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It was shown previously in an experiment that when high frequency signalsson the order of 1 MHzd were
injected into this low frequency amplifier, the nonlinearities of thepn junctions caused period doubling, chaos,
and very low frequency oscillationsson the order of 1 Hzd. In this paper we present theory and simulations to
explain the existence of the low frequency oscillations.
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I. INTRODUCTION

In previous workf1g experiments showed that driving a
simple one-transistor audio amplifier, Fig. 1, with a high fre-
quencysapproximately 1 MHzd signal could induce chaos,
period doubling, and low frequencyson the order of 1 Hzd
switching.

Chaos and period doubling in such a system might be
expected based on studies of the diode resonatorf2–11g, in
which a periodic signal is applied to a circuit consisting of an
inductor, a resistor, and a diode. The inductor combined with
the nonlinear capacitance of the diode form a nonlinear reso-
nant system, which may exhibit period doubling or chaos.
Similar low frequency oscillations were seen in a simple cir-
cuit using a diodef11g, however, the authors made approxi-
mations that limited the applicability of their analysis to the
driving regime that we consider.

In our previous experimental work, we were interested in
what sort of nonlinear effects might be seen if a low fre-
quency system containingpn junctions ssuch as our ampli-
fierd was subjected to high frequency rf signals. The rf sig-
nals might be accidently produced by nearby
communications systems, or they might be intentionally
beamed at the circuit in an attempt to disrupt the functioning
of the circuit. The inductances of the wires of the circuit
combined with the capacitance of thepn junctions in the
transistor formed the nonlinear resonant system, with a reso-
nant frequency on the order of GHz.

The actual rf signals might have frequencies on the order
of 1 GHz, but systems that can digitize signals fast enough to
study GHz phenomena are still quite expensive, so we added
an inductor to the input of the transistor amplifier in order to
lower the resonant frequency of the inductor-pn junction
combination.

II. EXPERIMENTAL DESCRIPTION

We consider a simple audio frequency transistor amplifier,
Fig. 1. The transistor is a 2n929 bipolar transistor. The tran-
sistor has variable internal capacitancesFig. 2d from a num-
ber of mechanismssi.e., junction capacitance, diffusion ca-
pacitanced with a magnitude of orderC0<10−11 F.

This capacitance gives the circuit a natural resonance near
the frequencyf0=1/Î4p2LC0<1 MHz sN.B. The inductorL
was explicitly added to make the experiment easier to per-
form. There are inductances inherent in the wires and typical
values give resonances on the order of GHz, which makes
data collection difficult.d Driving the circuit with a signal
with frequencyf near f0 causes the circuit to respond at the
driving frequency f and also exhibits a low frequency
switching on the order of 5–10 Hz. The experimentally de-
termined switching frequency for a range of driving frequen-
cies and driving amplitudes appear in Fig. 13.

III. THEORY

In order to simplify our analysis, we eliminate circuit el-
ements which are not necessary for low frequency switching.
ResistorsR1 andR2 are present for biasing purposes and can
be removed by biasing the input signal. The circuit is a volt-
age amplifier, not a current amplifier, so the resistorRL can
be removed andVcb can be though of as the circuit output.
Experiments and numerical simulations show thatC1 andC2
do not affect the dynamics.C1 andC2 are present to isolate
the amplifier from input and output dc levels.

Removing capacitorsC1 andC2 reduces the dimensional-
ity of the system without substantially changing the dynam-
ics of the circuit. This somewhat simpler circuitsFig. 3d ex-
hibits similar behavior to the experimental circuit. At the
audio frequencies the circuit is designed for, the inductor and
the capacitances in the transistor are unimportant. At these
low frequencies when the voltage across the base-emitter
junction Vbe is below a threshold valueV0 the transistor is
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FIG. 1. A simple, stable, audio frequency transistor amplifier.
Vs=15 V, R1=40.42 kV, R2=204.545 kV, Rc=15 kV, Re

