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Analysis of multiple time scales in a transistor amplifier
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It was shown previously in an experiment that when high frequency sigoalthe order of 1 MHgwere
injected into this low frequency amplifier, the nonlinearities of pimgunctions caused period doubling, chaos,
and very low frequency oscillationien the order of 1 Hg In this paper we present theory and simulations to
explain the existence of the low frequency oscillations.
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[. INTRODUCTION This capacitance gives the circuit a natural resonance near

the frequencyfy=1/\47LCy~1 MHz (N.B. The inductoi

was explicitly added to make the experiment easier to per-
form. There are inductances inherent in the wires and typical
values give resonances on the order of GHz, which makes

In previous work[1] experiments showed that driving a
simple one-transistor audio amplifier, Fig. 1, with a high fre-
quency (approximately 1 MHE signal could induce chaos,

period doubling, and low frequendpn the order of 1 Hy data collection difficuly. Driving the circuit with a signal

switching. . S
Chaos and period doubling in such a system might bé"“th frequencyf nearf, causes the circuit to respond at the

. ) : driving frequency f and also exhibits a low frequency
expected b?‘se_d on stu_dles Of the dloo_le r_eSO’[m.@I_l]’ in switching on the order of 5-10 Hz. The experimentally de-
which a periodic signal is applied to a circuit consisting of an

inductor, a resistor, and a diode. The inductor combined Witﬁgrmmed SW't.Ch'ng fre_quency for a range of driving frequen-

’ ) . . cies and driving amplitudes appear in Fig. 13.
the nonlinear capacitance of the diode form a nonlinear reso-
nant system, which may exhibit period doubling or chaos.

Similar low frequency oscillations were seen in a simple cir- lll. THEORY

cuit using a diodg¢11], however, the authors made approxi- | order to simplify our analysis, we eliminate circuit el-

mations that limited the applicability of their analysis to the ements which are not necessary for low frequency switching.

driving regime that we consider. . _ ResistorsR; andR; are present for biasing purposes and can
In our previous experimental work, we were interested inhe removed by biasing the input signal. The circuit is a volt-

what sort of nonlinear effects might be seen if a low fre-age amplifier, not a current amplifier, so the resifprcan

guency system containingn junctions(such as our ampli-  pe removed and,, can be though of as the circuit output.

fier) was subjected to high frequency rf signals. The rf sig-Experiments and numerical simulations show @agndC,

nals might be accidently produced by nearbydg not affect the dynamic<, andC, are present to isolate

communications systems, or they might be intentionallyine amplifier from input and output dc levels.

beamed at the circuit in an attempt to disrupt the functioning  Removing capacitor€, andC, reduces the dimensional-

of the_ circuip The inducta_mces of the vyires_of th_e circuit ity of the system without substantially changing the dynam-

combined with the capacitance of tipm junctions in the jcs of the circuit. This somewhat simpler circ(iig. 3) ex-

transistor formed the nonlinear resonant system, with a resgyibjts similar behavior to the experimental circuit. At the

nant frequency on the order of GHz. . audio frequencies the circuit is designed for, the inductor and
The actual rf signals might have frequencies on the ordeghe capacitances in the transistor are unimportant. At these

of 1 GHz, but systems that can digitize signals fast enough tgyy frequencies when the voltage across the base-emitter

study GHz phenomena are still quite expensive, so we addgf@inction V,,, is below a threshold valu¥, the transistor is
an inductor to the input of the transistor amplifier in order to

lower the resonant frequency of the inducpor-junction
combination.

11
|
<

II. EXPERIMENTAL DESCRIPTION

We consider a simple audio frequency transistor amplifier, \
Fig. 1. The transistor is a 2n929 bipolar transistor. The tran-
sistor has variable internal capacitar{€éy. 2) from a num-
ber of mechanisméi.e., junction capacitance, diffusion ca-
pacitance with a magnitude of orde€,~ 101 F.

