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Bistable chaos without symmetry in generalized synchronization
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Frequently, multistable chaos is found in dynamical systems with symmetry. We demonstrate a rare example
of bistable chaos in generalized synchronizati@®) in coupled chaotic systems without symmetry. Bistable
chaos in GS refers to two chaotic attractors in the response system which both synchronize with the driving
dynamics in the sense of GS. By choosing appropriate coupling, the coupled system could be symmetric or
asymmetric. Interestingly, it is found that the response system exhibits bistability in both cases. Three different
types of bistable chaos have been identified. The crisis bifurcations which lead to the bistability are explored,
and the relation between the bistable attractors is analyzed. The basin of attraction of the bistable attractors is
extensively studied in both parameter space and initial condition space. The fractal basin boundary and the
riddled basin are observed and they are characterized in terms of the uncertainty exponent.
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[. INTRODUCTION concerned, we notice that the existing works all concentrate
A central problem in nonlinear dynamics is to explore ©N the dynamical systems with certain symm¢trg—24. To

how the asymptotic properties of a dynamical system evolv@U" knowledgehthe multistable chaos in flow systems with-
as the control parameter is continuously changed. The mufUt syhmme_ztryh a‘T’ dnot_be_en reported yet. HOWe‘éeﬂ we b?'
tistability of dynamical systems, i.e., the coexistence of more/€V€ that it should exist in certain asymmetric dynamica
than one attractor for a given set of parameters, has attractSyStems- Recently, in the course cl)f stugylng generalized syn-
much research interest. It is known that in these systems t ronlzatllon(GS)'[27—34 In coup.ed chaotic systems, we
dynamics may sensitively depend on both the parameters afgund an interesting example of bistable chaos which occurs
the initial conditions. This so-called “final state sensitivity” in a dynamical system without any symmetry. The purpose

S oo . : of this paper is to report this finding, as well as the related
Erﬂalrsnypslifn”::i\tnﬁ\:frl]:)(tehgrggﬁc:ltlteadnv?n aos%ﬁrptv?lg? dgeg?\\//é%r tohfbifurcations, such as GS and crisis, in the model studied. The

o . : M . ignificance of our work comes from the following two as-
initial conditions, in principle we do not know on which ,oq “First in contrast to the previous works on bistable
attractor th_e dynamics will finally settle down. The interest- .naos in flow systems with symmetry, the present study pro-
ing dynamical phenomena related to the multistability andiqes an uncommon example which is able to exhibit
the final state sensitivity, such as fat fracta$ fractal basin  pjstaple chaos without any symmetry in the flow system. Our
boundary[3], basin boundary metamorphose, riddled  study thus broadens the research domain of bistable chaos in
basins[5], intermingled basing6], and symmetry-breaking flow systems. Secondly, the model studied is a typical
or increasing bifurcatiori9,11,13,14,19,24 have been ex- coupled dynamical system in which GS has been extensively
tensively studied. studied previoush\{29-31], however the bistability in this

So far, the multistability has been studied in both the mapmodel has not been pointed out so far.
systemg 7-16] and the flow systeml7—-24. Frequently, it We investigate one prototype dynamical model in GS,
is observed in dynamical systems with certain symmetrywhere the Lorenz system is uni-directionally driven by the
[9-16,19-24 However, this does not imply that symmetry is Rossler system. This is the typical drive-response configura-
a necessary condition for multistability. There are systemsion [28—31]. In fact, our motive to study multistability in
without symmetry which can exhibit multistability coupled chaotic systems was inspired by the work in Ref.
[7,8,17,18, mainly the coexistence of different periodic or- [23], where the multistable chaos has been studied in the
bits or the coexistence of periodic orbit and chaotic attractorframework of GS. The key point in Ref23] is that there
In our opinion, the multistability is somewhat trivial if there exists symmetry in the system’s equations such that multiple
exists symmetry in the dynamical equations, since in thisynchronization attractors which are related to the system'’s
case we can deduce that due to the symmetry mathematicalbymmetry can coexist in the response system. In our study,
it is possible for the system to exhibit multistabilif23]. by choosing appropriate coupling, the inherent symmetry of
Therefore, multistability arising from the asymmetric dy- the Lorenz system can be either kept or broken. Using the
namical systems deserves further attention. coupling strength as the control parameter, the bifurcations in

