
Cooperative dynamics in a network of stochastic elements with delayed feedback

D. Huber and L. S. Tsimring
Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402, USA

sReceived 26 August 2004; published 30 March 2005d

Networks of globally coupled, noise-activated, bistable elements with connection time delays are consid-
ered. The dynamics of these systems is studied numerically using a Langevin description and analytically using
s1d a Gaussian approximation as well ass2d a dichotomous model. The system demonstrates ordering phase
transitions and multistability. That is, for a strong enough feedback it exhibits nontrivial stationary states and
oscillatory states whose frequencies depend only on the mean of the time delay distribution function. Other
observed dynamical phenomena include coherence resonance and, in the case of nonuniform coupling
strengths, amplitude death and chaos. Furthermore, an increase of the stability of the trivial equilibrium with
increasing nonuniformity of the time delays is observed.
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I. INTRODUCTION

Due to its relevance for a variety of scientific disciplines
such as physics, chemistry, biology, economics, and social
sciences, the study of collective phenomena in extended sto-
chastic systems with long-range interaction has been of great
interest in recent years and various techniques based on
Langevin, Fokker-Planck, and master equations have been
conceived to explore their dynamics.

An effective and simple model for the study of noise-
induced collective phenomena is the globally coupled net-
work of stochastically driven bistable elements. Indeed, the
cooperative dynamics of these systems has been the subject
of many studies and its relevance for critical phenomenaf1g,
spin systemsf2g, neural networksf3–5g, genetic regulatory
networksf6g, and decision making processes in social sys-
temsf7g has been pointed out.

For the sake of simplicity it has traditionally been as-
sumed that the interactions in these networks are instanta-
neous. However, in recent years it has been realized that time
delays due to finite transmission and processing speeds are
s1d significant compared to the dynamical time scales of the
system ands2d often change fundamentally its dynamical
propertiesf8–11g.

Thus, in this paper the generic model of globally coupled
bistable elements is extended by time delayed couplings and
its collective dynamics is studied numerically and analyti-
cally.

The properties of globally coupled dynamical units, rel-
evant for system such as arrays of lasersf12g and Josephson
junctionsf13g, have been explored in many studiesssee also
f2,14–18gd. Desai and ZwanzigsDZd f18g, for instance, stud-
ied the synchronization of noise-activated bistable oscillators
with instantaneous coupling and derived from the Fokker-
Planck equation for the joint probability distribution of the
oscillators an exact mean field-modelsDZ modeld in the ther-
modynamic limitN→`, whereN is the number of network
elements. Beyond a critical coupling strength this system dis-
plays a second-order phase transition to an ordered nontrivial
stationary state. The effect of uniform interaction delays in a
globally coupled network of phase oscillators has been ex-
plored by Yeung and Strogatzf14g, and Tsimring and

Pikovsky f19g studied the dynamics of a single noise-
activated bistable element with delayed feedback. Combin-
ing the properties of these two systems, Huber and Tsimring
f20g studied the properties of a globally coupled network of
noisy bistable elements with uniform delays and derived a
dichotomous mean-field model based on the delay-
differential master equation. Although for numerous systems
the assumption of uniform time delays is justifiedse.g.,
f21,22gd, most systems have time delays distributed over an
interval rather than concentrated at a pointsseef23gd. Thus,
after a discussion of the dynamical properties of the network
with uniform delays, the generalized case of distributed time
delays is studied.

This paper which is an extended version off20g is orga-
nized as follows: In the next section the bistable-element
network is discussed for the case of uniform time delays.
Two mean-field models—namely, the DZ modelswhich for
Gaussian processes reduces to the Gaussian approximationd
and the dichotomous model—are compared with the Lange-
vin dynamics and their scopes of application are determined.
The phenomenon of coherence resonance is discussed, and a
complete bifurcation analysis of the trivial equilibrium is car-
ried out using a center manifold reduction. In Sec. III the
system dynamics is discussed for a discrete bimodal delay
distribution. Then, in Sec. IV the model is further general-
ized, so that the mean-field dynamics of a system with an
arbitrary time delay distribution can be described. Finally, in
Sec. V we introduce nonuniform coupling strengths which
lead to new dynamical properties, such as amplitude death
and chaos.

II. UNIFORM DELAYS

A. Langevin model

The prototypical system considered here is modeled by a
set of N Langevin equations, each describing the over-
damped stochastically driven motion of a particle in a
bistable potentialV=−x2/2+x4/4, whose symmetry is dis-
torted by the time-delayed coupling to all network elements,
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ẋistd = xistd − xistd3 +
«

N
o
j=1

N

xjst − td + Î2Djstd, s1d

wheret is the time delay,« is the coupling strength of the
feedback, andD denotes the variance of the Gaussian fluc-
tuationsjstd, which are mutually independent and uncorre-
lated,kjistdj jst8dl=di jdst− t8d.

The global coupling leads to an asymmetry of the local
potential; that is, a positive feedback increases the probabil-
ity for an element to be in the potential well in which the
majority of elements were at timet−t. The inverse holds for
a negative feedback.

Systems1d is explored numerically. In this paper, the nu-
merical simulations are carried out using an Euler method. If
not otherwise indicated the time step and number of elements
areDt=0.01–0.05 andN=2500.

Our interest is mainly focused on the cooperative interac-
tions of the individual network elements—i.e., on the dy-
namics of the mean fieldX=N−1o j=1

N xj. For «=0, the ele-
ments are decoupled from each other. They jump from one
potential well to the other randomly and independently of
each other. Therefore, in this case the mean fieldX=0. For
small u«u, the mean field remains zero. At a certain«=«st
.0 which depends on the noise intensityD, but is indepen-
dent of the time delay, the system undergoes a second-order
scontinuousd phase transition and adopts a nonzero stationary
mean field.

For a negative feedback, a transition to a periodically os-
cillating mean-field solution is observed at a certain«
=«osc−,0. Here and for the rest of this paper as2/1d index
means that the corresponding value is associated with a
negative/positive feedback.

Above a certain noise levelDH the transition at«osc− is
second order as well. However, forD,DH the system ex-

hibits a first-ordersdiscontinuousd transition associated with
hysteretic behavior. The noise intensityDH depends on the
time delay and isDH=0.07 fort=100.