FIG. 1. A simple, stable, audio frequency transistor amplifier.
V=15V, R;=40.42K), R,=204.545K), R.=15kQ, R
=3.75K), R =1 MQ, C;=C,=25 uF, C=330 uF, L=2200 uH,
and the transistol is of type 2n929. The output of the circuit is
*Electronic address: armstead@anvil.nrl.navy.mil across the load resist®; .
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FIG. 2. The transistor has small variable internal capacitances

C. andC, that are known to be frequency dependent.

nonconducting. Note that in general we defiig to be the
voltage drop from poing to pointb. For the transistor con-
trol voltageV,, above the threshold a small current will flow
(at least for a bipolar junction transisidrom the base of the
transistor(point b) to the emitter of the transistdpoint e).
This small current fronb to e stimulates a much larger cur-
rent from the collectofpoint ¢) out the emitter. The much
larger collector-emitter current is proportional \fg.—V,, at
least forV,e—Vy small. In this mode of operation the transis-
tor acts as a voltage valve. Fdg.—V,=0 very little current

flows and most of the voltage drop across the amplification
power sourcé/; occurs across the the collector-base junction

(i.e., Voe=0 and V= Vs—Vi o Where Vg is the amplifier
power supply voltage an¥;,, is the input signal biasing
whereas for large values ®,.—V, a large current flows and
most of the current drop is across the resig®r(i.e., V¢
zVs_Vmo and Vcbz O)

At the frequencies we consider in this paper all four reac
tive elements in the circuit in Fig. 3 are important: the induc-
tor L, the capacitolC, and the two internal capacitances of

the transistoiC, and C,. As a result, the circuit can be de-
scribed using four ordinary differential equatiof@DES:

dl 1
d_t—E(Vin_Vbe_Veg)i
dVep _ 1 _
p —CC(Vac/Rc lo),
dVv, 1 W
be _ — _
pm —Ce(vac/Rc+| le),
dVv, 1
OVeg _ 2 -
it —C(Vac/Rc I = VedRe),

where V;,=V,,o+ V4 sin(27ft), | is the current through the

inductor, and . andl, are the nonlinear currents which come

from an Ebers-Moll description of the transistor,

lo= lo[— (€7 VEKT = 1) + o€ - 1)),

o= 1o[(eMed T = 1) — a(e™MedkT - 1],

wherel,=10"'% k is Boltzmann’s constant, is the tempera-
ture in K, anda=0.995 is the fraction of current lost through
the base of the transistor.

We now make a number of simplifying assumptions:
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FIG. 3. A much simpler circuit that exhibits the same behavior
as Fig. 1. For the numerical work done on this circuit we use the
parameterd/s=15 V, R.=5 k), R,=10 k), Cy=20 uF, C=3 uF,
L=2000/.LH, Vin=Vin0+VA S|n(277'ft), Vin0:2 V.

tors (FETS. From this we infer that the details of the non-
linearity of the current function are unimportant, so we ap-
proximate the exponential nonlinearity in the current
function with a piecewise linear forrtes was done for the
diode resonator in Ref$7,8]) linearized about the voltage
V,, at which the nonlinearity becomes important.

(i) Simulations show that the nonlinear capacitance is
not necessary for the low frequency oscillations, therefore a
constant capacitance @, is used for the transistor capaci-
tance.

(iii) The collector-base junction is never driven into a for-
ward bias so thé/,, contributions to the nonlinear currents
are small. The circuit will not be driven in such a way that
the base-emitter junction will receive a large reverse bias.

(iv) The leakage of base current, while important for the
proper functioning of a bipolar transistor, is not important for
the FETs. In light of this we usa=1.

(v) The large capacitance &f compared to both the tran-
sistor’s internal capacitandge., C,/C<1) and the induc-
tancelL [i.e., L/(RgC) <1] means that the dynamics bt
are much slower than those of the other variables. As a re-
sult, Vg can be treated as a constant compared to the other
variables, i.e.,

dVac - d(Vs=Veb— Ve~ Veg) __ dVep _ V_be
dt dt dt  dt’

(2)

With these assumptions we rewrite the physical represen-
tation of the circuit Eqs(1) in more natural coordinates:

d
d—f; = y[sin(2m¢) - xs - Y1,

d

d_’:; = — J[Xy + 2% — 2kXgH(X3)],
d 3
d_):; = X1 + %o — kXgH(Xa)],

d
ﬁ = A (xy+ %)~y — Yo,

wherex; =Rl /Va, Xo=Vac/ Va, X3=(Vhe= Vo) /Va, Y=Veg/ Va
—Yo, Yo=Vino=Vo) VA, ¢p=Ft, y=R./fL, f is the frequency

