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As the theory of chaotic scattering in high-dimensional systems is poorly developed, it is very difficult to
determine initial conditions for which interesting scattering events, such as long delay times, occur. We propose
to use symmetry breaking as a way to gain the insight necessary to determine low-dimensional subspaces of
initial conditions in which we can find such events easily. We study numerically the planar scattering off a disk
moving on an elliptic Kepler orbit, as a simplified model of the elliptic restricted three-body problem. When
the motion of the disk is circular, the system has an integral of motion, the Jacobi integral, which is no longer
conserved for nonvanishing eccentricity. In the latter case, the system has an effective five-dimensional phase
space and is therefore not amenable for study with the usual methods. Using the symmetric problem as a
starting point we define an appropriate two-dimensional subspace of initial conditions by fixing some coordi-
nates. This subspace proves to be useful to define scattering experiments where the rich and nontrivial dynam-
ics of the problem is illustrated. We consider in particular trajectories which take very long before escaping or
are trapped by consecutive collisions with the disk.
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[. INTRODUCTION dimensional, so the choice of the subspace requires a consid-

erable physical insight, or plain luck, to an unreasonable de-
The classical dynamics of scattering systems, in particulagree. We shall thus opt for a particular, but very important
its chaotic manifestations, is well understood for opensituation, where the physical insight is systematically avail-

Hamiltonian systems with two effective degrees of freedomable.

Typical examples are one-dimensional periodically kicked A common route for dimensional reduction of a system is
driven systems and conservatiftene-independentones of  the existence of a continuous symmetry, which leads to a
two degrees of freedom. The effective dimension of phasgonserved quantity. We can hope therefore that a slight
space is then 3 In such cases _the dynamics are.determingpeaking of such a symmetry, while putting us abruptly in a
by the properties of the invariant set or chaotic saddlepigher-dimensional space, will nevertheless leave an impor-
Smale’s horseshoe construction can then be performed on @t mark on the system, which will in some sense slowly

appropriate surface of secti¢f-4] and explains adequately 5ish as symmetry breaking increases. On the other hand,
the topology and symbolic dynamics of such a problem. this case is certainly not irrelevant, but rather occurs quite

Unfortunately the situation becomes qualitatively morefrequently in practice; see, for instand®,]. It would cer-

complex for higher dimensions. Not only is the surface O(,t\f\inly be interesting to search for a group-theoretical inter-

section no longer two dimensional and thus not easy to dra . T
and understand, but fundamental differences occur: e.g., i retation of such a procedure, and some work exists in this

variant tori no longer separate the phase space, giving rise {§SPect10l, but this would lead us well beyond the scope of

Amold diffusion, and besides hyperbolic and elliptic fixed tN€ Present analysis. _
points also loxodromic ones can appear. Wiggins and co- N our chosen example—namely, the restricted three-body
workers[5,6] have made some progress in characterizing th@roblem—the constant of motion in question is the Jacobi
invariant manifolds of Hamiltonian flow in higher dimen- integral[11] which is conserved when the orbits of the two
sions, but we are far from a useful understanding of théeavy bodies are exactly circular. While this is probably
chaotic saddle in the general situation. never the case in a real system, small eccentricities of orbits
In the present paper we will take a pragmatic approactare quite common. In particular we have an interest in nar-
and attempt to find a two-dimensional subspace of initiarow planetary ring$12—14 with shepherd moons; they typi-
conditions for the chaotic scattering process, such that a chactlly have small eccentricities. Such is the case, e.qg., for the
of delay times over this space will yield the relevant infor- moons accompanying Saturn’s F ring or Uranaising [15].
mation. We shall choose a planar elliptic restricted three- The paper is organized as follows: In the next section we
body problem to carry out such an analysis, because thishall describe the hard-disk model we use and reexamine the
problem is of considerable importance and much discussedircular case. In Sec. Ill we choose the subspace of initial
in the literature. We shall not use therlpotential, but a conditions. In Sec. IV we analyze the charts we obtain for
simpler hard-disk model, which conserves the relevant feasur problem and consider the implications for the dynamics
tures and is particularly easy to han@i@. Even in this sim-  of orbits trapped permanently or at least for very long times.
pler problem the total space of initial conditions is five- Finally, we draw some conclusions.
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Il. DESCRIPTION OF THE MODEL synodic framég can be easily identified with the orbits of
. . . consecutive radial collisions’]. These orbits satisfy the re-
We study the planar scattering of a point particle off a ] fy

hard-disk on a two-dimensional periodic orbit. The center Ogatlon

the disk moves on an elliptic Kepler orbit with one focus at 2 2 cosp 2 cos6 )

the origin. The phase space of this system is therefore five V= N —on _ .
dimensionaltwo and a half degrees of freed@riwo coor- o@-d w(2n+1)-25 m(2n=1)+2¢

