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Mechanisms for dynamic crack branching in brittle elastic solids: Strain field kinematics
and reflected surface waves
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We report on a numerical simulation study of dynamic fracture in strip-shaped plates in which we implement
a fracture criterion that fully respects mode-I symmetry. The crack dynamics is studied as a function of the
length of the initial notch. The cracks show accelerated straight motion until branching appears. We show that
branching can be triggered by two different mechanisms: namely, the kinematics of the strain field and
back-reflected surface waves traveling on the crack lip. We also propose a qualitative explanation for the
kinematic branching mechanism in terms of the effects of the lattice discretization on Yoffe’s stress field. The
kinematic branching mechanism is understood by analyzing the disconnection times of the nodes ahead and
aside of the crack tip.
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I. INTRODUCTION pers Ravi-Chandar and Knaug3| studied the relationship
between crack tip speed and the surface roughness at the
The understanding of how materials break apart undetrack lip, stating the well-known classification of mirror,
external loads is a subject that has attracted the attention efiidst, and hackled zones according to the amplitude of the
scientists and engineers for a long time. The problem hasurface irregularities. More recently, extensive experimental
obvious relevance from a technologidaésistance of mate- work on glass and PMMAS] has shown the important role
rials and safetyas well as environmentébarthquake activ- that mechanisms such as acoustic emis$ith-12, wave
ity and seismic hazajgoints of view. From a physical per- reflection[13], and branchingi14] may have on the dynami-
spective, this problem is interesting because of thecal behavior of cracks.
complexity of its dynamics, in which singularities appear and From a dynamical perspective, however, many aspects
many different length and time scales are involved. Furthereoncerning crack motion are still the subject of debate, and
more, the complex fracture patterns that may appear in exsome of the open questions concern the mechanisms limiting
periments have strong resemblances with other pattern fothe speed of a moving crack. According to the theoretical
mation processes much studied, such as diffusion limitegiredictions for brittle linear elastic solids, the speed of a
aggregation[1], dielectric breakdowr{2], and percolation crack tip in straight motion should be ruled by the balance
[3.,4]. between the elastic energy flow towards the crack tip and the
Different fracture mechanisms may appear depending oenergy dissipated in creating crack lip surface. Under this
some features of the materials. A first classification separatesssumption, the maximum speed in straight crack motion
materials into two classes according to the predominant fracshould be the Rayleigh surface wave sp¥gd5,6]. Never-
ture mechanism. Brittle materials behave as elastic solidtheless, the experimental studies of crack propagation show a
until the fracture threshold is reached. Ductile materialsrich and complex phenomenology. Regarding experiments
show plastic deformation, and dislocation motion plays arcarried out with PMMA(a material that shows brittle behav-
essential role in the dynamics. In this paper we will focus onior) it has been found that there are no fractures propagating
brittle fracture dynamics. at a velocity lower than 0.2&, or higher than 0.Vg [10,12.
Linear elastic fracture mechanif5,6] assumes that at the Moreover, when the crack speed exceeds a critical value of
tip of the crack there is a stress singularity with a radialabout=0.4Vg, oscillations of the tip speed appear and acous-
dependence such as\k/ This singularity is characterized tic emission takes plade.1].
by a coefficient named the stress intensity factor, which, for Acoustic emissioff10-12 and branchindg14] have been
obvious safety reasons, has been the main concern in engiroposed as mechanisms limiting the crack tip velocity.
neering fracture mechanics. From this point of view, modernNVave emission has been recently studied in two different
numerical techniques that include a properly implementedliscrete model§15,16]. Their results show that at low crack
cohesive zone at the crack tip give satisfactory predictionspeeds surface wave radiation dominates, while at high crack
about stress intensity factofg]. speed bulk wave radiation dogk5], and that surface wave
In the last quarter of the 20th century modern experimenradiation can be a very efficient energy dissipation mecha-
tal and computational equipment made dynamic fracture aism at speeds in which resonance ocdu§.
suitable subject of studgfor an extensive review of experi- Furthermore, even the mechanism causing branching is
mental results see, for instance, R&]). In a series of pa- not fully clear. Most of the discussion about the branching
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mechanism starts from Yoffe’s asymptotic solution for thea Yoffe solution in a discrete medium; the other is induced by
stress field around a moving c_raﬁﬂs?]. Yoffe's solution al-  the arrival at the crack tip of a surface wave pulse, generated
lows for different qualitative interpretations of branching at the moment that crack motion starts, after being reflected
[5,6], based on either the lateral maximum that develops irat the upper boundary of the plate.
the angular dependence of the hoop stress or the changes inThis paper is organized as follows: in Sec. Il we present a
the angular dependence of the highest eigenvalue of thgrief overview of the discretization method of the elastic
stress tensor at the crack fip8]. To our knowledge there are \yaye equations as well as a description of the fracture crite-
no conclusive data from either experiments or simulationgjon and the simulation procedure. In Sec. Il we report the
that favor any of these interpretations. . simulation results concerning the static strain field and its
Moreover, the value of the branching angle S€en 1N eXperlganendence on notch length. In Sec. IV we show a detailed
&enézn\:]vgicge's’e%ﬁ’;g% 'gnﬂ,:ﬁer%r;%?s boitggﬁg’slgsyanqgtgfi) study of the fracture dynamics, including pattern structures,
solution. Only recently have there been some predictions Oamirglig(t:i?/’eagg ?;ﬁgggr%fprhinggizar:n i]ee%h\;x\ifnfrsgsgg
the value of the branching angle under general loading con= d . P ) ng . .
ditions [19]. on the kinematics of the strain tensor. Finally, a discussion of

From a theoretical point of view, the coupling of the equa-the results and conclusions are presented in Secs. VI and VI,

tions of linear elasticity and the boundary conditions, to-"€SPectively, including some proposals for future work.
gether with the singularity present at the crack tip, makes the

problem quite difficult to treat. In spite of the difficulty of the Il. MODEL AND GENERAL METHODOLOGY
problem, many theoretical results have been achieved mostly
related to static or straight advancing cracks. However, dy
namic cracks with complex patterns are still far away from

The discretization method has been fully described in Ref.

[25]. For the sake of completeness we briefly outline here the

the current state of theoretical work. In this sense, numeric enetr_a | frar?_tra]work antt_:i the fifnall fo;m}tjlaiir(])nt of the SiT#Iatd?d

simulations offer a way to get some insight into the complex quations. 'he equations of elasticiy that govern the dis-

features of fracture dynamics without solving analytically theplacement fieldu(r,t) na homogeneous linear material sub-

whole problem. Many different simulation schemes have'eCt to small deformations aié]

been proposed, and a good account of different approaches a(r,t)=c2vau(r,) +(ct-c2) V(v u)r,b), (1)

can be found in Ref[20]. Large multiscale molecular dy- o

namics simulationf21,22 can be implemented in nowadays Where the transverse: and longitudinak; sound speeds are

top-level computing facilities. Suitable medium-scale latticematerial properties related to Young's modulisand Pois-

simulations[16,23-27 are still useful in order to study dy- Son’s coefficient. In the case of plane strain, as corresponds

namic fracture from a fundamental point of view, though. O the situations here considered, the expressions of the
In numerical simulations of dynamic fracture, apart from transverse and longitudinal wave speeds are, respectively,

specifying the force law that acts between material points, it E 12

is necessary to decide when a portion of material will break L= (—)

apart; that is, one essential ingredient of the problem is the 2p(1+v)

so-calledfracture criterion Many fracture criteria have been

proposed in the literature, most of them relying on some _ E(1-v) 12

form of bond cutting scheme. This poses an additional prob- T \pa+v(a-2v))

lem because the singularity being at the tip, the superposed ) ) i

effect of the lattice topology right at the tip, and the way thewher_ep is the mass den_sny of the material. For the purposes

bond cutting is implemented can dramatically affect the dy-Of this study the Rayleigh surface wave speed may be ap-

namics of the crack. This has been shown most clearly in ouproximated by the expressi¢@s]

previoys work{ 25] in vyhich we demonstrated that an asym- Vg = c,(0.874 +0.162). 3)

metry in the crack tip induced by the bond cutting procedure

creates an important mode-Il component in a plate configuOn the other hand, the discretization method reported in Ref.