(i) The experimental effect was seen with different typesof the input signal,6=1/fR.Cy, e=1/fR.C, A\=R./R;, «
of transistors, including both bipolar and field-effect transis-=qR.l,/KT exp(qVy/kT), and H(x) is the Heavyside step
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FIG. 4. Numerical integration of Eq3) over a number of slow 5L
switching cyclesx, is a slowly varying high frequency oscillation,
whereasy varies only at the slower time scale. or
) ) -5
function, which has a value of 0 for<<0 and 1 forx>0. For 0.5
the relevant circuit parametefsee Fig. 3all parameters that min 7% y Ymax
appear in Eqs(3) are of order 1, except~O(10°%) and
~0(10%). FIG. 6. Numerical integration of Eq3) over one slow switch-

Numerical integration of Eq3) yields behavior that is ing cyclle.strobed once per drive .c.ycle.. The system eyolves along
substantially the same as is seen in the experiment. Figuretﬁe orbit in a cloc_:kmse sense. Inltlal!y in the low amplltude s_tate,
shows that one variabléy) varies on a much slower time Small +/narrow line, the system switches fo the high amplitude
scale than the others, which are periodic in the drive fre-St.ate’ largediwide line, aty=Ymin and switches from the high am-

. . ) plitude state to the low amplitude stateyaty,.. Upon re-entering
quency. The fast variables, x;, andx; are bistable: for a the low amplitude state the transistor is strictly off fromymax
given value ofy, they occupy one of two different attractors. down toy=ys.

Figure 5 shows the two sets of possible wave formsxior
X9, andxg: the wave forms in Fig. @) have larger amplitudes
than the wave forms in Fig.(B). The wave forms gradually
evolve asy slowly changes until the system suddenly
switches from one wave form set to the otHerg., from
those depicted in Fig.(8) to those in Fig. B)].

This switching between wave forms is captured in Fig. 6

amplitude state foy,,a>Y>VY«, X3 is strictly less than zero.

As a result the transistor does not conduct and there is no
longer a rectified current flowing throudR.. Even afterxs
starts making excursions abowg=0, as in the example

which showsx,, the normalized voltage across the resistorShown, in Fig. 5’, the rectified C“Fre”t Is r'n.uch. smaller than in
R., againsty strobed once per drive cycle. Figure 6 showsthe high amplitude state. Wlth rectlflcatlo'n effectively
the low frequency switching between the high amplitudeStOpped throughout th_e low a_mpl_ltude state, time average of
state and the low amplitude state. In the high amplitude stat @nd X, over one drive oscillatioridc leve) approaches
(shown with large plusgsa large rectified current flows Z€ro. As a result, charging stops and the capacitatis-
throughR; and into the transistor collector. This dc biasedcharges througtR,, the resistor in parallel withiC, soy
current flows through the transistor and charges capaGitor drops. Asy nearsyy, the lower end of its range, the system
increasingy until y=y,., When the system switches into the becomes unstable, causing the system to switch back into the
low amplitude statéshown with small crossgsin the low  high amplitude state. This instability causes the system to
switch back into the high amplitude state in a number of
ways, depending on the input signal frequency. The system
may switch directly from the period one low amplitude state
to the high amplitude state, it may first pass into a period
doubling cascade and become chaotic before switching to the
high amplitude state, or the system may even pass through a
period doubling cascade and then through an inverse period
doubling cascade before switching to the high amplitude
state.

The low frequency switching is part of a hierarchy of time
scales relevant to this system. At the fastest time scales
(times of order 1k<1) there is the reaction of the system to
the transistor turn ori.e., the nonlinear currents, and I
switch on. There is an intermediate time scalgmes of
order 1) associated with the driving frequency. At the slowest

FIG. 5. Numerical integration of Eq3) over one period of the time scalesitimes of order 1£>1) is the variation in the
drive function. Seta) is from the high amplitude state and shows SIOw variabley, which is responsible for the slow switching
the high amplitude wave forms af, X,, andxz. Set(b) is from the ~ observed in this system. This hierarchy of time scales makes
low amplitude state and shows the low amplitude wave formg,of ~Singular perturbation theorySPT) [12] an attractive ap-