Among the studies on multistability, the multistable the response system are explored for both the symmetric and
chaos, i.e., the coexistence of more than one chaotic attrathe asymmetric models. In the symmetric case, as expected,
tor, is particularly interesting since the chaotic attractor is thebistable chaos is observed in GS, i.e., two chaotic attractors
nontrivial one. As far as multistable chaos in flow systems iscoexist in the response system which are both synchronized
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with the drive system in the sense of GS. Surprisingly, it ischronizations all belong to the domain of GS. Therefore, GS
further shown that this bistability in GS can even persist in acurrently is under intensive investigation.

wide parameter range when the system’s symmetry is broken In the present model, GS occurs between two coupled
by a different coupling scheme. The mechanism of thechaotic system§28—31. The equations of the drive system
bistable chaos without symmetry is related to the crisis in thare

response system under chaotic driving. As a consequence of

bistability, the fractal basin boundary and riddled basin are u=-al+w),
observed for certain parameter values. The fractal basin _
boundary is quantitatively characterized in terms of the un- v=a(u+av),
certainty exponenitl,3].
In the present model, there is only one attractor in the w=a[b+w(u-c)], (1)

response system without coupling. The bistability is the re- )

sult of the chaotic driving, together with the special proper-a"d the response system is governed by
ties of the Lorenz systeri25], for example its special topo- X=a(y-x),

logical structure in phase space. We emphasize that this

bistability is essentially different from certain trivial situa- S
tions. For example, it is known that due to symmetry the y=mx=y=xz

Lorenz system may have one symmetric attractor or a pair of .

bistable nonsymmetric attractors, depending on the param- z=xy=pz-e(z-w). (2)
eters[25]. For certain parameters, two bistable periodic or-Here, the Lorenz system is unidirectionally driven by the
bits can be generated through a symmetry-breaking bifurcargssler system through the coupling term in theariable.

tion [26]. If with these parameter values the Lorenz system isthe time scaling factow in Egs. (1) is introduced to control
driven by the Rossler system, we found that the bistability inthe characteristic time scale, or to adjust the natural fre-
GS can be observed in both theoupling schemethe sym-  quency of rotation of the Rossler oscilla{@1]. The param-
metric casg and thex coupling schemethe asymmetric  eters are set a@=b=0.2,¢=5.7, 0=16,r=45.92, and3=4.
casg. However, we regard this bistability as a trivial one \wjthout coupling, the Lorenz equations are invariant under
since without chaotic driving the system already exhibits bithe transformationT: (x,y,2)— (-x,-y,2), i.e., it has the
stability. On the other hand, we found that even when a dysymmetry of line inversion with respect to tieaxis, or
namical system shows bistabilityvithout driving), this bi-  equivalently it has the symmetry of inversion in tgplane.
stability could be destroyed in the GS regime under theapparently this symmetry is not affected in the above drive-
chaotic driving. For example, we have studied the modefesponse configuration since the driving signals are coupled

where the Duffing system in the bistable regifd] is {5 the z variable in the response system. Thus we call this
driven by the Rossler system. We found that the bistabilitysjtyation the symmetric configuration.

no longer persists under the driving in the coupled systems. \ye first explore the GS bifurcation between systéin
This paper is organized as follows. In Sec. Il, GS ingnqg systeni2), which can be characterized by the negativity
coupled chaotic systems with symmetry is considered. Wey the |argest conditional Lyapunov exponéhCLE) in the
show that the model exhibits two types of bistability in GS'response systerf27,29,3]. With negative LCLE, the re-
namely the type | and the type II bistability. In Sec. Ill, we sponse system becomes asymptotically stable and trajecto-
further explore the asymmetric model where the system'§ies from different initial conditions will converge. We notice
symmetry is broken by choosing a different coupling schemgnat due to the attractor bubbliig3], the standard synchro-
between the drive and response system. In both Sec. Il anglzation criterion cannot always guarantee the high-quality
Sec. Il the bifurcation diagram is carefully explored using synchronization in experiments or simulatiof8]. There-
the coupling strength as _the control parameter. In addltlonf,ore, in the present study we also use the response-auxiliary
the dependence of the bistable GS attractors on the parardystem approacfs0] to detect the occurrence of GS. In or-

eters and the initial conditions is also extensively studiedger to avoid misleading results using this approach, two is-
The fractal basin boundary and riddled basin are observedyes are crucial in the numerical experiments. First, in the

and the corresponding fractal dimensions are obtained byase of bistability we have to ensure that the initial condi-
calculating the uncertainty exponents. At the end of this patigns of the response system and the auxiliary system are in

per, there are concluding remarks. the same basin of attraction. Secondly, in the present study, a
crisis occurs very near the GS bifurcation point. Thus a very
Il BISTABILITY IN GS IN SYMMETRIC SYSTEM long transient time should be thrown away near the GS bi-

furcation point. In our numerical experiments, the integra-
The current study of bistable chaos is in the framework oftions are carried out up t0>210. The first period of 10is

