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Fastest growing linear Rayleigh-Taylor modes at solid/fluid and solid/solid interfaces
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Previous linear stability analyses of the Rayleigh-Taylor instability problem for elastic solids have been
restricted to calculating the cutoff wavelength(zero growth ratgin the limit of Atwood numberA of unity.
Here, we rigorously derive the dispersion relations for solid/fluid and solid/solid interfaces and perform a
systematic investigation to compute the most unstable m@dasimum growth ratefor all A. After rational-
izing the dispersion relations into multivariable polynomials, we compute the physically meaningful wave-
length N and growth rates for all unstable disturbances as a function of the mechanical properties of the
participating medidshear moduli, dynamic viscosity, and density conjrastl acceleration. It is shown that at
these interfaces, the onset of instability can only arise via monotonically growing disturbances. For solid/fluid
and solid/solid interfaces, the locus of the most unstable wavelengimd growth rater,,, pairs are calculated
to cover the entire range of behavior in dimensionless space. We find that under certain conditions, at solid/
fluid interfaces, two configurations with distindtcan have the samkg,;, (a behavior that does not occur at
solid/solid interfaceks In terms of estimatingr,,, A\, and\, the applicability of our results extends to layers
of finite thicknessh providedh>\/2. We suggest a plausible mechanism to explain the wavelength selection
process in nominally smooth magnetically imploded liners observed in recent experiments.
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. INTRODUCTION unity; A=(psoiia=Priuia)/ (Psolia* Pruia) ], they calculated the

During the last 50 years, the Rayleigh-Tayl&T) prob-  cutoff wavelength\,(=27/k;) above which infinitesimal dis-
lem has been the subject of numerous theoretical, experimefirbances in the elastic solid would grow exponentially with
tal, and numerical investigations. Most of these efforts havdime (metal plates accelerated by gas guns or high explosives
focused primarily on the problem of two Newtonian fluids of can be adequately described within this limDrucker[10]
different thermophysical properties separated by an initiallyapplied the theory of perfectly plastic solids to determine the
planar interface subjected to acceleration from the lightecritical amplitude of a machined disturbance above which
toward the heavier fluid. A lucid conceptual presentation oflarge plastic deformations occur in an accelerated metal half-
the RT phenomenology was given by Shafg, who also space. In Drucker’'s approximate analy§i®], the critical
posed important issues that remain relevant todaya re- amplitude is independent of the wavelength of the distur-
view on the Rayleigh-Taylor problem, the reader is referrecbance, an approximation that is applicable in the short-
to Kull [2]). In comparison to the vast amount of literature wavelength rangg9].
devoted to the RT problem for fluid/fluid interfaces, the num-  The various analyses by the aforementioned investigators
ber of papers dealing with RT instabilities in solids is very provided insights into and an understanding about the behav-
small. ior of RT instabilities in elastoplastic solids. However, it was

Almost 40 years ago, Mileg3] performed the first theo- not until 1991 when the theoretical work of Nizovtsev and
retical study of the RT problem in an accelerated metal plat&kaevskii [11] (NR) appeared that reasonable quantitative
of infinite extent but finite thickness. The methodology pro-agreement with both numerical simulatigri®] and experi-
posed by Mileqd3] for the analysis of RT instability in elas- ments[13,14 was achieved9,15]. NR followed an entirely
toplastic solids was adopted by several investigaldrst]  different approach from that of Milel3] and his followers
who elucidated some of the basic processes and principldd—6] and Drucker{10]. They resorted to a combination of
that govern the growth of disturbances in these materialghin-plate theory, asymptotic matching, and physical insight
This methodology was clearly presented by Robinson anthat led to an equation relating the amplitude and wavelength
Swegle[5], who also reviewed the work published by other of a machined disturbance together with the mechanical
authors before 1989. Bakhrakh and Koval&8] analyzed properties of the solid plate, its thickness, and acceleration
the linear stability of a metal/inviscid-fluid interfa¢eee also  (NR’s work did not appear in Western literature until 1993
Ref.[9]). Even though their work appeared in two papgéns [15] and later in 19979]). The first ingredient in the NR
Russian in 1978 and 1980, it was not cited in the Westernanalysis required an expression fag during the elastic
literature before 1993. In 1997, a report by Bakhrathal.  growth of disturbances in a plate of finite thickndfsr A
[9] containing a compilation of Russian papers on the RT=1). They derived an approximate relationship, within the
problem in solids became available in English. Using normaklastic limit, that turned out to be reasonably accurate when
modes analysis for two-dimensional disturbances, Bakhrakbompared to the exact solution derived seven years later by
and Kovalev and Bakhraklet al. [7-9] (BK) derived an Plohr and ShargP9 [16] (the error in their\., which is a
equation for the growth rate as a function of wave number function of layer thickness and driving parameters, is within
In the limit of a low-density fluidi.e., Atwood numbeA of  12%). For the problem of an accelerated elastic finite thick-
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ness platéfor A=1), PS derived an exact analytic expressionfeedthrough to the inner layer of the lingtr9].