dinates and two canonically conjugated momenta define thelerev is the dimensionless magnitude of the velocity vector
position in phase space of the particle, and one afgle in the fixed frame{ is the physical velocity ané=1 is the
initial phasg determines the initial position of the disk along rotation frequency B8 e[-#/2,7/2] is the angle formed by
the Kepler orbit. As we shall see below, the special case of ¢he outgoing trajectory with respect to the normal at the col-
circular orbit allows for a reduction of the dimensionality of lision point, andé=m-p8, w/2< 0<3w/2. The parameter

the problem due to Jacobi’s integral of motion. n=0,1,2,...defines the number of full turns that the disk
The Kepler orbit can be parametrized[4$§] completes between consecutive collisions. From (&y.an
explicit expression for the Jacobi integral as a functiorBof
x=a(cosE-g), (1) (or 6) can be derivedi7]. Conservation of the Jacobi integral
leads naturally to a reduction of the dimensionality of the
y=a(l-e2)%sinE, (2)  problem and allows us to use standard methods to study the

chaotic saddl¢7].

BTN ) For nonzero eccentricity there is no constant of motion,
t=(a/K)"(E-esinE). (3 and Poincaré sections cannot be used easily because in the
present case they would be four dimensional. In particular,
for nonzeroe there is a nontrivial dependence of the out-
come of the collisions with respect to the positigron the
orbit of disk. By consequence, the construction of the primi-

the ellipse define the axis of the fixed coordinate frame tive periodic orbits for the circular problem may not be help-
(sidereal framg the periapsis of the ellipse defines the posi- "~ P ; P y P
ful in the eccentric case. Yet they allow us to prove the ex-

tive x direction, and the motion along the ellipse is counter-. . o
clockwise. We observe that the Kepler equati@. (3)], istence of periodic orbits in the system for small

which relates the physical tintewith E, implies that such an eccentricities. We must thgs_ .rely on an explora_t|on of the
S L . structure of the space of initial conditions of this system,
elliptic orbit is a solution of the two-body Kepler problem.

An alternative parametrization is the usual one in polar coc 9 terms of the number Of.COII'S'OnS.’ for different values
. of . This can be used to define meaningful one-parameter

ordinates, : : — :
scattering experiments that sample distinct regions of the

- a(l-¢) @ chaotic saddle in phase space.
“1+ecodg )

Here ¢ is the polar angle at timeé and ¢, is the initial o
position of the disk along the Kepler orbit with respect to the A. Definitions
periapsis(initial phase. The polar anglep is related to the As mentioned above, the space of initial conditions is five
physical time byr?¢=[Ka(1-£%)]*? ¢ denoting the time dimensional. This space can be characterized by the argle
derivative of ¢. In the following, we define the units by  with —7< ¢g=<, which denotes the initial position of the
=1 andK=1. In these units, the timeis also called mean center of the disk, and the two coordinates and momenta
anomaly and the orbital period isn2 which specify the initial conditions of the particle. For con-
The dynamics of the scattering system are as follows. Thereteness, we restrict the initial position of the particle to be
particle moves freely until it encounters the disk. No colli- on the disk. This allows us to use only the angie
sion leads to open motion; i.e., the particle escapes from the [0,27] to specify completely the initial position of the
interaction region. If a collision takes place, the particle isparticle. This choice implicitly selects the scattering events
specularly reflected with respect to the lo@alving) frame, that lead to a collision with the disk at the position charac-
at the collision point. This defines the outgoing conditionsterized by« and ¢,. For the initial outgoing velocity of the
after the collision. In general, the result of a collision de-particle, we still require two quantities; we choose the mag-
pends on the position where the collision occurs on the diskpitude of the velocity and its direction as defined above by
the relative velocities, and for nonvanishiagon the posi- the angle#. Figure 1 illustrates the definition of the set of
tion along the elliptic trajectory of the disk. initial parameters. This space is four dimensional, which is
When the eccentricity is zero, the motion of the disk isstill too large to be explored numerically, in particular in
uniformly circular and there exists a constant of motion, theorder to consider the regions in phase space where nontrivial
Jacobi integral. This quantity corresponds to the Hamiltoniardynamics takes pladé,6,17).
in a rotating(synodig frame of appropriate constant angular ~ We shall further fix the angleg, and «, thus leading to
velocity. From the fact that the orbit of the disk is circular, an effective two-dimensional space of initial conditions.
the primitive periodic orbits of the syste(in the rotating or  These two angles can in principle be arbitrarily fixed. We

Here, a represents the semimajor axis of the ellipse,
€[0,1) is the eccentricityK is a strength parametépelow
set equal to }, andE is the eccentric anomaly. The foci of

IIl. SPACE OF INITIAL CONDITIONS

036225-2



SYMMETRY BREAKING: A HEURISTIC APPROACH TO... PHYSICAL REVIEW E 71, 036225(2005

1.4 ) ! ' B
12 -
1.0 .
0.8 . =

0.6 al
n=0

n=1
0.2 = -

T 3n2
)

FIG. 2. (Color online Space of initial conditions foe=0 («
=, ¢o=0). Colors indicate the number of bounces with the disk
(from lighter to darlk: three bouncedturquoise, four bounces
(green, five bouncegorange, six bouncesmagenty and seven
and more bouncethlue). The solid curves correspond to the ana-
lytical results given by Eq(5).