GS, which is an important type of chaotic synchronizationdiscarded. The second period of’ 1§ analyzed to determine
[27-34. In GS, instead of the coincidence of two dynamicswhether the GS or the crisis occurs. This convention is fol-
as in complete synchronizatiditS), the dynamics of two lowed throughout this paper.
chaotic systems are related by a certain functional relation. In In the present modely and € are the two major param-
fact, due to the parameter mismatch and the environmerdters of interest. It is found that the time scaling parameter
noise in practice, in the strict sense the observed chaos syhas little influence on the GS bifurcation point. In fact, it
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crisis in the response system is caused by the chaotic driving.
In order to understand the mechanism of the bistability, a
qualitative study of the bifurcation diagram about the GS and
the crisis is necessary. To this end, we now focus on the
bifurcation processes in a concrete example=ab. With the
increase of the coupling strength, the GS bifurcation first
occurs ate;=2.536, which is characterized by the LCLE in
the response system in FigblL On the other hand, Fig(4)
shows that the original single attractor in the response system
has split into a pair of bistable attractors, which shrink dras-
tically in phase space. This phenomenon is a typical signa-
ture of crisis. Therefore, both GS and crisis occur in the
FIG. 1. For the symmetric model Eqd) and(2). (a) The sym-  response system with large coupling strength. At first glance,
metric pair of bistable GS attracto&, and A- in the response it appears that the crisis occurs simultaneously with the GS
system as well as the driving attractdp. «=5, €=9. (b) The  bifurcation. However, a careful examination reveals that
LCLE of the response systeimy vs the coupling strengtk. a=5. there are two crises occurring at different coupling strength.
The first one takes place g}, i.e., the GS bifurcation point,
mainly affects the phase of systeft). Usually when the and the second one takes placeeat2.623, a little larger
coupling strength exceeds a critical valgg which is nu-  than the GS bifurcation poird,. Therefore, there are three
merically found between 2 and 3, the GS between the driv@parameter regimes for the control parameterhey are re-
and the response system is achieved. What makes this Gfme | (e<¢g), regime Il (,<e<e), and regime lli(e
special is that the response system exhibits bistability in GS= ¢;). In regime |, the response system does not synchronize
Here the bistability in GS refers to the fact that without driv- with the drive system. Its attractor at this stage keeps the
ing there is only one attractor in the response system, whilbutterfly shape of the Lorenz attractor, although it is per-
after GS there are two attractors in the response system, bothrbed by the driving signals, as shown in Figa)2 In re-
of which synchronize with the driving dynamics. These twogime Il, GS is achieved and simultaneously the response
attractors are thus called the bistable GS attractors. Dependystem undergoes a crisis where the attractor unfolds to be-
ing on the initial conditions, the system may evolve ontocome two bistable attractors. At this stage, the bistable GS
either of the bistable GS attractors. We emphasize that ahttractors still keep the shape of the Lorenz attractor, as
though the GS in the above model has been extensively studghown in Figs. #) and Zc). The characteristic of the
ied previously[29-31], the bistability in GS in this model bistable attractors in this regime is that they totally overlap in
seems to have attracted little attention. In Figa)lwe show phase space, but they have different basins of attraction. As
a pair of typical bistable GS attractors as well as the drivingshown in Figs. &)-2(f), they are exactly related to each
Rossler attractor. It is found that in thg plane, the attractor other by the system’s symmetry. The bistability in this re-
A, is confined in the first quadraft>0 andy>0) while the  gime is similar to the situation described in RE23]. We
attractorA_ is always in the third quadraiix<0 andy<0). believe it should be observed in many symmetric systems.
They form a symmetric pair under the transformationWe call this bistability type | bistability. In the current model,
T:(x,y,2) —(=X,-Y,2), but neither of them is symmetric un- type | bistability has also been observed for othevalues
der such transformation. Interestingly, it is seen that undesuch asa=4. Nevertheless, for othe values, such as
the driving, the topological structures of bistable GS attrac=1 or «=6, regime Il is too narrow to be observed in our
tors A, andA_ resemble that of the driving attract8y. As  numerical experiments.
shown in Fig. 1a), they rotate around a center in a plane for Whene= ¢, the system enters into regime Ill, where the
a period of time, then burst and escape from the rotatiomesponse system exhibits a different type of bistability in GS.
plane in the transverse direction for a while, and finally re-Due to the crisis ag., the overlapped bistable attractors sud-
turn onto the plane to go on with the rotation, and so on. denly shrink greatly and become two well separated attrac-
In the present study, the GS accompanies the qualitativtors in phase space, as shown in Figs)-33(c), as well as in
change of the attractor in the response system. The qualit&ig. 1(a) for a three-dimensional view. From Figsial and
tive changes of chaotic attractor in phase space, such as tR&), it is seen that the bistable attractors in this regime re-
sudden change in the size of the chaotic attractors and tteemble the driving Rossler attractor. This is different from
sudden appearance of chaotic attractors, have been knownthe situation in regime Il. We thus refer to this bistability,
the crisis bifurcation. In crisis, the chaotic attractor may col-where the symmetric pair bistable attractors are separated in
lide with the unstable periodic orbit on the basin boundaryphase space, as type |l bistability. Type Il bistability in GS
that separates the[20,35. In dynamical systems with sym- has not been reported before.
metries, the appearance or disappearance of a pair of bistable In dynamical systems with multistability, the boundary
chaotic attractors is frequently observidj11,13,14,19,24  between different basins of attraction is frequently fractal
Therefore, it is not strange to observe the bistability in GS in1,3]. We investigate the dependence of the bistable GS at-
the symmetric model. One important feature of the crisis intractors on both initial conditions and parameters. In our nu-
the current model is that the control parameter, i.e., the coumnerical experiments, if the dependence of the dynamics on
pling strength, is a parameter reflecting the magnitude of thénitial conditions is studied, the parametdis, ) are fixed
chaotic driving from the drive system. This implies that theand the initial conditions go through the=0 plane; if the
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FIG. 2. Type | bistability in GS in the sym-
metric model witha=5. (a) Attractor of the re-
sponse system at=2.5. At this stage there is no
GS between the coupled systengb) and (c)
Bistable GS attractors at=2.55. For the visual-
ization, we specially choose a short period of
time so that the two attractors can be distin-
guished in phase space. For a long time, they are
both like the attractor irfa). (d)—(f) The bistable
GS attractors are symmetric under the inversion
transformation in they plane, while identical in
the z direction.