=3.75 kV, RL=1 MV, C1=C2=25 mF, C=330mF, L=2200mH,
and the transistorT is of type 2n929. The output of the circuit is
across the load resistorRL.
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nonconducting. Note that in general we defineVab to be the
voltage drop from pointa to point b. For the transistor con-
trol voltageVbe above the threshold a small current will flow
sat least for a bipolar junction transistord from the base of the
transistorspoint bd to the emitter of the transistorspoint ed.
This small current fromb to e stimulates a much larger cur-
rent from the collectorspoint cd out the emitter. The much
larger collector-emitter current is proportional toVbe−V0, at
least forVbe−V0 small. In this mode of operation the transis-
tor acts as a voltage valve. ForVbe−V0<0 very little current
flows and most of the voltage drop across the amplification
power sourceVs occurs across the the collector-base junction
si.e., Vac<0 and Vcb<Vs−Vin0 where Vs is the amplifier
power supply voltage andVin0 is the input signal biasingd
whereas for large values ofVbe−V0 a large current flows and
most of the current drop is across the resistorRc si.e., Vac
<Vs−Vin0 andVcb<0d.

At the frequencies we consider in this paper all four reac-
tive elements in the circuit in Fig. 3 are important: the induc-
tor L, the capacitorC, and the two internal capacitances of
the transistorCc and Ce. As a result, the circuit can be de-
scribed using four ordinary differential equationssODEsd:

dI

dt
=

1

L
sVin − Vbe− Vegd,

dVcb

dt
=

1

Cc
sVac/Rc − Icd,

s1d
dVbe

dt
=

1

Ce
sVac/Rc + I − Ied,

dVeg

dt
=

1

C
sVac/Rc − I − Veg/Red,

where Vin=Vin0+VA sins2pftd, I is the current through the
inductor, andIc andIe are the nonlinear currents which come
from an Ebers-Moll description of the transistor,

Ic = I0f− se−qVcb/kT − 1d + aseqVbe/kT − 1dg,

Ie = I0fseqVbe/kT − 1d − ase−qVcb/kT − 1dg,

whereI0=10−11, k is Boltzmann’s constant,T is the tempera-
ture in K, anda=0.995 is the fraction of current lost through
the base of the transistor.

We now make a number of simplifying assumptions:
sid The experimental effect was seen with different types

of transistors, including both bipolar and field-effect transis-

tors sFETsd. From this we infer that the details of the non-
linearity of the current function are unimportant, so we ap-
proximate the exponential nonlinearity in the current
function with a piecewise linear formsas was done for the
diode resonator in Refs.f7,8gd linearized about the voltage
V0, at which the nonlinearity becomes important.

sii d Simulations show that the nonlinear capacitance is
not necessary for the low frequency oscillations, therefore a
constant capacitance isC0 is used for the transistor capaci-
tance.

siii d The collector-base junction is never driven into a for-
ward bias so theVcb contributions to the nonlinear currents
are small. The circuit will not be driven in such a way that
the base-emitter junction will receive a large reverse bias.

sivd The leakage of base current, while important for the
proper functioning of a bipolar transistor, is not important for
the FETs. In light of this we usea=1.

svd The large capacitance ofC compared to both the tran-
sistor’s internal capacitancesi.e., C0/C!1d and the induc-
tanceL fi.e., L / sRECd!1g means that the dynamics ofVeg

are much slower than those of the other variables. As a re-
sult, Veg can be treated as a constant compared to the other
variables, i.e.,

dVac

dt
=

dsVs − Vcb − Vbe− Vegd
dt

< −
dVcb

dt
−

Vbe

dt
. s2d

With these assumptions we rewrite the physical represen-
tation of the circuit Eqs.s1d in more natural coordinates:

dx1

df
= gfsins2pfd − x3 − yg,

dx2

df
= − dfx1 + 2x2 − 2kx3Hsx3dg,

s3d
dx3

df
= dfx1 + x2 − kx3Hsx3dg,

dy

df
= eflsx1 + x2d − y − y0g,

wherex1=RcI /VA, x2=Vac/VA, x3=sVbe−V0d /VA, y=Veg/VA

−y0, y0=sVin0−V0d /VA, f= ft, g=Rc/ fL, f is the frequency
of the input signal,d=1/ fRcC0, e=1/ fReC, l=Re/Rc, k
=qRcI0/kTexpsqV0/kTd, and Hsxd is the Heavyside step

FIG. 2. The transistor has small variable internal capacitances
Cc andCe that are known to be frequency dependent.