For large time delayst@tK stK is the inverse Kramers
escape rate from one well into the otherf24,25gd, depending
on the initial state the system adopts one of many accessible
oscillatory states featuring different periods. Even for a posi-
tive feedback, besides the stationary solution several oscilla-
tory states with periodsT&t are observed for«.«osc+
*«st. If the feedback is negative, the system only has oscil-
latory nontrivial solutions. The observed periods areT&2t
for «,«osc−.

The basic dynamical states accessible by the system are
illustrated in Figs. 1 and 2, where the evolution of a single
network element and the mean field are shown for different
coupling strength.

B. Gaussian approximation

A mean-field description for the dynamics of a globally
coupled set of thermally activated bistable elements with in-
stantaneous interactions was proposed by Desai and Zwanzig
f18g. For the sake of simplicity, we refer to this mean-field
description as the DZ model. This model consists of a hier-
archy of equations for the cumulants of the distribution func-
tion derived from the Fokker-Planck equation for the joint
probability density function of all elements. Expressed in
terms of momentsMn hn=1, . . . ,̀ j the hierarchy assumes
the simple form

Ṁn = Xst − tdf4DMn−2 + «Mn−1g + Mn − Mn+2, s2d

whereM−1=0 andM0=1.
For large noise intensities, when the statistics of the indi-

vidual elements are approximately Gaussian the hierarchy

FIG. 1. Dynamics of a single network oscillatorxi and the network mean fieldX for different coupling strength«. The noise strength and
time delay areD=0.1 andt=100, respectively. For«,«osc=−0.13 the mean field adopts a state of periodic oscillations. In the range
«osc,«,«st=0.11 the trivial equilibrium is stable. Finally, for«.«st the system adopts a nonzero stationary state.

D. HUBER AND L. S. TSIMRING PHYSICAL REVIEW E71, 036150s2005d

036150-2



can be truncated(Gaussian approximationssee alsof26gd).
Applying this approach to our delayed-feedback system, the
evolution of the mean fieldX is, in the Gaussian approxima-
tion, described by the set of equations

Ẋstd = Xstd − X3std − 3XstdVstd + «Xst − td,

1

2
V̇std = Vstd − 3X2stdVstd − 3V2std + D, s3d

whereV=M2−M1
2=N−1oi=1

N sxi −Xd2 is the variance.
To compare the theoretical predictions of the Gaussian

approximations3d with the Langevin models1d we deter-
mine the maximum of the main peak in the power spectrum
Ppeak ssee Fig. 2d. The evolution of the peak power as a
function of the coupling strength can be used to study the
Hopf bifurcation which describes the transition to the oscil-
latory mean field regime. The pitchfork bifurcation describ-
ing the transition to the stationary mean-field state is charac-
terized by the dependence of the temporal mean of the mean
field kXlt on the coupling strength. Figure 3 shows the peak
powerPpeak and the temporal meankXlt as a function of the
coupling strength« for three different noise temperaturesD.

The phase diagrams of these models are shown in Fig. 4
in thesD ,«d-parameter plane. Figure 3 shows that away from
the transition points the Gaussian approximation correctly
describes the Langevin dynamics. However, near the bifur-
cation points the system dynamics is strongly non-Gaussian
even for strong noise. Indeed, while the Gaussian approxi-
mation predicts that both bifurcations are first-order transi-
tions sassociated with hysteretic behaviord over the entire
noise range considered in this studyssee Fig. 4d, the Lange-
vin model produces first order transitions only forD,0.7.

The inclusion of higher-order cumulant equations leads
only to a slow convergence toward the true solution of the
Langevin model. This is illustrated in Fig. 5. Thus, near the
transition points the DZ model does not significantly sim-
plify the Langevin description and the critical parameters for
the transition cannot be determined analytically.

C. Dichotomous model

In order to describe the dynamics of the system near the
bifurcation points we apply adichotomoussi.e., two-stated
approximation, which is complementary to the Gaussian ap-
proximation and which is valid in the limit of small noise,
when the characteristic Kramers transition time istK@1, and
small coupling strengths. The dichotomous theory neglects
intrawell fluctuation ofxi. Thus, in the limit of small cou-
pling, each bistable element can only take the valuess1,2
= ±1. The collective dynamics of the entire network can then
be described by the master equations for the occupation
probabilities of these statesn1,2. This approach has been suc-

FIG. 2. For«ø0, the same as in Fig. 1, but in the frequency domain.

FIG. 3. The peak powerPpeak and the temporal meankXlt as a
function of the coupling strength for the Langevin modelscrossesd,
the Gaussian approximationsdashed lined, where the double line
indicates hysteretic behavior, and the dichotomous theoryssolid
lined. The noise strengths is indicated in the upper right corner of
each panel. The time delay ist=100. For X=0 and D
=0.05,0.1,0.2 the Kramers times aretK=659.4,54.1,15.5.
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cessfully used in studies of stochastic and coherence reso-
nancese.g.,f2,19,27,28gd. For example, using this approach
Junget al. f2g, found nontrivial stationary mean-field solu-
tions in a globally coupled delay-free network of bistable
elements.

The dynamics of a single element is determined by the
hopping ratesp12 and p21—i.e., by the probabilities to hop
over the potential barrier froms1 to s2 and from s2 to s1,
respectively. In a globally coupled system,n1,2 andp12,21are
identical for all elements and the master equations for the
occupation probabilities read

ṅ1 = − p12n1 + p21n2, s4d

ṅ2 = p12n1 − p21n2. s5d

The hopping probabilitiesp12,21 are given by Kramers’ tran-
sition ratef25g for the instantaneous potential well,

pK
12,21=

ÎU9sxmdU9sx0d
2p

expS− DU

D
D , s6d

wherexm andx0 are the positions of the potential minima and
the top of the potential barrier, respectively. For our system,
in the limit of small noiseD and coupling strength«, they
readscf. f19gd

p12,21=
Î2 7 3a1

2p
expS−

1 7 4a1

4D
D , s7d

wherea1=«Xst−td.
As discussed above, the Langevin system either adopts a

stationary or an oscillatory mean-field state in the limitt
→`. Let us first consider the stationary caseṅ1,2=0. Making
use of the probability conservationn1+n2=1, the occupa-
tional probabilitiesn1,2 are given by

n1,2=
p21,12

p12 + p21
. s8d

Then, in the dichotomous approximation withs1,2= ±1, the
mean fieldX=s1n1+s2n2 reads