FIG. 1. Definition of the initial conditions for the scattering
setup:¢o denotes the initial position of the center of the disk along  Figure 2 shows the space of initial conditions in terms of
the Kepler orbit,« denotes the initial position of the particle on the the number of collisions and the analytical results given by
disk (|n|t|al collision poim), andv denotes the{scaled magnitude Eq (5) As expected' the numerical results d|sp|ay a System_
of _the outgoing velocity an_aP defines it; direction. The foci of the gtjc approach towards the analytical curves as the number of
ellipse are shown on theaxis as open circle€)) and the center by ¢o|jisions increases. However, we note that there are regions
a (_:ross(+). The origin of the coordinate system is one focus of the,, hare this approach is particularly slow, as in the case of the
ellipse. broad region observed around the cuns0 for # close to
/2. Furthermore, there are other regions in the space of
recall that in the circular case the primitive periodic orbitsinitial conditions where certain interesting structures appear
correspond to radial collisions, which is geometrically ex-which have no apparent relation to the primitive periodic
pressed asv—¢o=. Intuitively, we expect that for small orbits. This can be clearly observed below the cuneD;
eccentricity the periodic orbits lie somewhat close to those ogimilar results are also obtained for other values .of
the circular case. Guided by the circular case, we shall there- The broad structure found fat— /2 can be easily un-
fore fix a— o= . Yet the rotational symmetry of the circular derstood. As observed [12], the casan=0 for the primitive
case provides no further guide to define another conditioperiodic orbits is particular whed— 7/2(8— m/2): The
which involves these two angles. We arbitrarily consider theperiodic orbit involved is marginally stable, runs following
condition ¢y=0, unless otherwise explicite@f. Sec. I\).  the motion of the disk(direct motion, and its shape ap-
This situation corresponds to exploring the events which disproaches the inner circle described by the disk. Clearly, the
play a collision at the periapsis. If there exists a periodicperiodic orbit in question is a whispering-gallery orbit. The

orbit bouncing at this position or, at least, if the stable ormarginal stability of these orbits causes the numerical results
unstable manifolds of an unstable periodic orbit have a comio converge slowly. Numerical inspection of scattering

ponent atpy=0, our scattering experiments will detect them. events in this region confirms this.
Clearly, our analysis can be extended to any valuefyand Next, we consider the appearance of the snail-like struc-
a. ture in the space of initial condition(see also Fig. 4 below

In the numerical results presented below, we fix the radiugnd[7]). We emphasize that this structure cannot be associ-
of the disk tod/a=1/3. Thenumerical value ofd/a does ated directly to any primitive periodic orbit—i.e., to the con-
influence the stability properties of the trapped orbits. For thesecutive radial collision orbits, since these fulfill EG).
circular case, the value 1/3 was found to be a good choicgumerical experiments reported {i¥] showed that these

for numerical purposes. structures are related to events where the particle, after a
. certain number of collisions, loses almost all its kinetic en-
B. Resullts for the circular case ergy. The outcome of this event is extremely sensitive to the

We begin analyzing the space of initial conditions in initial conditions. A detailed description of the scattering dy-
terms of the number of bouncds,, when the disk moves on hamics is presented in Sec. IV.
a circular orbit. This case shall provide some basic under-
standing of the numerical results, in particular by comparing
them with the analytical considerations of the primitive pe-
riodic orbits described above. Similar results are obtained for In Fig. 3 we present the space of initial conditions for
other scattering functions which behave monotonically wherseveral values of the eccentricity. We observe first that the
a periodic orbit is approached. overall structure of the charts of the space of initial condi-

C. Results for the elliptic orbit
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FIG. 3. (Color online Space of initial conditions for different values of the eccentricig): e¢=0.001, (b) £=0.3, (c) £=0.4, (d) &
=0.5, (e) £=0.6, and(f) £=0.8. Colors indicate the number of bounces with the dfsém lighter to dark: three bouncesgray), four

bouncegturquoisg, five bounceggreen, six bouncegorangg, seven bounce@nagents and eight and more bouncésiue).