FIG. 3. A much simpler circuit that exhibits the same behavior
as Fig. 1. For the numerical work done on this circuit we use the
parametersVs=15 V, Rc=5 kV, Re=10 kV, C0=20 mF, C=3 mF,
L=2000mH, Vin=Vin0+VA sins2pftd, Vin0=2 V.
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function, which has a value of 0 forx,0 and 1 forx.0. For
the relevant circuit parametersssee Fig. 3d all parameters that
appear in Eqs.s3d are of order 1, excepte,Os10−3d and k
,Os103d.

Numerical integration of Eqs.s3d yields behavior that is
substantially the same as is seen in the experiment. Figure 4
shows that one variablesyd varies on a much slower time
scale than the others, which are periodic in the drive fre-
quency. The fast variablesx1, x2, andx3 are bistable: for a
given value ofy, they occupy one of two different attractors.
Figure 5 shows the two sets of possible wave forms forx1,
x2, andx3: the wave forms in Fig. 5sad have larger amplitudes
than the wave forms in Fig. 5sbd. The wave forms gradually
evolve as y slowly changes until the system suddenly
switches from one wave form set to the otherfe.g., from
those depicted in Fig. 5sad to those in Fig. 5sbdg.

This switching between wave forms is captured in Fig. 6
which showsx2, the normalized voltage across the resistor
Rc, againsty strobed once per drive cycle. Figure 6 shows
the low frequency switching between the high amplitude
state and the low amplitude state. In the high amplitude state
sshown with large plusesd a large rectified current flows
throughRc and into the transistor collector. This dc biased
current flows through the transistor and charges capacitorC,
increasingy until y=ymax when the system switches into the
low amplitude statesshown with small crossesd. In the low

amplitude state forymax.y.y* , x3 is strictly less than zero.
As a result the transistor does not conduct and there is no
longer a rectified current flowing throughRc. Even afterx3

starts making excursions abovex3=0, as in the example
shown in Fig. 5, the rectified current is much smaller than in
the high amplitude state. With rectification effectively
stopped throughout the low amplitude state, time average of
x1 and x2 over one drive oscillationsdc leveld approaches
zero. As a result, charging stops and the capacitorC dis-
charges throughRe, the resistor in parallel withC, so y
drops. Asy nearsymin, the lower end of its range, the system
becomes unstable, causing the system to switch back into the
high amplitude state. This instability causes the system to
switch back into the high amplitude state in a number of
ways, depending on the input signal frequency. The system
may switch directly from the period one low amplitude state
to the high amplitude state, it may first pass into a period
doubling cascade and become chaotic before switching to the
high amplitude state, or the system may even pass through a
period doubling cascade and then through an inverse period
doubling cascade before switching to the high amplitude
state.

The low frequency switching is part of a hierarchy of time
scales relevant to this system. At the fastest time scales
stimes of order 1/k!1d there is the reaction of the system to
the transistor turn onsi.e., the nonlinear currentsIc and Ie
switch ond. There is an intermediate time scalestimes of
order 1d associated with the driving frequency. At the slowest
time scalesstimes of order 1/e@1d is the variation in the
slow variabley, which is responsible for the slow switching
observed in this system. This hierarchy of time scales makes
singular perturbation theorysSPTd f12g an attractive ap-
proach.

FIG. 4. Numerical integration of Eq.s3d over a number of slow
switching cycles.x1 is a slowly varying high frequency oscillation,
whereasy varies only at the slower time scale.

FIG. 5. Numerical integration of Eq.s3d over one period of the
drive function. Setsad is from the high amplitude state and shows
the high amplitude wave forms ofx1, x2, andx3. Setsbd is from the
low amplitude state and shows the low amplitude wave forms ofx1,
x2, andx3. Both sets are for the same value ofy=1.15.

FIG. 6. Numerical integration of Eq.s3d over one slow switch-
ing cycle strobed once per drive cycle. The system evolves along
the orbit in a clockwise sense. Initially in the low amplitude state,
small 1/narrow line, the system switches to the high amplitude
state, large(/wide line, aty=ymin and switches from the high am-
plitude state to the low amplitude state aty=ymax. Upon re-entering
the low amplitude state the transistor is strictly off fromy=ymax

down toy=y* .
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IV. SPT APPLIED TO TRANSISTOR EQUATIONS

In its simplest form SPTf12g allows one to make use of a
small parametere to treat the fast and slow evolutions of a
system separately. One does this by using two different pa-
rametrizations of time,t and t=et. In the limit e→0 one
obtains two distinct limiting behaviors, “fast equations” and
“slow equations” for thet and t parametrization, respec-
tively.