X = n2 − n1 =
p12 − p21

p12 + p21
. s9d

Substituting the hopping probabilitiess7d into this equa-
tion yields the transcendental equation for the mean-field
magnitude:

X =
Î2 − 3«X exps«X/Dd − Î2 + 3«X exps− «X/Dd
Î2 − 3«X exps«X/Dd + Î2 + 3«X exps− «X/Dd

.

s10d

This equation always has a trivial solutionX=0, but for «
.«st it also has a pair of nontrivial solutionsX= ±A. It is
easy to findAs«d for a fixed D numerically using Eq.s10d.
The critical value«st as a function ofD for the pitchfork
bifurcation, indicating the transition to a nontrivial stationary
state, can be found analytically by expanding the right-hand
sidesRHSd of Eq. s10d at smallX. This yields the expression

«st =
4D

4 − 3D
. s11d

Let us now turn to the general case whenX is allowed to
be a function of time. Again, making use of the probability
conservation and the expression for the dichotomous mean
field X=n2−n1 we find the equation

Ẋstd = p12 − p21 − sp21 + p12dXstd, s12d

where the hopping probabilitiesp12,21 have the same func-
tional form as in Eq.s7d, but now depend on the delayed
mean fieldXst−td rather thanXstd.

To investigate the stability properties of the system, Eq.
s12d is linearized about zero:

FIG. 4. Phase diagram fort=100 of the Langevin model
scrossesd, the Gaussian approximationsdashed linesd, and the di-
chotomous theoryssolid lines and dotted linesd. The solid line and
the dotted line, respectively, depict the primary solution and the
higher-order solutions of Eqs.s15d and s16d. Phases separated by
double lines indicate hysteretic behavior. ForX=0 andD,0.3 the
Kramers time istK.10.

FIG. 5. The critical coupling of the Hopf bifurcations«osc
1 ,0d

and the pitchfork bifurcations«st.0d, respectively. Compared are
the critical couplings resulting from the Langevin modelscrossesd
and the predictions of the DZ theorysdiamondsd including different
numbers of cumulants. For an even number of cumulants the DZ
theory predicts hystertic behavior which is not seen in the Langevin
dynamics.
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Ẋstd =
Î2

p
exps− 1/4DdS«

4 − 3D

4D
Xst − td − XstdD . s13d

The characteristic equation for the complex eigenvaluel is
found by making the ansatzX~expsltd. It reads

l =
Î2

p
e−1/4DS«s4 − 3Dd

4D
e−lt − 1D . s14d

The trivial equilibrium loses its stability and undergoes a
Hopf bifurcation indicating the transition to an oscillatory
mean-field state when the real part of the complex eigen-
value becomes positive. Therefore, the properties of the cor-
responding instabilitiessi.e., frequencies and coupling
strengths at the bifurcation pointsd can be found by substitut-
ing l=m+ iv into Eq. s14d, separating real and imaginary
parts, and settingm=0. This yields the set of equations

vt = −
Î2

p
exps− 1/4Ddt tanvt, s15d

«osc=
«st

cosvt
. s16d

This set of equations has a multiplicity of solutions, indicat-
ing that multistability occurs in the globally coupled system
beyond a certain coupling strength. For finite time delays and
positive coupling, besides the stationary solution, several os-
cillatory states with periodsTk close to but slightly larger
thant /k exist for «.«osc+

k hk=1,2, . . .j, where the transition
points are ordered as follows: 0,«st,«osc+

1 ,«osc+
2

¯. If the
feedback is negative, the system has oscillatory solutions
with periodsTl close to but slightly larger than 2t / s2l +1d for
«,«osc−

l hl =0,1, . . .j, where 0.«osc−
0 .«osc−

1
¯. In the limit

of large time delayst→`, the transition points«osc+
k →«st

and «osc−
l →«osc−

0 =−4D / s4−3Dd with the corresponding pe-
riods beingTk→t /k andTl →2t / s2l +1d, respectively.

In order to compare the predictions of the dichotomous
model with the Langevin dynamics, the peak powerPpeak
and the temporal meankXlt, resulting from the dichotomous
theory, are also plotted in Fig. 3. The phase diagram for the
dichotomous theory is shown in Fig. 4.

Figures 3 and 4 show that the dichotomous theory agrees
with the Langevin dynamics quite well for small noise in the
rangeD<0.07–0.3 in the neighborhood of the bifurcation
points. The theory also correctly describes the bifurcation
type. Indeed, the dichotomous theory predicts accurately the
noise strengthDH s=0.07 for t=100d at which the Hopf bi-
furcation changes from supercriticalssecond orderd to sub-
critical sfirst orderd. However, for very smallD the Kramers
time becomes very large, and the accuracy of numerics be-
comes insufficient for a comparison with the theory.

D. Complete bifurcation analysis

A complete bifurcation analysis of the trivial solutionX
=0 of Eq. s13d in the sD ,« ,td-parameter space can be ac-
complished by carrying out a center manifold reductionssee,
e.g., f29,30gd; that is, the normal form coefficients of the

bifurcations in our dichotomous mean field-model can be
expressed in terms of the system parameters.

For a general class of delay differential equations of the
form

ẋstd = xstd + g1xst − td + g2xstd3 + g3xstd2xst − td

+ g4xstdxst − td2 + g5xst − td3, s17d

such a reduction to normal forms of the pitchfork and Hopf
bifurcations has been carried out in Refs.f31,32g. If we cast
the equation for the mean-field dynamics of our model in this
form, we can use the results in Refs.f31,32g to determine the
functional dependence of the normal form coefficients on the
parametersD, «, and t. This can be achieved by a series
expansion of Eq.s12d up to the third order and a rescaling of
time.

