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Cooperative dynamics in a network of stochastic elements with delayed feedback
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Networks of globally coupled, noise-activated, bistable elements with connection time delays are consid-
ered. The dynamics of these systems is studied numerically using a Langevin description and analytically using
(1) a Gaussian approximation as well @ a dichotomous model. The system demonstrates ordering phase
transitions and multistability. That is, for a strong enough feedback it exhibits nontrivial stationary states and
oscillatory states whose frequencies depend only on the mean of the time delay distribution function. Other
observed dynamical phenomena include coherence resonance and, in the case of nonuniform coupling
strengths, amplitude death and chaos. Furthermore, an increase of the stability of the trivial equilibrium with
increasing nonuniformity of the time delays is observed.
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I. INTRODUCTION Pikovsky [19] studied the dynamics of a single noise-
Due to its relevance for a variety of scientific disciplines activated bistable element with delayed feedback. Combin-

such as physics, chemistry, biology, economics, and sociahd the properties of these two systems, Huber and Tsimring
sciences, the study of collective phenomena in extended st620] studied the properties of a globally coupled network of
chastic systems with long-range interaction has been of greaisy bistable elements with uniform delays and derived a
interest in recent years and various techniques based afichotomous mean-field model based on the delay-
Langevin, Fokker-Planck, and master equations have beefifferential master equation. Although for numerous systems
conceived to explore their dynamics. _ the assumption of uniform time delays is justifiée.g.,

~ An effective and simple model for the study of noise- 21 27)), most systems have time delays distributed over an
induced collective phenomena is the globally coupled nétinerya) rather than concentrated at a paisee[23]). Thus,

work of stochastically driven bistable elements. Indeed, theysiar 4 discussion of the dynamical properties of the network

cooperative dynamics of these systems has been the subjggth uniform delays, the generalized case of distributed time
of many studies and its relevance for critical phenondna delays is studied.

spin systemg2], neural networkg3-5], genetic regulatory
networks[6], and decision making processes in social sySyizeq as follows: In the next section the bistable-element

tems[7] has been pointed out. o network is discussed for the case of uniform time delays.
For the sake of simplicity it has traditionally been as- 1,0 mean-field models—namely, the DZ modalhich for
sumed that the |nteract|ons in these networks are 'nStar,‘t%;aussian processes reduces to the Gaussian approximation
neous. However, in recent years it has been realized that tim&,d the dichotomous model—are compared with the Lange-
delays due to finite transmission and processing speeds &ig, gynamics and their scopes of application are determined.

(1) significant compared to the dynamical time scales of therhe phenomenon of coherence resonance is discussed, and a
system and(2) often change fundamentally its dynamical ,mpjete bifurcation analysis of the trivial equilibrium is car-

properties{8—11]. , ried out using a center manifold reduction. In Sec. Il the

_ Thus, in this paper the generic model of globally coupledgystem dynamics is discussed for a discrete bimodal delay
bistable elements is extended by time delayed couplings angisgripytion. Then, in Sec. IV the model is further general-
its collective dynamics is studied numerically and analyti-i,oq o that the mean-field dynamics of a system with an
cally. arbitrary time delay distribution can be described. Finally, in

The properties of globally coupled dynamical units, rel-gec \/"\we introduce nonuniform coupling strengths which
evant for system such as arrays of lag@® and Josephson |e,q o new dynamical properties, such as amplitude death
junctions[13], have been explored in many studiese also 4,4 chaos.

[2,14-18). Desai and ZwanzigDZ) [18], for instance, stud-
ied the synchronization of noise-activated bistable oscillators
with instantaneous coupling and derived from the Fokker-
Planck equation for the joint probability distribution of the
oscillators an exact mean field-modBIZ mode) in the ther- A. Langevin model

modynamic limitN— o, whereN is the number of network

elements. Beyond a critical coupling strength this system dis- The prototypical system considered here is modeled by a
plays a second-order phase transition to an ordered nontriviaet of N Langevin equations, each describing the over-
stationary state. The effect of uniform interaction delays in adamped stochastically driven motion of a particle in a
globally coupled network of phase oscillators has been exbistable potentiaV=-x?/2+x*/4, whose symmetry is dis-
plored by Yeung and Strogatgl4], and Tsimring and torted by the time-delayed coupling to all network elements,

This paper which is an extended version[20] is orga-
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FIG. 1. Dynamics of a single network oscillatqrand the network mean field for different coupling strength. The noise strength and
time delay areD=0.1 and7=100, respectively. Foe <ey=-0.13 the mean field adopts a state of periodic oscillations. In the range
£0s5c< € <e4=0.11 the trivial equilibrium is stable. Finally, fer> e the system adopts a nonzero stationary state.

e N _ hibits a first-orden(discontinuoustransition associated with
(1) = x;(t) = x ()3 + —E Xj(t = 7) + V2D&(1), (1) hysteretic behavior. The noise intensiy, depends on the
Nj=1 time delay and i=0.07 for r=100.

where 7 is the time delays is the coupling strength of the  FOr 1arge time delays> 7 (7 is the inverse Kramers
feedback, and denotes the variance of the Gaussian fluc-Scape rate from one well into the otti@d,25)), depending

tuations&(t), which are mutually independent and uncorre-©n the initial state the system adopts one of many accessible
lated, (& (t)&(t'))= 8, 8(t-t") oscillatory states featuring different periods. Even for a posi-
1\Si ] 1] .

