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Extension of scaled particle theory to inhomogeneous hard patrticle fluids.
Il. Theory and simulation of fluid structure surrounding a cavity
that intersects a hard wall
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Integral equations describing the structure of a hard sphere fluid surrounding a cavity that intersects a hard
wall are derived from scaled particle thed&§PT). The new expressions are solved exactly for specific cavity
radii and the predictions are compared to simulation-generated results, showing excellent agreement. Addi-
tional simulation studies are conducted for cavity radii that fall outside the range of exact solution. For all
cavity sizes, an enhancement of the local density of hard spheres over that of the hard wall contact value is seen
for positions near the point of intersection of the cavity and the hard wall. The local density in front of the
cavity and away from the hard wall is depleted at small cavity sizes, but eventually approaches the density
profile created by a cavity placed within a bulk hard sphere fluid at larger cavity radii. The exact solutions and
simulation results are also used to understand why a minimum appears in the inhomogeneous SPT function

c_;(x,h) [D. W. Siderius and D. S. Corti, preceding paper, Phys. Re¥1F036141(2005].
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I. INTRODUCTION initially decreases for largek, only to return to its final

. . ) value ofp/ pkT as\ — . This behavior was attributed to the
In our preceding pap¢t], the equations of scaled particle jnf,ence of the fluid structure, and thereby the line tension,

theory (SPT) [2] were extended to a hard sphere fluid con-ihat gevelops around the cavity that intersects the hard wall.

fined by planar hard walls. A new functioG(\,h), was  Yet, the development of I-SPT in Rdfl] could not provide
introduced to describe the average density of particle centetsny information about the exact geometric origin of this be-
contacting the surface of a cavity that intersected a hard wahavior. A more detailed explanation of the properties of
in which the cavity center was located a distaiictom a  G() h) is the main purpose of this paper.

chosen reference plane. This function was determined eX- aq shown in Ref[1], G(\, 8,h) may be averaged over the

actly for various radii, similar to its bulk analog, and was .
interpolated beyond the exact limit using an asymptotic seYalid é-range to produce the average SPT funci@ ,h).
py This average function is defined by

ries. G(\,h) was then used to describe the average pressure

exerted on the cavity surface or, more importantly, to calcu- cos(-hin) )

late the reversible work of cavity insertion. The work predic- B 2 G(A, 6,h)sin 6d6

tions agreed quite well with simulation results. G(\,h) = =T (1)
The fqnctionG()x,h) is related to the the key' quaqtity of 27[ sin 0de

any version of SPTG(\, #,h), wherepG(\, 6,h) is defined 0

as the Jocal density of hard sphere centers at an afgte A number of formallyexactexpressions can be obtained for
contact with the surface of a cavity of radidscentered at — u yex xp : :

z=h=0, andp is the density of particle centers in the bulk G(\,h). For example, the probability of observing a cavity
phase(see Fig. 3 for the definition of the chosen coordinateof radius of at leask centered agz=h relative to the wall,
system. For a review of both traditional SP[R,3] and the  Py(\,h), is related toG(\,h) via

development of inhomogeneous SPT, the reader is referred to

our companion papdr]. In traditional SPT, where cavities P p— 1 dInPy(Ah) P
are inserted into a bulk uniform fluid; is not a function of ’ 27 (A% + \h) AN '

0 or h because the system is isotropic. Within inhomoge- I TSV . . .
neous SPTor I-SPT) th}i/s dependence%annot be overlookged':Or A=1h*+(a/2)?, Po(\,h) is known exactly in which
since the fluid is anisotropic near the hard wall. Conse- Mh

quently, the average functiorG(\,h), exhibits behavior Po(\,h) = 1‘7Tf p(2)[\* - (z- h)?]dz,
markedly different from the bullG(\). Whereass(\) begins 0

at unity (for A=0) and asymptotically approachegpkT as

2
A—o, G(\,h) begins at the value op/pkT (for A=-h), A=< A /h2+<i;> , (3)

wherep(z) is the local density of hard spheres at a distance
*Electronic address: dscorti@ecn.purdue.edu from the hard wall when no cavity is present. Substitution of
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the above into Eq(2) yields the following exact form of simulation data for those outside the exact range. The paper

G(\,h): is concluded in Section V.
N+h
f p(2)dz Il. REVIEW OF THE SPT INTEGRAL EQUATION FOR
~ _ 0 THE BULK HARD SPHERE FLUID
pG()\ah) - A+h ’
(A + h)(l - Wf p(2[N? - (z- h)z]dz> Before discussing the extension of the SPT integral equa-
0 tion to inhomogeneous fluids, we provide a somewhat de-
tailed overview of the integral equation that is applicable to
o \? unconfined, isotropic hard sphere fluids. This integral equa-
A< /h*+ (E) : (4)  tion was first derived by Reiss and Casbfsj though the
derivation given below follows from a similar analysis de-
Integration of Eq(2) also reveals that veloped later by Reisst al.[7].

N We begin with the definition of an auxiliary function.