for the dispersion relatioin implicit form) and from it the If high temperatures were reached without melting in a
cutoff wavelength. PS approached the RT analysis by recastomposite liner design, thermal softening would effectively
ing the governing equations into an initial/boundary valuereduce the shear moduli of the metal layers. Absent melting,
problem and then applying the Laplace transform method t@ sufficiently softened metal/metal interface could also be
find an analytic solution for the stream function. The NRsysceptible to growth of elastic instabilities whose length
stability boundary for the onset of plastic flow seems reasongcales are comparable to the characteristic dimensions of the
ably to agree with some experiments in metals accelerated Qier To the best of the author’s knowledge, the stability of
high explosives9,13,14, although, as pointed out by Di- qqjig/solid interfaces has not been studied previously. The

monte[17], it is not clear what the actual values for the_ shear modulus decreases linearly with increasing temperature

2 carefuly hatacterized soft Sald in which ihe mechanical 1 CaN feach very low values near the meling poirt. Nu-
y merical simulations of imploding liners have shown that the

roperties were measured independently from the experi- . . . . S
Fr)ner?t, Dimonteet al. [18] perform%d expe?iments to det(fr- wavelength of imprinted disturbances differs significantly

mine the onset of RT instability. On average, the NR theor;;rom the evolving disturbances that grow at the outer region
agrees with these experimerts3] to within 20% (ranging of the molten layer{19]. _Therefore, knowledge_ about the
from 3% to 37% over eight experimeits nature of the growth qf o_Ilsturbances at sol_ld/flwd_and s_o_lld/
An area of active research at Los Alamos National LabO_SO“d interfaces will aid in our Understandlng of |nStab|l|ty
ratory is the experimental and theoretical development ofeé€dthrough. It is also important to discern among the spec-
equations of statéEOS for a variety of metals subjected to trum of unstable disturbances which ones will have fes-
very high strain rates exceeding the levels reached by today®@St rate of growthat a .SDECITIC mterfac.e'.
two-stage gas guniess than 1 TPa impact pressureltra- _Th_e scope of previous Ilnear stability analyses_ at metal/
high strain rates can be reached by magnetic implosion diuid interfaces was narrow in that they were re_str|cted>_\to
impactor liners on targets that could develop pressures gsi. focused on the cutoff wavelength to establish the insta-
high as 10 TPa, and peak accelerations could be as high Rdlity criteria, and a systematic investigation to |dent|fy and.
10 m/<2 [19,20. One concern during tests of this nature is calculate the fastest-grqwmg disturbances together with their
the distortion of the impactor before it collides with the tar- dependence on the driving parameters was not conducted. At
get sample to be studied, which would adversely affect ex@ Solid-metal/molten-metal interface, not onlyAs#1, but
perimental measurements. Reinovaiyal. [20] conducted @IS0 the viscosity of the melt may not be neglected at suffi-
the first experimental confirmation of RT instability growth ciently high accelerations, especially if the adjoining metal
in magnetically imploded aluminum cylindrical sheftomi- ~ has softened considerably. In fact, as shown in this paper,
nally smooth and with machined disturbancess pointed ~ Viscosity and the degree of softening affect the s_electlpn of
out by Keinigset al.[19], liner design is an important com- the wavelengths that_ lead to_ the faste;t-grow_mg distur-
ponent in developing successful EOS measurements usil@ances. .Here we.con5|d(.ar the linear stability of dlsturban_ces
magnetic implosion. These authdis9] have discussed the at t_wo_dn‘feren_t k!nds of interfaces, na_mely a I!near—elast!c-
advantages of using composite impactor liners with an innefolid/viscous-liquid and between two different linear-elastic-
layer of tungsten and an outer layer of aluminum, particu-SO“_dS, and after'ratlonallzllng the dlsper5|or_1 re_latlons, we
larly in the TPa range. The ideal high-performance liner dederive exact relationships in the form of multivariable poly-
sign would prevent instability feedthroud9] by preclud- npmlals with which the |nsta_b|I|ty loci for the most unstable
ing the imprinting of instabilities in the outer layer to be disturbances can be determined. _
transferred to the inner region of the liner. Depending on a 1he paper is organized as follows. First, we present the
particular liner design, instability feedthrough could occurdoverning equations and derive the dispersion relations from
when disturbances in the outer layer of the shell grow subthe_ Iln_earlzed dlsturbance equations for_solld/flwd and solid/
stantially during implosiorf21]. At some stage in this pro- solid interfaces. We d|scu_ss our qnalytlcal approac_h to the
cess, before impacting the target, the entire liner could reProblem, based on the rationalization of the dispersion rela-
main as a solid, a molten metal, or a combination of solidtions by dialytic eliminatiorn(22,23. This is followed by a
and melt. In this situation, there are two interfaces that could@resentation of the results and a brief discussion about the
give rise to RT instabilities, namely the liquid layer with a relationship of our analyses with recent experime¢@e.
massless medium and the solid adjacent to the liquid metal.
If the initial disturbances in the liner have large amplitude, Il. FORMULATION AND LINEAR STABILITY
feedthrough could occur before meltihg0]. If a liner de- ANALYSES
sign were as smooth as it could possibly be manufactured,
the imperfection amplitudes and wavelength could lie on the
stable side of the stability boundary leading to no growth of We consider a layer of an incompressible Hookean solid
disturbances, provided the liner retained its strength as ibverlying a layer of a Newtonian incompressible fluid. These
implodes. However, typical magnetic driving conditid2®]  continuous media lie on opposite sides of an initially planar
could be sufficiently high to cause thermal softening and/otinterface located at=0. The fluid 1 and the solid 2 occupy
melting of the outer laye(in either a uniform or composite the domains e« <z<0 and 0<z< o, respectively, and have
liner shel), a few microseconds after implosion is initiated, densitiesp; and p,. To allow for a general derivation, the
making it susceptible to RT instabilities and possibleshear modulu§ of the solid, the dynamic viscosity of the

A. Solid/fluid interface
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fluid, and both densities are all functionsofThe media are ordinary differential equation for the velocity disturbance
subjected to a steady, uniform acceleratin—ae, perpen-  w(z)[=us(x3)] in the vertical direction
dicular to the initial interface.