. tive feedback, besides the stationary solution several oscilla-
The global coupling leads to an asymmetry of the local . .
2 . . ; tory states with periodsT<r are observed fore>gqg.
potential; that is, a positive feedback increases the probabil- : . .
! . . ) ! = e If the feedback is negative, the system only has oscil-
ity for an element to be in the potential well in which the S . .
L : . latory nontrivial solutions. The observed periods @rs 27
majority of elements were at tinte- 7. The inverse holds for for &< &
a negative feedback. The t?ggc dynamical states accessible by the system are
System(1) is explored numerically. In this paper, the nu- . Y y y

merical simulations are carried out usin %Ilustrated in Figs. 1 and 2, where the evolution of a single
g an Euler method. | ) .
not otherwise indicated the time step and number of elementr%etwqu element and the mean field are shown for different
coupling strength.

are At=0.01-0.05 andN=2500. pling streng

Our interest is mainly focused on the cooperative interac-
tions of the individual network elements—i.e., on the dy-
namics of the mean fielX=N"Z}{,x,. For =0, the ele-
ments are decoupled from each other. They jump from one
potential well to the other randomly and independently of
each other. Therefore, in this case the mean fi&kD. For
small |¢|, the mean field remains zero. At a certaireg
>0 which depends on the noise intendily but is indepen-
dent of the time delay, the system undergoes a second-ord

(continuou$ phase transition and adopts a nonzero Stationa%robability density function of all elements. Expressed in

mean field. _ .
For a negative feedback, a transition to a periodically Os_terms of momentdv, {n=1, ... =} the hierarchy assumes

cillating mean-field solution is observed at a certain the simple form
=£,5..<0. Here and for the rest of this papef-a/+) index M- = X(t = D[ADM.o+ M- 1+ M. = M 2
means that the corresponding value is associated with a n=X(t= 7l n2t oM+ Ma =M, ()
negative/positive feedback. whereM_;=0 andMy=1.

Above a certain noise levé)y the transition ateyg.- iS For large noise intensities, when the statistics of the indi-
second order as well. However, for<Dy the system ex- vidual elements are approximately Gaussian the hierarchy

B. Gaussian approximation

A mean-field description for the dynamics of a globally
upled set of thermally activated bistable elements with in-
stantaneous interactions was proposed by Desai and Zwanzig
[18]. For the sake of simplicity, we refer to this mean-field
description as the DZ model. This model consists of a hier-
archy of equations for the cumulants of the distribution func-
fion derived from the Fokker-Planck equation for the joint
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FIG. 2. Fore<0, the same as in Fig. 1, but in the frequency domain.

C. Dichotomous model

Applying this approach to our delayed-feedback system, the ) )
evolution of the mean fielX is, in the Gaussian approxima- I order to describe the dynamics of the system near the
tion, described by the set of equations

X(1) = X(t) = X3(t) = IX(OV(L) + eX(t - 7),

%V(t) = V(1) - 3X3(H)V(t) - 3VA(t) + D,

whereV=M,-M2=N"1= (x—X)? is the variance.

To compare the theoretical predictions of the Gaussian 5
approximation(3) with the Langevin mode[1) we deter-
mine the maximum of the main peak in the power spectrum
Poeak (S€€ Fig. 2 The evolution of the peak power as a o™ 05
function of the coupling strength can be used to study the
Hopf bifurcation which describes the transition to the oscil-
latory mean field regime. The pitchfork bifurcation describ-
ing the transition to the stationary mean-field state is charac- 15
terized by the dependence of the temporal mean of the mea .
field (X), on the coupling strength. Figure 3 shows the peak % ‘
power Ppeqcand the temporal meaix); as a function of the a” 05 !
coupling strengtte for three different noise temperaturbs 0 " 0

The phase diagrams of these models are shown in Fig. ¢ 05 0 05 205 0 0.5
in the (D, e)-parameter plane. Figure 3 shows that away from
the transition points the Gaussian approximation correctly 15 D=0.2 1.5 D=0.2
describes the Langevin dynamics. However, near the bifur- 1L %~ 1 -3
cation points the system dynamics is strongly non-Gaussiar | w
even for strong noise. Indeed, while the Gaussian approxi-n' 051 ) I'.
mation predicts that both bifurcations are first-order transi- ot -- 0 ¥ - -

bifurcation points we apply aichotomous(i.e., two-statg
approximation, which is complementary to the Gaussian ap-
proximation and which is valid in the limit of small noise,
when the characteristic Kramers transition time,is> 1, and
small coupling strengths. The dichotomous theory neglects
intrawell fluctuation ofx;. Thus, in the limit of small cou-
pling, each bistable element can only take the valsios

(3 =+1. The collective dynamics of the entire network can then

be described by the master equations for the occupation
probabilities of these states ,. This approach has been suc-
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tions (associated with hysteretic behayiasver the entire -0.5 0 0.5 -05 0 0.5

noise range considered in this studge Fig. 4, the Lange-

€ €

vin mod_el prqduces flrst order transitions only ﬁ)n_< 0.7. FIG. 3. The peak powePye,cand the temporal meafX), as a
The inclusion of higher-order cumulant equations leadsynction of the coupling strength for the Langevin motebssek
only to a slow convergence toward the true solution of thehe Gaussian approximatioashed ling where the double line
Langevin model. This is illustrated in Fig. 5. Thus, near theindicates hysteretic behavior, and the dichotomous thésojid
transition points the DZ model does not significantly sim-line). The noise strengths is indicated in the upper right corner of
plify the Langevin description and the critical parameters foreach panel. The time delay is=100. For X=0 and D

the transition cannot be determined analytically.

=0.05,0.1,0.2 the Kramers times atig=659.4,54.1,15.5.
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e e — )
0.8 . .oscilatorystates . - Too 12,21_ VU (X)) U" (Xg) ox AU ©
_ ‘nontrivial stationary states -~~~ Pk o D /)

0.4 Jons wherex,, andx, are the positions of the potential minima and
0.2 the top of the potential barrier, respectively. For our system,
o ol N ' ] in the limit of small noiseD and coupling strengtla, they
, trivial stationary state read (Cf. [19])

-0.2 S~ - ]

_0.4 V2F 3y 14

-0.6 e e T e P1221= = exp( T > (7)

08 | ; oscillatory states-... -

IrS e e e T NG wherea;=eX(t-17).
0 o1 02 03 04 05 06 As discussed above, the Langevin system either adopts a
stationary or an oscillatory mean-field state in the limit
FIG. 4. Phase diagram for=100 of the Langevin model — . Let us first consider the stationary cage=0. Making
(crossep the Gaussian approximatididashed lings and the di- use of the probability conservatiom+n,=1, the occupa-
chotomous theorysolid lines and dotted lingsThe solid line and  tional probak)ilities|f1L2 are given by
the dotted line, respectively, depict the primary solution and the

higher-order solutions of Eq$15) and (16). Phases separated by P21 10
double lines indicate hysteretic behavior. B6r0 andD < 0.3 the Ny2= T (8
Kramers time isry > 10. P12+ P21

