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Frequently, multistable chaos is found in dynamical systems with symmetry. We demonstrate a rare example
of bistable chaos in generalized synchronizationsGSd in coupled chaotic systems without symmetry. Bistable
chaos in GS refers to two chaotic attractors in the response system which both synchronize with the driving
dynamics in the sense of GS. By choosing appropriate coupling, the coupled system could be symmetric or
asymmetric. Interestingly, it is found that the response system exhibits bistability in both cases. Three different
types of bistable chaos have been identified. The crisis bifurcations which lead to the bistability are explored,
and the relation between the bistable attractors is analyzed. The basin of attraction of the bistable attractors is
extensively studied in both parameter space and initial condition space. The fractal basin boundary and the
riddled basin are observed and they are characterized in terms of the uncertainty exponent.
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I. INTRODUCTION

A central problem in nonlinear dynamics is to explore
how the asymptotic properties of a dynamical system evolve
as the control parameter is continuously changed. The mul-
tistability of dynamical systems, i.e., the coexistence of more
than one attractor for a given set of parameters, has attracted
much research interest. It is known that in these systems the
dynamics may sensitively depend on both the parameters and
the initial conditions. This so-called “final state sensitivity”
f1g implies that even the qualitative asymptotic behavior of
the system cannot be predicted. In other words, given the
initial conditions, in principle we do not know on which
attractor the dynamics will finally settle down. The interest-
ing dynamical phenomena related to the multistability and
the final state sensitivity, such as fat fractalsf2g, fractal basin
boundary f3g, basin boundary metamorphosesf4g, riddled
basinsf5g, intermingled basinsf6g, and symmetry-breaking
or increasing bifurcationf9,11,13,14,19,24g, have been ex-
tensively studied.

So far, the multistability has been studied in both the map
systemsf7–16g and the flow systemsf17–24g. Frequently, it
is observed in dynamical systems with certain symmetry
f9–16,19–24g. However, this does not imply that symmetry is
a necessary condition for multistability. There are systems
without symmetry which can exhibit multistability
f7,8,17,18g, mainly the coexistence of different periodic or-
bits or the coexistence of periodic orbit and chaotic attractor.
In our opinion, the multistability is somewhat trivial if there
exists symmetry in the dynamical equations, since in this
case we can deduce that due to the symmetry mathematically
it is possible for the system to exhibit multistabilityf23g.
Therefore, multistability arising from the asymmetric dy-
namical systems deserves further attention.

Among the studies on multistability, the multistable
chaos, i.e., the coexistence of more than one chaotic attrac-
tor, is particularly interesting since the chaotic attractor is the
nontrivial one. As far as multistable chaos in flow systems is

concerned, we notice that the existing works all concentrate
on the dynamical systems with certain symmetryf19–24g. To
our knowledge, the multistable chaos in flow systems with-
out symmetry has not been reported yet. However, we be-
lieve that it should exist in certain asymmetric dynamical
systems. Recently, in the course of studying generalized syn-
chronizationsGSd f27–34g in coupled chaotic systems, we
found an interesting example of bistable chaos which occurs
in a dynamical system without any symmetry. The purpose
of this paper is to report this finding, as well as the related
bifurcations, such as GS and crisis, in the model studied. The
significance of our work comes from the following two as-
pects. First, in contrast to the previous works on bistable
chaos in flow systems with symmetry, the present study pro-
vides an uncommon example which is able to exhibit
bistable chaos without any symmetry in the flow system. Our
study thus broadens the research domain of bistable chaos in
flow systems. Secondly, the model studied is a typical
coupled dynamical system in which GS has been extensively
studied previouslyf29–31g, however the bistability in this
model has not been pointed out so far.