X5, andxs. Both sets are for the same valueysf1.15. proach.
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8 : 60 ‘ 60 ‘ dx
4t 40 ] 40 ] d_l =Z[Sin(277d)) - X3 VY],
0 £ 20 3 §& K
41 0 1 20 \
gL 2 dx )
8 0 0.5 1 0 0 05 1 00 05 1 —2=- —(Xq + 2%y — 2KX3),
(@) ¢ o o dé¢ K
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FIG. 7. While the transistor is conducting, the variabtesx;,  To apply SPT each of the variables must be of the same order
and X3=«xz are of the same order of magnitude. Numerical inte- of magnitude. In the conducting stdiee., x3>0) Xy, X,, and
gration of Eq.(3) over one period of the drive function. S@) is  x, are not of the same order of magnitufsee Fig. 5,
from the high amplitude state and shows the high amplitude waveyhereas in the high amplitude stateandx, vary by 10 and
forms of x4, X,, and X3= X3 while X3=0. Set(b) is from the low 50, respectivelyx, varies by 0.003. However,, x,, and
amplitude state_ and shows the low amplitude wave forms of,, X4= kX5 are of the same order of magnitude, Fig. 7 shays
and X;=xx; while X;=0. Both sets are for the same valueyof " 5n4x_ only in the on state and each variable has a varia-

=115 tion on the order of magnitude of tens in the high amplitude
state and ones in the low amplitude state. Changing variables
IV. SPT APPLIED TO TRANSISTOR EQUATIONS Egs. (4) becomes

In its simplest form SPT12] allows one to make use of a X Y. .

small parametek to treat the fast and slow evolutions of a e ;[Sln(Zmﬁ) - Xk -yl

system separately. One does this by using two different pa-

rametrizations of timet and r=e€t. In the limit e—0 one

obtains two distinct limiting behaviors, “fast equations” and ax - é(x + 2%, — 2X,)

« . » . . 1 2 3/

slow equations” for thet and r parametrization, respec- dé K

tively. (5)
The transistor equations have two extreme parameters dXs

(i.e., e<1, andx>1) and so there are three time parametri- rr = 0(X + %= X3),

zations we will consider: for the turn on time scale k¢,

for the driving time scalep, and for the slow switching time q

scaley=e¢. From these three time parametrizations we will ay _ E[)\(xl +%) =Y = Yol.

recover dé¢ «

(i) From the fas time parametrization: the rapid change
in X3 when the transistor turns on.
(i) From the intermediate) time parametrization: the

In the limit k— EQgs.(5) reduces to

high and low amplitude states that constitute bi-stable limit % =0,
cycle solutions for fixed. Each limit cycle will contain two §
segments, one segment for which the transistor is conducting
(On branch of thep time parametrization manifoldand one dx _ 0
segment for which the transistor is not conductif@ff de
branch of the¢ time parametrization manifold The two (6)
branches of the) time parametrization manifold have differ- dXs
ent dimensionality due to differemt scaling. d_g = X+ X = X,

(iii) From the slowy time parametrization: the equations
that govern the evolution of the period-1 limit cycles along
the two branches of the slow manifold phanges. dy -0
Let us first consider the fastest time parametrizatin, dé 7’

so that when the transistor begins conducting, oRXly
A. § time parametrization evolves and has the solution
When the transistor is conductir@e., x;=0) the large Xa(€) = (X + Xp) (1 — € 9E40)), (7)

parameterx is present in Eqs(3) and the¢ time parametri-
zation of Egs.(3) is relevant. In thef time parametrization where &, is the time at which the transistor turns fire.,
whenx;=0 Egs.(3) becomes X3(&,)=0].
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The relaxation o5 from 0 tox; +x, is very sudden when
compared to the time scales of tileparametrization. This
can be seen by considerixg in terms of ¢,