The momentum equation in Cartesian coordinates in a  Gw™ + 2G'w() - (2k’G - G" + o?p)W" — (2k°G’

Eulerian reference frame for a continuum medium is + o2 )W + KRG+ G —ap’ + oZpw=0, ()

au; Ay, IP 39S _ o
pl — +U— | == —+—+pa, (1)  where the prime denotes derivative with respect.télere-
ot (9)(] &Xi (9X]

after, we specialize the analysis to the case in which the
wherep is the density of the mediun,is the time variable, mechanical properties in both the fluid and solid layers are
x, are the coordinate direction(;=x, %,=y, X3=2), U; are  constant. This and the boundary conditions at infinityz

the corresponding velocity componenisjs the hydrostatic — *%)=0 simplify the general solution of Eq7) (and its
pressureS; are the components of the deviatoric stress tencounterpart for the fluid region Upon application of the
sor, anda; are the acceleration components. For a Hookeakinematic and dynamic conditions at the solid/fluid interface,

solid, the constitutive equation is a linear system of equations in the amplitude of the distur-
bances is obtained. By requiring that nontrivial solutions ex-
9§ = G(a_u, + %) ) ist, the characteristic equation(dispersion relation
at X I Csi(p1,p2, 4,G,a,k,0)=0 that relates the growth rate, the

wave number of disturbances, and the controlling parameters
is obtained. In terms of dimensionless variables, the disper-
U, sion relation can be written as

=0, ()

X

Conservation of mass requires that

and to ensure the constancy of the density of individual par-

Cei(r,m,k,a) =F4(r,x,a) + ng(r,m,K,a) =0, (8
ticles during motior{24],

1

where the dimensionless variables aré=(o/a)’G/p,, «

J J
Py -0 (4)  =GKl(paa), r=palps mP=aulpy/G)™?, B1=(ra+mfx?)?,
ot IX; Bo=(c?+kd)Y2 and the functions Fy(r,x,«) and
For a Newtonian fluid, the constitutive equation is Fa(r,m, x, ) are given by
Ui Y Fi=(1+na*=(1-r-4k)ka®+ k= B)k3,  (9)
Sj=p|l ot : (5
(?X]' (9Xi

Chandrasekhd24] studied the linearized RT instability at a Fo=1(1+1)B0* = (1=0)[(1 ~1)a®+ 1 Bolka® +{1 12

fluid/fluid interface, and more recently, Mikaelig®5] gen- — 4 map, + (1 -mPa) Bl k%a? + 4 B, — ma(2 - nPa)

eralized the analysis to layers of finite thickness. In the case

of Hookean solids, the derivation of the linearized perturba- X(By+mBy)] = 41 -mfa)% - 4(1 -r)(1 -nPa)a

tion equations is analogous to that for fluidst], and some -m(2 - mPa) B8]k (10

details will be omitted. To carry out a normal modes analy-

sis, it is assumed that disturbances occur inxlyeplane and  If the fluid layer is inviscid, them=0, and Eq/(8) becomes

are superimposed to the motionless basic state according ;=0 and is equivalent to the characteristic equation derived
by Bakhrakh and Kovalev and Bakhrakhal.[7-9] (BK) in

Ui 0 ui(2) dimensional form(after the substitutiora=-g). Robinson

P p(2) p(2) q oxt k)] and Swegld5] arrived at an equation similar to E¢Q) but
=\ — +e exgot +1(KX+ , ; —

o 22) 82) X vy with r=0.

S 0 sj(2)

B. Solid/solid interface

©) For a solid/solid interface, we consider two layers of in-
where o is the disturbance growth raté; and k, are the  compressible Hookean media lying on opposite sides of an
wave numbers for disturbances that propagate horizontallyiitially planar interface located a=0. Solids 1 and 2 oc-
ui(2),p(2), 8(2), ands;(2) are disturbance amplitudes for the cupy the domainse<z=<0 and 0<z< o, respectively, and
velocity, pressure, density, and stress, respectively; the bayave densitiep,; and p, and shear modulz; and G,. As
denotes the basic state; anek 1. Because of the horizontal before, both solids are subjected to a steady, uniform accel-
isotropy in this geometry, two-dimensional disturbances needrationa=—-ae, perpendicular to the initial interface. In this
only be considered with a wave numbkrdefined byk case, Eq(7) is applied to both sides of the interface, assum-
:(k)2(+k§)1’2. The linearized perturbation equations are ob-ing that the mechanical properties are constant. Enforcing the
tained upon substitution of E@6) into Eqgs.(1)—(4) and ne-  appropriate boundary conditions and the conditions at the
glecting terms ofO(s?) and higher. After some algebra, it solid/solid interface leads to the dispersion relation
can be shown that these equations can be reduced to a sin@edp1,p,,G1,G5,a,k, ) =0, which in dimensionless form is
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C{r, R k,a) =F4(r,x,a) + %F:;(I’,R, k,a)=0, (11)
whereR?=G,/G,, B3=(ra®+R?x*)Y?, F,(r, k,a) is given by
Eqg. (9), andF5(r,R, k,a) is

Fa=r(1+1)Ba* ~ (1 -0[(1 -r)a® +rB]ka? +{1~r?