We investigate one prototype dynamical model in GS,
where the Lorenz system is uni-directionally driven by the
Rössler system. This is the typical drive-response configura-
tion f28–31g. In fact, our motive to study multistability in
coupled chaotic systems was inspired by the work in Ref.
f23g, where the multistable chaos has been studied in the
framework of GS. The key point in Ref.f23g is that there
exists symmetry in the system’s equations such that multiple
synchronization attractors which are related to the system’s
symmetry can coexist in the response system. In our study,
by choosing appropriate coupling, the inherent symmetry of
the Lorenz system can be either kept or broken. Using the
coupling strength as the control parameter, the bifurcations in
the response system are explored for both the symmetric and
the asymmetric models. In the symmetric case, as expected,
bistable chaos is observed in GS, i.e., two chaotic attractors
coexist in the response system which are both synchronized
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with the drive system in the sense of GS. Surprisingly, it is
further shown that this bistability in GS can even persist in a
wide parameter range when the system’s symmetry is broken
by a different coupling scheme. The mechanism of the
bistable chaos without symmetry is related to the crisis in the
response system under chaotic driving. As a consequence of
bistability, the fractal basin boundary and riddled basin are
observed for certain parameter values. The fractal basin
boundary is quantitatively characterized in terms of the un-
certainty exponentf1,3g.

In the present model, there is only one attractor in the
response system without coupling. The bistability is the re-
sult of the chaotic driving, together with the special proper-
ties of the Lorenz systemf25g, for example its special topo-
logical structure in phase space. We emphasize that this
bistability is essentially different from certain trivial situa-
tions. For example, it is known that due to symmetry the
Lorenz system may have one symmetric attractor or a pair of
bistable nonsymmetric attractors, depending on the param-
etersf25g. For certain parameters, two bistable periodic or-
bits can be generated through a symmetry-breaking bifurca-
tion f26g. If with these parameter values the Lorenz system is
driven by the Rössler system, we found that the bistability in
GS can be observed in both thez coupling schemesthe sym-
metric cased and thex coupling schemesthe asymmetric
cased. However, we regard this bistability as a trivial one
since without chaotic driving the system already exhibits bi-
stability. On the other hand, we found that even when a dy-
namical system shows bistabilityswithout drivingd, this bi-
stability could be destroyed in the GS regime under the
chaotic driving. For example, we have studied the model
where the Duffing system in the bistable regimef19g is
driven by the Rössler system. We found that the bistability
no longer persists under the driving in the coupled systems.

This paper is organized as follows. In Sec. II, GS in
coupled chaotic systems with symmetry is considered. We
show that the model exhibits two types of bistability in GS,
namely the type I and the type II bistability. In Sec. III, we
further explore the asymmetric model where the system’s
symmetry is broken by choosing a different coupling scheme
between the drive and response system. In both Sec. II and
Sec. III, the bifurcation diagram is carefully explored using
the coupling strength as the control parameter. In addition,
the dependence of the bistable GS attractors on the param-
eters and the initial conditions is also extensively studied.
The fractal basin boundary and riddled basin are observed,
and the corresponding fractal dimensions are obtained by
calculating the uncertainty exponents. At the end of this pa-
per, there are concluding remarks.

II. BISTABILITY IN GS IN SYMMETRIC SYSTEM

The current study of bistable chaos is in the framework of
GS, which is an important type of chaotic synchronization
f27–34g. In GS, instead of the coincidence of two dynamics
as in complete synchronizationsCSd, the dynamics of two
chaotic systems are related by a certain functional relation. In
fact, due to the parameter mismatch and the environment
noise in practice, in the strict sense the observed chaos syn-

chronizations all belong to the domain of GS. Therefore, GS
currently is under intensive investigation.

In the present model, GS occurs between two coupled
chaotic systemsf28–31g. The equations of the drive system
are

u̇ = − asv + wd,

v̇ = asu + avd,

ẇ = afb + wsu − cdg, s1d

and the response system is governed by

ẋ = ssy − xd,

ẏ = rx − y − xz,

ż= xy− bz− esz− wd. s2d

Here, the Lorenz system is unidirectionally driven by the
Rössler system through the coupling term in thez variable.
The time scaling factora in Eqs.s1d is introduced to control
the characteristic time scale, or to adjust the natural fre-
quency of rotation of the Rössler oscillatorf31g. The param-
eters are set asa=b=0.2,c=5.7,s=16, r =45.92, andb=4.
Without coupling, the Lorenz equations are invariant under
the transformationT: sx,y,zd→ s−x,−y,zd, i.e., it has the
symmetry of line inversion with respect to thez axis, or
equivalently it has the symmetry of inversion in thexy plane.
Apparently this symmetry is not affected in the above drive-
response configuration since the driving signals are coupled
to the z variable in the response system. Thus we call this
situation the symmetric configuration.