ration that was supposedly formulated for mode-I loading. [25] yields the following expression, for the case of a trian-
The purpose of the present paper is threefold: first, tcgular lattice:

(2)

propose a fracture criterion that, in the same conditions 5 6 5 5
stated in our previous papg25], yields a fully symmetric {ii(t) = ¢, —¢f3 S (U -u) + 4(ci-c)
mode-I loadingbasically, the fracture criterion is as follows: ! al i 3a?
one lattice node will be disconnected from its neighbors if 6
the maximum eigenvalue of the strain tensor at this node 0~
x 2 (uj =) -FRFR, (4)

overcomes a certain threshold valusecond, to study the
changes in fracture pattern and dynamics depending on the
length of the notch practiced on the plate, and third, towherea is the lattice spacing anﬁﬂ is the undeformed lat-
present a study of the branching instabilities appearing in th&ce vector joining particles andi. These equations can be
simulations. In this aspect, we show that two differentinterpreted as the equations of motion for a set of portions of
branching instabilities may occur: one of them can be eximaterial of unit mass in a lattice, interacting with their near-
plained in terms of the kinematics of the strain tensor field ofest neighbors with a linear law of force. The main advantage
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of this formulation is that it allows for a numerical simula- given strain threshold; therefore, the bond that will overcome
tion to be implemented by means of molecular dynamicghat threshold will break. This criterion has been imple-
algorithms. mented, for instance, in Ref25,27 and others.

It is worth noting that the above discrete model coincides However, the use of this criterion shows local effects,
with the Born mode[29], usually characterized by the po- such as lattice trapping or an alternating mode-Il perturba-
tential energy tion [25], making it difficult to analyze the shape and dynam-

ics of the tensor fields obtained from the simulatip2s,27).
1 1 R S . LT
V=8> [u; - uj]2+ “(a-p>D [(ui-u)) - r?i 2. (5) Moreover, in S|mulat|ons wh.ere the strain is mposed normal
2" 5 2 i to one of the triangular lattice directions, oblique branches

always leave unbroken bonds parallel to the unstrained lat-
wherea, 8 are model constants. Consequently, the force oRi.a girection.

particlei is given by For those reasons, we propose a different fracture crite-

N rion implemented not on the bonds connecting two portions
Fi=——0 = B2 (uj=u) +(a= B2 (uj-uy) -FHF. of material, but on the nodes themselves. The formulation of
! ] j the criterion is as follows: when the maximum eigenvalue of
(6)  the strain tensor at a mesh nodg, exceeds a given thresh-
. old valuey;, the interaction between the node and its neigh-
It can be seen that both expressions of the force law havg,, < is assumed to vanish, and the crack propagates through
the same two terms, the first one being a restoring force angle «qig created. This criterion closely resembles the one

the second an anharmonic term. This resemblance allows Qs i Ref[16] or those based on “phase field” descriptions
a determination of the constandsand 8 of the Born model [26).
in terms of the material properties. N This formulation of the fracture criterion has several ad-
The strain tensor is defined g&=3[Vu+VU']. This ex-  \aniages. First, it fully respects the symmetry with respect to
pression can 'be readily translated to the' discretized Iattipqhe crack line, in straight propagating cracks. Therefore, the
and one obtains for the strain tensor defined at each latticgmlations here presented are completely free of the alter-
node nating mode-Il perturbations that appeared in our previous
1 work [25]. Second, as we will later highlight, it considerably
v = => (u; - uj)F?i + Fﬁ(ui - uj). (7 decreases lattice trapping. No unbroken bonds are left in ob-
6a’; lique branches. Finally, working with the strain tensor in-
For latter reference, a direct translation of the continuurﬁStead of the stress tensor makes unnecessary additional as-

formula to this case yields the expression of the stress tens(§ant'°nzI ?1” the relat|onsfh|p hbetween_ lﬂlie de_Lor;ngtloE
o; at the node in terms of the strain tensor according[gg] ~ €nsSOr and the stress tensor for the material described by the

discretized equations.
E v
i = m( Yit E}" %1)- (8) B. Simulation procedure
Equation(4) has been simulated with a conventional mo-

As the strain tensor is the primary result of the simulation,Iecular dynamics code using Verlet's algorithite., a cen-

the whole discussion of the results reported in this paper hat%-red difference in time[31]. This is an explicit method in
been made of the strain tensor.

. . the terminology of finite-difference simulations. The units
A last comment on the discrete model is in order here: a

Thosen are the lattice spaciagfor spatial coordinates and
stated in Ref.[25], the discretization here presented is paciagfor sp

: , A ) the Rayleigh wave speék for velocities. Consequently, the
equivalent to a first-order finite-difference spatial schemey ur)1/it iga/VR pedt 9 4

hence, the stability of the algorithm depends on the actua We have studied mode-l fracture of finite two-

parameter values. In this case, the sqhem(? Is un.St.able.fafmensionaI(ZD) rectangular plates of dimensioms <L,
v>0.25; this particular value of the Poisson’s coefficient 'Scontaining an initial sharp notch of length, that can be

the one at which the coefficient of the linear spring force inadjusted at will. The notch is located in the middle of the

Eq. (4) ch_anges sign. This PrOb'e”? can be eliminated byplate and is made by cutting transversal bonds in the two
reformulating the model by considering also the next-

. . . central columns starting from the upper boundésge Fig.
nearest-neighbor interacti¢60]. 1). Note that the selected configuration is, therefore, fully

symmetric with respect to the middle vertical plane, and,
consequently, if properly simulated, the dynamics should be
free of any mode-Il perturbations.

The fracture criterion is a crucial ingredient for the simu-  For further reference we also show the detailed structure
lations of crack dynamics. The simplest physical representasf the nodes close to the tip in Fig. 2, where we have labeled
tion of the breaking process is that the interaction betweetthe nodes close to the tip in the following wéj is the node
two points of the material will vanish if they are tonn apart that was last “disconnectedP; is the node that should be
more than a given threshold distance. This is usually implenext disconnected if straight propagation occurs, Badre
mented in terms of anost-stretched bond rulén dynamic  both the two lateral nodes that should be disconnected if
crack simulations, this is readily carried out by setting abranching occurs.

A. Fracture criterion

036202-3



MARTIN, ESPANOL, AND RUBIO PHYSICAL REVIEW E71, 036202(2005

101 highest value ofy/, and this value is set ag; in all cases,
the node with the highest” was the node at the tip of the
8 notch, so thaty; = y5(t=0). When the equilibration process is
64 finished and the breaking strain thresholdis set equal to
o~ ¥%(t=0), the crack starts propagating. During the simula-
44 tions, the nodes that went above threshold were “discon-
nected” from their neighbors by removing them from the
21 Verlet's neighbor lisf31]. Note that this implementation pre-
0 cludes the possibility of surface recombinati@].
0 2 4 6 8 10 12 14 16 18 The time step had to be adjusted depending on the spatial

resolution of the simulation. The procedure used to adjust the
time step was to perform a series of simulations at a given

FIG. 1. Triangular lattice with a symmetric notch located in the spatial resolution and to diminish the time step until no
middle of the plate, beginning from the upper free boundary. Thechange in the crack dynamics, both including kinematics and
dimensions of the plate shown drg=17.3,L,=10. The length unit  fracture patterns, occurred. In all of the simulations reported
is the lattice spacing. in this work the time step wa$t=0.002 for plates with