Then, in the dichotomous approximation wih,=+1, the

cessfully used in studies of stochastic and coherence resgs. fieldX=s,n, +s,n, reads

nance(e.g.,[2,19,27,28). For example, using this approach
Junget al. [2], found nontrivial stationary mean-field solu- Pio— Por
tions in a globally coupled delay-free network of bistable X=n,—-ng=——. 9
elements. P12+ P21

The dynamics of a single element is determined by the Substituting the hopping probabiliti€®) into this equa-

hopping rates;, and p,;—i.e., by the probabilities to hop tion yields the transcendental equation for the mean-field
over the potential barrier froms; to s, and froms, to s, magnitude:

respectively. In a globally coupled system,, andp,, ,; are

identical for allbelbgpents argjd the master equations for the V2 - 3eX exp(eX/D) — 2 + 3eX exp(— eX/D)
occupation probabilities rea =7 , .
pation probab! \2 = 3eX exp(eX/D) + 12 + 3eX exp(— eX/D)

Ny == P12y + P2any, (4) (10)

N2 = P12y = Par. () This equation always has a trivial solutiot=0, but for

The hopping probabilities; , ,; are given by Kramers' tran- = €st it also has a pair of nontrivial solutions==+A. It is

sition rate[25] for the instantaneous potential well, easy to findA(s) for a fixed D numerically using Eq(10).

The critical valueeg as a function ofD for the pitchfork

D=0.3 bifurcation, indicating the transition to a nontrivial stationary

state, can be found analytically by expanding the right-hand

side(RHY) of Eq. (10) at smallX. This yields the expression
0.5
& ; 4D

w 0 = 3y (11

05 ; §7 =3 Let us now turn to the general case wheis allowed to

be a function of time. Again, making use of the probability
1 conservation and the expression for the dichotomous mean

2 3 4 5 6 7 8 field X=n,—-n; we find the equation
No. of cumulants

FIG. 5. The critical coupling of the Hopf bifurcatiof’,.< 0) X(t) = p12= P21 = (P21 + P2 X(V), (12)
and the pitchfork bifurcatiorfe>0), respectively. Compared are . -
the critical couplings resulting from the Langevin modelosses ~ Where the hopping probabilitigs,, »; have the same func-
and the predictions of the DZ theofgiamonds including different ~ tional form as in Eq.(7), but now depend on the delayed
numbers of cumulants. For an even number of cumulants the Dinean fieldX(t—7) rather thanX(t).
theory predicts hystertic behavior which is not seen in the Langevin  To investigate the stability properties of the system, Eg.
dynamics. (12) is linearized about zero:
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—

. 2 4-3D L7
X(1) == expl- 1/4D)<s D X(t-7) - X(t)>- (13 a0~ a0 ]
T . -
b<0 b>0
The characteristic equation for the complex eigenvalus w
found by making the ansatz«exp(\t). It reads 05
V2 e(4-3D) . _
A=—¢€ 1’4D<—e M- 1)- (14) ‘o 02 04 o085 08 1
T 4D D

T?e .tanIal gqu[llbrlum IOS(?]S Its Sta.b.lmy and undel’.ﬁoes & FG. 6. Stability diagram for the trivial equilibrium resulting
Hop b! urcation indicating the transition to an 0sci atpry from the analysis of the pitchfork bifurcation. The solid and the
mean-field state when the real part of the complex eigengashed lines, respectively, depict the0 anda=0 contour lines.

value becomes positive. Therefore, the properties of the COfre stapility diagram for the pitchfork bifurcation is time delay
responding instabilities(i.e., frequencies and coupling jndependent.

strengths at the bifurcation pointsan be found by substitut-

Ing A=ptio "?to Ifq. (14.)’ geparatmg real and 'MagiNArY it rcations in our dichotomous mean field-model can be
parts, and settinge=0. This yields the set of equations expressed in terms of the system parameters.

\E For a general class of delay differential equations of the
wT=-—exp—- 1/4D)rtanwr, (15) form
o
X(B) =x(1) + yax(t = 1) + yx(0)° + yax(O)X(t = 7)
Eose= — 2. (16) + XXt = D2+ yex(t = 72, (17)
CcoOsSwT

) ) o ) o such a reduction to normal forms of the pitchfork and Hopf
This set of equations has a multiplicity of solutions, indicat-jifyrcations has been carried out in Rdf31,37. If we cast
ing that multistability occurs in the globally coupled systemine equation for the mean-field dynamics of our model in this
beyond a certain coupling strength. For finite time delays angyrm we can use the results in Reff81,37 to determine the
positive coupling, besides the stationary solution, several ogynctional dependence of the normal form coefficients on the
cillatory states with pkeriodél’k close to but slightly larger parameterdD, ¢, and 7. This can be achieved by a series
than 7/k exist fore>eoe.ik=1,2, ..}, where the transition  expansion of Eq(12) up to the third order and a rescaling of
points are ordered as follows<Oeg<el. ,<el.: - Ifthe  time.
feedback is negative, the system has oscillatory solutions The normal form of the pitchfork bifurcation reads
with periodsT, close to but slightly larger than2(2l + 1) for
e<ene{1=0,1,..}, where 0>&0 >el -+~ In the limit z=az+bZ, (18)
of large time delaysr— oo, the transition point$25c+—> &gt
ands! . — &5 =-4D/(4-3D) with the corresponding pe-

riods beingT,— 7/k andT;— 27/(2| + 1), respectively.
In order to compare the predictions of the dichotomous £— &g

wherez is a coordinate on the center manifold. The normal
form coefficients are

model with the Langevin dynamics, the peak poviRg. a= e(l-1)’ (19

and the temporal meafX),, resulting from the dichotomous

theory, are also plotted in Fig. 3. The phase diagram for the B. - 12DB

dichotomous theory is shown in Fig. 4. b= 1—23 (20)
Figures 3 and 4 show that the dichotomous theory agrees 3841 -1)D

with the Langevin dynamics quite well for small noise in thewhere B.=£3(81D3+ 109D+ 144D -64). B,=£2(9D2+24D
rangeD=0.07-0.3 in the neighborhood of the bifurcation ~16) anarjz(—\f‘iexp(—llm)rlw Setgi,ngazzg zEmd solving

points. The theory also correctly describes the bifurcatio o o )
type. Indeed, the dichotomous theory predicts accurately tf%?{él(?;rﬁogﬁo\:’vve tﬁgﬁg (f)' nf((j)rthDe i%t'(;ar:l d":ﬂg"”g gf Ea(llé;
- St . L] - .