We first explore the GS bifurcation between systems1d
and systems2d, which can be characterized by the negativity
of the largest conditional Lyapunov exponentsLCLEd in the
response systemf27,29,31g. With negative LCLE, the re-
sponse system becomes asymptotically stable and trajecto-
ries from different initial conditions will converge. We notice
that due to the attractor bubblingf33g, the standard synchro-
nization criterion cannot always guarantee the high-quality
synchronization in experiments or simulationsf34g. There-
fore, in the present study we also use the response-auxiliary
system approachf30g to detect the occurrence of GS. In or-
der to avoid misleading results using this approach, two is-
sues are crucial in the numerical experiments. First, in the
case of bistability we have to ensure that the initial condi-
tions of the response system and the auxiliary system are in
the same basin of attraction. Secondly, in the present study, a
crisis occurs very near the GS bifurcation point. Thus a very
long transient time should be thrown away near the GS bi-
furcation point. In our numerical experiments, the integra-
tions are carried out up to 23107. The first period of 107 is
discarded. The second period of 107 is analyzed to determine
whether the GS or the crisis occurs. This convention is fol-
lowed throughout this paper.

In the present model,a and e are the two major param-
eters of interest. It is found that the time scaling parametera
has little influence on the GS bifurcation point. In fact, it
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mainly affects the phase of systems1d. Usually when the
coupling strength exceeds a critical valueeg, which is nu-
merically found between 2 and 3, the GS between the drive
and the response system is achieved. What makes this GS
special is that the response system exhibits bistability in GS.
Here the bistability in GS refers to the fact that without driv-
ing there is only one attractor in the response system, while
after GS there are two attractors in the response system, both
of which synchronize with the driving dynamics. These two
attractors are thus called the bistable GS attractors. Depend-
ing on the initial conditions, the system may evolve onto
either of the bistable GS attractors. We emphasize that al-
though the GS in the above model has been extensively stud-
ied previouslyf29–31g, the bistability in GS in this model
seems to have attracted little attention. In Fig. 1sad, we show
a pair of typical bistable GS attractors as well as the driving
Rössler attractor. It is found that in thexy plane, the attractor
A+ is confined in the first quadrantsx.0 andy.0d while the
attractorA− is always in the third quadrantsx,0 andy,0d.
They form a symmetric pair under the transformation
T: sx,y,zd→ s−x,−y,zd, but neither of them is symmetric un-
der such transformation. Interestingly, it is seen that under
the driving, the topological structures of bistable GS attrac-
tors A+ andA− resemble that of the driving attractorAD. As
shown in Fig. 1sad, they rotate around a center in a plane for
a period of time, then burst and escape from the rotation
plane in the transverse direction for a while, and finally re-
turn onto the plane to go on with the rotation, and so on.

In the present study, the GS accompanies the qualitative
change of the attractor in the response system. The qualita-
tive changes of chaotic attractor in phase space, such as the
sudden change in the size of the chaotic attractors and the
sudden appearance of chaotic attractors, have been known as
the crisis bifurcation. In crisis, the chaotic attractor may col-
lide with the unstable periodic orbit on the basin boundary
that separates themf20,35g. In dynamical systems with sym-
metries, the appearance or disappearance of a pair of bistable
chaotic attractors is frequently observedf9,11,13,14,19,24g.
Therefore, it is not strange to observe the bistability in GS in
the symmetric model. One important feature of the crisis in
the current model is that the control parameter, i.e., the cou-
pling strength, is a parameter reflecting the magnitude of the
chaotic driving from the drive system. This implies that the

crisis in the response system is caused by the chaotic driving.
In order to understand the mechanism of the bistability, a