tions is essentially maintained for small eccentricities at least
up toe=0.3 and beyond 0.4 up to 0.8 foe 1. In particular,

we note that the hierarchy(or n curves of the arrangement

of periodic orbits for the circular case is preserved at least for
moderate values of the eccentricity. This feature is nontrivial,
especially for intermediate or large eccentricities, since the
simple geometrical arguments used to obtain &fheavily

rely on the circular character of the orbit and are not useful
for the case of nonvanishing. This statement is a conse-
quence of the fact that in the eccentric case the outcome of
the collision depends on the value ¢fwhere the collision
takes place along the orbit of the disk. In the Appendix we
present a proof of the existence of periodic orbits for small
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nonvanishing eccentricities. We note that in this case this FIG. 4. (Color onling Enlargement of a region of Fig.(®

proof does explain the hierarchical organization of the peri{=0.00) illustrating the snail structurésame color

odic orbits in the initial conditions space—i.e., thecurve  Fig. 3).
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038 : | - | occurs involving othen curves in the space of initial condi-
tions. These cases are more difficult to study numerically,
due to the accumulation of thecurves towards zeref. Eq.
0.33f . 5)].
. For £=0 the stable manifolds of the curves also merge,
in general into two distinct positions. This follows from the
o < fact in the circular case there exist regions in the parameter
e - space where the radial collision orbits are stable. In this case,
. the development of the horseshoe construction is such that

>0.28=

the new periodic orbits are created through saddle-center bi-

0.23F > : -~ °
furcations by changing the Jacobi integral. This occurs when
the invariant manifolds intersect at the symmetry line. We

018 . therefore expect that interesting scattering behavior occurs

"33 ' 3.4 for small values of the eccentricity, relatively close to the

0 position on the space of initial conditions, where such
saddle-center bifurcations take place. Indeed, as we shall
show in the next section for a particular valuesofwhich is
far from the bifurcation illustrated in Fig.)5the scattering
functions display a large number of collisions. This is neces-
¢=0.33 (orange, £=0.34 (green, ¢=0.35 (magenta £=0.36  gary though not sufficient, for the existence of regions in
(blue), ande=0.37 (violet). phase space where the motion is bounded.
hierarchical structure. The dependence upoappears im- ~ Other interesting features also apparent in the charts of
plicitly in vo. initial conditions(Fig. 3) are related to the effective shrink-
We observe that the=0 curves tend to increase the value ing of the “trapping region” as the eccentricity of the Kepler
of v asé— =/2. This is a consequence of the increase in thedrbit is increased. In particular, we mention the vaiye 1
velocity at periapsis passage, which follows from angular-d/a, where the disk covers the foci at the turning points,
momentum conservation of the Kepler motion. It is also in-thus inducing changes in the local propertiearvature at
teresting to note that the snail-like structures encounterethe turning points, and the valu;%zl—(d/a)z, where the
previously for the circular case show up again. Figure 4trapping region shrinks to a point.
shows an enlargement of the case0.001 illustrating the
snail structure. We observe that the snail structure seems to V- STRUCTURE OF THE SCATTERING FUNCTIONS
appear not as an isolated one, but with some companions. FOR £=0.001
This can be noticed in Figs. 3 especially for intermediate and In this section, we shall study specific scattering functions
large values ofe, as the stretched region that appears infor the case:=0.001. The main motivation to consider such
between the main branch of time=0 structure and the snail small yet nonzero eccentricity comes from the data corre-
structure. In Sec. IV we shall show that the snail structuresponding to the shepherd satellites of Uranus and Saturn. The
are related to projections of the homoclinic intersections inscattering functions will be functions of one variable, the
the space of initial conditions. initial magnitude of the outgoing velocity, which follows
The space of initial conditions that correspond to the twoafter fixing the value of the anglé The latter will be speci-
eccentricity intervals mentioned above differ in particular infied using the results of the initial conditions space, in such a
the behavior of then=0 curve. On the one hand, for values way that by changing there is an intersection with the
corresponding tae=0.4 then=0 curve is broken into two regions that display many collisions with the digk. Fig. 3.
disjoint segments which fold back and therefore are not inin particular, we shall consider the number of bounbgs
dividually defined for the whole range @f Thus there exist and/or the escape ting, which is the time that the particle
events which display many bounces with the disk, related teequires to leave the scattering region. These quantities are
then=0 orbit, but not for all values of. On the other hand, related to each other in general, and thus some information is
for £ <0.3 the two manifolds appear to be connected and areedundant. Yet for the study of the snail structure together
defined in the whole range @f This clearly points out to the they provide a clear picture of the scattering dynamics as we
occurrence of a bifurcation which may create or destroy peshall see below.
riodic orbits by varyinge. Details of this bifurcation are We shall study two regions of the initial conditions sub-
shown in Fig. 5. The two initially separated stable manifoldsspace: First, we address the question of the existence of
approach each other systematically. For eccentricities arountdapped motion for nonzero eccentricity. We present results
£~0.33 (0.32<¢=<0.39 the manifolds seemingly merge, on a region where the corresponding0 curve in the circu-
and beyond 0.35 they separate again folding back. The exaldr case displays stable radial-collision periodic orkigtro-
value ofe where the bifurcation takes place depends on theggrade motioh Second, we consider the dynamics around the
value ¢, considered to sample the space of initial conditions snail structure displayed in Fig. 4.
While the charts of initial conditions provide no further in-
formation about this bifurcation, they clearly exhibit regions
in the space of initial conditions where interesting behavior The structure of the initial condition space for small val-
may show up. We mention that this type of bifurcation alsoues of the eccentricity resembles closely that of the circular