—4[RB;+1(1 -R?) Byl a? + 4[(1 -R?)*B, — R(2

~R)Bs] - 41 -RO*k° - 4[(1 -1)(1 -RP)a® - R(2

- R?) BBl K. (12

If the lighter medium has no strengtls,=0), Eq. (11) re-
duces to the same limit as that of E@) for a solid/fluid
interface in which the fluid region is inviscigk=0).

IIl. ANALYTICAL APPROACH

A. Cutoff wave numbers

For a given set of controlling parameters in either a solid

PHYSICAL REVIEW E/1, 036306(2009

sional version of Eq(15) for the cutoff wave number is

_ (p2—pya
2(G1+Gy)

It is important to note that for a solid/fluid interfade, does
not involve the viscosity of the fluid that “pushes” against
the solid, whereas for a solid/solid interfaég,is a function

of the mechanical properties of both materials.

ke (16)

B. Most unstable disturbances

Solid/fluid and solid/solid interfaces will have the same
stability behavior provided the fluid is inviscid in the former
and the lighter solid has no shear strength in the latter. There-
fore, when inertia is the determining factor that characterizes
the behavior of the lighter layer, theiCq(r,0,x,a)
=C.{r,0,x,a), in which case the characteristic equation is
/Fl(r,K,a):O. For this limiting case, it will be shown that

fluid or a solid/solid interface, the nature of the disturbance€*@ct analytic solutions can be deduced for the fastest grow-

is specified by their growth rate through the dispersion rela*

tions Cgi(r,m,x,@)=0 and C{r,R,x,a@)=0, Egs.(7) and

(12), respectively. Disturbances that neither grow nor decay
are neutral@=0) and demarcate the stability boundary cor-
responding to the cutoff perturbations of dimensionless wav
number k.. Thus, disturbances whose wave numbers are i
the range 6= k< k. are unstable, and within this range there
will be a disturbance with a maximum growth rate, i.e., the
fastest growing in the linear regime. For a solid/fluid inter-
face, a general expression feg can be determined by ex-

panding Eq(8) as a Taylor series aroung=0,

2m
%f:2,<+r—1+0(a),

ro
therefore the dimensionless cutoff wave number is
_1-r A

Kc —

=—, 13
2 1+A (13

where A=(1-r)/(1+r) and . is a function of the density
ratio only. In terms of dimensional variables,

_(p2—pra
ko= TG

which is the result derived by previous authdiz-9,16.

(14)

Those authors arrived at the above result under the assump:
tion thatA=1 (or r=0), but this approximation is not neces-
sary. Similarly, for a solid/solid interface, the leading-order

expansion of Eq(11) in « is

r(lzf—%w‘:2(1+R2)K+r—1+O(a)
and
o 1l-r A
T 1+R) T (1+A(1+RY)

Therefore, for a solid/solid interface, is both a function of
the density ratio and of the shear moduli reoThe dimen-

(15)

ing disturbances for all Atwood numbers. The importance of
a systematic analysis within this limit is twofold. First, it
hares distinctive features with the stability and growth of
disturbances for the general casé®., when the shear
étresses within the lower layer cannot be neglected in either
r§olid/f|uid or solid/solid interfacgs Second, the mathemati-
cal methodology for the treatment of the dispersion relation,
which carries over the general cases, can be presented in
detail. Thus, we begin by examining the stability of inter-
faces governed by Ed9).

From the point of view of analysis, one difficulty in deal-
ing with these kinds of dispersion relations lies in the fact
that both of the dimensionless variables of interest, i.e., the
growth rate and wave number, appear as sums raised to a
noninteger power. Equatiori8) and(11) contain linear com-
binations of the unrationalized term,, 85, B3, 818,, and
B>B3. Rationalization of the dispersion relation allows for an
analytic treatment of the stability boundary in terms of mul-
tivariable polynomial equations. Within this framework, it
can readily be established whether or not the onset of insta-
bility is through monotonically or oscillatory growing distur-
bances because the dispersion relation can be written in the
form

Hy(r, ¢, w, k) +iwH,(r, ¢, w,x) =0, (17)

hereH; andH, are real-valued polynomialss could be

itherm or R, and the oscillation frequency of disturbanees
is related to the growth rate through~iw. For there to be
oscillatory onsetH, must exist, the roots dfl,=0 must be
positive real number§im(w)=0 and w>0], and for those
roots to be physically meaningful they must satisfy the un-
rationalized dispersion relation. If these conditions are not
satisfied, then the system can only become unstable via
monotonically growing disturbancésteady onset