qualitative study of the bifurcation diagram about the GS and
the crisis is necessary. To this end, we now focus on the
bifurcation processes in a concrete example ata=5. With the
increase of the coupling strength, the GS bifurcation first
occurs ateg=2.536, which is characterized by the LCLE in
the response system in Fig. 1sbd. On the other hand, Fig. 1sad
shows that the original single attractor in the response system
has split into a pair of bistable attractors, which shrink dras-
tically in phase space. This phenomenon is a typical signa-
ture of crisis. Therefore, both GS and crisis occur in the
response system with large coupling strength. At first glance,
it appears that the crisis occurs simultaneously with the GS
bifurcation. However, a careful examination reveals that
there are two crises occurring at different coupling strength.
The first one takes place ateg, i.e., the GS bifurcation point,
and the second one takes place atec=2.623, a little larger
than the GS bifurcation pointeg. Therefore, there are three
parameter regimes for the control parametere. They are re-
gime I se,egd, regime II segøe,ecd, and regime III se
ùecd. In regime I, the response system does not synchronize
with the drive system. Its attractor at this stage keeps the
butterfly shape of the Lorenz attractor, although it is per-
turbed by the driving signals, as shown in Fig. 2sad. In re-
gime II, GS is achieved and simultaneously the response
system undergoes a crisis where the attractor unfolds to be-
come two bistable attractors. At this stage, the bistable GS
attractors still keep the shape of the Lorenz attractor, as
shown in Figs. 2sbd and 2scd. The characteristic of the
bistable attractors in this regime is that they totally overlap in
phase space, but they have different basins of attraction. As
shown in Figs. 2sdd–2sfd, they are exactly related to each
other by the system’s symmetry. The bistability in this re-
gime is similar to the situation described in Ref.f23g. We
believe it should be observed in many symmetric systems.
We call this bistability type I bistability. In the current model,
type I bistability has also been observed for othera values
such asa=4. Nevertheless, for othera values, such asa
=1 or a=6, regime II is too narrow to be observed in our
numerical experiments.

Wheneùec, the system enters into regime III, where the
response system exhibits a different type of bistability in GS.
Due to the crisis atec, the overlapped bistable attractors sud-
denly shrink greatly and become two well separated attrac-
tors in phase space, as shown in Figs. 3sad–3scd, as well as in
Fig. 1sad for a three-dimensional view. From Figs. 1sad and
3scd, it is seen that the bistable attractors in this regime re-
semble the driving Rössler attractor. This is different from
the situation in regime II. We thus refer to this bistability,
where the symmetric pair bistable attractors are separated in
phase space, as type II bistability. Type II bistability in GS
has not been reported before.

In dynamical systems with multistability, the boundary
between different basins of attraction is frequently fractal
f1,3g. We investigate the dependence of the bistable GS at-
tractors on both initial conditions and parameters. In our nu-
merical experiments, if the dependence of the dynamics on
initial conditions is studied, the parameterssa ,ed are fixed
and the initial conditions go through thez=0 plane; if the

FIG. 1. For the symmetric model Eqs.s1d ands2d. sad The sym-
metric pair of bistable GS attractorsA+ and A− in the response
system as well as the driving attractorAD. a=5, e=9. sbd The
LCLE of the response systeml1 vs the coupling strengthe. a=5.
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dependence of the dynamics on parameters is studied, the
initial conditions of the response systems are fixed and the
parametersa and e go through thea-e parameter plane. In
both cases, the initial conditions in the drive system are
fixed. The results are shown in Figs. 4 and 5. For type I
bistability, it is found that the basins of the bistable GS at-
tractors in the initial condition space are intermingled, as
shown in Fig. 4. Usually, final-state sensitivity in both phase
space and parameter space can be quantified by the uncer-
tainty exponentsg f3g. The exponentg is defined as follows.
In phase space or parameter space, randomly choose a phase
point r0. Define another phase pointr08=r0+d, whered is a
small perturbation. Determine whether the final states of the
system using these two initial conditions or parameter values
are on different attractors. If so, the initial conditions or the
parameters are called uncertain initial conditions or uncertain
parameter values. For a given perturbationd, the fraction of
uncertain initial conditions or uncertain parameter values,
fsdd, can be calculated by randomly choosing many different
initial conditions or parameter values. Typically there is a
scaling relation,fsdd,dg, whereg is the uncertain exponent.
In the plot of logfsdd versus logd, the uncertainty exponent
g is just the slope of the straight line. It has been proven that

the uncertainty exponentd and the basin boundary dimen-
sion satisfy the relationg=D−d, where D and d are the
dimension of the phase space and the basin boundary dimen-
sion, respectivelyf3g. In Fig. 4, the uncertainty exponents are
computed using the above method, which confirm that the
basins of attraction are riddled for type I bistable attractors.
The error bars in Fig. 4salso in Figs. 10 and 12d are deter-
mined in the same way as in Ref.f3g. For type II bistability,
however, it is found that the basin boundaries are trivial
curves in both the parameter space and the initial condition
space. Two typical examples are shown in Fig. 5. It is
pointed out that in the initial condition space, the basins of
attraction ofA+ andA− are symmetric under inversion trans-
formation in thexy plane. This is also due to the symmetry in
the response system. If from the initial pointsx0,y0,z0d the
system will asymptotically settle on attractorA+, then from
the initial points−x0,−y0,z0d the system will definitely go to
attractorA−.