noise strengttby, (=0.07 for =100 at which the Hopf bi- Consequently, the pitchfork bifurcation af; is always su-

furcation changes from supercriticedecond orderto sub- o R . .
critical (first ordep. However, for very smalD the Kramers percritical. T he stab|I|ty.d|agram r eS“'“!‘g f_rom cente.r mani-
: ’ fold reduction for the pitchfork bifurcation is shown in Fig.

time becomes very large, and the accuracy of numerics beB—

comes insufficient for a comparison with the theory. The normal form of the Hopf bifurcation in polar coordi-

natesr and 6 on the center manifold reads
D. Complete bifurcation analysis

. . . ) . P=ur+ard, O=w+pre 21
A complete bifurcation analysis of the trivial solutiofi i @rp 29

=0 of Eq. (13 in the (D,e, 7)-parameter space can be ac- The coefficients determining the stability of the trivial equi-
complished by carrying out a center manifold reduciieee, librium and the order of the Hopf bifurcation aje and «
e.g.,[29,30); that is, the normal form coefficients of the [33]. Expressed in system parameters, they read
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FIG. 8. The coherence of the oscillatory stgess a function of
the noise strengtB for systems of different sizé¥. The time delay
and the coupling strength are=100 ands =-0.2, respectively. Left
panel: the coherence of the mean-field oscillations. Right panel: the
coherence of a single elemeqtout of theN network elements.

0.2
E. Coherence resonance and system size effects

FIG. 7. Primary solutions oft=0[Eq.(22)] anda=0[Eq. (23)] The system studied in this paper exhibits the phenomenon
in the (¢,D)-parameter space. Upper panel: the boundatie®  of coherence resonande.qg.,[34—-37) and array-enhanced
(dashed ling and =0 (solid line) for a system withr=100. The  resonanc¢26,38|.
black dashed line and the gray dashed line depict the parameter | et us discuss this in turn. If our system adopts an oscil-
values of the subcritical and supercritical Hopf bifurcation, respeciatory state, the double-well potentials of the elements are
tively. The Iowe.r panel shows the same curves for a system withjjteg asymmetrically, due to their coupling to the delayed
7=10 (dashed ling =100 (black solid ling, and 7=1000(gray  mean field; that is, the potential barriers separating the two
solid line). wells are periodically rising the lowering. If the period of

this oscillation T matches the time scalg of the noise-
€ 1 1-7 sing induced interwell fluctuation—i.e., if the mean-field oscilla-
= s_st - cose/\ (1 - 702+ ¢ A (22) tions synchronize with the hopping_ rate—we can expect that
the number of elements contributing to the oscillation and
consequently the order of the oscillatory state reach a maxi-
mum. In this spirit the time scale matching condition for
(23) such a synchronization, which is given through

_ ByB3—By(1 - 31+ 2 cog ¢)
© 1281 - 7ol + ¢?)D?

27'K = T, (24)
whereB;=(cose—r0)/ (4D COS¢), p=woro, andwo=tane. s 4 reasonable condition for the maximum order of the os-
Setting=0 and solving Eq(22) for ¢ yields the critical cillatory state[28].
coupling as a function of the noise strength(D) which To quantify the ordefi.e., coherenceof the oscillatory

coincides with Eq.(16). Setting the first Lyapunov coeffi- state we introduce the coherence paramgteH wpeqd Aw,
cient«=0, we can finde (D). The two functionseosdD)  whereH is the height of the main spectral peakagjand
and &,-0(D) intersect at a noise levéy denoting the pa- A is its halfwidth. Using the Langevin modél), the co-
rameter values for which the Hopf bifurcation changes fromherence measurg is determined as a function of the noise
supercritical to subcritical. The stability diagram resultingstrength and in Fig. 8 compared for systems of different
from the analysis of the Hopf bifurcation is shown in Fig. 7. sjzesN.

Let us now discuss the bifurcation properties in the limit  Clearly, the coherence curves have a maximum. The noise
of large and small time delays as well as vanishing noise angtrength maximizing the coherencelg~0.08. This noise
compare them with those of a single-oscillator system. Thetrength can also be derived from the time scale matching
critical couplinge; of the pitchfork bifurcation is time delay condition in Eq.(24). The Kramers timery=1/p is given
independent and goes to zero for vanishing noise. Howevethrough Eq.(7) and the period of the oscillatioriE beyond
the critical coupling of the Hopf bifurcation depends on thethe critical coupling can be determined numerically. In Fig. 9
time delay (see lower panel in Fig.)7 As the time delay the two time scales are plotted as a function of the noise
increases, the maximum of the primary Hopf bifurcation linestrength. The curves intersect Bt0.08, substantiating the
£4sc- @PProaches the origin in the, D) plane, meaning that  consistency of the theory and Langevin model.
oscillations may occur at an arbitrary small feedback The resonance curves in Fig. 8 show that the coherence of
strength for the properly tuned noise level. This should behe oscillatory states increases with increadihg property
contrasted to the dynamics of a single noise-free oscillatowhich was reported for other systems and is sometimes re-
with time-delayed feedback that only exhibits oscillations atferred to as array-enhanced resona883. Interestingly, the
strong negative feedbadgle<-1). For very small time de- enhancement of the temporal regularity with increasing sys-
lays 7— 0, the critical coupling strengtb'c;gc$—> Foo, tem size is only observed for macroscopic mean-field oscil-
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3 : o
! o X =% =X+ SXy(t— ) + SXo(t = 7) + 2D, (25)
! T2 2 2
2 \
\‘ where
1 M N/2
Xq(t) = NE X;(t) (26)
N . =1
ol e
0 0.1 0.2 0.3 and

FIG. 9. The Kramers timex and the half the period of the X,(t) = E
mean-field oscillationsin units of the time delayas a function of N
the noise strength. The parameters ard 00 ande=-0.2.