The transistor equations have two extreme parameters
si.e., e!1, andk@1d and so there are three time parametri-
zations we will consider: for the turn on time scalej=kf,
for the driving time scalef, and for the slow switching time
scalec=ef. From these three time parametrizations we will
recover

sid From the fastj time parametrization: the rapid change
in x3 when the transistor turns on.

sii d From the intermediatef time parametrization: the
high and low amplitude states that constitute bi-stable limit
cycle solutions for fixedy. Each limit cycle will contain two
segments, one segment for which the transistor is conducting
sOn branch of thef time parametrization manifoldd and one
segment for which the transistor is not conductingsOff
branch of thef time parametrization manifoldd. The two
branches of thef time parametrization manifold have differ-
ent dimensionality due to differentx3 scaling.

siii d From the slowc time parametrization: the equations
that govern the evolution of the period-1 limit cycles along
the two branches of the slow manifold asy changes.
Let us first consider the fastest time parametrization,j.

A. j time parametrization

When the transistor is conductingsi.e., x3ù0d the large
parameterk is present in Eqs.s3d and thej time parametri-
zation of Eqs.s3d is relevant. In thej time parametrization
whenx3ù0 Eqs.s3d becomes

dx1

dj
=

g

k
fsins2pfd − x3 − yg,

dx2

dj
= −

d

k
sx1 + 2x2 − 2kx3d,

s4d
dx3

dj
=

d

k
sx1 + x2 − kx3d,

dy

dj
=

e

k
flsx1 + x2d − y − y0g.

To apply SPT each of the variables must be of the same order
of magnitude. In the conducting statesi.e., x3.0d x1, x2, and
x3 are not of the same order of magnitudessee Fig. 5d,
whereas in the high amplitude statex1 andx2 vary by 10 and
50, respectively,x3 varies by 0.003. However,x1, x2, and
X3=kx3 are of the same order of magnitude, Fig. 7 showsx1,
x2, andX3 only in the on state and each variable has a varia-
tion on the order of magnitude of tens in the high amplitude
state and ones in the low amplitude state. Changing variables
Eqs.s4d becomes

dx1

dj
=

g

k
fsins2pfd − X3/k − yg,

dx2

dj
= −

d

k
sx1 + 2x2 − 2X3d,

s5d
dX3

dj
= dsx1 + x2 − X3d,

dy

dj
=

e

k
flsx1 + x2d − y − y0g.

In the limit k→` Eqs.s5d reduces to

dx1

dj
= 0,

dx2

dj
= 0,

s6d
dX3

dj
= dfx1 + x2 − X3g,

dy

dj
= 0,

so that when the transistor begins conducting, onlyX3
evolves and has the solution

X3sjd = sx1 + x2ds1 − e−dsj−j0dd, s7d

where j0 is the time at which the transistor turns onfi.e.,
X3sj0d=0g.

FIG. 7. While the transistor is conducting, the variablesx1, x2,
and X3=kx3 are of the same order of magnitude. Numerical inte-
gration of Eq.s3d over one period of the drive function. Setsad is
from the high amplitude state and shows the high amplitude wave
forms of x1, x2, andX3=kx3 while X3ù0. Setsbd is from the low
amplitude state and shows the low amplitude wave forms ofx1, x2,
and X3=kx3 while X3ù0. Both sets are for the same value ofy
=1.15.
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The relaxation ofX3 from 0 tox1+x2 is very sudden when
compared to the time scales of thef parametrization. This
can be seen by consideringx3 in terms off,

x3sfd = Sx1 + x2

k
Ds1 − e−kdsf−f0dd. s8d

Sincekd@1, the time required for the transistor control vari-
able x3 to jump from the valuex3=0 to x3=sx1+x2d /k is
exceedingly small and in thef parametrization we treat the
jump in x3 at the transistor turn on as a discontinuity.