To conclude, in this section we investigated the bistability
in GS when the response system has the line inversion sym-
metryT: sx,y,zd→ s−x,−y,zd. Two types of bistability in GS
have been identified, i.e., type I and type II bistable chaos.
The former occurs within the parameter regime II, where the

FIG. 2. Type I bistability in GS in the sym-
metric model witha=5. sad Attractor of the re-
sponse system ate=2.5. At this stage there is no
GS between the coupled systems.sbd and scd
Bistable GS attractors ate=2.55. For the visual-
ization, we specially choose a short period of
time so that the two attractors can be distin-
guished in phase space. For a long time, they are
both like the attractor insad. sdd–sfd The bistable
GS attractors are symmetric under the inversion
transformation in thexy plane, while identical in
the z direction.

FIG. 3. Type II bistability in GS in the sym-
metric model witha=5. sad–scd Attractors of the
response system with different coupling strength.
Two GS attractorsA+ andA− at e=2.7 are shown
in black. The attractor ate=2.5 before the crisis
is also shown in gray for comparison of the at-
tractor size before and after the crisis. Note that
the scale ofscd is different fromsad andsbd. sdd–
sfd The two GS attractors are symmetric under the
inversion transformation in thexy plane, while
identical in thez direction.
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bistable GS attractors totally overlap in phase space. The
latter occurs within the parameter regime III. The type II
bistable GS attractors are well separated in phase space. Due
to the system’s symmetry, the bistable attractors for both type
I and type II bistability form a symmetric pair. We believe
these two types of bistable chaos are typical in symmetric
dynamical systems.

III. BISTABILITY IN GS IN AN ASYMMETRIC SYSTEM

In general, if a certain phenomenon occurs in a symmetric
system, it is of particular importance to ascertain to what
extent such a phenomenon is related to the system’s symme-
try. It would be surprising if certain dynamical properties
which exist in symmetric systems continue to exist even after
such symmetry is broken. If this happens, we can conclude
that the symmetry is not a necessary condition to generate
the phenomenon. We notice that in flow systems, the existing
studies on multistable chaos are carried out in symmetric
systemsf19–24g. Naturally, it is important to find out what
would happen if the system’s symmetry is broken. To this
end, in this section we study a different drive-response con-
figuration where the response system’s symmetry is deliber-
ately broken by choosing an appropriate coupling term. In-
terestingly, it is found that in this case the model still can
exhibit bistability in GS in a wide range of parameters.
Therefore, what we observe is a rare case of bistability with-
out symmetry. Later we will show that although the bistable
GS attractors have no simple symmetric relation in this case,

they are likely to have a certain functional relation between
them.

We still consider GS in the drive-response configuration.
The drive system is the same as Eqs.s1d, and rewritten here

u̇ = − asv + wd,

v̇ = asu + avd,

ẇ = afb + wsu − cdg, s3d

but the response system has been changed to

ẋ = ssy − xd − esx − ud,

ẏ = rx − y − xz,

ż= xy− bz, s4d

where the driving signal is coupled to thex variable in the
response system. All parameters are the same as in the pre-
vious section. Apparently, the inherent symmetry of the Lo-
renz system has been broken by this coupling term. We de-
note this model as the asymmetric model, in contrast to the
symmetric model studied in the previous section.

A. The bifurcations

We first explore the bifurcation diagram of systems4d
under the driving from systems3d with a=3. With the in-

FIG. 4. sad and sbd For type I bistability, the
basins of attraction of the bistable GS attractors
are intermingled on thez=0 plane. The white and
black areas, respectively, denote the two basins of
attraction.sbd is the enlargement of a small win-
dow onsad. Note that the origin must be excluded
because the axisz, i.e., the linex=0 andy=0, is
the invariant subspace of the dynamical system
s2d. a=5, e=2.6. The initial conditions for the
drive system are fixed ass−1,−1,−1d. scd andsdd
The uncertainty exponents forsad andsbd, respec-
tively. g is the slope of the straight line.
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crease of the coupling strength, GS first takes place in the
response system. Figure 6 characterizes the GS bifurcation
by the LCLE in the response system. The critical coupling
strength iseg=4.521. Generally, it is found that the critical
coupling strength for achieving GS in the asymmetric case is
larger than that in the symmetric case. In both the symmetric
and the asymmetric cases, the time scaling parametera has
little effect on the GS bifurcation point.