dependence of the dynamics on parameters is studied, thlee uncertainty exponent and the basin boundary dimen-
initial conditions of the response systems are fixed and theion satisfy the relationy=D-d, whereD and d are the
parametersy and e go through thex-e parameter plane. In  dimension of the phase space and the basin boundary dimen-
both cases, the initial conditions in the drive system aresion, respectively3]. In Fig. 4, the uncertainty exponents are
fixed. The results are shown in Figs. 4 and 5. For type lcomputed using the above method, which confirm that the
bistability, it is found that the basins of the bistable GS at-basins of attraction are riddled for type | bistable attractors.
tractors in the initial condition space are intermingled, asThe error bars in Fig. 4also in Figs. 10 and )2are deter-
shown in Fig. 4. Usually, final-state sensitivity in both phasemined in the same way as in R¢8]. For type |l bistability,
space and parameter space can be quantified by the uncéewever, it is found that the basin boundaries are trivial
curves in both the parameter space and the initial condition
In phase space or parameter space, randomly choose a phapace. Two typical examples are shown in Fig. 5. It is
pointed out that in the initial condition space, the basins of
small perturbation. Determine whether the final states of thattraction ofA, andA_ are symmetric under inversion trans-
system using these two initial conditions or parameter valueformation in thexy plane. This is also due to the symmetry in
are on different attractors. If so, the initial conditions or thethe response system. If from the initial poix,y,,zy) the
parameters are called uncertain initial conditions or uncertaigystem will asymptotically settle on attracta, then from

the initial point(—xq, =Yg, 2y the system will definitely go to

tainty exponents [3]. The exponeny is defined as follows.

point ro. Define another phase poirf=ry+ 4, whered is a

parameter values. For a given perturbat®nhe fraction of
uncertain initial conditions or uncertain parameter valuesattractorA._.