Lx=100y3 andL,=400 (in the selected unils The Poisson

Typically, plates of 80 000 nodes are studied. The plate igoefficient has been set to a value0.25, so that the corre-
subject to a mode-I deformation by displacing the nodes ofponding values of the transversal and longitudinal wave
the right wall a fixed distanc@l, in the x direction. The speeds are, =1.0935 and;=1.894, respectivelythe Ray-
plate is left to equilibrate until the stationary stress field cor-leigh wave speed i8r=1). Some other simulations have
responding to the given geometry is reached. During thideen carried out with different values ofin particular with
equilibration time, a damping force is applied to each node inv=0.2; the dynamics observed is similar to that presented in
order to speed up the equilibration process and get rid of alhis paper.
of the waves excited due to the application of the deforma- The simulations of the crack dynamics start whéris set
tion. The equilibration time is several times longer that theequal toy;(t=0). Then the node at the notch tiBy, is “dis-
time required by sound waves to travel back and forthconnected” at the first time step, and the subsequent evolu-
through the plate. The evolution of the equilibration procession of the strain field as well as the wave propagation along
was monitored through the evolution of the highest eigenthe crack edge makes the crack to advance.
value of the strain tensor at the notch tig}, The plate was
considered to be in equilibrium when the time variationpf IIl. STATICS
was smaller than £0.001 in the selected units. In this way, we
are starting the simulation with all nodes at rest effectively We have conducted a series of simulations in which the
reproducing the experimental conditions of quasiestatic loadeffect of L, on the dynamics of crack propagation is studied
ing before fracture initiation. systematically. The notch length determines the level of

The simulations have been performed at a given nomina$tress of the landscape on which the crack propagates and it
deformatione=0.01. We have adjusted the critical strain by is usually the way in which this effect is investigated experi-
computing the strain tensor at each mesh node. Once tigentally.
notch is “cut” and the plate is equilibrated, we compute, at In Fig. 1 we show a plate in which the lattice is oriented
each node, the eigenvalues of the strain tensor, which w#ith a lattice direction along the vertical axis; the notch is
label ¥ and y;. Then we find the nodé which has the also oriented in the direction of the vertical axis, and the
plate is strained in the direction of the horizontal axis.

The dependence of, on L, is shown in Fig. 3. Open
symbols represent the actual value gf obtained directly
after the equilibration process, at each valudgfFigure 3
shows a strong increase of at short notch length and a
saturation for long notches at a value that we labg).
These results can be cast in a different way that allows for
closer comparison with experiments: in experiments carried
out with plates made of the same material, one may expect
that y; should be a property of the material and, therefore,
independent ofL,. Hence, one may think in terms of the
equivalent straineyq that should be imposed externally for
plates with different initial notches to break at the same value
of ;. Due to the linear dependence erthis can be readily

FIG. 2. Detailed structure close to the crack @pis the effec-  calculated taking as a reference the value/pfor the long-
tive position of the singularityP, is the last disconnected node, €St NOLCH, Ysar—i.€., €eqLn) =€sal ¥%(Ln). The calculated

if the next node to be disconnected if straight propagation occursyalues foreg((L,) are plotted in Fig. 3 as solid symbols. The
and P, are the nodes to be disconnected if branching occurs. result is physically sound, in the sense that the shorter the
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FIG. 3. Notch length dependence of breaking strain threshold FIG. 4. Linear-logarithmic plot of the radial dependenceyofn
(open symbolsand the equivalent externally imposed strésolid the direction of straight crack propagation. The line corresponds to
symbols. In the vertical axis, magnitudes are dimensionless, whilethe fit to expressioril3). Magnitudes are in the selected units.

L, is in units of lattice spacing.

strain. A full comparison between the spatial structure of the
notch, the higher the strain needed for the crack to start movexpressions above with the results of the simulations is be-
ing. Qualitatively speaking, the saturationgfat long notch ~ yond the scope of this work. Instead, we will just compare
length means that the strain field close to the crack tip doethe spatial structure of*—that is, the quantity governing the
not feel anymore the upper free boundary of the plate; i.e.grack motion—with the corresponding results of the simula-
the static strain field at long notches should correspond to thtons. For this purpose it is better to decouple the radial and
case of an infinite strip. Conversely, for a shorter notchangular dependencesii. This can be done focusing, on the
length, the static strain field approaches the configuratio@ne hand, on the radial dependenceybdfat points such that
corresponding to a semi-infinite strip. This interpretation cand=0 and, on the other hand, on the angular dependengé of
be put in a more quantitative way by looking at the strainat points located at fixed Concerningy'(r, §=0), it is easy
field close to the crack tip. to see thaEi'j(6=0) is just the identity matrix, so that

Actually, close to the tip(i.e., at distances sufficiently
smaller than the strip widih the static stress field should Y (r,0=0 =7y,
approach the zero-velocity limit of the Yoff& 7] solution for 1+ Kl
a moving crack in an infinite continuous linear elastic me- = V[(l 20—+ (1-v)o'l - W(l)]'
dium under mode-I loading. This null velocity limit coin- E V2t e
cides with the well-known Irwin-Williams field5,6]. Ac- (11)
cordingly, the static stress field can be represented as

| Conversely, fory (r,#=0), we get

K
aij(r,0) = —==3{,(0) + ", 9
N2t Y (r,0=0) =
where ai(jl) must be a diagonal tensor to comply with the 1+ K! @ @
symmetry requirements of mode-I loading. B@tw, which T E (1-2) J2mr +(1=v)oy —vayy

depends on the crack face traction, ar@) must be com-
puted speci(fli)cally for each particular(ltsleformation problem;
moreover,o,, should be higher tham,,. The elements of Consequently, fo#=0, both eigenvalues show the same ra-
the tensor that reflects the angular dependence of thgial dependence: namely, a singular term with the same mul-
asymptotic field 3! (6), are al aep : Y, gu -
1) tiplicative constant, plus an additive constant term, which is
0 0 30 different for each eigenvalue. Therefore, fitting the curves of
Sid0) = 0035[1 - siné sin ?] y*(r,0#=0) and y (r,#=0) to such a dependence would al-
low us to determine', of(i), anda'”. Such a fitting process
must take into account that strain Bf is finite and, there-
s!(9) = cosg[l + sing sin 3_‘9} ' fore, the singularity should be considered lagging belipnd
i 2 2 by a distance .
Linear-logarithmic and logarithmic-logarithmic plots cor-
| 0 6 30 responding toy (r,6=0) and y*(r,#=0) for L,=100 are
S (0) = cos sin_ cos—-. (100 shown in Figs. 4, 5, 6, and 7, respectively, where the radial
coordinate is referred t®; i.e., the radial position with re-
Then, the strain tensor can be recovered from the classicapect toPy will be r’=r+1-r,. The solid lines represent fits
relationships between strain and stress in the case of plarne the expressions

(12)

036202-5



MARTIN, ESPANOL, AND RUBIO PHYSICAL REVIEW E71, 036202(2005

2 31 °
<
— -3 2] °
S =) o
& &
5 <
2 -4 o
[@] o
2 -
-5 14
1 10 1 10 100
r P
FIG. 5. Double-logarithmic plot of the radial dependenceyof FIG. 7. Double-logarithmic plot of the radial dependenceybdf

in the direction of straight crack propagation. The line correspondsn the direction of straight crack propagation. The line corresponds
to the fit to expressiofil3). The values ofy” have been rescaled by to the fit to expressiol3) in the intermediate radial range.

a factor 18 for axes labeling purposes. Magnitudes are in the se- ) ) ) )
lected units. ciated. First, the region at short distances from the tip

(r’ =6) in which the prevalence of the singular term allows
for a good fit to just the singular term in E@L3) (i.e., with

y(r',0=0) = &6 +C,, c,=0) to be made. In this region the effects of the lattice
V27 (r' +r9—1) topology are important, and the values obtained for constants
¢, andr are different from those obtained from the fit of the
( 0 c 13 v (r,0=0) curve. Nevertheless, the best fit in this region
_r’,H: =7 +¢C3. i = =
Y 2t +1g-1) 3 yields ¢;=0.081,r,=0.27.