We proceed to rationalize E() (which contains a single

unrationalized term, i.e3,) to transform it into a polyno-
mial in a,«, andr. A general procedure for the rationaliza-
tion of equations is by dialytic elimination of the radical
terms through the computation of Sylvester’'s resultant
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[22,23. We denote the rationalized form &;(r,x,a)=0,  which an equation can be found readily from E¢k8) and
after eliminating,, asf,(r, «,@)=0, which can be written (19),

as (11 + 32+ 8A2) 78 — 2(15 - 5A+ 4A2) 78 + (39 — 1A
2(1-r-4K)k 1-r)?
=0 4 3 9
f1=d 1+r ¢ *{(m) + 2 1= 5 (15 = )7+ 5 = 0. (22)
_ 8{1_“—(3?)"} }Kzaz _ MKSZ 0. To rationalize the entire characteristic equati@, two
(1+1) (1+7) separate dialytic eliminations are necessary to elimifite

(18)  andp,. At each elimination step, the order of the multivari-
able polynomials and the number of independent terms in-
In rationalized fOI’m, the characteristic equation is tranS'Creases_ Let us denote a d|a|yt|c elimination Step between
formed into a multivariable polynomial that is cubic #f 1o expressions by{-, -} and the unrationalized tergto
and from its discriminant it can be shown that there is onlype eliminated is denoted by a superscript in parentheses

one real root that corresponds to.the physicc_ally mea”ingfut(f)(x:sf,ss). For a solid/fluid interface, the steps required
solution for the growth rate. The interface will be unstablefor rationalization to eliminates; and 8, are

for all configurations that lead to values af >0, neutrally

stable fora?=0, and stable otherwise. Since H48) only CBY =D(Cyp,ra + MPk? - B2}, (23)
has even powers o#, this implies thatH, in Eq. (17) is
identically zero, and thus oscillatory onset is not possible in C(Sﬁfﬁﬂz) = D{ngﬂ,aZ + K2 - ,33}, (24
this system.

The most unstable disturbances are those with a maxwhich yield a 14th-order multivariable polynomial i
mum value ofa? in the a-« plane and thus satisfya?/ dx 14
=0. Therefore, a relationship that is satisfied at the maximum C(S/filﬁz) => an(r,m,x)a"=0, (25)
value of the growth ratey,, corresponding to a wave number n=0

Kkm is obtained by implicit differentiation of(r,«,a)=0

with respect tox, solving for da?/ ax, and equating to zero, whereq, is thenth coefficient of the rationalized dispersion

relation (the explicit form of eachy, is not transcribed here

. )@= r? 3(1-r)-4(3+r)k 5 because the expressions are considerably)ld®gbstituting
(1-r-8xa"- Ter -4 Tor K (Ko a=iw in Eq. (25) leads to
7 6
. 4[5(1‘;#],&: 0. (19 S qry(r,me® +i0S, digr,m Ko™ =0, (26
r n=0 n=0

After dialytically eliminating«? from Eqgs.(18) and(19), a  whereqr, andqi, are the coefficients for the real and imagi-
quartic equation for the most unstable dimensionless wavaary parts of the dispersion relation, respectively. Even
numberx,, is obtained, which in terms of the Atwood num- though theH, polynomial inw [see Eq(17)] exists, the roots
ber becomes of H,=0 from Eq.(26) are not physically meaningful, and
thus there is no oscillatory onset. This is not a surprisin
A9 -A(T+3A)] , Y el

[11+A(3 +8A)]x* + K result because in neither the fluid/fluid nor in the solid/
" 2(1+A) m vacuum systems is oscillatory onset possible, as shown by
A2(3 + 500) 3A%(9 + 108) 3% Menikoff et al.[26] and by PS16], respectively. For a solid/
K2 - > Km+ 5=0. solid interface, two rationalization steps are needed as well,
41 +A) 8(1+A) 8(1+A) &) s 5 o
(20) C&? =D{Cssa” + k* - B3}, 27
Similarly, x can be eliminated between Ed48) and(19), C(ngvlfs) =D{Cf£2),ra2+ R22 - B3, (28)
[11+A(3 +8A)Paf, to yield a polynomial in even powers af,
A’[63 +3A(156 + 157) + 2A%9 + 8A)] 6
- 1+A “m CL2P) =3 Qu(r,R k) =0, (29
n=0
4 + + 4A3 6(19 +
+ AT(486 + 873+ 4N )a:;— 2TA°19 2200‘) aﬁ whereQ), is thenth coefficient of the rationalized dispersion
41+A) 16(1+A) relation. Since Eq(29) has no imaginary part, i.eH, is
27A8 identically zero, only monotonically growing disturbances
+ 161+ A7 =0, (21)  are physically meaningful at the onset of instability.

resulting in a quartic polynomial inzm. The departure from IV. RESULTS

the classical RT growth raté.e., for inviscid fluid$ can be We begin this section with the interfacial stability of a
quantified by the ratiag,=am/ (Axm) Y=o,/ (Aax,)?] for  solid overlying a layer that possesses inertia without viscos-
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FIG. 1. ForCy=Cs, (a) variation of&? as a function of« for different values oA: —, A=1; - - - - - - ,A=0.8; —--—A=0.6; ———— )
A=0.4; e A7=0.2.(b) Stability boundary in thé\-« plane: —,kpyy; =+ ++-+- #,. (C) Variation of the maximum dimensionless growth

rate a;,, as a function ofA. (d) Maximum dimensionless growth ratg,, as a function of the most unstable dimensionless wave numper
for all A.