f(9), can be calculated by randomly choosing many different  To conclude, in this section we investigated the bistability
initial conditions or parameter values. Typically there is ain GS when the response system has the line inversion sym-
scaling relationf(8) ~ 67, wherey is the uncertain exponent. metryT:(X,y,2) — (=X,-Y,Z2). Two types of bistability in GS

In the plot of logf(8) versus logs, the uncertainty exponent have been identified, i.e., type | and type Il bistable chaos.
v is just the slope of the straight line. It has been proven thaThe former occurs within the parameter regime Il, where the
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FIG. 3. Type Il bistability in GS in the sym-
metric model witha=5. (a)—(c) Attractors of the
response system with different coupling strength.
Two GS attractord\, andA_ at e=2.7 are shown
in black. The attractor a¢=2.5 before the crisis
is also shown in gray for comparison of the at-
tractor size before and after the crisis. Note that
the scale ofc) is different from(a) and(b). (d)-

(f) The two GS attractors are symmetric under the
inversion transformation in they plane, while
identical in thez direction.



BISTABLE CHAOS WITHOUT SYMMETRY IN ... PHYSICAL REVIEW E 71, 036209(2005

; FIG. 4. (a) and (b) For type | bistability, the

Y basins of attraction of the bistable GS attractors
% are intermingled on the=0 plane. The white and
black areas, respectively, denote the two basins of
attraction.(b) is the enlargement of a small win-
dow on(a). Note that the origin must be excluded
because the axiz i.e., the linex=0 andy=0, is

(b)

0 0 the invariant subspace of the dynamical system
(2). =5, €=2.6. The initial conditions for the
_ drive system are fixed ds'1,-1,-1. (c) and(d)
v¥=0.0004+0.0009 =0. +0. 7 .
1=0.0006+0.000 The uncertainty exponents féa) and(b), respec-
& = tively. y is the slope of the straight line.
8’9 0.1 201
B I e ¢ < [ i I
<3
043 -8 B 0 034 -10 -6 -2
(c) log, 4 (d) log 43

bistable GS attractors totally overlap in phase space. Ththey are likely to have a certain functional relation between
latter occurs within the parameter regime lll. The type Il them.

bistable GS attractors are well separated in phase space. DueWe still consider GS in the drive-response configuration.
to the system’s symmetry, the bistable attractors for both typ&he drive system is the same as E@3, and rewritten here

| and type Il bistability form a symmetric pair. We believe
these two types of bistable chaos are typical in symmetric
dynamical systems.

u=-av+w),

v=a(u+av),
I1l. BISTABILITY IN GS IN AN ASYMMETRIC SYSTEM W= a’[b'l‘W(U— C)], (3)

In general, if a certain phenomenon occurs in a symmetrig, ;t the response system has been changed to
system, it is of particular importance to ascertain to what

extent such a phenomenon is related to the system’s symme- X=o(y-X) —e(x—u),
try. It would be surprising if certain dynamical properties
which exist in symmetric systems continue to exist even after Y=rx-y-xz

such symmetry is broken. If this happens, we can conclude
that the symmetry is not a necessary condition to generate 7= xy- Bz 4)
the phenomenon. We notice that in flow systems, the existing '

studies on multistable chaos are carried out in symmetrievhere the driving signal is coupled to thkevariable in the
systemq 19-24. Naturally, it is important to find out what response system. All parameters are the same as in the pre-
would happen if the system’s symmetry is broken. To thisvious section. Apparently, the inherent symmetry of the Lo-
end, in this section we study a different drive-response conrenz system has been broken by this coupling term. We de-
figuration where the response system’s symmetry is delibemote this model as the asymmetric model, in contrast to the
ately broken by choosing an appropriate coupling term. Insymmetric model studied in the previous section.

terestingly, it is found that in this case the model still can
exhibit bistability in GS in a wide range of parameters.
Therefore, what we observe is a rare case of bistability with-
out symmetry. Later we will show that although the bistable We first explore the bifurcation diagram of systgd)
GS attractors have no simple symmetric relation in this caseynder the driving from systerf8) with «=3. With the in-

A. The bifurcations
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FIG. 6. For the asymmetric model Eq8) and (4), «=3. The
LCLE of the response systeiy vs the coupling strength.

What makes the present study interesting is that the model
can still exhibit bistability in GS even without symmetry.
>0 With the further increase of the coupling strength after the
GS bifurcation, it is found that a series of crises successively
occur. We numerically identified three crises which occur at
€,=4.548,6,=38.588, and;=48.523, respectively. The GS
bifurcation point and these three crisis bifurcation points di-
vided thee axis into five regimes.