FIG. 5. (Color online Space of initial conditions for different
values of the eccentricity illustrating the bifurcation of theO
curve (from lighter to darker £=0.31(gray), £=0.32 (turquoise,

A. Trapped motion
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case, displaying tha@ curves hierarchical arrangement and [ B LA
the snail structures. It is thus natural to expect that the scat- 12} @ ]
tering dynamics of this case mimics those of the circular 1
case. In particular, we are interested in the question of the

existence of regions in phase space of purely trapped 8| .
motion—that is, regions where the particle is trapped dy- 2 oL ]
namically through consecutive collisions with the disk. I

These regions are of interest in connection with the occur- 4 L‘ 8
rence of narrow rings in the presence of shepherd moons Al ]

[12—-15. We emphasize that the existence of these regions of

trapped motion is not a trivial extension of what happens in ST o odem  oder  oass
the circular case, for at least two reasons. First, for nonvan- v

ishing e there is a complicate dependence of the collision 50 , . , : ,
output on the disk’s orbital positior. Second and more I ® |
important, the argument that leads to prove the existence of w0k i

stable periodic orbits for the circular case, and hence regions
of trapped motion, relies on the generic character of the
saddle-center bifurcation. Such argumentation is vality
when a single parameter is varied. In the circular case such a
parameter is naturally defined by the only constant of mo-
tion, the Jacobi integral. In contrast, the lack of this integral
of motion in the eccentric case involves thus two-parameter
bifurcations.

Inspection of the space of initial conditions shows a large
number of collisions in an interval close @~ 3.62. This
interval is close to the location where the 0 stable periodic ' ' ©
orbits are located. In Fig. 6 we present the number of colli- I
sions as a function of the initial velocityfor some values of
6. Similar results are obtained fdr.. Figures §a) and &d)
show the typical structure found in systems displaying fully
developed topological chaos. However, comparing the re-
sults for different values of, we notice that the structure of
the scattering functions actually changes. Concretely,6for
=3.55 in Fig. &a), we have the usual two-peak Cantor set
structure: At least for the low-lying hierarchical levels, each
interval of continuity[18] splits into two in the next level.
This is consistent with the dominance of the hyperbolic com-
ponent of a binary horseshoe, up to the level of development 14— - . - . - .
numerically considered. In contrast, in Fighpwe observe L @
for 6=3.6 that the neat Cantor structure is now dominated by i
one of the peaks. Some of the intervals of continuity split 1o 7
into two peaks in the next hierarchical level, while others do ol ]
not do it until a higher level. Such a structural change in the 2t 1
scattering functions is associated with pruning—i.e., with the or ]
appearance of nonhyperbolic components in the chaotic ab i
saddle which dominate the scattering dynamics. In addition, ]
the maximum number of bounces is increased and we ob-
serve trajectories displaying up to 50 bounces. Similar results
displayed in Fig. &) are obtained fom=3.65. Finally, for
0=3.7, the structure of the scattering functions displays
again the two-peak Cantor set structure.

Pruning is not sufficient to imply trapped motion though.
Further inspection of the scattering dynamics fdoetween
3.6 and 3.65, as suggested by the structure of the scatteri
functions, displays an extremely large number of bounces. |
Fig. 7(a) we have plotted the first 100 bounces of a trajectory
that displays more than 10 000 collisions. We emphasizéreedom, and therefore Arnold diffusion may play an impor-
that, in a strict sense, this orbit may not be trapped. This is #ant role. However, the time scale for Arnold diffusion to be
consequence of the large dimensionality of this system. Farelevant is(exponentially large[19], and therefore, for prac-
nonzero eccentricity the system has two and a half degrees tital purposes we can consider it to be a trapped orbit.

o419 o.‘\ilzo ' 0.421

0397 0398 v 0399  0.00

FIG. 6. Number of bounced\,, as a function of the initial
velocity v for different values off. (a) #=3.55, (b) #=3.6, (c) 0
=3.65, andd) #=3.7. The change in the structure of the scattering
functions, which is associated with pruning, suggests the possible
g .