ity (m=0) or strength(R=0). This is followed by results for for k=« [given by Eq.(13)] when &?=0, and stable other-
the stability of solid/fluid and solid/solid interfaces with mi- wise. We note that in the limié=1, our analytical result of
croscopic physicgi.e., viscosity and strengttat both sides «.=1/2 [where the solid curve in Fig.(& intercepts the
of the interface, where the effects that the controlling dimen-abscisshagrees with the result obtained by BK and with that
sionless parameters have on the stability boundary andf PS in the limit of largeh. Miles’ result of xk;=4/13[3] is
growth rate of disturbances are explored over the entirsmaller than the correct answer by a factor of 1.625. As
range of behavior in the dimensionless parameter space. Thwinted out earlief9,11,14, the approach taken by Mil¢8]
availability of efficient variable-precision-arithmetic algo- and his followerd4-6] is flawed because for solids the ve-
rithms for the numerical solution of algebraic polynomial locity field cannot be correctly approximated by the stream
equations of high order makes the computation of the growtfiunction of an inviscid flow. Thex of the most unstable
ratesa as a function of wave numbet (and the driving disturbancex, lies within the range & «,,< k. and occurs
parametersfor the systems considered here expedient. Thisvhen a? has a maximum denoted by?,. Physically, this
approach avoids potential difficulties encountered in the nueondition takes place when the inertial forces, buoyancy
merical solution of systems of unrationalized equatieush  forces, and the stabilizing forces due to the strength of the
asCq(r,m,x,@)=0 anddCq(r,m, x,a(x))/ dx=0] by New-  solid are of comparable magnitude. The upper bound on the
ton iteration when the radii of convergence are very small. most unstable growth rate occurs wh&r 1 [solid curve in
Form=0 (or equivalentlyR=0), since all of the equations Fig. 1(@], for which a2=0.0972a,,=0.3118 and «
for @ and the most unstableare fourth order or less, closed- =0.2256. At first glance, the growth rate curves appear to be
form solutions were used to compute the locus of the mossymmetric with respect te,, but as seen in Fig.(b), «, is
unstable modes as a function of Atwood numbBerFigure  always less than half ok, for a fixed A. As the density
1(a) shows the variation of? as a function ofk for different  contrast decreases, both, and «,,, monotonically decay to
values ofA obtained from the physically meaningful solution zero, thus to effect destabilization, disturbances with increas-
of Eq. (18). For a given configuration, the interface will be ingly large wavelengths are required. This is clearly illus-
unstable for all values of such thata?>0, neutrally stable trated in Fig. 1b), which shows the stability boundany,
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100 5 k¢ as a function oh. Even though the percentage error com-

parisons in Fig. 2 are for the cage=1 andm=0 (or R=0),
similar trends are expected in the case of an interface with
two distinct participating medié.e., A# 1, m#0, R#0).

The departure from the classical growth rate rfor O (or
R=0) is found by solving Eq(22), whose solution is ap-
proximately given by

104

Error (%)
|

7m=~ 0.6661 — 0.024A + 0.0096°\?). (32

Thus, for all of the possible most unstable configurations the
mean value of 7, [=am/ (Aky) =0/ (Aaxy,)?] is 0.67.
From Eq.(32), an approximate expressid¢leading order in

0.1

0.01 4———r

— N A) for the growth rate in terms of dimensional variables is
0 0.2 0.4 06 0.8 1 obtained,
hiN —
om= 0.67WAak,, (33
FIG. 2. Error ina,, and . as a function oh/\ when computed )
with the semi-infinite thickness layer theory: -y, ==+ Ke- wherek,~(0.478-0.02A)k.. Interestingly, the growth rate

estimated by Drucker for the amplitude of a machined sinu-
soidal disturbance, of wave numblerin a perfectly plastic
d solid half-space is 0.6%4k [10], provided the initial pre-
rmed disturbance amplitude exceedd ga (Y is the yield

(dotted curve and «,, as a function ofp, the latter of which
was computed from Ed20). The dot in the upper right-han
corner of the dotted curve represents the result derived b S L
BK. Figure 1c) shows the growth rates for all that lead to eSS Of the solid in uniaxial tensipfi.0]

the most unstable configuration computed from &4) and For a solid/fluid interface, with a fixed(=0.8), Fig. 3a)
Fig. 1(d) shows the dependence af, with . showsa? as a function ofx for increasing values ofn as

In our linear stability analyses, there is no explicit length®Ptained from the physically meaningful solutions of Eg.
scale because the participating media extend to infinity in th&2- N an aclt/ual system, the parameterincreases with
direction of acceleration. To assess the applicability limits Ofvlsc_o;ity (~u'?) and decreases with shear modults
our results to finite thickness layers, the valuesagf x, ~C - Sincex is only a function ofA [see Eq(13)], all
and x, computed from the dispersion relation derived by PsOf the curves in Fig. @ have the same.. As m increases,
(valid only for A=1,m=0 [16]) as a function of the plate the_maX|mum shifts towards smallerwhile the growth rate
thicknessh are compared to those obtained from E@sS), rapidly decays towards zero for wave numbers larger than
(20), and(22) in the limit A=1. With the same definitions for Km- IN ghe neighborhood o, the growth-rate curves behave
the dimensionless growth rate and wave number used in E§ké @”~1/m*. This rapid decay requires that fon>0,