The normal form of the pitchfork bifurcation reads

ż= az+ bz3, s18d

wherez is a coordinate on the center manifold. The normal
form coefficients are

a =
« − «st

«sts1 − t0d
, s19d

b =
B1 − 12DB2

384s1 − t0dD3 , s20d

where B1=«3s81D3+108D2+144D−64d, B2=«2s9D2+24D
−16d, andt0=−Î2exps−1/4Ddt /p. Settinga=0 and solving
Eq. s19d for « we again find the critical coupling of Eq.s11d.
One can show thatb,0 for D.0 and «=«st si.e., a=0d.
Consequently, the pitchfork bifurcation at«st is always su-
percritical. The stability diagram resulting from center mani-
fold reduction for the pitchfork bifurcation is shown in Fig.
6.

The normal form of the Hopf bifurcation in polar coordi-
natesr andu on the center manifold reads

ṙ = mr + ar3, u̇ = v + rr2. s21d

The coefficients determining the stability of the trivial equi-
librium and the order of the Hopf bifurcation arem and a
f33g. Expressed in system parameters, they read

FIG. 6. Stability diagram for the trivial equilibrium resulting
from the analysis of the pitchfork bifurcation. The solid and the
dashed lines, respectively, depict theb=0 anda=0 contour lines.
The stability diagram for the pitchfork bifurcation is time delay
independent.
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m = S «

«st
−

1

cosw
DS 1 − t0

s1 − t0d2 + w2 −
sinw

2
D , s22d

a =
B1B3 − B2s1 − 3t0 + 2 cos2 wd

128sf1 − t0g2 + w2dD2 , s23d

whereB3=scos2w−t0d / s4D coswd, w=v0t0, andv0=tanw.
Settingm=0 and solving Eq.s22d for « yields the critical

coupling as a function of the noise strength«oscsDd which
coincides with Eq.s16d. Setting the first Lyapunov coeffi-
cient a=0, we can find«a=0sDd. The two functions«oscsDd
and «a=0sDd intersect at a noise levelDH denoting the pa-
rameter values for which the Hopf bifurcation changes from
supercritical to subcritical. The stability diagram resulting
from the analysis of the Hopf bifurcation is shown in Fig. 7.

Let us now discuss the bifurcation properties in the limit
of large and small time delays as well as vanishing noise and
compare them with those of a single-oscillator system. The
critical coupling«st of the pitchfork bifurcation is time delay
independent and goes to zero for vanishing noise. However,
the critical coupling of the Hopf bifurcation depends on the
time delay ssee lower panel in Fig. 7d. As the time delay
increases, the maximum of the primary Hopf bifurcation line
«osc−

1 approaches the origin in thes« ,Dd plane, meaning that
oscillations may occur at an arbitrary small feedback
strength for the properly tuned noise level. This should be
contrasted to the dynamics of a single noise-free oscillator
with time-delayed feedback that only exhibits oscillations at
strong negative feedbackse,−1d. For very small time de-
lays t→0, the critical coupling strength«osc7

l,k → 7`.

E. Coherence resonance and system size effects

The system studied in this paper exhibits the phenomenon
of coherence resonancese.g., f34–37gd and array-enhanced
resonancef26,38g.

Let us discuss this in turn. If our system adopts an oscil-
latory state, the double-well potentials of the elements are
tilted asymmetrically, due to their coupling to the delayed
mean field; that is, the potential barriers separating the two
wells are periodically rising the lowering. If the period of
this oscillationT matches the time scaletK of the noise-
induced interwell fluctuation—i.e., if the mean-field oscilla-
tions synchronize with the hopping rate—we can expect that
the number of elements contributing to the oscillation and
consequently the order of the oscillatory state reach a maxi-
mum. In this spirit the time scale matching condition for
such a synchronization, which is given through

2tK = T, s24d

is a reasonable condition for the maximum order of the os-
cillatory statef28g.

To quantify the ordersi.e., coherenced of the oscillatory
state we introduce the coherence parameterb=Hvpeak/Dv,
whereH is the height of the main spectral peak atvpeak and
Dv is its halfwidth. Using the Langevin models1d, the co-
herence measureb is determined as a function of the noise
strength and in Fig. 8 compared for systems of different
sizesN.

Clearly, the coherence curves have a maximum. The noise
strength maximizing the coherence isDS<0.08. This noise
strength can also be derived from the time scale matching
condition in Eq.s24d. The Kramers timetK =1/p is given
through Eq.s7d and the period of the oscillationsT beyond
the critical coupling can be determined numerically. In Fig. 9
the two time scales are plotted as a function of the noise
strength. The curves intersect atD=0.08, substantiating the
consistency of the theory and Langevin model.

The resonance curves in Fig. 8 show that the coherence of
the oscillatory states increases with increasingN, a property
which was reported for other systems and is sometimes re-
ferred to as array-enhanced resonancef38g. Interestingly, the
enhancement of the temporal regularity with increasing sys-
tem size is only observed for macroscopic mean-field oscil-

FIG. 7. Primary solutions ofm=0 fEq. s22dg anda=0 fEq. s23dg
in the s« ,Dd-parameter space. Upper panel: the boundariesm=0
sdashed lined and a=0 ssolid lined for a system witht=100. The
black dashed line and the gray dashed line depict the parameter
values of the subcritical and supercritical Hopf bifurcation, respec-
tively. The lower panel shows the same curves for a system with
t=10 sdashed lined, t=100 sblack solid lined, and t=1000 sgray
solid lined.

FIG. 8. The coherence of the oscillatory statesb as a function of
the noise strengthD for systems of different sizesN. The time delay
and the coupling strength aret=100 and«=−0.2, respectively. Left
panel: the coherence of the mean-field oscillations. Right panel: the
coherence of a single elementxi out of theN network elements.
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lations, while the inverse holds for “subcritical coherence.”
That is, the coherence observed in the power spectra of sub-
critical mean-field fluctuationssi.e., for ueu, ueosc±ud decays
inversely proportional to the number of elements in the net-
work and becomes negligible forN.10. This is shown in
Fig. 10. Qualitatively, the same dependence on system size is
found if the delayed average does not include the delayed
element itself; i.e., the elementxi is coupled toXist−td
=o j=1,jÞi

N−1 xj.