5 istence of trapped orbits.
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The peak at the right of the plot indicates a large number of par-
ticles that do not escape.

> 043

042l ] =0.001 65. Focusing on the tail, there is a nonstatistical pro-
nounced peak at the cutoff of the number of bounces. This
indicates the existence of a stable island for this eccentricity.
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B. Scattering dynamics on the snail structure

FIG. 7. (a) First 100 bounces of a trajectory displaying at least .
10 000 collisions(s=0.001 #=3.62 p=0.4332, ..). (b) (Color on- Now we analyze the relevant aspects of the dynamics for

line) Projection into the¢, vs v space of the trajectories which trajeCtories.With i”i“"?" cqnditions corresponding to the snail
bounce at least 1000 times with the disk, characterizing the trappeatrumur.e dlsplaye_d in Fig. 4. We_ r_e_call that_ _the numerI(_:aI
region for distinct values of the eccentricity=0.001 (red/gray, results |IIu_strated in the chart_s of '”'“"?" conditions are qU|te_
£=0.0015(green/light gray, and £=0.0016 (blue/dark gray. For generally mterp.reted. as the mtersgctlon of the stablg mani-
comparison, the trapped region of the circular case is distributef0!ds of some invariant structure in phase space with the
uniformly on ¢ in the interval 0.43% v =0.42. hyperplane that defines the chart. This is therefore related
either to the unstable periodic orbits, to the existence of other
Figure 1b) shows in the projection in the spagers ¢y of  stable periodic orbits or to the existence in phase space of
the set of orbits with at least 1000 collisions for several val-parabolic manifolds or other structures displaying marginal
ues ofe. For a given eccentricity, Fig.(8) provides a quali- stability. Yet from the charts of initial conditions no stability
tative picture of the measure of the trapped orbits associateuroperties of the scattering events associated with these
with the n=0 retrograde family. As expected, the measure ofstructures can be inferred. We thus perform further one-
this set diminishes for increasing eccentricity. The case oparameter scattering experiments.
circular motion corresponds to a uniform distribution ¢g In Fig. 9 we display the number of collisions,, and the
andv located in the interval 0.43%v =0.42. We notice that escape timd, for 6=2.74. We observe the dramatic change
the uniform distribution of the circular case is quite sensitivein the structure of the number of bounces in comparison to
to breaking the rotational symmetry of circular motion for the results displayed in Fig. 6. The scattering functions show
nonzeroe—i.e., the constancy Jacobi integral. This is nicely characteristic accumulation of peaks. Interestingly, while the
illustrated with the rather small values efplotted in Fig. number of collisions remains moderaten the scale dis-
7(b). played, the escape time increases dramatically as we ap-
Finally, an alternative way to show that trapped motionproach the accumulation point. We are led to conclude that
exists is to use the escape rate. The escape rate of a hypéne scattering trajectories must display a collision with the
bolic system shows an exponential behavior in contrast to thdisk such that the outgoing velocity is remarkably small.
nonhyperbolic cases which show an algebraic decay lawlhis is consistent with the L/type of behavior displayed in
with an exponent near to[20]. If one distributes projectiles the escape time. Inspection of individual scattering trajecto-
in the interaction region, one can numerically obtain the ex+ies confirms this. We shall thus refer to these characteristic
ponent of the decay law. If the number of projectiles in thepeaks as the low-velocity peak&1]. We mention that this
tail of the scattering experiment imuch higherin a non-  behavior is also observed in the circular case by performing
statistical way, than the one expected by the escape law, $icattering experiments of constant initial energy, which
can be concluded that a stable island exists in that interactioprobe different Jacobi integral§], and have also been ob-
region. In Fig. 8 the differential escape rate is showndor served in a one-dimensional time-dependent model of par-

036225-7



BENET et al. PHYSICAL REVIEW E 71, 036225(2005

10 | | | | | 500 | : : : —
9l (@ | 450 (b) -
sl | 400} i
-l i 350} .
300} .
6 N o
= - 250 1
5| i
200} .
4 { . 150 4
3 100 -
2| L i 50| | | .
1 . 1 . 1 . 1 . 1 . 1 . : * L * L * ! * l_'JL *
0.78530 0.78540 0.78550 0.78560 0.78570 0.78580 0.78590 0.78530 0.78540 0.78550 °~7?,56° 0.78570 0.78580 0.78590
v
10 ' I ' I ' I 700 . , . , . ,
oL (© | : d 1
600 |- -
sl | I ]
500 | .
7+ i I
. 400 -
Z 6 T |_° F b
300 .
5 - L i
AL 200 .
| ’J L | R ]
2 L 1 N 1 L 1 0 _r'f‘l 1 N )
0.735816 0.785817 0.785818 0.785819 0.785816 0.785817 0.785818 0.785819
v v