(9) [?=(0/2)%Glp, k=Gk/(pa), and B=(a?+x?)Y?], and there must be an inflection point far> «,,,. As expected, for
introducing the dimensionless thickne#spah/G, PS’s dis-  VerY smallk, the growth rate is linear and weakly dependent

persion relation becomes on the microphysics. For a fixewi(=1), Fig. 3b) showsa?
as a function of« for different values ofA. As in Fig. 3a),
o[ a* - K2+ 8k%(? + 3k?) ] + 8k3{2k3(3a? + 2k2) — B(? there is also an inflection point, but in this case, it is increas-

212 _ ingly closer to the interception with the abscissalasle-
+ 217" X [coth(r)coth 56) - cschibr)eschBO =0 oqseq Figure(® shows that for a fixed\, asm increases,
(30) longer wavelengths are needed to achieve the most unstable
mode, even though the critical wavelength remains the same
[see Fig. 8)]. For large values afn, Fig. 3c) shows that,,
becomes weakly dependent on the density contrast, while for
small values ofA, «,,, is weakly dependent om. Figure 3d)
4.2 22 _ shows the locus of the most unstalig-«,, pairs for allA

(1= 4cgsintf( i) + (26;)” = 0. S and differentm. The dots denote configurations whee 1,
For instance, ih=0.4 \, the errors in estimating,,, k,, and  and below this poinf decreases monotonically to zero at the
K are 1.2%, 2.1%, and 8.9%. Iif>\/2, the corresponding origin. For m=2.1, there is a point of infinite slope
errors foray,, km, andx, are less than 0.5%, 1.3%, and 3.8%, (da,/ dk,==), which for m=2.1 occurs atA=1. This im-
respectively. The largest error is always epnfor all h/x..  plies that form>2.1, curves in they,-«,, plane are double-
As shown in Fig. 2, fore,, and k., this error drops almost valued over a small range of,. Therefore, for a fixedn
exponentially a$/\ increasegthe error ink,, is either be-  such tham>2.1, there are two configuratiofwith different
tween k. and «a,, or less than that for,, if 0.19<h/N  A) whose most unstable wave number is identical and their
<0.35. This is a reflection of the fact that only a small respective growth rates are different. For instancepf50,
distance away from the interface influences the linear instathe interfaces wittA=0.64 andA=0.937 have the same,,
bility growth in all RT configurations, regardless of whether =0.002 682. Figure &) shows the double-valued region in
they are solid or fluid. NR relied on this fact to approximatethe a,«., plane form=>50.

An expression fork; involving 6 is obtained after dividing
Eg. (30) by o* and then expanding in Taylor series around
a=0,
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FIG. 3. For solid/fluid interfaces, variation of as a function of« (a) for A=0.8 and different values afi; ----------- m=0.1;, ———— ,
m=1, —-—m=2; - ----- , m=4; —, m=10; (b) for m=1 and different values of: ------------A=0.1; ———- — A=0.2; —-—A
=04;------ ,A=0.6; —, A=0.8. Boundaries of the most unstable modes in(thex,-A plane for different values afn; ---«-------- m
=0.1; ———— m=1;, ——m=2; - - - - - ,m=4; — m=10; (d) o,y plane for different values afn; -«--------- m=0; ———— m=1;
— = m=2; - ----- ,m=4; — m=10; (e) locus of the double-valued region in thg;«,, plane form=50.

For a solid/solid interface, with a fixe#l(=0.8), Fig. 4a)  the value ofR). In fact, these curves are nearly self-similar if
showsa? as a function ofk for increasing values of the shear the ordinate and the abscissa are scaledrhy,, and «/ x,
moduli ratioR[=(G,/G,)*?] as obtained from the physically respectively. Clearly, the increase in strength in the lighter
meaningful solutions of Eq29). In this case, the. continu-  solid layer stabilizes the interface, requiring longer wave-
ously decreases aR increases and the topology of the lengths for instability. For a fixedR(=0.5), Fig. 4b) shows
growth rate curves is similar for aR (the slope of the curve that the behavior otxfn asA decreases is very similar to that
at the interception with the abscissa is weakly dependent oim Fig. 1(a) for m=0 (except for the smaller values m‘zm).
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FIG. 4. For solid/solid interfaces, variation af as a function of« (a) for A=0.8 and different values d®; -+ R=0.1; ———— ,
R=0.3; —--—R=05;------ ,R=0.7; —,R=1; (b) for R=0.5 and different values o&: «------+--- A=0.2; ——— — A=04; ——,
A=0.6; - - - - - ,A=0.8; —, A=0.95. Boundaries for the most unstable modes in(thec,-A plane for different values oR: «-------------
R=0.1; ———— R=0.3; —--—,R=0.5; - - - -,R=0.7; —, R=1; (d) an,ky plane for different values oR: «-----------/ R=0; ———— ,
R=0.5; —-—R=0.7; - - - - - ,R=1; — R=2.

media and corresponds to the most unstable mode for the
particular configuration.