PHYSICAL REVIEW E 71, 036208(2005

o _
q ¢—y[sm(2mzﬁ) yl,

d
d—jz—5<x1+2x2—2x3),
_ (XX 0 - wdle-go)
0=3(X; + X2 = Xa),
Sincexd> 1, the time required for the transistor control vari- dy
able x5 to jump from the valuex;=0 to x3=(X;+Xy)/k is @ =0
exceedingly small and in theé parametrization we treat the
jump in x5 at the transistor turn on as a discontinuity. and
d
) o & Ysin2md) —x3-y],
B. ¢ time parametrization d¢
In the ¢ parametrization there are two different scalings dx,
(X3 andxz) depending on whether the transistor is conduct- @ ==X + 2%)),
ing [i.e., H(X3)=1], (12)
d
5= 5%+ %)),
dx, _ d¢
ab Asin2me) = Xo/k = y],
o
do
[ _ for Egs.(11) and(12), respectively.
do X+ 2= 2X3), We therefore have two branches of E(®.for the ¢ time
(9) parametrization. The On bran¢he., H(X3)=1] solution is
1dXs _ _ cog2mo)
Kd¢_5(Xl+X2 XS), = <_T_y¢+Al>1
sin(2w¢g) y
dy Xz:57<—7—5¢2+A1¢+A2 :
= e AX %) —y = Yol,
de (13
X3 =Xy + Xo,
or not[i.e., H(x3)=0],
[i.e., H(x)=0] J=A,

(whereA;, A,, andA; are constants of integratiprand the

d
d—f; = y[sin2md) - X3~ y],

Off branchli.e., H(x3)=0] is

d
ﬁ = y{sin2me) - x3 -y,

d
d—)((;:—5(x1+2x2), Z—)((;=—5(X1+2Xz)-
dx " .
dxg _ d
do = 8(X1 + Xo), d—)((2=5(X1+X2)-
dy 0
d — = VU.
—y:e[)\(X1+X2)—y_yo]- °

do

The Off branch(14) is linear and can be readily solved.

These two different scalings give rise to different limiting The solution is composed of a transient piece coming from
behaviors. In the limitc— o and e—0 we find the autonomous equations and a particular solution which is
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8 - 60 - 3 i ' sary condition for low frequency switchingwe now study

41 1 401 2b ] the slow manifold that the system spends most of its time
IV \ %' 20§ /\ = -‘61 L 1 evolving along so that we might understand when the system

AL J 0 sl ] will leave one branch of the slow manifolthe high ampli-

-8 ' 20 ' -10 ' tude statg and move to the other branch of the slow mani-

0 12 1 0 12 1 0 12 1 . Lo
@) o o o fold (the low amp_htu;le staje and when it will comp!ete a
low frequency switching cycle by returning to the high am-

8 60 (2, - ] plitude state.

4 40t 207 8 T Sincex;, X,, andx, vary greatly over a period-1 oscilla-
A OTTS T 20 < j‘g ] tion it is convenient to consider the period one average of

4 ] O -8 1 Egs.(3). For a functionf(¢) that has a period of 1, by defi-
®) ¢ ¢ ¢ #+1 /

| | | | Mg =tg+ - 1010,
FIG. 8. Solutions forxy, Xy, andx3 in the (a) large amplitude p do

state andb) low amplitude state are found by piecing together an ] .

On state(solid line) with an Off state(dashed lingand demanding ~ SiNCeX;, Xp, andx; are each period 1, the equations for the
that the resulting wave form be periodic in the drive frequency. Theperiod-1 average of Eq$3) are

agreement between these wave forms and the numerically inte- = T (%) —

grated wave forms of Fig. 5 is exceptional. 0=9= 03 =W,

= - + -

nontransient. Both are important for the long time behavior 0=~ 0w +20) = 2xaHx),
of the system because of the repetitive switching back and _ _
forth bet)\//veen the On and Off br:fnches. 0=d0) + 0 = xO6HOG)],

We piece together the fragments of the period one oscil- A&y)
lation from the On and Off branches of the manifold for the &y M{(Xy) + (X)) = (Y) — Yo
¢ time parametrization to find constants of integration sub- dy
ject to the followi?g conditions: tha¢; andx, aredcon;rinuous where = e and <z>:f$+lzdd>/l is the average of over
at each junction{i.e., both the On to Off and Off to On : : :
junctions (as was done for the diode resonator in RETS3]) one drive cycle. Solving for the averages yields
%3=0 at each junction, an¥;=0 (i.e., x5 in the On branchat (X1) =0,
the junction from Off to On.