Second, a long-distance regiari = 16) in which nonsin-
Let us first comment on the behavior of(r,#=0). It is  gular contributions due to the constant displacement bound-
apparent from Figs. 4 and 5 that the fit to the expressiorary conditions dominatg34]. Third, there is an intermediate
above is excellent but for the three positions located close teegion(6=<r’=16) in which a fit to Eq.(13) gives values of
the tip. Hence, one can distinguish two regions with differentc; andrg coinciding with those obtained from the fit of the
behavior: at short distances; (r,9=0) separates from the 7 (r,0=0) curve, so that ¢;=0.062, r,=1.63, and
expected Irwin-Williams solution, while at intermediate and c,=-0.0041.
long distances the fit to the Irwin-Williams solution in Eqs.  Figures 4, 5, 6, and 7 show that at very short distances
(13) is rather good, vyieldingc;=0.062, ry=1.63, and from the crack tip the strain values deviate from the trend
c3=-0.0033. The good quality of the fit at intermediate andobserved at somewhat deeper points inside the plate. This is
long distances is probably due to the fact that the eigenvectarot surprising because, close to the tip, the local geometry of
corresponding toy (r,8=0) is parallel to the direction of the lattice(triangular unit cell;P,, P,, andP3 have only five
straight propagatioif=0) and, in that direction, the effect neighbor$ should have important effects. Indeed, one can
of the plate boundaries is very small. argue that the lack of bond between lattice $iteand sites
In Figs. 6 and 7 we show linear and logarithmic plots of P1, P,, andP; is the most relevant aspect of local tip geom-
v*(r,0=0). In this case three different regions can be appreetry as far as the radial dependence of strain field in the
direction of straight propagation is concerned. Actually, Figs.
3 4 and 5 show thay (r, =0)—i.e., y,—is positive close to
the tip and, therefore, the lattice bonds are stretched ix the
direction. However, the two bonds that are closer to the crack
tip are less stretched in the direction than the following
ones. Obviously, this happens because onc®gfe bond is
removed, the node &; is more free to approach the follow-
ing point ahead of the tip and, then, the strain inxhdirec-
tion decreases. This decrease penetrates roughly two or three
lattice spacings inside the uncracked zone.
A parallel argument can be constructed fgi(r, §=0):
once the bond$,P, and PyP; are removed, part of their
] 0 700 corresponding strain in thg direction is transferred to the
. bondsP,P, and P,P; and, therefore, the strain in thedi-
rection should increase. Again, this increase penetrates
FIG. 6. Linear-logarithmic plot of the radial dependence/din ~ roughly two or three lattice spacings inside the uncracked
the direction of straight crack propagation. The line corresponds t@one(see Figs. 6 and)7It is conceivable that this strain field
the fit to expressiongl3) in the intermediate radial range. behavior (disagreement with linear elasticity results very

10° y'(6
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-5 4 FIG. 9. Comparison of the radial dependencesy&f9=0,v
=0) for plates with two different initial notch lengths.

-104 4 analysis of Fig. 3, would result in all curves having the same
value at the lowest and shifting upwards the rest of the
curves; this shift will be higher the shorter the notch.

15 For large values of, the curves superpose rather well,

which suggests that for long notches the strain field structure

ahead of the crack tip does not feel the existence of the upper

free boundary of the plate, so that the situation corresponds
FIG. 8. Two-dimensional contour plot of" in the intermediate  effectively to a crack in an infinite strip.

radial range, for a static crack in a plate with=100. Solid lines:

simulation results. Dashed lines: reconstructed from the Irwin-

Williams solution with the values of the parameters taken from the IV. DYNAMICS

fits of the radial dependences ¢f andy~. The unit length in both

axes is the lattice spacing.

15

A. Fracture patterns

In Figs. 11 and 12 we show the spatial patterns obtained at
close to the tipshould appear in all fracture lattice models in increasing values df,. Some common features can be rec-
which the fracture criteria are based on bond cutting proceognized in them: the cracks propagate in a straight line, until
dures that result in diminishing the number of bonds at thédranching occurs. The length of straight propagation part is
crack tip. The penetration depth of this effect might be modelarger for increasing values af, as shown in Fig. 13; we
dependent, though. will show below that this fact is connected with the accel-

With the values of the constants obtained from the twoeration of the crack, which is smaller the londgy. The
radial fits corresponding to the intermediate region describedonstant value of the straight crack length at large notch
above, the full spatial structure of the tensorial strain fieldlength confirms the close correspondence of that situation to
can be recovered. In Fig. 8 we show a contour plot of thehe case of an infinite strip.
two-dimensional structure of/*(r,6), in which solid and The complexity of the crack pattern increasesLagle-
dashed lines correspond, respectively, to the numerical resreases, showing more branches which survive longer and
sults and the Irwin-Williams solution with parametegs c,,

andc, as obtained from the previous fits for the intermediate 0.1
range of the radial coordinate. In this plot, each pair of solid > Ln=15
and dashed lines corresponds to the same contour level. The ° o Ln=100

differences between consecutive contour levels are about
10% of the level value,; therefore, the differences at each _
level between the numerical and analytical values are smaller E ]
than 5%. Hence, the agreement between the spatial structure < 8
obtained in the simulation results and the Irwin-Williams so- %00,
lution is remarkable. An aspect of the static strain field which 0, T ———
is of primary importance for the crack dynamics is the influ- 0.014 %%W
ence ofL,, on the radial structure of*(6#=0). In Fig. 9 we :
plot y*(r,6=0), at different values of.,. The most salient 1 10 100
feature of this figure is that the strain field gets flatter the
shorter the notch. Actually, decreasing the notch length FIG. 10. Comparison of the radial dependencesyt¥=0,v
makes the structure of the singularity less visible. =0) for plates with two different initial notch lengths. Curves have
Casting these curvetsee Fig. 1D in terms of plates been rescaled in the ordinate axis to mimic plates breaking at the

breaking at the same value ¢f, as was done above for the same breaking strain threshold.
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400 400
L, =30
300 - =1 - 300
i FIG. 11. Fracture patterns ob-
tained in plates with short initial
200 - —+ - 200 notches. The simulation is stopped
> when a symmetric pair of cracks
arrives at the bottom end of the
7 i plate. The unit length in both axes
is the lattice spacing.
100 - 4 L 100
0 P—r—TF—— — T ———T7——7—-0
0 50 100 150 0 50 100 150 0 50 100 150
X X X

that show further branching events. This increased branchinigreaking threshold at positions out of the local direction of
at low values ofL, can be qualitatively understood in terms straight propagation, giving rise to branching. This mecha-
of the strain(or stres field. For shorter notches, the rel- nism may be particularly relevant in the case of moderately
evance of the notch is smaller and the strain field become#iat strain fields, such as those appearing at low valués,.of
increasingly flaf33]; i.e., the plate is more evenly strained in ~ We have checked the time of arrival of bulk waves and
the sense that the differences in strain across the plate aRayleigh waves to the advancing crack tip in all of the simu-
smaller and, therefore, all of the nodes are closer to the didations here considered. The labels in Table | refer to the time
connection threshold than in a long-notched plate. When that which the first branching event occurs in the simulations,
crack motion starts, waves propagate into the plate and alorti", the time of arrival to the position at which branching
the crack lips. It has been argugtB] that such waves, after occurs of a longitudinalrespectively transversalvave gen-
reflection at the plate boundaries, might trigger branching aerated in the first disconnection event reflected at the upper
the crack tip. In the simulations reported here such a mechaoundaryy;' (respectivelyt' ), the time of arrival to the po-
nism might appear as follows: the reflected waves cause pesition at which branching occurs of a Rayleigh wave gener-
turbations of the strain field that may help to overcome theated in the first disconnection event reflected back at the