Inregime |, i.e..e< ¢y, GS has not been achieved between

FIG. 5. The basins of attraction on the parameter plane andwo coupled systems. A typical attractor of the response sys-
initial condition plane for type Il bistability. The white and black tem at this stage is shown in Fig(@/. In regime II, i.e. g
are basins of attraction &, andA_, respectively(a) The basins of < e< ¢, GS is achieved, but no bistability is observed in this
attraction on ther-e parameter plane. The initial conditions for the stage. This is different from the situation in the symmetric
drive and the response systems are fixe¢-ds-1,-) and(1, 1,  model, where the GS bifurcation is a twofold one in the
1), respectively(b) The basins of attraction on the initial condition sense that GS and the bistability simultaneously happen. Af-
planez=0. The parameters are fixed as5 ande=9. The origin  ter that, the System enters into the bistable chaos regime.
should be excluded for the reason mentioned in Fig. 4. However, in the asymmetric model the bistability does not

simultaneously appear with the GS bifurcation. In regime |I,
crease of the coupling strength, GS first takes place in thenly one GS attractor is observed, as shown in Fig).7
response system. Figure 6 characterizes the GS bifurcation The response system does not exhibit bistability until it
by the LCLE in the response system. The critical couplingenters regime lll, i.e.e; < e<e,. Itis found that ak; a crisis
strength ise;=4.521. Generally, it is found that the critical occurs, where the single GS attractor in regime Il suddenly
coupling strength for achieving GS in the asymmetric case isplits into two separated attractors. In the meantime, the
larger than that in the symmetric case. In both the symmetrioewborn bistable attractors have greatly shrunk compared
and the asymmetric cases, the time scaling paraneetexs  with the GS attractor in regime Il. The bistability can be

o 5 0
(b) X

0

little effect on the GS bifurcation point. observed in the whole regime lll, which is a relatively large
€=4.535 e=4.6
80 80 — 80 —
FIG. 7. The metamorphoses of the attractor in
- the xz plane in the response system with the in-
N 40 1 N40 N40 |- T crease of coupling strengtlk=3. The GS bifur-
cation occurs aky=4.521, and the three succes-
o . . L sive crises occur at;=4.548, ¢,=38.588, and
0_30 I 0 30 0_30 0_20 0 20 63=48.523, reSpeCtiVE|y(a) GS has not been
(a) X (b) (©) X achieved ate=4.5 in regime [;(b) GS has been
achieved, but there is no bistability et 4.535 in
=20 e=38.5 regime Il; (c)~(f) asymmetric bistable attractors
80 T T T 80 T T T 80 T . -
(in black and gray, respectivelyexpand gradu-
ally at e=4.6, 20, 30, and 38.5 in regime Ill. In
N 40 LW 1 a0 b 1 w40 b | (b), the parameter is near the crisis point, thus the
\ attractor spends a long time in the region in phase
) space where the bistable attractors will form after
0 L 0 L 0 =) the crisis.
-20 0 20 -20 0 20 -20 0 20
(d) X (e) X U] X
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FIG. 9. PS between the bistable attractors and the drive system
for type IlI bistability. =14 ande=10. (a) Three-dimensional plot
of the bistable attractorgb) One of the bistable attractors in the

x<'-8 ] plane.(c) The phases of the drive system and the bistable attractors
in the response system, as well as the phase differences between
them. (d) The frequency difference between the drive system and
one of the bistable attractors in the response system vs the coupling
-16 4 é 14 strength.
(© X

) o fore, the GS in regime V, i.eg3=<e¢, is similar to that in
FIG. 8. (a) and(b) Typical asymmetric bistable GS attractors for regime I.
type Il bistability. =3 ande=25. (c) The mapping between two Now different parameter regimes in the asymmetric
variables of the drive and the response system. model are clear. For regimes |-V discussed above, GS occurs