III. TWO DELAYS

A. Langevin model

We want to generalize the above system by introducing
multiple time delays and nonuniform coupling terms. Let us
carry out the generalization progressively and study first the
dynamics of a bistable element network with a discrete bi-
modal delay distributionsi.e., with two time delaysd and uni-
form coupling. Assuming that the time delay of the interac-
tion between two elements is entirely determined by the
“transmitting” element, the system dynamics is described by
the set of Langevin equations

ẋi = xi − xi
3 +

e

2
X1st − t1d +

e

2
X2st − t2d + Î2Djstd, s25d

where

X1std =
2

N
o
j=1

N/2

xjstd s26d

and

X2std =
2

N
o

j=N/2+1

N

xjstd s27d

are the mean fields of the elements associated with time de-
layst1 andt2, respectively. Here, it is assumed that the num-
ber of oscillators is the same in both group.

B. Dichotomous theory

We want to use the dichotomous theory in order to study
the mean-field dynamics of models25d. Thus, the theory de-
veloped in Sec. II C has to be extended accordingly. In order
to describe the collective dynamics of the two-delay system,
two equations are needed, respectively describing the mean-
field evolution of the oscillator group associated with
t1 andt2:

Ẋ1,2std = p12 − p21 − sp12 + p21dX1,2std. s28d

The mean field of the entire system then isX=sX1+X2d /2,
and the hopping probabilities are given by

p12,21=
Î2 7 3a2

2p
expS−

1 7 4a2

4D
D , s29d

wherea2=«fX1st−t1d+X2st−t2dg /2. As for the model with a
singlesi.e., uniformd time delay, the numerical integration of
the Langevin systems25d reveals pitchfork and Hopf bifur-

FIG. 9. The Kramers timetK and the half the period of the
mean-field oscillationssin units of the time delayd as a function of
the noise strength. The parameters aret=100 and«=−0.2.

FIG. 10. The coherenceb as function of the coupling strength. For«,0 and «.0 the spectral peak frequency isfpeak=vpeak/2p
<0.5 1/t and fpeak<1.0 1/t, respectively. The dash-dotted vertical line depicts«osc−

1 and consequently separates domain of the macroscopic
si.e., supercriticald mean-field oscillations from the domain of subcritical coherence. The right panel shows the same as the left, but has a
logarithmic scale forb, which helps to uncover the weak subcritical coherence properties.
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cations describing the transitions to nontrivial stationary
states and oscillatory states, respectively. The critical cou-
plings for the bifurcations can be found with a linear stability
analysis of Eq.s28d near the trivial stateX=0. The proce-
dure, which is analogous to the stability analysis carried out
in Sec. II C, yields the transcendent equation for the complex
eigenvaluel:

l =
S± ÎS2 − 4D

2
. s30d

Here,S andD, respectively, are the trace and determinant of
the Jacobian matrix

J = cSg1 + d g2

g1 g2 + d
D , s31d

where the matrix elements are given throughc=−Î2
3exps−1/4Dd /8pD, g1,2=«s3D−4dexps−lt1,2d, andd=8D.
For a positive coupling Eq.s30d has always a real eigen-
value. At a certain critical coupling

«st =
4D

4 − 3D
, s32d

the eigenvalue becomes positive, indicating pitchfork bifur-
cation. This bifurcation is time delay independent and is thus
identical to those found for the system with uniform time
delaysfcf. Eq. s11dg.

For finite t̄=st1+t2d /2 and«, Eq. s30d possesses also a
finite number of complex solutions. The critical couplings of
the corresponding unstable modessi.e., of the Hopf bifurca-
tiond are given by the set of equations

vt̄ = −
Î2

p
exps− 1/4Ddt̄ tanvt̄, s33d

«osc=
8Dpv

s3D − 4dsÎ2 expf− 1/4DgJs − pvJcd
. s34d

Here

Js =
1

2
ssinvt1 + sinvt2d = sinvt̄ cosvs, s35d

Jc =
1

2
scosvt1 + cosvt2d = cosvt̄ cosvs, s36d

wheres= ut1−t2u /2. The above set of equations for the criti-
cal coupling is the two-delay analog to Eqs.s15d and s16d.
Again, we find a multiplicity of solutions, leading to the
multistability of the system in a certain area of the parameter
space. Furthermore, Eqs.s33d and s34d show that while the
frequencies of the oscillatory states only depend on the mean
time delayt̄, the critical coupling strengths of the Hopf bi-
furcations depend additionally ons.

C. Phase diagrams

The phase diagram and frequencies of the unstable oscil-
latory modes of the two-delay system are theoretically deter-

mined using Eqs.s32d–s34d and compared with numerical
findings resulting from simulations of the Langevin model
s25d. The phase diagram is shown in Fig. 11 for differents.
The phase diagrams including higher-order solutions of Eqs.
s33d and s34d are presented in Fig. 12. Also, the frequencies
of the corresponding unstable modesswhich ares indepen-
dentd are shown in this figure. The figures show that near the
bifurcation points the predictions by the dichotomous theory
are reasonably good for weak noise in the ranges0.07&D
&0.3d.

Furthermore, we find that the first bifurcation of the trivial
equilibrium at «.0 is always a pitchfork bifurcation. The
first bifurcation at«,0 is a Hopf bifurcation, which fors
,30 is determined by the primary solution of Eqs.s33d and
s34d, while for s.30, depending on the noise intensity, the
first transition may also be determined by higher-order solu-
tions associated with higher frequencies.

IV. MULTIPLE DELAYS

A. Langevin model

In this section we further generalize our delayed-feedback
system by introducing multiple time delays and study the
stability properties in dependence of the statistical moments
of an arbitrary time delay distribution.

The general Langevin model with many time delays reads

ẋi = xi − xi
3 +

«

N
o
j=1

N

xjst − ti jd + Î2Djstd. s37d

Such general models in which the time delays depend on
both the “transmitting” and “receiving” elements cannot di-
rectly be described in terms of a mean-field theory. However,
the system becomes mathematically tractable if we assume
that the time delays only depend on the transmitting elements
j :

ẋi = xi − xi
3 +

«

N
o
j=1

N

xjst − t jd + Î2Djstd. s38d

FIG. 11. Phase diagram of the globally coupled two-delay net-
work determined using the dichotomous modelssolid linesd and
numerical simulations of the Langevin modelsmarkersd. The phase
diagram is show for differents= ut1−t2u /2. The mean time delay is
t̄=100.
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In order to check if such a simplification is justified, nu-
merical simulations of modelss37d and s38d are carried out
and compared. In these simulations the distribution of the
time delays is Gaussian; i.e., it is fully determined by its
meant̄ and standard deviations. Figure 13, comparing the
critical coupling strength of the Hopf bifurcation for different
s, suggests that the above simplification is justified in order
to study the stability properties of a bistable-element network
with time delays.