400 e 400
L =40 L, =60 L, =100
300 - -+ -1 > 300
1 T i [ FIG. 12. Fracture patterns ob-
tained in plates with long initial
200 -+ -+ = 200 notches. Simulations are stopped
> long time after crack arrest occurs.
The inset shows attempted
T 10 i [ branching. The unit length in both
axis is the lattice spacing.
100 + 30 -+ = 100
- -_— 290 = >
80 80 100
0 — 1 T T T 1 — T v 1 v 1 T 0
0 50 100 150 0 50 100 150 0 50 100 150
X X X
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40 TABLE II. Time of arrival of surface waves at the point where
o the second branching occurs as a functiorLgfty," refers to the
o ©° ° time obtained in the corresponding simulatitrefers to the Ray-
301 . ° leigh wave traveling along the crack lip and reflected in the upper
. plate boundary.
e 201 o° Ln tggn tg
o 5 47.50 46.56
107 10 72.07 72.64
15 93.55 95.13
0 T T T 20 112.73 115.54
0 S0 100 150 200 30 181.05 180.50

n

FIG. 13. Length of the straight propagation part of the crack as At large values ofL,, only one branching event occurs.
a function of notch lengti.,,. The unit length in both axis is the The two branches separate initially, but after some time they
lattice spacing. get oriented parallel to the initial notch. In all of these cases,

boundant®. and the ti ¢ arrival h . crack arrest occurs simultaneously for both parallel running
upper boundanfg, and the time of arrival to the position at ..5cxs Obviously, the energy flow towards the crack tips is

T o aabSpeCliel. L not enough to suppor the matlon of o paralel uing
flected at any of the lateral boundariés(respectivelyt' ). ?rﬁ‘CkS' Note t(;'%t s_ymnt1hetry \rllwtlh respict to the ?OtCh line is
The results quoted in Table | show that, in all of the cases ully preserved auring the who'le crack propagation process
the first branching event is not coincident with the arrival Oféven n _the most cpmple_x patterns here 0ptamed, showing
any of the waves considered—namely, longitudinal anoth,e q.uallty of the simulations carried out with the fracture
transversal waves reflected at either the upper or lateral suffiterion here proposed. In a more general case of nonfully
faces of the plate and Rayleigh waves reflected at the upp&ymmetric initial conditions or when disorder is included,
surface. one would expect that one of the cracks would be more ad-
Interestingly enough, the second branching event occuranced than the other one and that only the most advanced
ring in the cases of low values df, coincides, within the crack would survive.
simulation error, with the arrival of the Rayleigh wave gen- Two other aspects of the fracture patterns are worth men-
erated at the first disconnection event to the crack tip aftetioning. First, attempted branching may appear, in the sense
reflection at the upper surface of the plate. This is shown ithat in some runs point8,, P,, andP; may become discon-
Table 1I, wheret$i" refers to the time at which the second nected at the same time step. This means that all of the three
branching event occurs in the simulations @hdefers now  points go above the disconnection threshold simultaneously
to the time of arrival to the position at which the secondfor that time step. In such casésee, for instance, the pat-
branching event occurs of a Rayleigh wave generated in thterns forL,=15 andL,=60 in Fig. 11 and the inset in Fig.
first disconnection event reflected back at the upper boundt2, respectively the subsequent evolution does not show
ary. branching but straight propagation again until a regular
(macroscopitbranching event occurs. The simultaneous dis-
; . ) p connection at the three tip points always disappears when the
where the first branching occurs as a functioh.@ft,;" refers to the time step is decreased. Therefore attempted branching is

time obtained n th? corresponding simulation. S.Ubscﬁ'ms’ and caused merely by insufficient resolution in the time step.
R refer to longitudinal, transversal, and Rayleigh waves, respecs

. : . Nevertheless, the appearance of attempted branching shows
tively. Superscripts andl refer to waves reflected in the upper and . - o .
: . that, in some dynamical conditions, the valueg/dfit points

lateral plate boundaries, respectively. .
P., P,, andP5 are very close to each other so that, again, a
small amount of disorder may trigger the appearance of at-
tempted branching just before macroscopic branching oc-
5 19.622 12.4 21.5 23.5 91.7 158.8 curs.
10 20278  21.34 37.0 405 92.0 159.4 Second, at the shortest notch, the combined effect of the
15 35.834 275 47.6 52.0 0921 1596 high strain all through the plate and wave emission causes
20 41.964 341 590 64.5 923 1598 that t_he fractur(_a process can continue even after the two sym-
30 50508 46.7 80.9 88 5 926 1604 metrically running cracks have arrived to the bottom of the

: ' ' ' : " plate. This can be seen in Fig. 14, where the simulation has
40 56.628 58.9 1020 1115 928  160.8 peen continued after the plate is fully broken. Figure 11
60 61198 813 1408 1540 931 161.2 shows the corresponding fracture pattern at the time that the
80 63.232 1027 1779 1940 93.1 161.3 two most advanced symmetrically running cracks arrive to
100 63.454 123.8 2144 2345 93.1 161.3 the bottom of the plate. The comparison of these two figures
160 65.0 2088 3617 13955 932 1615 Clearly shows that disconnection events still occur much af-
ter the plate is divided in three separate parts, giving rise

TABLE I. Time of arrival of bulk and surface waves at the point

sim u u u | |
Ly [} L ty tr t t)
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FIG. 15. Crack tip velocity as a function of time for different
notch lengths. After the last time recorded, branching takes place.
Units are the lattice spacingand the Rayleigh velocityg.

100+
slowly to a tip speed of about 0.4, at which a sudden increase

up to a velocity value above 0.55 occurs.

‘ ‘ 2. Acceleration

As the tip motion proceeds, its velocity shows some
06 e 5 = ripples superimposed onto an increasing trend. The crack tip
X acceleration then shows fluctuations around a roughly con-
stant value. In Fig. 17, we plot the acceleratix() of the
FIG. 14. Fracture patterns obtained in plates with a very shortrack tip against time for the low-resolution, long-notch plate
initial notch (L,=5). This is a continuation of the simulation corre- (L,=100\3, L,=400,L,=100. Generally speaking, the val-
sponding to the first pattern in Fig. 11 until no more disconnectionues of the tip acceleration are larger the shorter the initial

events occur. notch.
The fine details can be better appreciated in Fig. 18,
even to closed loops that produce some debris. where we plot the acceleration corresponding to the high-
resolution equivalent platg.,=200y3, L,=800,L,=200. In
B. Kinematics of straight crack motion this case both the time and acceleration axes have been res-
1. Velocity caled to allow for proper comparison. The initial evolution of

the acceleration in both the high- and low-resolution plates is
In order to study the velocity of the crack tip, when the quite similar. However, at=20 in rescaled time units, the
crack is in straight motion, we define the position of the tipacceleration shows strong fluctuations, going even negative.
as the position of the breaking node at a given time. The tip  The origin of the oscillations in the tip acceleration is not
velocity is then calculated by dividing thecoordinate dif-  completely clear, but an interpretation in terms of wave

ference by the time interval separating the last two events admission at the crack tip is appealif@g]. When looking at
node disconnection. The time history of the velocity for the

crack tip during straight propagation, for different values of 0.8
L, is shown in Fig. 15. —o— L,=173, L =400, L =100
In all of the cases, the first value obtained for the crack 0.7] | T7T L7346, 1,780, L =200
velocity is larger than 0.3%n units ofvg). This is in agree-
ment with observations in other simulatiof5,27,39 and 0,64 M
might suggest the existence of a minimal crack velocity, al- | e
though experimental results in PMMA36] and single- & 054 O{,&w
crystal silicon[37] seem not to support this effect. In Fig. 16 ) /
we present the crack speed evolution corresponding to the J./*"’/
caselL,=100 in Fig. 11, together with the same evolution 041
obtained in a similar plate of spatial resolution twice higher
(Lx=200y3, L,=800,L,=200) than in the previous pictures. °-30 0 0 50
Note that, in this figure, the time axis has been rescaled for time (rescaled)

the high-resolution platéthe time unit here is/Vg; there-

fore, doubling the number of lattice sites means halvang FIG. 16. Comparison of the temporal evolution of the crack tip

and also halving the time unit velocity between similar plates with different spatial resolution. The
Remarkably, both curves superpose rather well: the initiatemporal coordinate for the high-resolution plate has been rescaled

velocity is slightly above 0.37; then, the velocity increasesaccording to the time unit choséa/Vg).
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FIG. 17. Acceleration of the crack tip for a plate with FIG. 19. Velocity threshold for branching as a function of notch
L,=100,3, L,=400, L,,=100. length.