Finding period one solutions with one piece each from the (Xo) = k(X3H(X3)),
On and Off branches is sufficiently complicated to require a (16)
numerical solution. To do this we use the first five conditions (X3) == {y),
(i.e.,x3=0 at the Off to On junction and all conditions anp
andx,) to determine the five constants of integration in terms d(y)
of the two undetermined junction values &f ¢,, and ¢;. d_lﬂ
We then numerically solve fo$, and ¢, subject to the con-
ditions x3=0 and X3=0 at the On to Off junction. Within The period-1 average equations determine the evolution of
such a scheme finding values f¢g and ¢, is tantamountto the system along the slow manifold. The average
finding a potential period-1 solution. In searching for «(xsH(x3))=(X3H(X3)) is readily calculable from our results
period-1 solutions with one piece from the On branch andn the ¢ time parametrization subsection.
one from the Off branch, we find a very limited number of  \When the current branch of the slow manifold consists of
solutions. The stable solutions correspond to the period-bnly period-1 oscillations we can say a bit about the switch-
limit cycles of the large amplitude and low amplitude statesing pointy,,, for the low amplitude state of,,,for the high
Examples forx;, X,, andxs in both states withy=1.15 are  amplitude state. Numerical searches of the solution space for
shown in Fig. 8. The agreement between these wave formseriod-1 oscillations show that for sufficiently close to the
and the numerically integrated wave forms of Fig. 5 is ex-switching point there are two solutio$a) and (b)] with
cellent. values of g, and ¢, (6%, 42 and 4, 4\, respectively
near each other. Ag approaches the switching point the two
solutions convergdi.e., ¢f)a)— f)b)—>0 and ¢ - ¢” —0).
Beyond this value off our numerical search fails to find any

In the previous subsection we found the stable period-hearby solution.
limit cycles that are the typical solution for thg time pa- If the circuit parameters are such that the system passes
rametrization(As previously noted, near the transition from through a period doubling cascade before switching from the
the low amplitude state branch of the slow manifold the sofow amplitude state to the high amplitude state, then our
lution may, for some parameter values, go through a periogeriod-1 analysis of the low amplitude state breaks down.
doubling cascade to chaos. Period doubling is not a nece3he period doubling cascade to chaos is typically entered

(15

= )\K<X3H (X3)> - <Y> ~Yo-

C. ¢ time parametrization
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TABLE I. A comparison of the range diymin:Ymay from nu- T T T . . 2.2
merical simulation to the range found using the above analysis. 05- W EEN{ 2
Also the value ofk\(xgH(X3)) at three values of/ where ymig EEN 1.8
=(YmintYmax) /2. For referencey, ranges from 3 to 30. 04} HENR 6
~ EEN 1.4
. _ . 2 03} EEE |
Frequency Simulation Analysis N(XgH(X3)) < EEE 1.2
f (kHZ) (ymimYmax) (Ymianmax) at (Ymianmidfyma)Q > 021} EEEE i 1
EEE 0.8
150 (0.83,2.52 (0.96, 2.19 (204, 282, 31D o1 EEE 06
200 (0.90,2.72  (0.98, 254 (92.0, 122.6, 145)8 ' EEE 0.4
250 (0.83,2.9) (0.96, 2.80 (48.8, 72.2, 85.p 0 L . . . . 0.2
02 04 06 08 1 1.2 14
300 (0.93,3.1) (0.93, 3.02 (28.0, 42.4, 491 £
(0.52, 1.09 "
350 (1.23,3.34 (1.23,330  (19.7,26.8, 294 FIG. 9. The range over whichvaries Ymax—Ymin @s determined
(0.54,1.14 from numerical simulations, in the switching system witjxf/f,
400 (1.66,3.60 (1.67,3.58  (13.9, 16.9, 164 =fy4m?L2C,,.
(0.55, 1.18
450 (233,393 (2.34,393 (94,102, 94 switching behavior in this graph: band 1 is present figr
(0.52,1.2) <1 with a large variation iry, and band 2 tends to occur at

higher frequency and for which the variationyris smaller.
These two bands arise from qualitatively different behavior.
In band 1 the low and high amplitude branches of the slow

500 (0.51, 1.22 )
)
; manifold are both period-1, whereas in band 2 the high am-
)
)