This surprising result not only renders possible an analyti-
cal description of networks with distributed delays but also

implies that the number of operations, which have to be car-
ried out to study such systems numerically, can be reduced
from OsN2d to OsNd.

B. Dichotomous theory

Let us now develop the dichotomous theory for the glo-
bally coupled bistable-element network with distributed de-
lays.

For that purpose we coarse-grain systems38d. The coarse
graining is accomplished as follows: The range of possible
time delays is divided up inM intervalsIk hk=1,2, . . . ,Mj.
The size of the intervalsDk is chosen so that the number of
bistable oscillators associated with a delay, fitting in a par-
ticular interval, is for each interval the samem=N/M. In this
way oscillator groups are formed whose mean field can be
expressed as

Vkstd ;
1

m
o

t jPIk

xjstd, s39d

whereIk;ftk,tk+1g, tk=ol=1
k−1Dl, and j =1. . .N.

Assuming thatDk!t̄ /s, wheret̄ ands are the mean and
standard deviations of the time delay distribution, Eq.s38d
can then be approximated by

xi = xi − xi
3 +

«

M
o
k=1

M

Vkst − tkd + Î2Djstd. s40d

FIG. 12. Upper panel and two lower left panels: phase diagrams of our globally coupled two-delay network witht̄=100 ands
=0,10,20,30,40. Thegreen line depicts the critical coupling of the pitchfork bifurcation, and the other lines depict those of the primary
Hopf bifurcation as well as some higher-order solutionssi.e., solutions 1–15d of Eqs.s33d ands34d. The markers depict the first bifurcation
at «,0 and«.0 resulting from numerical simulations of the Langevin modelsin these simulations, starting with«=0, the coupling strength
is increased until a bifurcation occursd. Matching colors of markers and lines mean that the bifurcation type and associated frequency are in
agreement. Lower right panel: the frequencies of the corresponding unstable modes. They do not depend ons, but slightly vary with the
noise strengthD.

FIG. 13. The critical coupling of the Hopf bifurcation as a func-
tion of the noise strengthD for different s of the Gaussian time
delay distribution witht=100. The markers and solid lines depict
the critical couplings resulting from modelss37d and s38d,
respectively.
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The master equations expressing the dynamics of system
s40d in terms of occupation probabilities read

ṅ1,k = − p12n1,k + p21n2,k, s41d

ṅ2,k = p12n1,k − p21n2,k. s42d

Here the hopping probabilities are given by

p12,21=
Î2 7 3a3

2p
expS−

1 7 4a3

4D
D , s43d

wherea3=s« /Mdok=1
M Vkst−tkd.

For large oscillator groupssm→`d, Vk=n1,ks1+n2,ks2

=n2,k−n1,k holds. With this and the probability conservation
n1,k+n2,k=1 we can find the following set of equations:

V̇kstd = p12 − p21 − sp21 + p12dVkstd. s44d

The Jacobian matrix of this system is given through

J = c1g1 + d g2 . . . gM

g1 g2 + d . . . gM

g1 g2 . . . gM + d
2 , s45d

where c=−Î2 exps−1/4Dd / s4MpDd, gk=«s3D−4d
3exps−ltkd, andd=4MD. With this Jacobian the character-
istic equation, determining the stability of the trivial equilib-
rium X=0, becomes

sdc− ldM−1ScFd + o
k=1

M

gkG − lD = 0. s46d

Settingl=0 and solving Eq.s46d for « yields the critical
coupling for the pitchfork instability:

«st =
4D

4 − 3D
. s47d

It is time delay independent and thus identical with to found
in previous sections of this paper.

The properties of the Hopf bifurcationsi.e., the frequen-
cies of the unstable modesv and the critical coupling«oscd
can be found by substitutingl=m+ iv into Eq.s46d, separat-
ing real and imaginary parts, and settingm=0. This yields

vt̄ = −
Î2

p
exps− 1/4Ddt̄

Is

Ic
, s48d

where

Is =
1

M
o
k=1

M

sinvtk, Ic =
1

M
o
k=1

M

cosvtk. s49d

For large systemsN→`, the number of groupsM→` and
thus

Is =E
0

`

Pstdsinvtdt, Ic =E
0

`

Pstdcosvtdt, s50d

wherePstd is the time delay distribution function.

We can express the time delay distribution function in
terms of cumulantsKn f39,40g and solve the integrals in Eqs.
s50d:

Is = sinsg1dexpsg2d, Ic = cossg1dexpsg2d, s51d

where

g1 = o
m=0

`
sivd2m+1

is2m+ 1d!
K2m+1, s52d

g2 = o
m=1

`
sivd2m

s2md!
K2m. s53d

Consequently,

Is

Ic
= tansg1d. s54d

Since for symmetric distribution functions all odd cumulant
moments except the first oneK1= t̄ are zero,Is/ Ic=tanvt̄
holds. That is, in the case of a symmetric distribution of the
time delays, the frequencies of the unstable modes in Eq.
s48d depend only on the mean time delay.

Let us now determine the critical coupling of the Hopf
bifurcation. For large time delayst̄@tK the low-order solu-
tions of the transcendental equations48d yield frequencies
v!1. Thus the real part of Eq.s46d can be linearized near
v=0 and the critical coupling of the Hopf bifurcation be-
comes

«osc=
4Dpv

s3D − 4dS 1

N
Î2 exps− 1/4DdIs − F1 −

1

N
GpvIcD .

s55d

Then, for large systemsN→` the critical coupling is

«osc=
4D

s4 − 3DdIc
, s56d

with Ic=3 sinsvt̄dsins5vs /3d / s5vsd and Ic=cossvt̄d
3exps−v2s2/2d for uniform and Gaussian distributions, re-
spectively.