the acceleration curve for the high-resolution plate, one may,

distinguish two time regions in which the acceleration goes, . .
: ] otcheqL,=40)—i.e., when the problems is analogous to a
: < < i g ) : .
negative: namely the intervals 80=40 and 56=t=60. crack in an infinite strip—there is a well-defined threshold

Inside both time intervals the ripples in the acceleration are’_lue of the branching spedd=0.675+0.002.

much more periodic, the period at each interval being, ap- This behavior is analogous to the one reportef2H, for
proximately, 2.65+0.05 and 1.56+0.02 rescaled time units alog - Tep ’
the same problem with a nonsymmetrical notch, although

respectively. In these time intervals the values of the tip ve- . .
locity are 0.56+0.01 and 0.64+0.01, respectively. The com—the value obtained for the branching speed was then

bination of these time intervals and tip velocities would give;/r‘;;o ;i Jf(?ﬁﬁ.ck|1nsmﬁtgrriso?;t\esstu%evi/: ah:ﬁnexgeendeend dgr‘lie
effective wavelengths of 1.48+0.08=3/2) and 1.0+0.03, y : g dep

respectively. This fact points to a mechanism involving ra—Of the branching velocity on notch length appears, reflecting

diation of waves with wavelengths that are semi-integer mul—the different character of the problem, which approaches the
. ) Avelengths tha 9e semi-infinite strip problem as the notch gets shorter.
tiples of the lattice spacing, in qualitative agreement with the
results reported in Refl5]. A comparison with the results

reported in Ref[16] is not possible though, due to the inher- 2. Branch angle

ent difference of both problems. In R¢f6], the crack ve- Due to the triangular lattice structure, the first nodes to be
locity is set in each run by cutting bonds at a prescribed ratgisconnected when the crack branches are always at 60°
and the waves are studied by means of the displacement fiefghm the straight propagation direction. The subsequent
at the lip of the crack. Instead, in this work the crack velocity crack evolution does not follow a lattice direction but, as can
is governed by the strain field dynamics and the waves emithe seen in Fig. 12, a straight line with a well-defined average
ted at the disconnection events also affect the crack tip Veéangle. We have calculated the average anglormed by
locity. each branch with respect to the direction of straight propa-
gation in the initial part of the branch. First, we remark that
in all of the simulations does not correspond to a lattice

1. Velocity threshold direction. The values obtained show some scatter, as shown

Branching occurs when a Straight propagating CracH-n F|g 20, although all of them lie in the range between 18°

reaches a given speed. In Fig. 19 we plot the speed at whichd 24°, which compare fairly well with experimental values
[8]. Interestingly, recent theoretical work on the branching

ranching occurs as a function of notch length. For long

C. Branching instability

29 instability under general loading predicts a branching angle
15 of 23.4° for an elastic solid with Poisson ratio of 0.25 by
' assuming that the principle of local symmetry hold$].
1.0 i Similar values for the branching angle have been obtained in
. a phase field model for elastic fractuf@9], in which the
o 057 A principle of local symmetry is respected.
© Yoffe's asymptotic solution for the stress field around an
001 v advancing crack has been extensively used to discuss the
054 | branching instability. However, its direct applicability to in-
terprete a branching instability in a discrete model seems to
1.0 . . . . . . be dubious. Basically, two different branching criteria stem

0 10 20 30 40 50 60 70

i from Yoffe's solution. The criterion based on the maximal

hoop stress predicts branching at a critical velocity. At this
FIG. 18. Acceleration of the crack tip for a plate with critical velocity, the branching angle is (25]. Above the
Lx=200y3, L,=800, L,=200. critical velocity, the branching angle increases continuously
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40 First of all, one has to realize that, for Yoffe's stress field,
the threshold condition for the highest eigenvalue of the
0 30- stress tensor reads
]
> K'(t
\'8’ ii!i ¢ [ UY(r,a,U,t):%EI(e,U):UC-
o 207 i 3 3 3 V2mrglv(t)]
(o]
5 The threshold valuer, is set as the value of* at the
5 101 geometrical tip at=0 (and, thereforey =0); then,
c
«©
5 K'(t K'(0)2¥(0,0
Y B 0= _si(p=00=0)= =00y
0 40 80 120 160 200 V2m1(0) v2r(0)
L, The influence of the notch length should appear in the ex-

pression above as a dependencey@) on notch length and,
eventually, as slight deviations o&S™#,0=0) from

Y(a —
. . . . 32Y(6,v=0).
with the crack tip _velocny_. On the other hand, th_e crlterlo.n Then, in the time interval of interest,(t)=rq(v)+1-ot,
based on the maximum eigenvalue of the stress field predicts _
. o —and #;=0, so that
a branching angle close to 60° for any nonzero crack tip

velocity [5]. According to this criterion, a dynamic crack K'(t)

FIG. 20. Branch angle as a function of notch length.

would always branch at approximately 60° from the very a1(t) = 0¥(ry(t), 1,0) = T 3Y(61,0)
X . o V21t 4(t)
moment it starts moving. None of these criteria can account
for the observed values of the average branching angle. K'(t) SY(0.0) (15)
=7 ).
V27ro(v) + 1 -vt]
V. QUALITATIVE EXPLANATION FOR THE BRANCHING Using the threshold condition for particle 1 we get
INSTABILITY
: : o : K'()=Y(0, / +1 -t
In this section we propose a qualitative explanation of the |( )2 Y( v) = rov) v . (16)
branching instability in discrete lattices. We remark that this K(0)27(0,0 ro(0)

is only a kinematic model; a dynamic theory should accountrperefore, the time at which the poir; would be
for the acceleration due to the energy balance close to the tigisconnected—namely;—can be obtained as

In this sense, the disconnection of the particles is merely a
particular energy dissipation mechanism at the tip, which ¢ _1 141(0) = ro(0) K'()2Y(0,0) \? (17
should play a role regarding the acceleration of the crack, but 17y folv) = To K'(0)2Y(0,0/ |’

not on the branching mechanism. ) o
Generally speaking, the dependence ) on velocity in a

. . . . discrete medium would be related to the strésis strain
A. General model: Branching of a moving crack in a discrete  field dynamics. In the model problem considered in this sec-
Yoffe's stress field tion, thero(v) dependence on velocity is fully determined by

The question, is while the singularity tip moves forward atthe evolution of Yoffe's stress field. In such a case, at time
constant speed, cany*(r ,v) go above threshold at poift,  the distance oP; to the singularity must bgy(v), so that the
before it does at poir®; (see Fig. 2? To answer this ques- application of the threshold condition yields
tion we will analyze a model problem: the evolution of the KI()3Y(0.0) |2
Yoffe’s stress field of a crack moving at constant speed in a ro(v) = ro(o)(#) )
triangular lattice. More explicitly, let us consider a crack K'(0)%7(0,0)

whose singularity moves at given speedh a discrete me-  gyrgightforward algebra then leads to the trivial solution

dium with the lattice structure shown in Fig. 2. Let us Iabeltlzl/v_ On the other hand, the position of poi4 referred
with suffix 1 the quantities referring to the particle in the P, is described bysee F’ig. )

geometrical tip apex, with suffix 2 the two symmetrical ad-
jacent particles, and with suffix 0 the particle placed in the ro(t) = V(sin )%+ [ro(v) + 1 —vt]?, (19
straight propagation direction before particléske Fig. 2