B. f time parametrization

In the f parametrization there are two different scalings
sX3 andx3d depending on whether the transistor is conduct-
ing fi.e., HsX3d=1g,

dx1

df
= gfsins2pfd − X3/k − yg,

dx2

df
= − dsx1 + 2x2 − 2X3d,

s9d
1

k

dX3

df
= dsx1 + x2 − X3d,

dy

df
= eflsx1 + x2d − y − y0g,

or not fi.e., Hsx3d=0g,

dx1

df
= gfsins2pfd − x3 − yg,

dx2

df
= − dsx1 + 2x2d,

s10d
dx3

df
= dsx1 + x2d,

dy

df
= eflsx1 + x2d − y − y0g.

These two different scalings give rise to different limiting
behaviors. In the limitk→` ande→0 we find

dx1

df
= gfsins2pfd − yg,

dx2

df
= − dsx1 + 2x2 − 2X3d,

s11d
0 = dsx1 + x2 − X3d,

dy

df
= 0

and

dx1

df
= gfsins2pfd − x3 − yg,

dx2

df
= − dsx1 + 2x2d,

s12d
dx3

df
= dsx1 + x2d,

dy

df
= 0

for Eqs.s11d and s12d, respectively.
We therefore have two branches of Eqs.s3d for thef time

parametrization. The On branchfi.e., HsX3d=1g solution is

x1 = gS−
coss2pfd

2p
− yf + A1D ,

x2 = dgS−
sins2pfd

4p2 −
y

2
f2 + A1f + A2D ,

s13d
X3 = x1 + x2,

y = A3

swhereA1, A2, andA3 are constants of integrationd, and the
Off branchfi.e., Hsx3d=0g is

dx1

df
= gfsins2pfd − x3 − yg,

dx2

df
= − dsx1 + 2x2d,

s14d
dx3

df
= dsx1 + x2d,

dy

df
= 0.

The Off branchs14d is linear and can be readily solved.
The solution is composed of a transient piece coming from
the autonomous equations and a particular solution which is
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nontransient. Both are important for the long time behavior
of the system because of the repetitive switching back and
forth between the On and Off branches.

We piece together the fragments of the period one oscil-
lation from the On and Off branches of the manifold for the
f time parametrization to find constants of integration sub-
ject to the following conditions: thatx1 andx2 are continuous
at each junction,si.e., both the On to Off and Off to On
junctionsd sas was done for the diode resonator in Refs.f7,8gd
x3=0 at each junction, andX3=0 si.e.,x3 in the On branchd at
the junction from Off to On.

Finding period one solutions with one piece each from the
On and Off branches is sufficiently complicated to require a
numerical solution. To do this we use the first five conditions
si.e., x3=0 at the Off to On junction and all conditions onx1
andx2d to determine the five constants of integration in terms
of the two undetermined junction values off, f0, and f1.
We then numerically solve forf0 andf1 subject to the con-
ditions x3=0 and X3=0 at the On to Off junction. Within
such a scheme finding values forf0 andf1 is tantamount to
finding a potential period-1 solution. In searching for
period-1 solutions with one piece from the On branch and
one from the Off branch, we find a very limited number of
solutions. The stable solutions correspond to the period-1
limit cycles of the large amplitude and low amplitude states.
Examples forx1, x2, andx3 in both states withy=1.15 are
shown in Fig. 8. The agreement between these wave forms
and the numerically integrated wave forms of Fig. 5 is ex-
cellent.

C. c time parametrization

In the previous subsection we found the stable period-1
limit cycles that are the typical solution for thef time pa-
rametrization.sAs previously noted, near the transition from
the low amplitude state branch of the slow manifold the so-
lution may, for some parameter values, go through a period
doubling cascade to chaos. Period doubling is not a neces-

sary condition for low frequency switching.d We now study
the slow manifold that the system spends most of its time
evolving along so that we might understand when the system
will leave one branch of the slow manifoldsthe high ampli-
tude stated and move to the other branch of the slow mani-
fold sthe low amplitude stated, and when it will complete a
low frequency switching cycle by returning to the high am-
plitude state.

Sincex1, x2, andx3 vary greatly over a period-1 oscilla-
tion it is convenient to consider the period one average of
Eqs.s3d. For a functionfsfd that has a period of 1, by defi-
nition fsf+1d= fsfd. As a result

E
f

f+1 dfsf8d
df8

df8 = fsf + 1d − fsfd = 0.