What makes the present study interesting is that the model
can still exhibit bistability in GS even without symmetry.
With the further increase of the coupling strength after the
GS bifurcation, it is found that a series of crises successively
occur. We numerically identified three crises which occur at
e1=4.548,e2=38.588, ande3=48.523, respectively. The GS
bifurcation point and these three crisis bifurcation points di-
vided thee axis into five regimes.

In regime I, i.e.,e,eg, GS has not been achieved between
two coupled systems. A typical attractor of the response sys-
tem at this stage is shown in Fig. 7sad. In regime II, i.e.,eg
øe,e1, GS is achieved, but no bistability is observed in this
stage. This is different from the situation in the symmetric
model, where the GS bifurcation is a twofold one in the
sense that GS and the bistability simultaneously happen. Af-
ter that, the system enters into the bistable chaos regime.
However, in the asymmetric model the bistability does not
simultaneously appear with the GS bifurcation. In regime II,
only one GS attractor is observed, as shown in Fig. 7sbd.

The response system does not exhibit bistability until it
enters regime III, i.e.,e1øe,e2. It is found that ate1 a crisis
occurs, where the single GS attractor in regime II suddenly
splits into two separated attractors. In the meantime, the
newborn bistable attractors have greatly shrunk compared
with the GS attractor in regime II. The bistability can be
observed in the whole regime III, which is a relatively large

FIG. 5. The basins of attraction on the parameter plane and
initial condition plane for type II bistability. The white and black
are basins of attraction ofA+ andA−, respectively.sad The basins of
attraction on thea-e parameter plane. The initial conditions for the
drive and the response systems are fixed ass−1,−1,−1d and s1, 1,
1d, respectively.sbd The basins of attraction on the initial condition
planez=0. The parameters are fixed asa=5 ande=9. The origin
should be excluded for the reason mentioned in Fig. 4.

FIG. 6. For the asymmetric model Eqs.s3d and s4d, a=3. The
LCLE of the response systeml1 vs the coupling strengthe.

FIG. 7. The metamorphoses of the attractor in
the xz plane in the response system with the in-
crease of coupling strength.a=3. The GS bifur-
cation occurs ateg=4.521, and the three succes-
sive crises occur ate1=4.548, e2=38.588, and
e3=48.523, respectively.sad GS has not been
achieved ate=4.5 in regime I;sbd GS has been
achieved, but there is no bistability ate=4.535 in
regime II; scd–sfd asymmetric bistable attractors
sin black and gray, respectivelyd expand gradu-
ally at e=4.6, 20, 30, and 38.5 in regime III. In
sbd, the parameter is near the crisis point, thus the
attractor spends a long time in the region in phase
space where the bistable attractors will form after
the crisis.
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parameter range. Thus we emphasize that this bistability is a
robust phenomenon and cannot be regarded as a transient
behavior. The evolution of the bistable GS attractors in re-
gime III is shown in Figs. 7scd–7sfd. Similar to the symmetric
case, in thexy plane one GS attractor is confined in the first
quadrant while the other is in the third quadrant immediately
after the crisis. However, in this situation the bistable GS
attractors no longer have a symmetric relation. We denote
this asymmetric bistability as type III bistability in order to
distinguish from the type I and type II bistability in the sym-
metric model. With the increase of the coupling strength
within regime III, it is found that the bistable GS attractors
expand in phase space. Remarkably, attractorA− expands
faster than attractorA+, as seen in Figs. 7scd–7sfd. As a con-
sequence of this unbalanced expansion, at certain relatively
large coupling strength, attractorA− first crosses thex.0
region in phase space. Soon after this, it disappears in the
second crisis ate2. After the second crisis, there is no bista-
bility in the response system.