The position of the singularity with respect to particle O is

(18

where 6= /3 for a triangular lattice and

ro(v). Let us also assume that Yoffe's stress field is a reason- sin 6,

able representation for the stress field at the positions occu- 6(t) = arctan , (20)
pied by the particlefl7]. In all of the following the tensorial Fo(v) + coséh — vt

magnitudes are always the highest eigenvalues of the corrgo that[40]

sponding tensors; therefore, we drop thesuperscript, and e

distances and time are made dimensionless as in the previous o) = 0 (15(1). 65(),0) = KI(H)Z"(6,(1),0) 21)

sections of this paper. V271 5(1)
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0.1 TABLE lIl. Results of fitting the curves in Fig(21) to Eg.
o t=0;V, =0 (29).
8 o t=51.3;V, =063
s t=605;V, =0.65 v C1 ro
g . 0.0 0.081 0.27
= 0.60 0.061 0.15

0.65 0.060 0.14

0.014

Viip<0.675, only the point at the tip—i.eB;—goes above

the disconnection threshold, because the equation determin-

ing t, does not have a real solution. Therefore branching can

not happen and straight propagation is predicted. In the in-
FIG. 21. Snapshots of the radial dependence/¢h=0,v), in terval 0.675< V;;,<0.678, the poinP, can go above thresh-

the casd_,=100, at the times in which the tip velocity is, respec- old, butt; <t,, so that straight propagation is predicted too,

1 10 160

tively, v=0 (squarel v=0.60(circles, andv=0.65 (triangles. although the difference between the valueg/bht pointsP;
and P, is very small and, consequently, small amounts of
sin g disorder might trigger branching. At;,=0.680,t, becomes
K'(t)EY<arctan ! 'v) smaller thant; and, therefore, branc%ing is predicted. This
_ ro(v) + cosé — vt (22) critical value of the tip velocity for branching compares very
- [(Gin V2T (1)) + cach — t12 well with the one obtained in our simulatio¥,,;=0.675.
V2my(sin )7+ [ro(v) + coséi ~vt] For the purposes of illustrating the behavior of this model
Using the threshold condition for particle 2 we get we also show in Fig. 22 the effect of small changesim).
ey The solid line in Fig. 22 corresponds to a value of
KO (0,(1),0) _ [ ra(t) (23 To)=0.175 while the dot-dashed line corresponds to
K'(0)2Y(0,0 ro(0) ro(v)=0.21. By increasingy(v) the critical branching veloc-

ity decreases and the region in which branching is expected
widens.

The interplay betweeny, andt, is better understood by
oking at Fig. 23, where we show the evolutiomgfandy,
with time as the tip moves forward at the prescribed velocity.
The curves in Fig. 23 correspond to the cage)=0.175 for
which the critical branching velocity i8/.;=0.62. For
} _ ] Viip=<Verir» the curve corresponding tg(t) has a maximum

The model described above is formulated in terms of thgypich lies below the value of the disconnection threshgild
stress field; however, with the help of the plane strain relaTpgrefore, branching can never occur for this range of tip
tionships it can be easily formulated in terms of the strain g|gcities. On the other hand, if the tip velocity is above the
field. The predictions of the. model depend critically on theitical value for branching, the maximum of the curve cor-
values ofro(0) andro(v). In Fig. 2+1 we show the appearance yegponding toyi(t) is already above the threshold value for
of the radial dependence of'(r,6=0.), in the case gisconnection. Moreover, the curwg(t) crosses the value
L,=100, for three different values af: namely,v=0, v ¥ beforeyX(t) does, so that branching occurs.

:0'6(.)’ a?dvt=0.65. Noée thtat t];\or tTe.m?vlggdcracks, the For the sake of completeness, we have also looked at the
nonsinguiar terms are gue to the strain fie y”am effect of the Poisson coefficient. In Fig. 24 we show the
and not to the constant-displacement boundary conditions.

Equation(23) can be solved numerically in order to obt&jn

Therefore, ift; <t,, straight propagation occurs; on the other
hand, ift; >t,, branching occurs, so this model allows quali- o
tatively for branching.

B. Numerical estimations

These results show that, at high crack tip speed, the 3.0
v*(r,0=0,v) curve does not change significantly upon an
increase of the tip velocity, because the curvesifei0.60 25
andv =0.65 coincide with each other up to quite a long dis- 20
tance from the tip. Therefore, we can make some estimations
by taking the values afy(0) andry(v) from fits of the curves 15
shown in Fig. 21, in the region close to the crack tip, to the =
form 1.0

0.5
Y, 0=00) = ——2 . (24)
N27(r’ +1o(v) = 1) 0.0 . . . .

0.4 0.5 0.6 0.7 0.8 0.9

tip

The results of these fits are summarized in Table Il

In Fig. 22 we plot the dependencetgfidotted ling andt,
(dashed ling on the tip velocity using the values given in  FIG. 22. Dependence of the disconnection timyeandt, on tip
Table Ill for v=0.65. For values of the tip speed so thatvelocity for different values ofy(v). Magnitudes in selected units.
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0.07 with the predictions of LEFM, at least in static conditions
and slightly away(three to four lattice spacingjgrom the
crack tip. The possibility of reconstructing the full two-
dimensional structure of the strain field, although in a re-
stricted distance range, just by taking three parameters from
the radial dependence fits shows that the angular structure of
the strain field is very well represented by the Irwin-Williams
solution. Extending the range of the comparison is not pos-
sible because the Irwin-Williams solution pertains to the situ-
ation in which the loading configuration corresponds to con-
stant stress at the boundaries of an infinite plate.

Several aspects of the dynamics deserve some comments.
For instance, the effect of notch length in the dynamics of the
_ . . crack can be summarized as follows. Short notches give rise

FIG. 23. Comparison of curveg, (t) and y,(t) for values of the {5 3 structure of the strain field with comparatively smaller
tip velocity slightly below and above the branching velocity thresh-strain differences across the plate. This results in dynamical
old for the caseo(v)=0.175. behavior, with high crack tip acceleration, which strongly

depends on notch length and which is strongly sensitive to
results obtained when setting the vale0.33, much closer disorder and/or wave propagation. Conversely, long notches
to the experiments in glass or PMMA, anglv)=0.175. Evi-  (L,=L,/2) show a behavior independent of notch length be-
dently, increasing the value of the Poisson coefficient dracause they are close to the model problem situation of a
matically lowers the values of the velocity branching thresh-crack in an infinite strip. In this case, the strain differences
old. across the plate are large and, therefore, they are weakly
sensitive to perturbations such as disorder and/or wave
propagation, unless the crack tip kinematics makésto
V1. DISCUSSION become close to;.

First of all, let us emphasize again that the present imple- 1 1€ Speed of the cracks, when in straight motion, is larger
mentation of both the fracture criterion and lattice topologythan u;qally fgund in experiments with glass or PMMA. In
allows for a full conservation of the mirror symmetry with the G“ﬁ'ths_ p|ctl_Jre of fracture, the crack veloc_:|ty depends
respect to the middle vertical plane. Therefore, all of the®" the rglanonshlp' between energy flow to the tlp.and energy
simulations reported here are strictly under mode-| |oading_d|SS|patlon at the tip due to crack lip surface creation. Energy

Effects of the lattice topology close to the crack tip areﬂOW_ o the tip Is gen_erally ruled by the dyna_mlc_s of the
apparent, however, as shown also in R28]. These effects strain 1_‘|eld_V\_/h|Ie, In th|§ model, the energy d|SS|pa_t|on at t_he
appear as deviations of the radial dependence of the straffp 1S Implicitly determined when the fracture criterion is
field close to the tip from the intermediate distance behavior>Pecified, because the fracture criterion sets the crack lip
In this sense, the radial dependence of the highest eigenvallf@9th created in each disconnection event. Therefore, in this
of the strain tensor a#=0 is not of great help as a check for M0del, the energy dissipation at the tip is not easy to change

the predictions of linear elastic fracture mechar(ic&FM) in a controlled way unless friction is included. However, it is
because it shows strong nonsingular contributions due to thglear from these simglations that crack lip _surface crea.tion s
not the only mechanism that plays a role in the selection of

particular loading configuration, which consists in applying i
constant displacement at the lateral plate boundaries. Cofi€ crack velocity. Indeed, surface waves have been shown

versely, the lowest eigenvalue yields a very nice agreemerﬂere to have_ a main role i_n the time history of the tip velocity
and, most importantly, in the appearance of the second

branching instability.