Sincex1, x2, andx3 are each period 1, the equations for the
period-1 average of Eqs.s3d are

0 = gf− kx3l − kylg,

0 = −dfkx1l + 2kx2l − 2kkx3Hsx3dlg,
s15d

0 = dfkx1l + kx2l − kkx3Hsx3dlg,

dkyl
dc

= lskx1l + kx2ld − kyl − y0

where c=ef and kzl=ef
f+1zdf /1 is the average ofz over

one drive cycle. Solving for the averages yields

kx1l = 0,

kx2l = kkx3Hsx3dl,
s16d

kx3l = − kyl,

dkyl
dc

= lkkx3Hsx3dl − kyl − y0.

The period-1 average equations determine the evolution of
the system along the slow manifold. The average
kkx3Hsx3dl=kX3HsX3dl is readily calculable from our results
in the f time parametrization subsection.

When the current branch of the slow manifold consists of
only period-1 oscillations we can say a bit about the switch-
ing pointymin for the low amplitude state orymax for the high
amplitude state. Numerical searches of the solution space for
period-1 oscillations show that fory sufficiently close to the
switching point there are two solutionsfsad and sbdg with
values off0 and f1 sf0

sad, f1
sad and f0

sbd, f1
sbd, respectivelyd

near each other. Asy approaches the switching point the two
solutions convergesi.e., f0

sad−f0
sbd→0 and f1

sad−f1
sbd→0d.

Beyond this value ofy our numerical search fails to find any
nearby solution.

If the circuit parameters are such that the system passes
through a period doubling cascade before switching from the
low amplitude state to the high amplitude state, then our
period-1 analysis of the low amplitude state breaks down.
The period doubling cascade to chaos is typically entered

FIG. 8. Solutions forx1, x2, and x3 in the sad large amplitude
state andsbd low amplitude state are found by piecing together an
On statessolid lined with an Off statesdashed lined and demanding
that the resulting wave form be periodic in the drive frequency. The
agreement between these wave forms and the numerically inte-
grated wave forms of Fig. 5 is exceptional.
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when the period-1 solution for the low amplitude state is
suddenly destroyed. This state is destroyed when a second
local maximum inx3 pushes up through the transistor turn on
value. At this point our formal solution to the period-1 oscil-
lation is no longer valid because the Off branch solution has
a range off values for whichx3.0 which violates the defi-
nition of the Off branch.

V. RANGE AND SWITCHING FREQUENCY

We now estimate the frequency of the switchingfs as a
function of frequencyf and driving amplitudeVA.

First we determineymin andymax directly from the analy-
sis; ymin is the value ofy at which the low amplitude branch
ceases to exist andymax is the value ofy at which the high
amplitude branch ceases to exist. We also determiney* , in
the low amplitude state the transistor remains strictly off
over the intervalsy* ,ymaxd and, as a result, the particular
solution sas opposed to the autonomous solutiond is the
dominant. We therefore definey* as the largest value ofy at
which the particular solution ofx3 is tangent to the linex3
=0. Since the parameters of Eqs.s13d and s14d depend onf
but notVA, the search forymin, ymax, andy* is independent of
VA and need only be done once for each frequency. The
results of this search appear in Table I and will be discussed
shortly.

Figure 9 shows the length of the intervalsymin,ymaxd found
by numerical integration of Eqs.s3d. Interval length is only
displayed for parameter values for which the system
switched periodically. There are two distinct bands of

switching behavior in this graph: band 1 is present forfn
,1 with a large variation iny, and band 2 tends to occur at
higher frequency and for which the variation iny is smaller.
These two bands arise from qualitatively different behavior.
In band 1 the low and high amplitude branches of the slow
manifold are both period-1, whereas in band 2 the high am-
plitude branch is period-2. This puts a full discussion of band
2 out of the realm of the analysis in this paper.

There are frequencies for which both bands are present
for the same frequency but different values ofVA. At these
frequencies the high amplitude branch of band 1 is also the
low amplitude branch of band 2.