The simplifying assumptions that allowed an analytic
treatment for the present linear stability analyses at solid/
fluid and solid/solid interfaces are constant acceleration, in-
compressible media, isothermal conditions, infinite thick-
ness, and a single wavelength. Even though these
assumptions do not apply to a magnetically imploding
smooth metal linef19,2( that is continuously accelerated,
the material is compressible, and the mechanical properties
and thermodynamic state change in space and time due to
V. CONCLUDING REMARKS temperature gradients, inferences about the behavior of spe-

For initially planar solid/fluid and solid/solid interfaces, Cific snapshots of the liner implosion can be made. From the

we derived dispersion relations from which we computed thelispersion relation for a liquid/vacuum interfalc@], it can
stability boundaries and loci of the most unstable mo@es be shown that the most unstable wavelength and correspond-

condition attained for all wavelengths whose growth ratednd growth rate are

are maxima in dimensionless space spanning the entire w2\ 3 a?p\ 13

range of driving conditions. We showed that both kinds of Amf= 12-805<—2> » Omf= 0-44—) . (34
interfaces could only become unstable via steady ofoset ap K

cillatory onset is not admissibleAt accelerated perfectly Using Egs.(34) with a mean acceleration of>610°m/s
planar solid/fluid and solid/solid interfaces, the selected20], a melt density of 2340 kg/f and the viscosity of
wavelength takes place within the elastic regime of the solidnolten aluminum, which is on the order of 1 mP§xY],

Figure 4c) shows the monotonic increase &f, with A for
different values oR. For smallR, these curves are similar to
those in Fig. &) for smallm. However, akR increases, the
slopes(dk,/ 0A) of curves with smallA are smaller than
those seen in Fig.(8) with largeM, and the converse is true
for curves corresponding to values Afnear unity. Finally,
Fig. 4(d) shows the locus of the most unstaklg-«,, pairs
for all A and differentR. Unlike the behavior found in solid/
fluid interfaces, these curves are single-valued foRall
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results ino,;=3.9x 10°s™* (i.e., it would have taken only acceleration of the liner could lead to a sufficiently high
1 ns for a disturbance of 1@m in amplitude to grow larger growth rate to enable instability. Therefore, during the evo-
than 0.5 mm and \,s=0.9 um, which is about 500 times lution of the implosion process of a nominally smooth liner,
larger than the experimental value of 0.5 mm for a nominallyseveral potentially unstable states are passed over until a
smooth liner[20]. These large discrepancies M and o  state is reached that has a sufficiently high growth rate and
might be explained if the unstable wavelength selection proan admissible wavelengtfwith respect to the liner dimen-
cess and instability growth were to occur while the liner is insiong to destabilize the interface before melting. We suggest
solid rather than in liquid phase. From E@20) and(21), it  that for nominally smooth imploding liners, wavelength se-
can be shown that at a solid/vacuum interface, the most urection is determined by the most unstable mode when the

stable wavelength and growth rate are liner is in the solid phase. Once this wavelength is selected
G 12 within the elastic regime, it will carry over into the nonlinear
As=27.85—, 0= 0.31a<£) (35)  Plastic regime and into the early stages of fluid flow if melt-
ap G ing occurs.

The spatiotemporal variation of the liner shear modulus i The growth rate of a disturbance is expected to change

dictated by its thermodynamic state during implosion, an}eyond_the elastic limit of the so_lid. Howev_er, little is known
the magnitude of this modulus can be estimated, for instanc&bom dlstgrbance grc_)vvth rates in the plastic redii®, and
by the Steinberg-Cochran-Guinan constitutive equas. a compelling theoretical treatment has yet to be developed.

From the temperature, density, and pressure histories in ﬂ@(jgeggy’agogmféx?;gg gr?:;otri?;dnfé)rggllapc?nesst?r?witget_he
implosion experimentf20], it is possible to reach a state in P PP y

: ; . . th rate of instabilities in elastoplastic media. Their dis-
which the liner has softened ®=21 MPa, with a density of grow . : _ :
2345 kg/nt (slightly higher than at the melting pojntUn- persion relationEq. (7) in Ref. [29]]. for A=1 predicts a
der these conditions, Eq&35) yield A,.c=0.5 mm ando: cutoff wavelength\, of 277G/ ap that is off by a factor of 2
=1.7% 10°s* [since h’z4)\ Egs. (35?56.!'8. appIicabI]er,g\s frqm the correct r(_asult of #G/ap (for.h>)\/2) first_ ob-
disturbance with amplitudrgsof 10m would grow to about tained lby IZK, corr:ﬁrmed bfyIPS, ahnd ngororl]J sly derived aréd

: L S . . generalized in this papefalso, these authors misquote

Fég]mm in 2.4ys, which is more in line with experiments Miles’ result forA.=137G/2ap [3]). Consequently, their dis-

“,'] magnetically imploded liners, the driving conditions persion relation leads to the incorrect most unstable wave-

that can destabilize the system are continuously changing i‘gngth fW'thr:n Ithe el?ﬁtf reglmﬁ ' _and_eyeg thoudgh thehy ac-
space and time. As shown in the Atlas experiments fo fount or L_elayert Ic r?l?z%t ﬁ'”‘c 'S 'r;. ependent O
smooth linerg 20], there is a time interval of stable states. At (for very thin layersh.~ as shown earlief9,11,15,1§).

the beginning of implosion, the shear modulus of the liner is

high, the ac_celeration is low, and thu; the most unstable ACKNOWLEDGMENTS
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