the stability of solid/fluid and solid/solid interfaces with mi-
croscopic physicssi.e., viscosity and strengthd at both sides
of the interface, where the effects that the controlling dimen-
sionless parameters have on the stability boundary and
growth rate of disturbances are explored over the entire
range of behavior in the dimensionless parameter space. The
availability of efficient variable-precision-arithmetic algo-
rithms for the numerical solution of algebraic polynomial
equations of high order makes the computation of the growth
ratesa as a function of wave numberk sand the driving
parametersd for the systems considered here expedient. This
approach avoids potential difficulties encountered in the nu-
merical solution of systems of unrationalized equationsfsuch
asCsfsr ,m,k ,ad=0 and]Csf(r ,m,k ,askd) /]k=0g by New-
ton iteration when the radii of convergence are very small.

For m=0 sor equivalentlyR=0d, since all of the equations
for a and the most unstablek are fourth order or less, closed-
form solutions were used to compute the locus of the most
unstable modes as a function of Atwood numberA. Figure
1sad shows the variation ofa2 as a function ofk for different
values ofA obtained from the physically meaningful solution
of Eq. s18d. For a given configuration, the interface will be
unstable for all values ofk such thata2.0, neutrally stable

for k=kc fgiven by Eq.s13dg whena2=0, and stable other-
wise. We note that in the limitA=1, our analytical result of
kc=1/2 fwhere the solid curve in Fig. 1sad intercepts the
abscissag agrees with the result obtained by BK and with that
of PS in the limit of largeh. Miles’ result ofkc=4/13 f3g is
smaller than the correct answer by a factor of 1.625. As
pointed out earlierf9,11,16g, the approach taken by Milesf3g
and his followersf4–6g is flawed because for solids the ve-
locity field cannot be correctly approximated by the stream
function of an inviscid flow. Thek of the most unstable
disturbancekm lies within the range 0,km,kc and occurs
when a2 has a maximum denoted byam

2 . Physically, this
condition takes place when the inertial forces, buoyancy
forces, and the stabilizing forces due to the strength of the
solid are of comparable magnitude. The upper bound on the
most unstable growth rate occurs whenA=1 fsolid curve in
Fig. 1sadg, for which am

2 =0.0972sam=0.3118d and km

=0.2256. At first glance, the growth rate curves appear to be
symmetric with respect tokm, but as seen in Fig. 1sbd, km is
always less than half ofkc for a fixed A. As the density
contrast decreases, botham and km monotonically decay to
zero, thus to effect destabilization, disturbances with increas-
ingly large wavelengths are required. This is clearly illus-
trated in Fig. 1sbd, which shows the stability boundarykc

FIG. 1. ForCsf=Css, sad variation ofa2 as a function ofk for different values ofA: —, A=1; - - - - - -, A=0.8; —···—,A=0.6; –·–·–·–,
A=0.4; ··············,A=0.2. sbd Stability boundary in theA-k plane: —,km; ··············,kc. scd Variation of the maximum dimensionless growth
rateam as a function ofA. sdd Maximum dimensionless growth rateam as a function of the most unstable dimensionless wave numberkm

for all A.
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sdotted curved andkm as a function ofA, the latter of which
was computed from Eq.s20d. The dot in the upper right-hand
corner of the dotted curve represents the result derived by
BK. Figure 1scd shows the growth rates for allA that lead to
the most unstable configuration computed from Eq.s21d and
Fig. 1sdd shows the dependence ofam with km.

In our linear stability analyses, there is no explicit length
scale because the participating media extend to infinity in the
direction of acceleration. To assess the applicability limits of
our results to finite thickness layers, the values ofam,km,
andkc computed from the dispersion relation derived by PS
svalid only for A=1,m=0 f16gd as a function of the plate
thicknessh are compared to those obtained from Eqs.s13d,
s20d, ands21d in the limit A=1. With the same definitions for
the dimensionless growth rate and wave number used in Eq.
s9d fa2=ss /ad2G/r, k=Gk/ srad, and b=sa2+k2d1/2g, and
introducing the dimensionless thicknessu=rah/G, PS’s dis-
persion relation becomes

a4fa4 − k2 + 8k2sa2 + 3k2dg + 8k3h2k3s3a2 + 2k2d − bsa2

+ 2k2d2 3 fcothsukdcothsbud − cschsukdcschsbudgj = 0.