In regime IV, i.e.,e2øe,e3, only one GS attractorA+
exists, which continues to expand as the coupling strength
increases. Finally, the third crisis occurs ate3=48.523. This
time, however, attractorA+ does not disappear. Instead it
suddenly doubles its size and becomes a double-scroll attrac-
tor that resembles the Lorenz attractorsnot shownd. There-

fore, the GS in regime V, i.e.,e3øe, is similar to that in
regime II.

Now different parameter regimes in the asymmetric
model are clear. For regimes I–V discussed above, GS occurs
in regimes II–V, while type III bistability in GS occurs in
regime III. Comparing these results with that in the previous
section, we conclude that all three types of bistabilities are
caused by a crisis in the response system regardless of the
system’s symmetry. The difference dictated by the system’s
symmetry is whether the bistable GS attractors are symmet-
ric or not.

B. The relation between bistable GS attractors

In the present study, the type III bistability, i.e., the
bistable chaos in an asymmetric system, is quite remarkable.
There are some features in the bistable GS attractors that are
worth noting. First, in a wide parameter range, the bistable
attractors are, respectively, confined in different quadrants on
the xy plane, just as in the symmetric case. Secondly, they
are no longer symmetric in phase space, and their expansion
speeds in phase space are different as the coupling strength is
increased. Thirdly, the mechanism of the asymmetric bista-
bility is also due to the crisis, which turns out to be robust in
the present model regardless of whether it has symmetry or
not. In Fig. 8, a pair of typical asymmetric bistable GS at-
tractors are plotted with the features discussed above. Al-
though now there is no symmetric relation between them, we
argue that there still exists a certain, perhaps complicated,

FIG. 8. sad andsbd Typical asymmetric bistable GS attractors for
type III bistability. a=3 ande=25. scd The mapping between twox
variables of the drive and the response system.

FIG. 9. PS between the bistable attractors and the drive system
for type III bistability. a=14 ande=10. sad Three-dimensional plot
of the bistable attractors.sbd One of the bistable attractors in theuz
plane.scd The phases of the drive system and the bistable attractors
in the response system, as well as the phase differences between
them. sdd The frequency difference between the drive system and
one of the bistable attractors in the response system vs the coupling
strength.
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relation between them. In Fig. 8scd, the mapping between the
x variables of the bistable attractors seems to suggest this. In
fact, because the bistable GS attractors both synchronize
with the drive system, they both have certain functional re-
lations with the drive system, i.e., due to GS, generally we
have A+= fsADd and A−=gsADd. Following this, A+ and A−

now could be related asA+= fsADd= f(g−1sA−d)=hsA−d,
whereh= fg−1, and we reasonably assume thatg−1 exists as
in common situations of GSf36g. Therefore,A+ andA− may
have a functional relation given the GS relations between
them and the driving attractor are invertible. From this per-
spective, they certainly can be regarded as synchronized in
the sense of GS. Such special GS can be called indirect GS
in order to distinguish from the usual GS.

Usually, GS is observed between different dynamical sys-
tems, which are either parametrically different or physically

different. Here a special situation is demonstrated where GS
can be observed between two bistable attractors within one
dynamical system. The prerequisite of such GS is that the
two attractors in the response system are indirectly related by
the same driving signals. We argue that the indirect GS
among multiple attractors is a generic phenomenon in
coupled chaotic systems as long as the system exhibits mul-
tistability under the same driving perturbations.

For phase-coherent dynamical systems, such as the
Rössler system and the Lorenz system, a suitable phase of
the dynamics can be definedf37,38g. It has been shown that
two systems can achieve phase synchronizationsPSd while
their amplitudes may remain uncorrelatedf37–39g. The ex-
isting studies of PS are mainly based on the coupled para-
metrically different systems, such as two Rössler systems, or
two Lorenz systems. PS between two essentially different

FIG. 10. sad andsbd The basins
of attraction of the bistable attrac-
tors on the parameter planea-e for
type III bistability. The initial con-
ditions of the drive and the re-
sponse systems are fixed ass−1,
−1,−1d ands1, 1, 0d, respectively.
scd and sdd The blow-ups ofsad
and sbd showing fractal basin
boundaries.sed and sfd The uncer-
tainty exponents forscd and sdd,
respectively.g is the slope of the
straight line.
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systems has not been addressed yet. In the present work, we
also investigate the PS between the Rössler system and the
Lorenz system, which are two essentially different systems.
Since both systems are phase-coherent, it is reasonably ex-
pected that PS can be achieved between them. In our numeri-
cal experiments, we successfully observed PS between these
two chaotic systems in a certain parameter range. In Fig. 9,
an example is provided showing PS between systems3d with
a=14 and systems4d. It should be pointed out that in this
case the response system actually exhibits type III bistability.
Two asymmetric bistable attractors are shown in Fig. 9sad.
Following the conventionf37–39g, the phase of the Lorenz
system can be defined in theuzplane, whereu=Îx2+y2. One
of the bistable attractors in theuzplane is shown in Fig. 9sbd.
The phase definition is straightforward,