550 (0.48, 1.22
600 (0.51,1.22

650 (053, 1.20 B B plitude branch is period-2. This puts a full discussion of band
700 (0.54, 1.17 - - 2 out of the realm of the analysis in this paper.
750 (0.54, 1.12 - - There are frequencies for which both bands are present

for the same frequency but different values\6f At these
frequencies the high amplitude branch of band 1 is also the
when the period-1 solution for the low amplitude state isjow amplitude branch of band 2.
suddenly destroyed. This state is destroyed when a second Table | lists the range afyin, Yma) from numerical simu-
local maximum inx; pushes up through the transistor turn onation of Egs.(3) as well as the range found using the above
value. At this pOint our formal solution to the periOd'l oscil- ana|ysis_ A|though our ana|ysis fails to detect band 2 the
lation is no longer valid because the Off branch solution haggreement between numerical simulations and our analysis is
a range of¢ values for whichx;> 0 which violates the defi-  quite good for band 1. Our analysis provides an upper bound
nition of the Off branch. for Y, and a lower bound oy, the switch from low
amplitude branch to high amplitude bran@nd vice verspa
will not happen before the low amplitude branch becomes
V. RANGE AND SWITCHING FREQUENCY unstable but the system may linger near before switching to
the high amplitude branch. In practice the system does not
linger long, and we note from Table | that ds—1 the
values ofy,in and y,ax from the simulation approach the
h bound set by our analysis.

In addition to the range over which varies we need to
know how quicklyy varies. Recall from Egqq16) that it is
necessary to compuex(xsH(x3)) =\ {(X; +x5)H(X3)), which
is proportional to the current that flows through the transistor

We now estimate the frequency of the switchihigas a
function of frequencyf and driving amplitudeV/,.

First we determing/ i, andy,ax directly from the analy-
Sis; Ymin IS the value ofy at which the low amplitude branc
ceases to exist ang,ax is the value ofy at which the high
amplitude branch ceases to exist. We also determinén
the low amplitude state the transistor remains strictly off
over the interval(y:,yma) @nd, as a result, the particular _ X _ X _
solution (as opposed to the autonomous soluios the and into the capacita€ while the transistor is on. Instead of
dominant. We therefore define as the largest value gfat ~ COMPUtiNgAx(xsH(xs)) at a dense set of points along the
which the particular solution ofs is tangent to the lineg  INterval(Ymin, Ymay), We calculater k{x;H(xs)) at a few points
=0. Since the parameters of Eq&3) and (14) depend orf  [Ymin (YmaxtYmin)/2, @ndypmay for the high amplitude state,
but notV,, the search foy,,in, Yimaw andys is independent of and only aty.;, for the low amplitude state because
V, and need only be done once for each frequency. ThéXsH(x3))=0 over the intervaly.,ymq)] and linearly inter-
results of this search appear in Table | and will be discussegolate in between.
shortly. Our estimates ok k(X3H(X3)), Ymin Ymax @ndys allow us

Figure 9 shows the length of the inter(gin, Ymay found  to integrate they) equation of Egs(16) (i.e., the one drive
by numerical integration of Eq¢3). Interval length is only  cycle average equation fg) over one switching period. We
displayed for parameter values for which the systenmbreak the integration up into the four regions of Fig. 10. The
switched periodically. There are two distinct bands ofsystem evolves around the orbit in Fig. 10 a clockwise sense
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FIG. 12. The normalized switching frequenéy as deduced

. . . . from numerical simulations by the technique described in the text.
FIG. 10. The four regions over which the integration has beenThe normalized driving frequgncy f%:f/fc?:f\"m

broken to find the switching frequendy. The system goes around

the orbit in a clockwise rotation. amplitude branch in band 2 has a large enough dc bhias to

o ) ) _ chargeC, even at lower values &f, when the period-1 high
(i.e., it starts atymay in region 1 and then & passes into  amplitude branch cannot.

region 2, eto. Integrating the(y) equation of Eqs(16) and We now wish to compare our results to those of numerical
inverting yields the time the system spends in region integration of the whole system. Towards this end we must
1 Ve + o calculate the switching frequendy from the numerical in-
A = In( el ~O'), tegration of Eqs(1). From the time series we find the times
eAm—1)  \yg+Vy of each maxima in the variablg and record the average
whereAd; is the time spent in regioh v, is the value ofy interva! between. maximdT;.,, when th.e gtandard deviation
at the start of the regiory,, is the value of at the end of the  in the intervals is less thaf;,»/4. This is to exclude pa-
region, Yo =(\b;—yo)/(Am;—1), and the linearization of

rameter values for which the behavior is nonperiodic in na-
Ak(xgH(X3)) has parametersn, and b; such thatmy+b,  ture. This excludes some data for low frequencies and larger
~\k(X3H(x3)) in regioni. For example, in region Iy

driving amplitudes (f,<0.4,V,>0.25 that is closer to
=Vimax Ye1=Y+, M=b;=0, andyy;=-yy. Summing the time

bursting in behavior. The record of this for a range fef
contribution from all four regions yields our estimate of the @0und__the natural frequency of the systenf,
slow switching periodTg and the switching frequencyg