3.0

......... : It must be kept in mind that the nearest-neighbor discreti-
254 _t‘ zation scheme reported here is unstable for values of the
: Poisson ratio strictly higher than 1/4. Therefore, a full com-
2.0+ parison of velocity values with experiments in glass or
o PMMA, for which »=0.33, cannot be made. However, the
R 15 same optimization scheme used here to derive the equations
104 ruling the dynamics of the lattice sites can be carried out
under the assumption of a next-nearest-neighbor interaction.
0.5 Preliminary numerical results show that this approach elimi-
nates the scheme’s stability problem abowel /4. Exploit-
0.0 - - - - ing that scheme would be the object of future work.

In this discrete model, two radically different branching
instabilities may appear: one driven by the changes in the

FIG. 24. lllustration of the tip velocity dependence of discon- strain field caused by the kinematics of the effective singu-
nection timest; andt, for a plate of a material with=0.33 and larity and another one triggered by the surface waves pro-
with the same radial dependencef[rq(v)=0.175. duced in the disconnection events, which travel through the
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crack lip and are reflected back towards the crack tip. In thend looking at the actual values of the strain field at the
plates simulated here, the crack velocities are not smalliscrete node locations. The key point in this kinematic ex-
(Vip=0.4Vg) and the kinematic instability occurs before the planation is the analysis of the disconnection times of the
surface wave induced instability can take place. This scenodes ahead and aside of the crack tip. Above certain critical
nario may change easily, for instance, in the case the straiglktack tip velocity, the nodes aside of the crack direction have
propagation velocities were smaller. In such a case, kinea shorter disconnection time than the node ahead, and
matic branching might be forbidden and the backscatteretiranching occurs. It is the combined action of the angular
surface wave would have the time to catch up with the craclstructure of2*(6,v), the radial dependence of the stress field
tip again. This would be a much closer scenario to experisingularity, and the lattice discreteness which leads to
ments[13]. Moreover, in this later scenario, disorder or re- pranching for tip velocities above a critical one.
flected waves can trigger attempted branching before the sur- One comment about the model for the kinematic branch-
face wave induced branching occurs provided thatis  ing instability is in order here. We remark that all of the
below but close toy,. expressions used in the formulation of the model are made
However, it is an experimental fact that in PMMA cracks dimensionless with a characteristic length scale that is pre-
with very long initial notches may travel through the plate atcisely the lattice spacing. Therefore, these expressions are
low constant velocity, without branching. In such cases, kivalid at any spatial resolution, and that means that the critical
nematic branching should be forbidden and back-reflectedp speed values obtained with this analysis are valid for no
surface waves should certainly catch up with the crack tigmatter how small the spatial resolution would be.
without producing branching. This type of behavior has not Understanding, even qualitatively, the values of the
appeared in our simulations. Several mechanisms may ksranching angle and the competition between parallel run-
conjectured as ways of solving this model flaw. One is, asing cracks, appearing in the cases of plates with long
stated before, including some dissipation in the model; annotches, is still work to be done. At present we do not have
other one is correcting the “excessive brittleness” of thean understanding of the values obtained for the branching
model(too much energy is released suddenly when a node isngle. However, we point out that for long initial notches the
disconnectedby means of including some cohesive zone atvalues obtained coincide with the experimental ones within
the crack tip. the error barg8]. This fact suggests that, in the case of
Another issue to be considered here is the effect of th&inematic branching, the values of the branching angle
spatial resolution in the simulations. The simulations showshould be mainly determined by the structure of the strain
that increasing the spatial resolution does not affect the dyfield [19]. The agreement of the values of the branching
namics, with the only change of allowing for a more preciseangle obtained in this work with the theoretical value ob-
study of the effect of surface waves on the crack tip kinetained from an analysis of the strain field under the principle
matics. This might be surprising because one might naivelyf local symmetry[19] is quite remarkable. A direct assess-
think that improving the spatial resolution close to the sin-ment of the principle of local symmetry in our simulations
gularity would result in larger strain differences across thewould be very desirable. However, such an assessment is
plate as points closer to the singularity should “feel” clearlydifficult to perform. First the branched cracks do not follow
the 1Ar divergence. This in turn should modify the above- |attice directions and the nodes that get disconnected are not
mentioned distinction between short-notch and long-notchaligned, creating an alternating pattern that could be misin-
consequences as far as sensitivity to disorder and/or waverpreted as a mode-Il component. Second, the presence of
motion is concerned. This is not so because being corregiound waves generated by the disconnection events strongly
that strain differences across the plate increase with the sperturbs the strain field near the tips.
tial resolution, it is also true that the energy released in each
disconnection event correspondingly increases with the spa-
tial resolution, yielding an unchanged dynamical scenario.

In our simulations, we have a fracture criteria on the | this work we have reported the results of a series of
maximum eigenvalu&*(6,v) of the strain field. It is impor-  gimuylations of a crack propagating through a discrete model
tant to realize that the angular structureXf(6,v) of the  of a brittle elastic solid. We show that, when the fracture
Yoffe solution by itself cannot explain the branching insta-criterion is implemented over nodes, instead of over bonds,
bility observed in the simulations. In a continuum descriptionthe symmetry properties of the overall crack dynamics im-
represented by the Yoffe solution the structure3516,v)  prove considerably. The implementation of the fracture cri-
presents a lateral maximum of higher amplitude thanerion that we use here is the simplest one, but it fully avoids
2*(0,v) at all velocities but very high onésee Fig. 4.3 of the possibility of mode-Il perturbations. As a consequence
Ref.[5]). Then, a fracture criterion oB*(#,v) would imply  the influence of the lattice directions on crack tip motion is
that branching occurs even at zero crack tip velocity becausgramatically reduced.
of the presence of maxima at60" in 2*(0,0=0). We have We have conducted a series of simulations to study the
shown that the actual node values of the stress and stragffect of notch length on the crack dynamics. Two kinds of
fields do not differ much from those given by Yoffe. Never- behavior appear. Short-notch cases show strain fields with
theless, branching is observed only beyond a certain criticakelatively small strain differences across the plate, which
velocity. We have explained this fact by assuming that themakes them highly sensitive to wave motitand disorder,
singularity of the stress field moves at the crack tip velocitypresumably, giving rise to highly branched patterns. On the

VII. CONCLUSIONS
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other hand, long-notch simulations show relatively highobtained from Yoffe’'s moving crack solution. Setting up a
strain differences across the plate, giving smooth patternshreshold value for disconnection in such a model is equiva-
This happens because the crack dynamics becomes relativabnt to consider that an “effective singularity” lags behind the
insensitive to wave motion or disorder, unless the crack tigrack tip a distance, that is a model parameter. By analyz-
kinematics makes thag; is slightly below y. ing the disconnection times of the nodes ahead and aside of
During straight propagation the crack tip velocity showsthe crack tip, we have shown that the evolution of the strain
an overall increasing trend with appreciable ripple. A closefie|d, under a constant velocity motion of the effective sin-
study to the crack tip acceleration shows strong oscilla}tion%marity, can induce branching. Indeed, if the values of the
that can be related to surface wave emission at the discof;yqel parameters are taken from appropriate fits to the simu-

nection events. X " . . .
T i . lation data, the critical tip velocity predicted agrees remark-
Branching instabilities of two different types have beer]ably well with that found in the simulations. The analysis of

identified. In these simulations the first branching instabilitythe disconnection times might be a useful tool to understand

is due to the evolution of the strain field coupled to the craclihe branching phenomenology in other discrete models of
tip motion. In the short-notch cases, the second branchingrittle fracture y

instability can be unambiguously ascribed to the arrival to
the crack tip of the surface wave pulse generated at the first
?Azcglr;?sctlon event, reflected back at the upper boundary of ACKNOWLEDGMENTS
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