N
> X;(t) (27)
j=N/2+1
are the mean fields of the elements associated with time de-
. . . W .. Jlays r andr, respectively. Here, it is assumed that the num-
?Son;, while the inverse holds f(_)r subcritical coherence. ger of oscillators is the same in both group.
at is, the coherence observed in the power spectra of sub-
critical mean-field fluctuationsi.e., for |€| <|e,scsl) decays _
inversely proportional to the number of elements in the net- B. Dichotomous theory
work and becomes negligible fod>10. This is shown in We want to use the dichotomous theory in order to study
Fig. 10. Qualitatively, the same dependence on system size ike mean-field dynamics of modé5). Thus, the theory de-
found if the delayed average does not include the delayedeloped in Sec. Il C has to be extended accordingly. In order
element itself; i.e., the elemen¢ is coupled toX(t-7)  to describe the collective dynamics of the two-delay system,
:E}\':‘ll,j#xj. two equations are needed, respectively describing the mean-
field evolution of the oscillator group associated with
Ill. TWO DELAYS 7 and 7!

A. Langevin model X1,40) = P12= P21~ (P12 + P2 Xy (1), (28)

We want to generalize the above system by introducingrhe mean field of the entire system thenXis (X, +Xy)/2,
multiple time delays and nonuniform coupling terms. Let us

carry out the generalization progressively and study first thé'de the hopping probabilities are given by

dynamics of a bistable element network with a discrete bi- V2 ¥ 3a, 1% 4a,

modal delay distributiori.e., with two time delaysand uni- Pr221= = exp -~ = |, (29
form coupling. Assuming that the time delay of the interac-

tion between two elements is entirely determined by thewherea,=e[X;(t—71)+Xs(t—7,)]/2. As for the model with a
“transmitting” element, the system dynamics is described byingle(i.e., uniform time delay, the numerical integration of
the set of Langevin equations the Langevin systen25) reveals pitchfork and Hopf bifur-

x 10

fooar =081/t f = 10[1/1]

10
super—

citical sul?crmcal

N - 50 T
Sf N =10|] |

N y

N X
0 : L
-04 -0.2 0 02 04

€

FIG. 10. The coherencg as function of the coupling strength. Fer<0 ande>0 the spectral peak frequency figea= @pead 27
~0.5 1/r andf,ea~=1.0 1/7, respectively. The dash-dotted vertical line dephf;rs%_and consequently separates domain of the macroscopic

(i.e., supercritical mean-field oscillations from the domain of subcritical coherence. The right panel shows the same as the left, but has a
logarithmic scale foiB, which helps to uncover the weak subcritical coherence properties.
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cations describing the transitions to nontrivial stationary 1

. . " ; — o=0
states and oscillatory states, respectively. The critical cou- oscillatory states o
; X ) X . v nontrivial stationary states 0=20
plings for the bifurcations can be found with a linear stability i 4| =30
analysis of Eq.(28) near the trivial state&X=0. The proce- 5 % ® — 5240

dure, which is analogous to the stability analysis carried out
in Sec. Il C, yields the transcendent equation for the complex,,

0 fu
eigenvaluen:

S+ VS -4A el ]
= — (30 0.5 o
i oscillatory states z

Here,SandA, respectively, are the trace and determinant of _1 . . . .
the Jacobian matrix 0.1 0.2 5 0.3 0.4 05

_(91td 0 .
J=c g g+d)’ (31 FIG. 11. Phase diagram of the globally coupled two-delay net-
1 2

where the matrix elements are given throug}:—\@
Xexp(—1/4D)/87D, g; ,=&(3D-4)exp(—A 7y 5), andd=8D.
For a positive coupling Eq(30) has always a real eigen-
value. At a certain critical coupling

4D

4-' %2

Est=

the eigenvalue becomes positive, indicating pitchfork bifur-

cation. This bifurcation is time delay independent and is thu
identical to those found for the system with uniform time
delays[cf. Eq. (11)].

For finite 7=(7,+7,)/2 ande, Eq. (30) possesses also a

finite number of complex solutions. The critical couplings of

the corresponding unstable modes., of the Hopf bifurca-
tion) are given by the set of equations

[

2 _
wr=— e exp(- 1/4D)rtanwr, (33
a
8D7w
€osc™ [5 ' 34
(3D - 4)(V2 exd— 1/4D]Js— mwJ.)
Here
1 . . L
;= S(sinwm +sinwr,) =sinwrcosoo, (35
1 —
Jo= 5 (coswr + coswry) = coswrcoswa,  (36)

whereo=|7,—1,|/2. The above set of equations for the criti-
cal coupling is the two-delay analog to Eq45) and (16).
Again, we find a multiplicity of solutions, leading to the

work determined using the dichotomous modsblid lines and
numerical simulations of the Langevin modelarkers. The phase
diagram is show for different=|r,—7,|/2. The mean time delay is

‘7=100.

mined using Eqs(32—(34) and compared with numerical
findings resulting from simulations of the Langevin model
(25). The phase diagram is shown in Fig. 11 for different
The phase diagrams including higher-order solutions of Egs.
33) and(34) are presented in Fig. 12. Also, the frequencies
f the corresponding unstable modegich ares indepen-
deny are shown in this figure. The figures show that near the
bifurcation points the predictions by the dichotomous theory
are reasonably good for weak noise in the raf@@7<D
=0.3.

Furthermore, we find that the first bifurcation of the trivial
equilibrium ate >0 is always a pitchfork bifurcation. The
first bifurcation ate <0 is a Hopf bifurcation, which for
<30 is determined by the primary solution of E¢33) and
(34), while for o> 30, depending on the noise intensity, the
first transition may also be determined by higher-order solu-
tions associated with higher frequencies.

IV. MULTIPLE DELAYS
A. Langevin model

In this section we further generalize our delayed-feedback
system by introducing multiple time delays and study the
stability properties in dependence of the statistical moments
of an arbitrary time delay distribution.