s30d

An expression forkc involving u is obtained after dividing
Eq. s30d by a4 and then expanding in Taylor series around
a=0,

s1 − 4kc
2dsinh2sukcd + s2ukc

2d2 = 0. s31d

For instance, ifh=0.4 l, the errors in estimatingam,km, and
kc are 1.2%, 2.1%, and 8.9%. Ifh.l /2, the corresponding
errors foram,km, andkc are less than 0.5%, 1.3%, and 3.8%,
respectively. The largest error is always onkc for all h/lc.
As shown in Fig. 2, foram and kc, this error drops almost
exponentially ash/l increasessthe error inkm is either be-
tween kc and am or less than that foram if 0.19,h/l
,0.35d. This is a reflection of the fact that only a small
distance away from the interface influences the linear insta-
bility growth in all RT configurations, regardless of whether
they are solid or fluid. NR relied on this fact to approximate

kc as a function ofh. Even though the percentage error com-
parisons in Fig. 2 are for the caseA=1 andm=0 sor R=0d,
similar trends are expected in the case of an interface with
two distinct participating mediasi.e., AÞ1, mÞ0, RÞ0d.

The departure from the classical growth rate form=0 sor
R=0d is found by solving Eq.s22d, whose solution is ap-
proximately given by

hm < 0.666s1 − 0.024A + 0.0096A2d. s32d

Thus, for all of the possible most unstable configurations the
mean value ofhmf=am/ sAkmd1/2=sm/ sAakmd1/2g is 0.67.
From Eq.s32d, an approximate expressionsleading order in
Ad for the growth rate in terms of dimensional variables is
obtained,

sm < 0.67ÎAakm, s33d

wherekm<s0.478−0.027Adkc. Interestingly, the growth rate
estimated by Drucker for the amplitude of a machined sinu-
soidal disturbance, of wave numberk, in a perfectly plastic
solid half-space is 0.674Îak f10g, provided the initial pre-
formed disturbance amplitude exceeds 2Y/ra sY is the yield
stress of the solid in uniaxial tensiond f10g.

For a solid/fluid interface, with a fixedAs=0.8d, Fig. 3sad
showsa2 as a function ofk for increasing values ofm as
obtained from the physically meaningful solutions of Eq.
s25d. In an actual system, the parameterm increases with
viscosity s,m1/2d and decreases with shear moduluss
,G−3/4d. Sincekc is only a function ofA fsee Eq.s13dg, all
of the curves in Fig. 3sad have the samekc. As m increases,
the maximum shifts towards smallerk while the growth rate
rapidly decays towards zero for wave numbers larger than
km. In the neighborhood ofkc, the growth-rate curves behave
like a2,1/m4. This rapid decay requires that form.0,
there must be an inflection point fork.km. As expected, for
very smallk, the growth rate is linear and weakly dependent
on the microphysics. For a fixedms=1d, Fig. 3sbd showsa2

as a function ofk for different values ofA. As in Fig. 3sad,
there is also an inflection point, but in this case, it is increas-
ingly closer to the interception with the abscissa asA de-
creases. Figure 3scd shows that for a fixedA, asm increases,
longer wavelengths are needed to achieve the most unstable
mode, even though the critical wavelength remains the same
fsee Fig. 3sadg. For large values ofm, Fig. 3scd shows thatkm
becomes weakly dependent on the density contrast, while for
small values ofA,km is weakly dependent onm. Figure 3sdd
shows the locus of the most unstableam-km pairs for all A
and differentm. The dots denote configurations whereA=1,
and below this pointA decreases monotonically to zero at the
origin. For mù2.1, there is a point of infinite slope
s]am/]km=`d, which for m=2.1 occurs atA=1. This im-
plies that form.2.1, curves in theam-km plane are double-
valued over a small range ofkm. Therefore, for a fixedm
such thatm.2.1, there are two configurationsswith different
Ad whose most unstable wave number is identical and their
respective growth rates are different. For instance, ifm=50,
the interfaces withA=0.64 andA=0.937 have the samekm
=0.002 682. Figure 3sed shows the double-valued region in
the am-km plane form=50.