parameter range. Thus we emphasize that this bistability is & regimes II-V, while type Il bistability in GS occurs in
robust phenomenon and cannot be regarded as a transidgg@ime lll. Comparing these results with that in the previous
behavior. The evolution of the bistable GS attractors in reSection, we conclude that all three types of bistabilities are
gime Il is shown in Figs. @)—7(f). Similar to the symmetric caused by a crisis in the response system regardless of the
case, in thecy plane one GS attractor is confined in the first System’s symmetry. The difference dictated by the system’s
guadrant while the other is in the third quadrant immediatelysymmetry is whether the bistable GS attractors are symmet-
after the crisis. However, in this situation the bistable GS'IC Or not.
attractors no longer have a symmetric relation. We denote
this asymmetric bistability as type Il bistability in order to
distinguish from the type | and type Il bistability in the sym-
metric model. With the increase of the coupling strength In the present study, the type Il bistability, i.e., the
within regime lI, it is found that the bistable GS attractors bistable chaos in an asymmetric system, is quite remarkable.
expand in phase space. Remarkably, attraétorexpands There are some features in the bistable GS attractors that are
faster than attractoh,, as seen in Figs.(@-7(f). As a con-  worth noting. First, in a wide parameter range, the bistable
sequence of this unbalanced expansion, at certain relativeBttractors are, respectively, confined in different quadrants on
large coupling strength, attractdy first crosses thx>0  the xy plane, just as in the symmetric case. Secondly, they
region in phase space. Soon after this, it disappears in th&e no longer symmetric in phase space, and their expansion
second crisis ak,. After the second crisis, there is no bista- speeds in phase space are different as the coupling strength is
bility in the response system. increased. Thirdly, the mechanism of the asymmetric bista-
In regime 1V, i.e.,e;<e<ez, only one GS attractoA, bility is also due to the crisis, which turns out to be robust in
exists, which continues to expand as the coupling strengtthe present model regardless of whether it has symmetry or
increases. Finally, the third crisis occurseat48.523. This  not. In Fig. 8, a pair of typical asymmetric bistable GS at-
time, however, attractoA, does not disappear. Instead it tractors are plotted with the features discussed above. Al-
suddenly doubles its size and becomes a double-scroll attrathough now there is no symmetric relation between them, we
tor that resembles the Lorenz attracfaot shown. There-  argue that there still exists a certain, perhaps complicated,

B. The relation between bistable GS attractors
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16 FIG. 10. (a) and(b) The basins
of attraction of the bistable attrac-
tors on the parameter plaiaee for
type Il bistability. The initial con-
ditions of the drive and the re-
w155 sponse systems are fixed @sl,
-1,-1) and(1, 1, 0, respectively.
(c) and (d) The blow-ups of(a)
and (b) showing fractal basin
boundaries(e) and (f) The uncer-
tainty exponents for(c) and (d),
12_ respectively.y is the slope of the
(c) straight line.
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v=0.613+0.008 v=0.42440.010
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o o
0 -5 0 Ao -5 0
) log, 4 ® log 48

relation between them. In Fig(®, the mapping between the different. Here a special situation is demonstrated where GS
X variables of the bistable attractors seems to suggest this. kan be observed between two bistable attractors within one
fact, because the bistable GS attractors both synchronizgynamical system. The prerequisite of such GS is that the
with the drive system, they both have certain functional retwo attractors in the response system are indirectly related by
lations with the drive system, i.e., due to GS, generally wethe same driving signals. We argue that the indirect GS
have A,=f(Ap) and A_=g(Ap). Following this,A, andA_  among multiple attractors is a generic phenomenon in
now could be related asA,=f(Ap)=f(g"X(A)))=h(A.),  coupled chaotic systems as long as the system exhibits mul-
whereh=fg™, and we reasonably assume tigat exists as tistability under the same driving perturbations.
in common situations of GE36]. Therefore A, andA_ may For phase-coherent dynamical systems, such as the
have a functional relation given the GS relations betweerRossler system and the Lorenz system, a suitable phase of
them and the driving attractor are invertible. From this perthe dynamics can be defing¢87,38. It has been shown that
spective, they certainly can be regarded as synchronized imwo systems can achieve phase synchronizatit® while
the sense of GS. Such special GS can be called indirect GBeir amplitudes may remain uncorrelate87—-39. The ex-
in order to distinguish from the usual GS. isting studies of PS are mainly based on the coupled para-
Usually, GS is observed between different dynamical sysmetrically different systems, such as two Réssler systems, or
tems, which are either parametrically different or physicallytwo Lorenz systems. PS between two essentially different
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10 1 T
Q=lim= J Hbdt. (6)
T 0

T

In Fig. 9Ad), the frequency difference between the drive sys-
tem and one of the bistable attractors in the response system
is plotted versus the coupling strength. It is seen that a PS
plateau exists in the moderately large coupling strength
range. We emphasize that since both the bistable GS attrac-
tors have the PS relation with the driving Réssler attractor,
the bistable GS attractors are also synchronized with each
other in phase.