FIG. 9. Structure of the scattering functiofmumber of collisionsNy, and escape tim&,) for initial conditions in the snail structure.

ticle transport in an open hydrodynamical fl¢@2]. for the snail structures require further investigation.
Inspection of the scattering functions and individual tra- Numerical results foe=0 suggest that the snail structures
jectories reveals that there is some systematic behavior. Were related to the projection of the homoclinic and hetero-
notice first that each low-velocity peak is accompanied by alinic intersections of the manifolds of the radial collision
partner. Moreover, the low-velocity peaks display a kind ofperiodic orbits, first, and second, with the overall bifurcation
fractal structure and thus suggest the existence of homocliniscenario[23]. This is consistent with the fractal behavior
and heteroclinic connections of some invariant structure irmentioned above. After the first development of the horse-
phase space. Scattering trajectories corresponding to a cehoe, which by varying the Jacobi integral makes it com-
tain low-velocity peak lose almost all velocity after tklh  pletely hyperbolic, the tendrils of the invariant manifolds es-
collision. Different low-velocity peaks can be classified by cape. They eventually fold back and reenter the fundamental
the first collision where a significative amount of kinetic en-rectangle in the horseshoe construction. The entrance with
ergy is lost. Within one such peak, the scattering trajectoriesr=1r, projected into the initial condition space, is the outer-
of nearby intervals of continuity18] differ in T,, to a very  most part of the snail. For positivk further reduction yields
good approximation, by a constant quantity. Indeed, the into the next saddle-center bifurcation and the creation of two
tervals of continuity can be characterized by the number ohew periodic orbits. Their corresponding manifolds repeat
full turns of the disk between the collisioksandk+1—i.e.,  the above construction: When they fold back and reenter the
between théfirst) collision where the particle looses most of fundamental rectangle they do it precisely in the middle of
its energy and the next one. By consequence, this differencal previous ones. So every new passage throaghr is
in time is very close to 2, which is the period of the orbit of projected precisely on the snail structure and also defines the
the disk. We may thus introduce a new lalg) to classify  n hierarchy of the primitive periodic orbits. The loops of the
the corresponding interval of continuity of the scattering tra-snails should scale asd,/since the saddle-center bifurcation
jectory. Second- and higher-order low-velocity peaks are asscales like that.
sociated with later collisions of this type—i.e., which take
away most of the energy of the particle in later collisions. V. SUMMARY AND OUTLOOK
This characterization corresponds to a symbolic description
of the dynamics for scattering events on the snail structures, In this paper, we have analyzed the scattering dynamics of
even though the snail structures have not been associatedrestricted three-body problem in two dimensions, which
with the simple periodic orbits of the system. Further detailsresults in a system with a five-dimensional effective phase
and constraints on the application of this symbolic dynamicspace. We have based this analysis on known properties of
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the particular case of circular orbits where the Jacobi integraihg his stay at the IMCCEObs. Pariy where part of this

is conserved and only one and a half degrees of freedom aweork was written. We acknowledge financial and travel sup-
relevant. Taking small symmetry breaking as a point of deport provided by the DGAPA-UNAM Project No. IN-101603
parture, we were able to identify a two-dimensional subspacand CONACyT Project No. 43375.

of initial conditions, which displays relevant properties of the
system, without the usual pains of work in high-dimensional
spaces.

Our method allowed us to identify initial conditions for
which trapping is likely to happen. While our numerical cal-
culations on individual orbits points towards trapped motion
(trajectories displaying more than 10 000 collisipasd the -
escape-rate behavior shows a nonstatistical peak, the hidﬂ's billiard problem. . . . .
dimensionality of the system allows for effects like Arnold Consu_jer th_at_ the p_artlcle collides with the disk. W(.:‘ de-
diffusion. Therefore, permanent trapping may not occur andcribe this collision using the angig to denote the position
will certainly be difficult to prove. Yet the time scale in Of the center of the disk. Relative &, we denote by the
which such effect may be relevant is exponentially Iphg]. ~ @ngle of the velocity, byr the angular position of the colli-

We have also analyzed another unusual feature of th&ion on the disk, and by the Jacobi integralsee Ref[7] for
scattering functions: namely, the low-velocity peaks andts definition. We notice that the angles used here corre-
the corresponding trajectories, which are not directly relate@pond to those used along the paper, but are defined relative
to simple periodic orbits of the system. Interestingly, theto the angle¢. Given thenth collision, the collisionn+1,
structure of the time of escape for the low-velocity peakswhich we assume that takes place, is defined by the ipap
gives information on the period of the disk, which is ob-
tained only by using asymptotic data. This may be of rel- Pne1 &n
evance in the context of the inverse chaotic scattering prob- Uit
lem[18]. We constructed an approximate symbolic dynamics P =T P
which describes the main features of the scattering events n+l n
involved in this case. This is important because low-velocity Jna1 N
peaks are related to parabolic manifo]@4,22), in the sense
that the limiting orbit is marginallyun)stable.