FIG. 2. Error inam andkc as a function ofh/l when computed
with the semi-infinite thickness layer theory: —,am; ············,kc.
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For a solid/solid interface, with a fixedAs=0.8d, Fig. 4sad
showsa2 as a function ofk for increasing values of the shear
moduli ratioRf=sG1/G2d1/2g as obtained from the physically
meaningful solutions of Eq.s29d. In this case, thekc continu-
ously decreases asR increases and the topology of the
growth rate curves is similar for allR sthe slope of the curve
at the interception with the abscissa is weakly dependent on

the value ofRd. In fact, these curves are nearly self-similar if
the ordinate and the abscissa are scaled bya /am andk /kc,
respectively. Clearly, the increase in strength in the lighter
solid layer stabilizes the interface, requiring longer wave-
lengths for instability. For a fixedRs=0.5d, Fig. 4sbd shows
that the behavior ofam

2 asA decreases is very similar to that
in Fig. 1sad for m=0 sexcept for the smaller values ofam

2 d.

FIG. 3. For solid/fluid interfaces, variation ofa2 as a function ofk sad for A=0.8 and different values ofm: ··············,m=0.1; –·–·–·– ,
m=1; —···—,m=2; - - - - - -, m=4; —, m=10; sbd for m=1 and different values ofA: ··············,A=0.1; –·–·–·— ,A=0.2; —···—,A
=0.4; - - - - - -, A=0.6; —, A=0.8. Boundaries of the most unstable modes in thescd km-A plane for different values ofm: ··············,m
=0.1; –·–·–·– ,m=1; —···—,m=2; - - - - -, m=4; —, m=10; sdd am-km plane for different values ofm: ··············,m=0; –·–·–·– ,m=1;
—···—,m=2; - - - - - -, m=4; —, m=10; sed locus of the double-valued region in theam-km plane form=50.
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Figure 4scd shows the monotonic increase ofkm with A for
different values ofR. For smallR, these curves are similar to
those in Fig. 3scd for small m. However, asR increases, the
slopess]km/]Ad of curves with smallA are smaller than
those seen in Fig. 3scd with largeM, and the converse is true
for curves corresponding to values ofA near unity. Finally,
Fig. 4sdd shows the locus of the most unstableam-km pairs
for all A and differentR. Unlike the behavior found in solid/
fluid interfaces, these curves are single-valued for allR.

V. CONCLUDING REMARKS

For initially planar solid/fluid and solid/solid interfaces,
we derived dispersion relations from which we computed the
stability boundaries and loci of the most unstable modessa
condition attained for all wavelengths whose growth rates
are maximad in dimensionless space spanning the entire
range of driving conditions. We showed that both kinds of
interfaces could only become unstable via steady onsetsos-
cillatory onset is not admissibled. At accelerated perfectly
planar solid/fluid and solid/solid interfaces, the selected
wavelength takes place within the elastic regime of the solid

media and corresponds to the most unstable mode for the
particular configuration.

The simplifying assumptions that allowed an analytic
treatment for the present linear stability analyses at solid/
fluid and solid/solid interfaces are constant acceleration, in-
compressible media, isothermal conditions, infinite thick-
ness, and a single wavelength. Even though these
assumptions do not apply to a magnetically imploding
smooth metal linerf19,20g that is continuously accelerated,
the material is compressible, and the mechanical properties
and thermodynamic state change in space and time due to
temperature gradients, inferences about the behavior of spe-
cific snapshots of the liner implosion can be made. From the
dispersion relation for a liquid/vacuum interfacef24g, it can
be shown that the most unstable wavelength and correspond-
ing growth rate are

lmf = 12.805S m2

ar2D1/3

, smf = 0.46Sa2r

m
D1/3

. s34d

Using Eqs.s34d with a mean acceleration of 53108m/s2

f20g, a melt density of 2340 kg/m3, and the viscosity of
molten aluminum, which is on the order of 1 mPa sf27g,