fstd = arctan
zstd − z0

ustd − u0
, s5d

wheresu0,z0d is the rotation center which usually is one of
the unstable fixed points of the system. Figure 9scd plots the
phases and the phase differences between the driving attrac-
tor and the bistable attractors in the response system, show-
ing that phases are locking between them. Based on the defi-
nition of phase, the mean frequency of a chaotic system can
be defined as

V = lim
T→`

1

T
E

0

T

ḟstddt. s6d

In Fig. 9sdd, the frequency difference between the drive sys-
tem and one of the bistable attractors in the response system
is plotted versus the coupling strength. It is seen that a PS
plateau exists in the moderately large coupling strength
range. We emphasize that since both the bistable GS attrac-
tors have the PS relation with the driving Rössler attractor,
the bistable GS attractors are also synchronized with each
other in phase.

C. The basin of attraction

In the symmetric case, as shown in Figs. 4 and 5, the
basins of attraction of the bistable attractors are either riddled
for type I bistability or trivial for type II bistability. When the
system’s symmetry is broken, the situation is different. The
dependence of the type III bistability on parameters is illus-
trated in Fig. 10. It is found that whena is small, for ex-
amplea,3, the basin boundary of the bistable GS attractors
is still trivial. However, with the increase ofa, this boundary
would be fractal as shown in Figs. 10sad and 10sbd. The
existence of infinitely fine-scaled structures is evident in
Figs. 10scd and 10sdd. The dependence of the bistability on
initial conditions has also been extensively investigated nu-
merically. The results are shown in Figs. 11 and 12. Similar
to the results on the parameter plane, the basin boundaries on
the initial condition plane are also trivial whena is small, as
shown in Fig. 11. However, for largea values, generally the
basin boundary between the bistable attractors is fractal.
Typical examples of the fractal basin boundaries are shown
in Fig. 12. It is noted that these basins of attraction are no
longer symmetric in both the trivial cases in Fig. 11 and the
nontrivial cases in Fig. 12.

In order to quantitatively characterize these fractal basin
boundaries, the uncertainty exponents have been computed
f1,3g. The results are also shown in Figs. 10 and 12. In all
these figures, the linear dependence of logfsdd on logd is
evident. The uncertainty exponentg is determined as the
slope of the straight line. For the examples given in Fig. 12,
the uncertainty exponents range from 0.374 to 0.510. Corre-
spondingly, the boundary dimensions range from 1.626 to
1.490.

IV. CONCLUDING REMARKS

In this paper, we report on a study of bistable chaos in GS
in coupled chaotic systems, where the Lorenz system and the
Rössler system are coupled in a drive-response configura-
tion. It is found that depending on the initial conditions, there
are two attractors in the response system which both syn-
chronize with the drive dynamics. By exploring both the
symmetric and asymmetric models, we identified three types
of bistable chaos. Among them, type I and type II bistability

FIG. 11. The regular basin boundary of the bistable attractors in
the z=0 plane for type III bistability atsad a=1,e=15; sbd a=2,e
=10, respectively. The initial conditions of the drive system are
fixed ass−1,−1,−1d.
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occur in the symmetric model while the remarkable type III
bistability occurs in the asymmetric model where there is no
inherent symmetry in the system’s equations. The mecha-
nism for the bistability in the present study is revealed. It is
the crisis in the response system under chaotic driving that
leads to the splitting of the synchronous attractor and thus
generates the bistability. The basin of attraction of the
bistable attractors is characterized in both parameter space
and initial condition space. Our findings in this work not
only complement the previous study of GS in the model, but
also enrich the study of multistability in asymmetric flow
systems.

Finally, we would like to point out that although the situ-
ation studied in the current work is bistability and symmetry,

the results and discussion are generally suitable for dynami-
cal systems with multistability.
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