The basic idea involved is the reduction to a space o
initial conditions of considerably lower dimensionality. Such
a reduction may well be essential for practical purposes, e.g., 0= l(Zp +m-2nm), (A2)
for numerical modeling or for experimental work, where one 2m
certainly does not want to search the interesting phenomena ] o )
in very-high-dimensional spaces of initial conditions, par-Wherep, mandn are 0,1,2.... In this case, the periodic orbit
ticularly if some system parameters must also be varied. Thi§ closed aftem bounces with the disk, and denotes the
benefit of such a procedure is to identify regions where inumber of full tums of the disk between consecutive
teresting and nontrivial scattering dynamics takes place. Yepounces. In particular, for the circular case, we have
this benefit will only be obtained if the reduced space of

APPENDIX

Here, we provide a proof of the existence of the periodic
orbits in the problem of scattering off a disk on a Kepler
orbit, adapting the method of analytical continuatj@d] for

(A1)

In the circular case, the fixed points of this map correspond
fo periodic orbits if the angl® satisfies the relation

initial condition is chosen adequately; we achieved this by én $n+ 6¢ mod (2m)

continuation, slightly breaking a continuous symmetry. We T ™

would like to emphasize that the dimensional reduction of fo P = P ' (A3)
subspace is desirable quite generally in higher-dimensional " "

systems and that weak symmetry breaking can provide the In In

physical insight needed in a wide variety of situations. How- o . . .
ever, this method does nat priori provide direct informa- where 5¢=(2n-1)7+26 is the angle difference iR be-

tion on trapped motion. Future investigations will be directedWeen two successive bounges. I o
We want to prove the existence of initial conditions for

to describe the chaotic set itself, in particular, to decide onth i that 4 onto th | ft
the existence of truly trapped motion. It is important to no- € eccentric case that are mapped onto themselvesraier

tice that the subspace of initial conditions we found dis_bounces. This condition is fulfilled if
played interesting structures even for large symmetry break-

ing, where qualitatively different behavior from the ¢ ¢

symmetric case occurs. One might think of situations, where fm a | |a]_ 0 (A4)
different symmetries are possible and could be used to define el g '

different subspaces, which display similar or complementary 3 3

features.

The idea of the proof is to show that EGA4) can be
ACKNOWLEDGMENTS solved perturbatively ire close to a periodic orbit of the
We would like to thank C. Jung for helpful discussions circular case. Neglecting second-order terms, (Bg) is re-
and comments. L.B. thanks J. Laskar for the hospitality durwritten as
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b — o In order to have a solution of EgA6), this determinant
o« pr of the matrixB(m) must be different from zero. The deter-
(DfM™-1) P +e (98 =0. (A5)  minant can be written as
- 0, e
J=J defB(m)]= Cm(A™2 - \"™2)2, (A7)

Here,Df™ is the derivative of the map at=0 and(d/e)f"

is the derivative of the map with respect 4 evaluated at where\ is the eigenvalue corresponding to the fixed point of

8:ghgifgﬁgz;;sijv?iiggig?r‘]]gJacobi integral for the cir—the circular case an@ is a constant independent of This
cular case, all matrix elements of the last ronfBf™-1) are eéxpression can only be zero fa."fnzl' Alternatively, from
the expression foB(m), we obtain

equal to zero. In order to fulfill EQA5), this implies that the
last row of (9/ 9)fT" must have all matrix elements equal to
zero. This is indeed the case, as it can be computed directly R&¢°

(for details, see Ref23]). So the system of linear equations de{B(1)]=- m- (A8)
is reduced by 1. In addition, for the circular case, the depen- 0

dence ong is trivial. Then, the system of linear equations

has the form This expression can only be zerodb is zero—i.e., if the
angle difference between two successive bounces would be
a-m gfm zero. Therefore, in the case®=0 and\™=1 we cannot
B(m)| -6y |=-e—=. (AB) continue the periodic orbits of the circular case to the eccen-
J-J e tric case. Otherwise, the matriB(m) can be inverted and the

) o ) ) system of linear equationfA5) has exactly one solution.
Here, the matrb8(m) is given by the matriXDf™-1) omit-  This establishes that the fixed points of the circular map can
ting the first column and the last row, affl represents the be deformed for nonzere and yield periodic orbits of the
corresponding map. eccentric case.
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