FIG. 4. For solid/solid interfaces, variation ofa2 as a function ofk sad for A=0.8 and different values ofR: ··············,R=0.1; –·–·–·– ,
R=0.3; —···—,R=0.5; - - - - - -, R=0.7; —, R=1; sbd for R=0.5 and different values ofA: ··············,A=0.2; –·–·–·— ,A=0.4; —···—,
A=0.6; - - - - -, A=0.8; —, A=0.95. Boundaries for the most unstable modes in thescd km-A plane for different values ofR: ··············,
R=0.1; –·–·–·– ,R=0.3; —···—,R=0.5; - - - -, R=0.7; —, R=1; sdd am,km plane for different values ofR: ··············,R=0; –·–·–·– ,
R=0.5; —···—,R=0.7; - - - - -, R=1; —, R=2.
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results insmf=3.93107s−1 si.e., it would have taken only
1 ns for a disturbance of 10µm in amplitude to grow larger
than 0.5 mmd and lmf=0.9 mm, which is about 500 times
larger than the experimental value of 0.5 mm for a nominally
smooth liner f20g. These large discrepancies inl and s
might be explained if the unstable wavelength selection pro-
cess and instability growth were to occur while the liner is in
solid rather than in liquid phase. From Eqs.s20d ands21d, it
can be shown that at a solid/vacuum interface, the most un-
stable wavelength and growth rate are

lms= 27.85
G

ar
, sms= 0.31aS r

G
D1/2

. s35d

The spatiotemporal variation of the liner shear modulus is
dictated by its thermodynamic state during implosion, and
the magnitude of this modulus can be estimated, for instance,
by the Steinberg-Cochran-Guinan constitutive equationf28g.
From the temperature, density, and pressure histories in the
implosion experimentsf20g, it is possible to reach a state in
which the liner has softened toG=21 MPa, with a density of
2345 kg/m3 sslightly higher than at the melting pointd. Un-
der these conditions, Eqs.s35d yield lms=0.5 mm andsms
=1.73106s−1 fsince h<4lms, Eqs. s35d are applicableg. A
disturbance with amplitude of 10µm would grow to about
0.5 mm in 2.4µs, which is more in line with experiments
f20g.

In magnetically imploded liners, the driving conditions
that can destabilize the system are continuously changing in
space and time. As shown in the Atlas experiments for
smooth linersf20g, there is a time interval of stable states. At
the beginning of implosion, the shear modulus of the liner is
high, the acceleration is low, and thus the most unstable
wavelength is larger than any characteristic length scale. As
implosion progresses, the liner could reach a potentially un-
stable state at a low growth rate incapable of destabilizing
disturbances within the experimental time scale. Subse-
quently, the combined effect of a continuously decreasing
shear modulussdue to Ohmic heatingd with the increasing

acceleration of the liner could lead to a sufficiently high
growth rate to enable instability. Therefore, during the evo-
lution of the implosion process of a nominally smooth liner,
several potentially unstable states are passed over until a
state is reached that has a sufficiently high growth rate and
an admissible wavelengthswith respect to the liner dimen-
sionsd to destabilize the interface before melting. We suggest
that for nominally smooth imploding liners, wavelength se-
lection is determined by the most unstable mode when the
liner is in the solid phase. Once this wavelength is selected
within the elastic regime, it will carry over into the nonlinear
plastic regime and into the early stages of fluid flow if melt-
ing occurs.

The growth rate of a disturbance is expected to change
beyond the elastic limit of the solid. However, little is known
about disturbance growth rates in the plastic regimef10g, and
a compelling theoretical treatment has yet to be developed.
Recently, Colvinet al. f29g performed simulations and de-
veloped an approximate analytical model to estimate the
growth rate of instabilities in elastoplastic media. Their dis-
persion relationfEq. s7d in Ref. f29gg for A=1 predicts a
cutoff wavelengthlc of 2pG/ar that is off by a factor of 2
from the correct result of 4pG/ar sfor h.l /2d first ob-
tained by BK, confirmed by PS, and rigorously derived and
generalized in this papersalso, these authors misquoted
Miles’ result forlc=13pG/2ar f3gd. Consequently, their dis-
persion relation leads to the incorrect most unstable wave-
length within the elastic regime, and even though they ac-
count for the layer thicknessh, their lc is independent ofh
sfor very thin layerslc,h1/2 as shown earlierf9,11,15,16gd.
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