The general Langevin model with many time delays reads

N
X =% =X+ 52 X;(t= 7)) + V2DE(). (37)

multistability of the system in a certain area of the parameter Sych general models in which the time delays depend on

space. Furthermore, Eq&3) and (34) show that while the

both the “transmitting” and “receiving” elements cannot di-

frequencies of the oscillatory states only depend on the meactly be described in terms of a mean-field theory. However,

time delayr, the critical coupling strengths of the Hopf bi-
furcations depend additionally an

C. Phase diagrams

The phase diagram and frequencies of the unstable oscil-
latory modes of the two-delay system are theoretically deter-

the system becomes mathematically tractable if we assume
that the time delays only depend on the transmitting elements

i

N
. € —
Xi:Xi—Xi3+N21Xj(t—Tj)+ V2DE(H). (38)
]:
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0=20

o=0

— pitchfork |

e g

0.2 03 04 0.5
c=30

8
6_:::_::_”:'_”_”;"_"_'"_”_"_”;“_
° EEEmEEEE == |
W w \:/ AE =S e e DD —
- 11//-"K\ ‘ _n Ll . 0
01 02 03 04 05 0.1 02 03 04 05 01 02 03 04 05
D D D

FIG. 12. Upper panel and two lower left panels: phase diagrams of our globally coupled two-delay network=d@® ando
=0,10,20,30,40. Thereen line depicts the critical coupling of the pitchfork bifurcation, and the other lines depict those of the primary
Hopf bifurcation as well as some higher-order soluti@ins., solutions 1-16of Egs.(33) and(34). The markers depict the first bifurcation
ate <0 ande >0 resulting from numerical simulations of the Langevin ma@ethese simulations, starting with=0, the coupling strength
is increased until a bifurcation occiirdlatching colors of markers and lines mean that the bifurcation type and associated frequency are in
agreement. Lower right panel: the frequencies of the corresponding unstable modes. They do not depdnd shghtly vary with the
noise strengttD.

In order to check if such a simplification is justified, nu- implies that the number of operations, which have to be car-
merical simulations of model&7) and (38) are carried out ried out to study such systems numerically, can be reduced
and compared. In these simulations the distribution of thérom O(N?) to O(N).
time delays is Gaussian; i.e., it is fully determined by its
mean7 and standard deviatios. Figure 13, comparing the
critical coupling strength of the Hopf bifurcation for different Let us now develop the dichotomous theory for the glo-
o, suggests that the above simplification is justified in ordembally coupled bistable-element network with distributed de-
to study the stability properties of a bistable-element networkays.
with time delays. For that purpose we coarse-grain syst@®). The coarse

This surprising result not only renders possible an analytigraining is accomplished as follows: The range of possible
cal description of networks with distributed delays but alsotime delays is divided up iM intervalsl, {k=1,2,... M}.

The size of the intervald, is chosen so that the number of

B. Dichotomous theory

frivial stationary state bistable oscillators associated with a delay, fitting in a par-
\_ ticular interval, is for each interval the same=N/M. In this
way oscillator groups are formed whose mean field can be
w -1 oscillatory states expressed as
o=0 b 1
=20
-1 A o == 2 x(, (39
_2 =40 TjElk
0 01 02 03 04 wherel,=[7, 71, ©=2i574), andj=1...N.
D Assuming that\, < 7/ o, wherer and o are the mean and

standard deviations of the time delay distribution, E2B)

FIG. 13. The critical coupling of the Hopf bifurcation as a func- can then be approximated by

tion of the noise strengt® for different o of the Gaussian time

delay distribution with7=100. The markers and solid lines depict e M _
the critical couplings resulting from model§37) and (38), X=X =X+ — > O (t—7) + V2DE(H). (40)
respectively. Miz
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The master equations expressing the dynamics of system We can express the time delay distribution function in

(40) in terms of occupation probabilities read terms of cumulant&,, [39,4Q and solve the integrals in Eqgs.
: (50):
N1k =~ P21k P2iMoks (41) _
Is=sin(g)exp(gy), lc.=codg)expgy),  (51)
Mok = P11k~ P2k (42)  where
Here the hopping probabilities are given by (|w)2m+1
— , 52
27 3ag exp(_ 17 4a3) 43 20 i(2m+ 1)! Kamea (52
P12,21= om i )
— M (I w)Zm
where az=(e/M)Z,2, O (t— 7). E o (53)
For large oscillator groupgm—), O =n1;S;+NyS, —) (2m)|
=n,—Ny holds. With this and the probability conservation c {
N+ Ny =1 we can find the following set of equations: onsequently,
. ls _
O (1) = Pro= P21 = (P21 + P12 (D). (44) = =tan(gy). (54

(]

The Jacobian mairix of this system is given through Since for symmetric distribution functions all odd cumulant

g+d g ... Oy moments except the first oré, =7 are zero, |/ I_C=tgnw?
J=c +d (45) holds. That is, in the case of a symmetric distribution of the
9 9% e 9w ) time delays, the frequencies of the unstable modes in Eq.
01 g2 ... Outd (48) depend only on the mean time delay.

Let us now determine the critical coupling of the Hopf
bifurcation. For large time delays> 7 the low-order solu-
tions of the transcendental equati¢fB) yield frequencies
w<1. Thus the real part of Eq46) can be linearized near
=0 and the critical coupling of the Hopf bifurcation be-

where  c=—\2 exg(-1/4D)/(4M#=D),  g=¢(3D-4)
Xexp(—\7), andd=4MD. With this Jacobian the character-
istic equation, determining the stability of the trivial equilib-
rium X=0, becomes

M comes
(dc—)\)M‘l(c[d+Egk] —)x) =0. (46) 4D
k=t €osc™ = )
SettingA =0 and solving Eq(46) for ¢ yields the critical (3D - 4)(1\5 expg— 1/4D)Is - {1 - lJ Trwlc)
coupling for the pitchfork instability: N N
(55
4D
= 1 _an (47)  Then, for large systemN — c the critical coupling is
It is time delay independent and thus identical with to found 4D (56)

. . . . osc '
in previous sections of this paper. (4-3D)l¢
The properties of the Hopf bifurcatiofi.e., the frequen- with  1.=3 sifwsinGwo/3)/ (5we)  and | .=cogw)

cies of the unstable modes and the critical couplingsJ 7y . . Lo T i
can be found by substituting= u+iw into Eq. (46), separat- X exp(—w?c?/2) for uniform and Gaussian distributions, re

ing real and imaginary parts, and setting0. This yields spectively.
— .
o 2 | C. Phase diagrams
wr= -~ exp(- 1/4D)7-2, (48) _ _
T I Equations(47), (48), and (56) are used to determine the
h phase diagram and frequencies of the unstable oscillatory
where modesf=w/(27) of a bistable-element network with uni-
M M formly distributed time delay$.The theoretical predictions
1 . 1 ! ; : A .
|S:—E Sin w7, |C:—E COSwTy. (49) are compared with numerical simulations of the Langevin
k=1 k=1 model (37). The number of bistable elements in these simu-

lations isN=300. The results are shown in Figs. 14 and 15.