Table I lists the range ofsymin,ymaxd from numerical simu-
lation of Eqs.s3d as well as the range found using the above
analysis. Although our analysis fails to detect band 2 the
agreement between numerical simulations and our analysis is
quite good for band 1. Our analysis provides an upper bound
for ymin and a lower bound forymax, the switch from low
amplitude branch to high amplitude branchsand vice versad
will not happen before the low amplitude branch becomes
unstable but the system may linger near before switching to
the high amplitude branch. In practice the system does not
linger long, and we note from Table I that asfn→1 the
values of ymin and ymax from the simulation approach the
bound set by our analysis.

In addition to the range over whichy varies we need to
know how quicklyy varies. Recall from Eqs.s16d that it is
necessary to computelkkx3Hsx3dl=lksx1+x2dHsx3dl, which
is proportional to the current that flows through the transistor
and into the capacitorC while the transistor is on. Instead of
computinglkkx3Hsx3dl at a dense set of points along the
interval symin,ymaxd, we calculatelkkx3Hsx3dl at a few points
fymin, symax+ymind /2, andymax for the high amplitude state,
and only at ymin for the low amplitude state because
kx3Hsx3dl=0 over the intervalsy* ,ymaxdg and linearly inter-
polate in between.

Our estimates oflkkx3Hsx3dl, ymin, ymax, andy* allow us
to integrate thekyl equation of Eqs.s16d si.e., the one drive
cycle average equation foryd over one switching period. We
break the integration up into the four regions of Fig. 10. The
system evolves around the orbit in Fig. 10 a clockwise sense

TABLE I. A comparison of the range ofsymin,ymaxd from nu-
merical simulation to the range found using the above analysis.
Also the value ofklkx3Hsx3dl at three values ofy where ymid

=symin+ymaxd /2. For referencey0 ranges from 3 to 30.

Frequency
f skHzd

Simulation
symin,ymaxd

Analysis
symin,ymaxd

lkkx3Hsx3dl
at symin,ymid,ymaxd

150 s0.83, 2.52d s0.96, 2.19d s204, 282, 310d
200 s0.90, 2.72d s0.98, 2.54d s92.0, 122.6, 145.8d
250 s0.83, 2.91d s0.96, 2.80d s48.8, 72.2, 85.2d
300 s0.93, 3.11d s0.93, 3.04d s28.0, 42.4, 49.4d

s0.52, 1.09d
350 s1.23, 3.34d s1.23, 3.30d s19.7, 26.8, 29.4d

s0.54, 1.14d
400 s1.66, 3.60d s1.67, 3.58d s13.9, 16.9, 16.4d

s0.55, 1.18d
450 s2.33, 3.93d s2.34, 3.93d s9.4, 10.2, 9.4d

s0.52, 1.21d
500 s0.51, 1.22d s2d s2d
550 s0.48, 1.22d s2d s2d
600 s0.51, 1.22d s2d s2d
650 s0.53, 1.20d s2d s2d
700 s0.54, 1.17d s2d s2d
750 s0.54, 1.12d s2d s2d

FIG. 9. The range over whichy varies,ymax−ymin, as determined
from numerical simulations, in the switching system withfn= f / f0

= fÎ4p2L2C0.
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si.e., it starts atymax in region 1 and then aty* passes into
region 2, etc.d. Integrating thekyl equation of Eqs.s16d and
inverting yields the time the system spends in regioni:

Dfi =
1

eslmi − 1d
lnSyei + ỹ0i

ysi + ỹ0i
D , s17d

whereDfi is the time spent in regioni, ysi is the value ofy
at the start of the region,yei is the value ofy at the end of the
region, ỹ0i =slbi −y0d / slmi −1d, and the linearization of
lkkx3Hsx3dl has parametersmi and bi such thatmiy+bi

<lkkx3Hsx3dl in region i. For example, in region 1ys1

=ymax, ye1=y* , m1=b1=0, andỹ01=−y0. Summing the time
contribution from all four regions yields our estimate of the
slow switching periodTs and the switching frequencyfs
=1/Ts. In Fig. 11 we present the normalized switching fre-
quency,Fs=tRCfs wheretRC=ReC, for a range offs andVAs.