C. Phase diagrams

Equationss47d, s48d, and s56d are used to determine the
phase diagram and frequencies of the unstable oscillatory
modes f =v / s2pd of a bistable-element network with uni-
formly distributed time delays.1 The theoretical predictions
are compared with numerical simulations of the Langevin
model s37d. The number of bistable elements in these simu-
lations isN=300. The results are shown in Figs. 14 and 15.

Again, we find that near the transition points and for weak
noise intensities the predictions of the dichotomous theory
are reasonably good. Consequently, the Langevin models

1This should not be confused with uniform time delays, which
means that the delay for each coupling is the same.
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s37d and s38d are in this regime equivalent as regards the
dynamical properties of the mean field.

Equationss48d and s56d have a multiplicity of solutions
meaning that multistability is also present in our system in
the limit of continuously distributed delays. The bifurcation
diagrams including the higher-order solutions are shown in
Fig. 16. The figure shows that unlike the two-delay system,
the first transition at«,0 is always determined by the pri-
mary solution associated with the frequencyf <0.5t.

The comparison of the phase diagrams for delay distribu-
tion functions of different widthss shows that the regions of
oscillatory states in the parameter space are reduced with
increasings. This trend was already apparent in the two-
delay system, although less pronounced. These findings sug-
gest that nonuniformity of the time delays inhibits the occur-
rence of Hopf bifurcations and consequently increases the
stability of the trivial equilibrium.

Eventually, we like to mention that the coherence reso-
nance phenomenon discussed in Sec. II E is also present in

systems with multiple delays in the oscillatory domain of the
phase diagram.

V. NONUNIFORM COUPLING

A. Langevin model

The collective dynamics of the bistable-element networks
described above is restricted to periodic oscillations and sta-
tionary states. In this section we want to check whether the
complexity of the dynamics is increased if instead of the
uniform coupling, nonuniform couplings are applied. To this
end, we extend the two-time-delay models25d by introduc-
ing two different coupling strengths. The Langevin equations
of the new model read

ẋi = xi − xi
3 +

e1

2
X1st − t1d +

e2

2
X2st − t2d + Î2Djstd,

ẋj = xj − xj
3 +

e2

2
X1st − t1d +

e1

2
X2st − t2d + Î2Djstd,

s57d

where i =1, . . . ,N/2 and j =N/2+1, . . . ,N. The elementsxi
and xj belong to a group of bistable oscillators which are
associated with time delayst1 and t2, respectively. It is as-
sumed that the two groups are of equal size. The above set of
equations describes a system in which each element couples
to all the elements belonging to the same group with a cou-
pling strength«1 and to all the elements of the other group
with «2; that is, the two coupling parameters indicate the
strength of the intragroup couplings«1d and intergroup cou-
pling s«2d, respectively.

FIG. 14. Phase diagram of the globally coupled bistable-element
network with uniformly distributed time delays derived from the
theoretical modelssolid linesd and numerical simulations of the
Langevin modelsmarkersd. The phase diagram is shown for differ-
ent standard deviationss of the delay distribution function. The
mean time delay ist̄=100.

FIG. 15. The frequencies of the unstable modes at the bifurca-
tion points resulting from the Langevin modelsmarkersd and the
dichotomous modelssolid lined, which arefsee Eq.s48dg indepen-
dent of s. For uniform and Gaussian distributions the frequencies
depend only on the mean time delayfsee Eqs.s48d and s54dg.

FIG. 16. Same as in Fig. 12 but this time for networks with
uniformly distributed time delays witht=100 ands=0,10,40.
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B. Dichotomous model

We apply the dichotomous theory to systems57d and pro-
ceed in a manner analogous to the previous sections.

The evolution of the mean field of each group of oscilla-
tors is described by

Ẋ1,2std = p12
1,2− p21

1,2− sp12
1,2+ p21

1,2dX1,2std. s58d

Here, the hopping probabilities are

p12,21
1 =

Î2 7 3a4

2p
expS−

1 7 4a4

4D
D , s59d

p12,21
2 =

Î2 7 3a5

2p
expS−

1 7 4a5

4D
D , s60d

where

a4,5= f«1X1,2st − t1d + «2X2,1st − t2dg/2. s61d

Next a linear stability analysis is carried out. The linear-
ization of Eq. s58d about the trivial equilibrium yields the
Jacobian

J = − cSf3D − 4g«1e
−lt1 + d f3D − 4g«2e

−lt2,

f3D − 4g«2e
−lt1 f3D − 4g«1e

−lt2 + d
D ,

s62d

wherec andd are the same as in Eq.s31d.
Substituting the traceSand determinantD of the Jacobian

matrix s62d into the characteristic equation

l =
S± ÎS2 − 4D

2
s63d

and keeping the intragroup coupling strength«1 fixed yields
the critical coupling for the pitchfork bifurcation, which can
occur for positive and negative intergroup feedbacks:

«2
st = ± S«1 +

8D

3D − 4
D . s64d

In order to find the critical values for the Hopf bifurcation
«2

osc, we substitutel=m+ iv into the characteristic equation
and setm=0. Then, the separation of real and imaginary
parts yields the two equationsf rsv ,«2d=0 and f isv ,«2d=0,
where

f rsv,«2d = E1«1Jsv +
E1

2

4
s«1

2 − «2
2dcoss2vt̄d + E2«1Jc

+
8

p2 exps− 1/2Dd − 4v2, s65d

f isv,«2d = E1«1Jcv +
E1

2

4
s«1

2 − «2
2dsins2vt̄d + E2«1Js

+
8Î2v

p
exps− 1/4Dd. s66d

Here, E1=Î2s3D−4dexps−1/4Dd / spDd and E2=E1
Î2

3exps−1/4Dd /p. The termsJs andJc are given by Eqs.s35d
and s36d, respectively.

For finite t̄ and«2 the above set of equations has a finite
number of rootss«2

osc,vd, which can be found numerically.