(17)

=1/V47°L2C,, and a range of driving amplitudeg,s ap-
=1/T, In Fig. 11 we present the normalized switching fre-P€ars in Fig. 12(The natural frequency depends 0€q2
quency,F<= mrcf s Wheremmc=R.C, for a range ofs andV,s. msteaq ofCy bgcause the internal capacitors are parallel, and
Notice that for a fixed value of, some values of/, have SO their capacitances adld. . _
an estimate foF and others there is none. For those that do  Within band 1 the agreement is quite good for higher
not, either the value ok\(xsH(x3)) at i, On the high am- driving frequencies. At lower driving frequencies the analy-
plitude branch was so small thag) would not grow(i.e sis suggests that there is switching behavior where the nu-
N (XaH(x:))| v, —yo<0). or the high am Iiiu.cie merical simulation does not. If one consults Table I, one can
grancgh b?écg%:é“%tg&'é eyo N <,x H(xo)| 9 - P_ see that a$ decreases thex(x3H(X3)) becomes large. The
-0  but _ either K); <;,<3H(x3)§| 3 _agt/z?/g)g<>(')m'“ B(I)Or SPT analysis is predicated on assumption i@bh/d¢ is
aty=y,

. much less thamlx/d¢ wherej=1, 2, and 3, which may not
K\ (H (X)) aty=y, " Ymax~Yo<0]. Each of these estimates po e case if k(xsH(xs)) is becoming large.
is for a band If,. Band 2 oscillations are possible in regions

N . > By considering the normalized switching frequergyin-
where band 1 oscillations are not because the period-2 hlg&ea)é off. we arg able to compare our anglysig and numeri-
S

cal integration with the results of the experimental work in

. ; ; . ; 25 - . .
o5/mEEEEEE ] [1] which are reproduced in Fig. 13. We chose a smaller
AEEEEEN 20
04/ HNEEEEN 25
~ |(HAEEEEEE 15 51
< 03 ANEEENEE 20
B [ I [ ][] 10 41
o2/MEEEENE & 15
oo |EREE : =)
At
. T . > o 10
02 04 06 08 1 12 14 1tm 5
f . .

0 . . .
02 04 06 08 1 12 14

n

FIG. 11. The normalized switching frequenc¥s=7rcfs
=R.Cfs, as determined from the above analysis. The normalized
driving frequency isf,=f/fy=f\47°L2C,. Only band 1 appears
because our analysis does not apply to band 2.

FIG. 13. The normalized switching frequenEy from the ex-
periment in Ref[1] wheref,=f/fy and fy~693 kHz.
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value of rx¢ (recall thatrrc=R.C) for the numerical integra- analysis and numerical integration fall within the same range
tion so that the integration could be done in a reasonablef values as those found in the experiment.
amount of time. For the experimental circuitc~1.24, for
the numerical work thergc=0.03, and for the analytical VI. CONCLUSION
work no assumption was necessginpm Eq. (17) fs is pro- We have shown that the low-frequency switching in a
portional toe=1/fReC andF is proportional toerrc=1/f].  (¢jass C amplifier, due to a modest amplitude signal at a fre-
There are several aspects of the experimental results frogy,ency higher than the circuit was designed to operate at,
the circuit in Fig. 1 that are accounted for in the numericalcan be understood using a singular perturbation analysis. In
integration and analysis of the simpler circuit in Fig. 3. Theparticular, by analyzing the high frequentgput signal fre-
experimental results in Fig. 13 show two bands, one on eiquency response of the system we have been able to esti-
ther side off,=1. This is the same basic structure found inmate the frequency of the slow behavior of the system. We
the numerical simulation. With regard to the analysis we notelso are able to predict one band of driving frequencies and
that band 1 of the analysis extends over to and no furtheamplitudes over which the slow behavior occurs. We expect
thanf,=0.8, as is also the case for band 1 of the experimenthat the techniques described in this paper could be extended
tal results in Fig. 13. With regard to the switching frequen-to find the second observed band of driving frequencies and
cies, note that the majority of the values feg from our  amplitudes over which the slow behavior occurs.
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