Notice that for a fixed value off, some values ofVA have
an estimate forFs and others there is none. For those that do
not, either the value ofklkx3Hsx3dl at ymin on the high am-
plitude branch was so small thatkyl would not growsi.e.,
klukx3Hsx3dluat y=ymin

−ymin−y0,0d, or the high amplitude
branch became stablefi.e., klukx3Hsx3dluat y=ymin

−ymin−y0

.0 but either klukx3Hsx3dluat y=yh
−yh−y0,0 or

klukx3Hsx3dluat y=ymax
−ymax−y0,0g. Each of these estimates

is for a band 1fs. Band 2 oscillations are possible in regions
where band 1 oscillations are not because the period-2 high

amplitude branch in band 2 has a large enough dc bias to
chargeC, even at lower values ofVA when the period-1 high
amplitude branch cannot.

We now wish to compare our results to those of numerical
integration of the whole system. Towards this end we must
calculate the switching frequencyfs from the numerical in-
tegration of Eqs.s1d. From the time series we find the times
of each maxima in the variabley and record the average
interval between maxima,kTintl, when the standard deviation
in the intervals is less thankTintl /4. This is to exclude pa-
rameter values for which the behavior is nonperiodic in na-
ture. This excludes some data for low frequencies and larger
driving amplitudes sfnø0.4,VA.0.25d that is closer to
bursting in behavior. The record of this for a range offs
around the natural frequency of the system,f0
=1/Î4p2L2C0, and a range of driving amplitudesVAs ap-
pears in Fig. 12.sThe natural frequency depends on 2C0
instead ofC0 because the internal capacitors are parallel, and
so their capacitances add.d

Within band 1 the agreement is quite good for higher
driving frequencies. At lower driving frequencies the analy-
sis suggests that there is switching behavior where the nu-
merical simulation does not. If one consults Table I, one can
see that asf decreases thelkkx3Hsx3dl becomes large. The
SPT analysis is predicated on assumption thatdkyl /df is
much less thandxj /df where j =1, 2, and 3, which may not
be the case iflkkx3Hsx3dl is becoming large.

By considering the normalized switching frequencyFs in-
stead offs we are able to compare our analysis and numeri-
cal integration with the results of the experimental work in
f1g which are reproduced in Fig. 13. We chose a smaller

FIG. 13. The normalized switching frequencyFs from the ex-
periment in Ref.f1g where fn= f / f0 and f0<693 kHz.

FIG. 10. The four regions over which the integration has been
broken to find the switching frequencyfs. The system goes around
the orbit in a clockwise rotation.

FIG. 11. The normalized switching frequency,Fs=tRCfs

=ReCfs, as determined from the above analysis. The normalized
driving frequency isfn= f / f0= fÎ4p2L2C0. Only band 1 appears
because our analysis does not apply to band 2.

FIG. 12. The normalized switching frequencyFs as deduced
from numerical simulations by the technique described in the text.
The normalized driving frequency isfn= f / f0= fÎ4p2L2C0.
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value oftRC srecall thattRC=ReCd for the numerical integra-
tion so that the integration could be done in a reasonable
amount of time. For the experimental circuittRC<1.24, for
the numerical work thetRC=0.03, and for the analytical
work no assumption was necessaryffrom Eq. s17d fs is pro-
portional toe=1/ fReC andFs is proportional toetRC=1/ fg.

There are several aspects of the experimental results from
the circuit in Fig. 1 that are accounted for in the numerical
integration and analysis of the simpler circuit in Fig. 3. The
experimental results in Fig. 13 show two bands, one on ei-
ther side offn=1. This is the same basic structure found in
the numerical simulation. With regard to the analysis we note
that band 1 of the analysis extends over to and no further
than fn=0.8, as is also the case for band 1 of the experimen-
tal results in Fig. 13. With regard to the switching frequen-
cies, note that the majority of the values forFs from our

analysis and numerical integration fall within the same range
of values as those found in the experiment.

VI. CONCLUSION

We have shown that the low-frequency switching in a
class C amplifier, due to a modest amplitude signal at a fre-
quency higher than the circuit was designed to operate at,
can be understood using a singular perturbation analysis. In
particular, by analyzing the high frequencysinput signal fre-
quencyd response of the system we have been able to esti-
mate the frequency of the slow behavior of the system. We
also are able to predict one band of driving frequencies and
amplitudes over which the slow behavior occurs. We expect
that the techniques described in this paper could be extended
to find the second observed band of driving frequencies and
amplitudes over which the slow behavior occurs.
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