FIG. 17. Time delay representationssphase portraitsd of the evolution of the mean fieldX1 in dependence of the intergroup coupling
strength«2. Shown are the evolutions resulting from the Langevin modelfupper two rows, Eq.s57dg and the mean-field modelflower two
rows, Eq.s58dg. The parameters areD=0.1, t1=60, t1=140, and«1=−0.4.
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C. Phase diagram

In order to explore the dynamics of the system with two
coupling strengths we carry out numerical simulations of the
Langevin models57d and compare the results with the theo-
retical predictions derived in the previous section. In these
simulations the strength of the intragroup coupling«1 and
noiseD are chosen so that in the absence of intergroup cou-
plings «2=0 the mean fields of the two oscillator groupsX1
and X2 oscillate independently with frequenciesf1<1/2t1
and f2<1/2t2, respectivelyscf. Sec. II Cd. We may then
expect that foru«2u.0 the system reveals dynamical proper-
ties reminiscent of those of two coupled, limit-cycle oscilla-
tors, such as chaotic behaviorf41–43g and the amplitude
death phenomenonf8,23,44g. Figure 17 shows time delay
representations of the time series ofX1std for intergroup cou-
plings of different strength«2. In certain regions the system
indeed shows the amplitude death phenomenon and in the
range 0, u«u,«chaosirregular motions are observed. Numeri-
cal evidence suggests that these motions are chaotic. Indeed,
the time series analysis yields broadband power spectra and
positive maximum Lyapunov exponents. The determination
of the Lyapunov exponents is below discussed in greater
detail.

The comparison of the phase portraits in Fig. 17 shows
slight deviations between theoretical predictions and the
Langevin dynamicsse.g., for «2=−0.1d. These deviations
stem from the elimination of the noise fluctuations in the
dichotomous model and different phase shifts between the
two oscillator groupsX1 and X2. However, the predictive
power of our model is confirmed in Fig. 18, where the the-
oretical peak powerPpeakand the corresponding periodTpeak
in dependence of the coupling strength«1 are compared with
those resulting from Langevin simulations.

Let us now explore the phase space of the system with
nonuniform couplings in greater detail.

The phase-space regions of nontrivial stationary states are
determined by Eq.s64d and those where mean-field oscilla-
tions and amplitude death occur are given by the roots of
Eqs.s65d and s66d. These roots are determined numerically.
We find that the solutions of Eq.s33d are a subset of the
solutions of f r,isvd=0. Thus, the corresponding critical val-
ues mark boundaries which qualitatively are equivalent to
those found in previous models.

However, Eq.s65d also yields new solutions marking the
boundaries between the zones of amplitude death and the
areas of nontrivial dynamics in the presence of weak inter-
group couplings. Within this areas there may occur islands of
chaotic dynamics. Indeed, an analysis of the mean-field evo-
lution yields positive Lyapunov exponents for 0, u«u
,«chaos.

Since intrinsically our time delay system is infinite dimen-
sional, the maximum Lyapunov exponents are here deter-
mined by an analysis of the time series resulting from Eq.
s58d. The analysis is carried out using tools provided by the
TISEAN software packagef45,46g.

As stated above this process yields in some phase-space
regions clear evidence of positive maximum Lyapunov ex-
ponents in the range 0,lf1/t̄g&0.03.

The phase diagrams illustrating the different dynamic re-
gions are shown in Fig. 19. The figure shows that chaotic
dynamics only occurs for strong intragroup couplings«1
*0.4—i.e., when the individual oscillations of the two
groups are strong enough.

VI. SUMMARY AND CONCLUSIONS

The dynamics of networks of noisy bistable elements with
time-delayed couplings was studied analytically and numeri-

FIG. 18. The peak powerPpeaksupper rowd and the correspond-
ing periodTpeak=2p /vpeakslower rowd of the two oscillator groups
X1 and X2 resulting from simulations of the theoretical mean-field
model s58d and the Langevin models57d, respectively. The param-
eters are the same as in Fig. 17.

FIG. 19. Same as in Fig. 12 but this time for two-time-delay
networks with nonuniform couplingssupper panels,«=−0.3; lower
panels,«=−0.4d. Oscillatory states as well as nontrivial stationary
states occur for positive and negative intergroup couplings«2. Dark
gray areas depict regions of amplitude death and light gray areas
mark regions of chaotic dynamics. The time delays aret1=60 and
t2=140.
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cally. Depending on the noise level, the systems undergo
ordering transitions and demonstrate multistability; that is,
for a strong enough positive feedback the systems adopt a
nonzero stationary mean-field state, and a variety of stable
oscillatory mean-field states are accessible for a positive as
well as negative feedback. The coherence of the oscillatory
states is maximal for a certain noise level; i.e., the systems
demonstrate the coherence resonance phenomenon.

For symmetric time delay distributions the frequencies of
the oscillations depend only on the mean time delay. How-
ever, the critical couplings of the corresponding Hopf bifur-
cations depend also on the higher-order cumulants of the
time delay distributions. Indeed, our findings suggest that
nonuniformity of the time delays inhibits the occurrence of
the Hopf bifurcations and consequently increases the stabil-
ity of the trivial equilibrium. This may be important for time
delay systems such as neural networks and genetic regula-
tory networks, since the degree of time delay nonuniformity,
which is often related to the diversity in the connectivity of
the underlying network, affects the accessibility of the non-
trivial dynamical states.

The dichotomous theory based on delay-differential mas-
ter equations, which has been developed in this article, ad-
equately describes the bifurcations of the trivial equilibrium
in the limit of small noise and coupling strength. Further-
more, the theory allows for the application of a center mani-
fold reduction and thus for a complete bifurcation analysis of
the trivial equilibrium. Far away from the bifurcation points

the mean-field properties are well described by a Gaussian
approximation. However, a theoretical approach for the de-
scription of the dynamics in the regime of strong noise near
the transition points is still lacking.

The collective dynamics of the networks of bistable ele-
ments with uniform coupling strength is restricted to periodic
oscillations and stationary states. However, our model with
nonuniform coupling strengths shows that for certain cou-
pling distributions, the system behaves like a network of
coupled limit cycle oscillators and, consequently, demon-
strates in certain parameter-space areas the amplitude death
phenomenon or exhibits a chaotic evolution of the mean
field.

This paper discusses the dynamics of globally coupled
systems with time delays. However, in many systems the
connectivity is sparse. Since this is a particular case of sys-
tems with nonuniform coupling, we may expect that this en-
dows the system with more complex dynamical properties.
This issue should be addressed in future studies.
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