C. The basin of attraction

In the symmetric case, as shown in Figs. 4 and 5, the
basins of attraction of the bistable attractors are either riddled
for type | bistability or trivial for type Il bistability. When the
system’s symmetry is broken, the situation is different. The
dependence of the type Il bistability on parameters is illus-
trated in Fig. 10. It is found that whea is small, for ex-
amplea < 3, the basin boundary of the bistable GS attractors
is still trivial. However, with the increase af, this boundary
would be fractal as shown in Figs. ) and 1@b). The

5 10 existence of infinitely fine-scaled structures is evident in
0 Figs. 10c) and 1Q@d). The dependence of the bistability on
FIG. 11. The regular basin boundary of the bistable attractors inmitia.I conditions has also been e_xtensively investigate_d nu-
the =0 plane for type IIl bistability a(a) a=1€=15: (b) a=2.¢ merically. The results are shown in Figs. 11 a_md 12. Ser_nIar
=10, respectively. The initial conditions of the drive system aret0 th'e'r'esults o.n. the parameter plang,_the bas!n boundaries on
fixed as(-1,-1,-1. the |n|t|_al C(_)ndmon plane are also trivial whenis small, as
shown in Fig. 11. However, for large values, generally the
basin boundary between the bistable attractors is fractal.
pical examples of the fractal basin boundaries are shown
Fig. 12. It is noted that these basins of attraction are no

-9 -5 0
(b) X

systems has not been addressed yet. In the present work,
also investigate the PS between the Rossler system and t
L<_Jrenz system, which are two essentially .d|_fferent SyStemSI'onger symmetric in both the trivial cases in Fig. 11 and the
Since both systems are phase-coherent, it is reasonably &Xontrivial cases in Fig. 12

pected that PS can be achieved between them. In our numeri- |, o ey 1o quantitatively characterize these fractal basin
cal experiments, we successfully observed PS between thegg,qaries, the uncertainty exponents have been computed
two chaotic systems in a certain parameter range. m, Fig. 1,3]. The results are also shown in Figs. 10 and 12. In all
an example is provided showing PS b.etween syiﬂ)n_nmh . these figures, the linear dependence offlgy) on logé is
=14 and systen(4). It should be pomtgd out that In th|'s. evident. The uncertainty exponentis determined as the
case the response _system actually exhibits type !” b'.s’tab'“tyslope of the straight line. For the examples given in Fig. 12,
Two asymmetric bistable attractors are shown in Fig).9 the uncertainty exponents range from 0.374 to 0.510. Corre-

Following the con\_/entiqui37—3q, the phase Q%Lorenz spondingly, the boundary dimensions range from 1.626 to
system can be defined in th&plane, wherei=yx“+y~. One 1.490

of the histable attractors in the plane is shown in Fig. (®).
The phase definition is straightforward,

Z(t) - 7 IV. CONCLUDING REMARKS
P(t) = arctanu(t)—_u, (5)

0 In this paper, we report on a study of bistable chaos in GS
where (ug, Z) is the rotation center which usually is one of in coupled chaotic systems, where the Lorenz system and the
the unstable fixed points of the system. Figu(e) plots the  Rossler system are coupled in a drive-response configura-
phases and the phase differences between the driving attraen. It is found that depending on the initial conditions, there
tor and the bistable attractors in the response system, showare two attractors in the response system which both syn-
ing that phases are locking between them. Based on the defihronize with the drive dynamics. By exploring both the
nition of phase, the mean frequency of a chaotic system casymmetric and asymmetric models, we identified three types
be defined as of bistable chaos. Among them, type | and type Il bistability
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FIG. 12. The fractal basin boundary of the bistable attractors and the corresponding uncertainty exponent for type Il biajedility.
(b) a=14,=14;(c) and(d) «=17,=16;(e) and(f) a=18,e=14;(g) and(h) «=19,=11. The initial conditions of the drive system are fixed
as(-1,-1,-).

occur in the symmetric model while the remarkable type Illthe results and discussion are generally suitable for dynami-

bistability occurs in the asymmetric model where there is naal systems with multistability.

inherent symmetry in the system’s equations. The mecha-

nism for the bistability in the present study is revealed. It is
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