For large systemdl— =, the number of group#! — and Again, we find that near the transition points and for weak

thus noise intensities the predictions of the dichotomous theory
% o are reasonably good. Consequently, the Langevin models
I —f P(7)sinwrdr, | —f P(r)coswrdr, (50)
0 0 R —
1This should not be confused with uniform time delays, which
whereP(7) is the time delay distribution function. means that the delay for each coupling is the same.
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! ; — 5=0 0=0 o=10
oscillatory states o= 2w
nontrivial stationary states — 0=20 n
0.5} s & & o0 S
oY — 0=40 =
@ 0 Mvial stationary state
— -2 -2
05 0.1 02 03 04 05 0.1 0.2 0.3 04 05
c=40
-1 : : : . :
01 02 03 04 05 2 S I
b 1 7 6~ - - -
FIG. 14. Phase diagram of the globally coupled bistable-element ) W%/O/O ° ¢ § I
network with uniformly distributed time delays derived from the © 0 = 4 F-CC--CIIZCZCIZIZCCT
theoretical model(solid lineg and numerical simulations of the 1 - D e——
Langevin modelmarker3. The phase diagram is shown for differ- - L9 o ———————]
ent standard deviations of the delay distribution function. The ) /\ 0
mean time delay is=100. 0.1 0.2 03 04 05 0.1 0.2 0.3 04 05
D D

(37) and (38) are in this regime equivalent as regards the
dynamical properties of the mean field.

Equations(48) and (56) have a multiplicity of solutions
meaning that multistability is also present in our system in
the limit of continuously distributed delays. The bifurcation systems with multiple delays in the oscillatory domain of the
diagrams including the higher-order solutions are shown irphase diagram.

Fig. 16. The figure shows that unlike the two-delay system,
the first transition at <0 is always determined by the pri-
mary solution associated with the frequerfey 0.57.

The comparison of the phase diagrams for delay distribu- A. Langevin model
tion functions of different widthg- shows that the regions of ) ) )
oscillatory states in the parameter space are reduced with The collective dynamics of the bistable-element networks
increasingo. This trend was already apparent in the two-described above is restricted to periodic oscillations and sta-
delay system, although less pronounced. These findings sufionary states. In this section we want to check whether the
gest that nonuniformity of the time delays inhibits the occur-complexity of the dynamics is increased if instead of the

rence of Hopf bifurcations and consequently increases theniform coupling, nonuniform couplings are applied. To this
stability of the trivial equilibrium. end, we extend the two-time-delay mod2b) by introduc-

Eventually, we like to mention that the coherence resodnd two different coupling strengths. The Langevin equations
nance phenomenon discussed in Sec. Il E is also present §if the new model read

FIG. 16. Same as in Fig. 12 but this time for networks with
uniformly distributed time delays with=100 ando=0,10,40.

V. NONUNIFORM COUPLING

=% =X+ Dt = 1)+ Xl = ) + V2DE),

=
4
X

=
l_)
N
= 0.4} | 5 €
S) 0.4 ——theory X=X =+ szl(t -7+ Elxz(t — ) +\2D&(),
P x Langevin, 6=20
c 0.3f - | &7
3 Langevin, =30
— o Langevin, 6=40 wherei=1,... N/2 andj=N/2+1,... N. The elements
0.2 ; = and x; belong to a group of bistable oscillators which are
' 0.2 0.4 associated with time delays and 7,, respectively. It is as-
D sumed that the two groups are of equal size. The above set of

equations describes a system in which each element couples

FIG. 15. The frequencies of the unstable modes at the bifurcal® all the elements belonging to the same group with a cou-
tion points resulting from the Langevin modeharkers and the  Pling strengthe; and to all the elements of the other group
dichotomous mode(solid line), which are[see Eq.(48)] indepen- ~ With &; that is, the two coupling parameters indicate the
dent of o. For uniform and Gaussian distributions the frequenciesstrength of the intragroup couplir@,) and intergroup cou-
depend only on the mean time delggee Eqs(48) and (54)]. pling (e,), respectively.
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—~ 1le= £2=—.4 £2=—0.3 £2=—O.2 £2=—0.1 £2=O
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v [j e & S
5 =1
_1X0(t)1
,‘3_ 1|8, =0.1 82=0.2 £,=03 €, 204 E== 1
AR - .
< -1
—~ == 82=—.4 82=—0.3 ‘ e, =-0.1 e, =0
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FIG. 17. Time delay representatiofishase portraijsof the evolution of the mean field; in dependence of the intergroup coupling
strengthe,. Shown are the evolutions resulting from the Langevin médpper two rows, Eq(57)] and the mean-field mod@lower two
rows, Eq.(58)]. The parameters af@=0.1, 7,=60, 7, =140, ands;=-0.4.

B. Dichotomous model S+ -4A
_ R 63

We apply the dichotomous theory to systésid) and pro- 2 (63)
ceed in a manner analogous to the previous sections.

The evolution of the mean field of each group of oscilla-and keeping the intragroup coupling strengihfixed yields

tors is described by the critical coupling for the pitchfork bifurcation, which can
occur for positive and negative intergroup feedbacks:
Xo A1) = PiF - P - (P + ppDXeah).  (59) 8D
e3= t|eat oo ) (64)

Here, the hopping probabilities are

In order to find the critical values for the Hopf bifurcation

ol 1= VZ;T 3ay exp(— 1+ 4a4>’ (59) £3° we substitute\=u+iw into the characteristic equation
ar

4D and setu=0. Then, the separation of real and imaginary
parts yields the two equatiorfs(w,&,)=0 andf;(w,&,)=0,
where
9 V2 + 3as 1% 4dasg
Poa™ "o A" )0 0 E?
f(w,e,) = EjgJew + Zl(si - £2)c092w7) + EpeqJ,
where 8
t> exp(— 1/2D) - 4w?, (65)
ay5=[£1X ot = ) + X5 1(t — ) ]/2. (61)

Next a linear stability analysis is carried out. The linear-
ization of Eq.(58) about the ftrivial equilibrium yields the

E2
filw,e0) = E189Jc0 + Zl(si - £2)siN(2w1) + EyeyJg

Jacobian
—\T —\T 8\“’5(‘)
. ([30 ~flese™+d  [3D - 4lee M7, ) + exp(— 1/4D). (66)
[3D - 4]e,e™  [3D - 4]s,e2+d)’ m
(62) Here, E;=\2(3D-4)exp-1/4D)/(wD) and E,=E;\2
xXexp(—1/4D)/ . The terms)s andJ, are given by Eqs35)
wherec andd are the same as in E(B1). and(36), respectively.
Substituting the trac8 and determinanA of the Jacobian For finite 7 and e, the above set of equations has a finite
matrix (62) into the characteristic equation number of root{e5°, w), which can be found numerically.
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FIG. 19. Same as in Fig. 12 but this time for two-time-delay
networks with nonuniform coupling@ipper panelss=-0.3; lower
panels,e=-0.4). Oscillatory states as well as nontrivial stationary
states occur for positive and negative intergroup coupling®ark
gray areas depict regions of amplitude death and light gray areas
mark regions of chaotic dynamics. The time delays ar60 and
7,=140.

FIG. 18. The peak poweR e, (upper row and the correspond-
ing periodTea= 27/ wpeax (lower row) of the two oscillator groups
X; and X, resulting from simulations of the theoretical mean-field
model (58) and the Langevin modéb7), respectively. The param-
eters are the same as in Fig. 17.

C. Phase diagram )
Let us now explore the phase space of the system with

In order to explore the dynamics of the system with twononuniform couplings in greater detail. _
coupling strengths we carry out numerical simulations of the The phase-space regions of nontrivial stationary states are
Langevin mode(57) and compare the results with the theo- determined by Eq(64) and those where mean-field oscilla-

retical predictions derived in the previous section. In thesééons and amplitude death occur are given by the roots of

simulations the strength of the intragroup coupliagand gs.(65) and(66). These roots are determined numerically.

noiseD are chosen so that in the absence of intergroup coylVe find that the solutions of Eq33) are a subset of the

plings e,=0 the mean fields of the two oscillator grou)is solutions offy,(w)=0. Thus, the corresponding critical val-
and X, oscillate independently with frequenciés~1/27; ;Jheossernf%rlljngoiﬁndrzcﬁ)sugv mgz ethsu alitatively are equivalent to
and f,~=1/2r,, respectively(cf. Sec. Il Q. We may then P .

. However, Eq.(65) also yields new solutions marking the
expect th&.lt fote,| >0 the system reveals dyngmmal PrOPer- o ndaries between the zones of amplitude death and the
ties reminiscent of those of two coupled, limit-cycle oscilla-

X , ) areas of nontrivial dynamics in the presence of weak inter-
tors, such as chaotic behavip41-43 and the amplitude  group couplings. Within this areas there may occur islands of
death phenomenof8,23,44. Figure 17 shows time delay chaotic dynamics. Indeed, an analysis of the mean-field evo-

representations of the time seriesXaft) for intergroup cou-  |ytion yields positive Lyapunov exponents for <Qe|

plings of different strengtlz,. In certain regions the system <g . .

indeed shows the amplitude death phenomenon and in the Since intrinsically our time delay system is infinite dimen-

range 0< |e| < ecnaosiffegular motions are observed. Numeri- sional, the maximum Lyapunov exponents are here deter-

cal evidence suggests that these motions are chaotic. Indeedined by an analysis of the time series resulting from Eq.

the time series analysis yields broadband power spectra arifi8). The analysis is carried out using tools provided by the

positive maximum Lyapunov exponents. The determinatiorTISEAN software packagp45,46.

of the Lyapunov exponents is below discussed in greater As stated above this process yields in some phase-space

detail. regions clear evidence of positive maximum Lyapunov ex-
The comparison of the phase portraits in Fig. 17 showgonents in the range<O\[1/7]<0.03.

slight deviations between theoretical predictions and the The phase diagrams illustrating the different dynamic re-

Langevin dynamics(e.g., for e,=—0.1). These deviations gions are shown in Fig. 19. The figure shows that chaotic

stem from the elimination of the noise fluctuations in thedynamics only occurs for strong intragroup couplings

dichotomous model and different phase shifts between the0.4—i.e., when the individual oscillations of the two

two oscillator groupsX; and X,. However, the predictive groups are strong enough.

power of our model is confirmed in Fig. 18, where the the-

oretical peak poweP,q,and the corresponding peridge. V1. SUMMARY AND CONCLUSIONS

in dependence of the coupling strengthare compared with The dynamics of networks of noisy bistable elements with

those resulting from Langevin simulations. time-delayed couplings was studied analytically and numeri-
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cally. Depending on the noise level, the systems undergthe mean-field properties are well described by a Gaussian
ordering transitions and demonstrate multistability; that isapproximation. However, a theoretical approach for the de-
for a strong enough positive feedback the systems adopt scription of the dynamics in the regime of strong noise near
nonzero stationary mean-field state, and a variety of stablghe transition points is still lacking.
oscillatory mean-field states are accessible for a positive as The collective dynamics of the networks of bistable ele-
well as negative feedback. The coherence of the oscillatoryhents with uniform coupling strength is restricted to periodic
states is maximal for a certain noise level; i.e., the systemggcillations and stationary states. However, our model with
demonstrate the coherence resonance phenomenon. nonuniform coupling strengths shows that for certain cou-
For symmetric time delay distributions the frequencies ofying gistributions, the system behaves like a network of
the oscnlanpns depenq only on the mean time delay. |T'OVV'CoupIed limit cycle oscillators and, consequently, demon-
ever, the critical couplings of the corresponding Hopf bifur- strates in certain parameter-space areas the amplitude death

c_atlons depe_nd_als_o on the hlgher-on_jer_ cumulants of th henomenon or exhibits a chaotic evolution of the mean
time delay distributions. Indeed, our findings suggest tha ield

poruoTy of i tme deays it e occurence ol This paper disouses the aynamics f gobally coupled
ity of thrt)a trivial equilibrium. This r?1a bz:/ important for time systems with time delays. However, in many systems the
Y d : Y P : connectivity is sparse. Since this is a particular case of sys-
delay systems such as neural networks and genetic regul

fms with nonuniform coupling, we may expect that this en-
tory networks, since the degree of time delay nonuniformity, . ' . .
which is often related to the diversity in the connectivity of dows the system with more complex dynamical properties.

the underlying network, affects the accessibility of the non—ThIS issue should be addressed in future studies.

trivial dynamical states.
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