Po(\,h) :ex%— ZWpf E(r,h)(r2+ rh)dr). (5  Consider some arbitrary point within the fluid and suppose
-h that a cavity of radius of at leaatis centered at that point.

Let B(\,R)dR represent the probability of observing the

-Io-fh tehsig fp(;upr efxact relations will prove useful in later SeCtIOnSnear particle centeli.e., nearest neighbpto the cavity aiR

. in dR, whereR is the vector joining the cavity centécho-
_ Although ave_ragmg;()\,t_?,h) 9ver the su_rfac_:e of the cav- sen to be the originand the hard particle center. There is no
ity to produce G(\,h) assists in the derivation of useful angular dependence in an isotropic fluid, thgé\,R)
physical and statistical mechanical quantities, more detailed g() |R), whereR=|R|. Later, we will see that this symme-
information regarding the fluid structure about the cavity,try does not exist for fluids confined between hard walls.

i.e., information onG(A, 6,h), is unfortunately lost. A better Thjs nearest neighbor probability is related to two other sta-
understanding o5(\, 6,h) is, for example, important for a tistical geometric quantities throudf]

complete description of the depletion, or entropic, forces that
arise between a hard particle and a hard wall. The true origin B(\,R)AR = Py(RIN)pG(R)AR. (6)

of deple_tion_ fo_rces in hard particle_systems resides in _therhe first term on the right sid@,(R|\), is the probability of
geometric distribution of solvent particle centers Surro”nd'n%bserving a cavity of radius of at leaBton the condition
the solute or the equivalent cav@]._AdditionaI knowledge that a cavity of radius. is present at the origirP(R|\) is

of the ¢ dependepce oB(»,,h) W'”. therefore Iead.to 4 then multiplied by the probability of observing a particle at
better understanding of the geometric effects that yield botrlw_2 in dR, or pG(R)AR, where pG(R) is the local density of
att:ﬁc\t\ll\;lztafr:) (Ijlc:\(/avzuI\?v“e/ep(rjeespekran??Eepggg\?;?i%aaéf an integral particle centers contacting a cavity of radidsto give the
equation that describes the fluid structure surrounding a ca\RrObab”'ty of finding the nearest neighbor @tin dR. By

ity that intersects a hard wall. Using this equation, we obtain"’lrgument of conditional probabilities one can wiig}

for certain cavity radii the exact form oB(\, 6,h). This Po(R) R )
integral equation is based on the SPT integral equation first Po(RIN) = Pony X ‘47TPJ GMrdr), (V)
derived by Reiss and Casbdfg] to approximate the radial 0 A

distribution function of the hard sphere fluid. Lé@] later ~ where the exponential term results from substitution of the
derived the same equation, though starting from a set of reSPT form forP, similar to Eq.(5). Therefore,

lations provided by Reisst al. [7]. Here, we extend the R

approach of Refs[6,7] to describe cavities intersecting a _ 2

hgfd wall and, wh[en ]possible, solve the resultant eqt?ation AR _’JG(R)E!XP<_4WPJA Gy dr). ®)
exactly. We also present simulation data at cavity sizes for

which the integral equation cannot be solved exactly. OverWWhereR=\, we have that

all, the integral equation provides the needed information to _

understand why the I-SPT functidd(\,h) exhibits a mini- BN = pG(N). ©
mum[1], despite the appearance of a density enhancement &tso, a derivative of Eq(8) that will later prove useful i$7]

the point of intersection between the cavity and the hard
wall. IBAR) _

R
= G(R)exp<—47-r f G(r)rzdr>[4w G(\)A?]
The paper is organized as follows. Section |l reviews the 2N P P N P

derivation of the bulk SPT integral equation. Section Il in-

cludes a definition of the current system geometry and con-
tains a complete derivation of the SPT integral equation now
applicable to cavities located at a hard wall. An exact closure
condition is also presented. Section IV discusses the numeri-
cal results obtained from the solution of the integral equation Now consider the cavity-particle correlation function
for hemispherical cavitiesh=0) in the exact range and pg(\,R)dR, which denotes the probability of finding a par-

A. Derivation of the bulk SPT integral equation
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FIG. 1. Diagram of a given configuration of two hard spheres FIG. 2. A particular configuration ofs]two hard spheres that is
near a spherical cavity of radius The dashed line represents the described by the correlation functiog®l(\,6,,R) in which A
cavity in which its nearest neighbor is at positibrand is labeled ~ = ¢/2. The cavity of radius. is denoted by the dashed line and the
particle 2. The particle @R is labeled 1s is the distance between Center of particle 2 is found on the cavity surface. The exclusion

the two hard particle centers, measures the angle betweRrand sphere of particle 2 is given by the dashed-dot line, denoting the
L, while ¢, measures the rotation aroufd region in which no other particle center may be found. Particle 1 is

located a distance dR from the cavity center and its distance to

. . . . . . article 2 iss.
ticle center atR in dR given that a cavity of radiua is P

located at the origin. Isotropy again demands that, R)
=g(\,R). Since a cavity of radius of =¢ is also equivalent
to another hard particlg2], g(o,R) is identical tog(R), the
radial distribution function of the pure component hard
sphere fluid. The cavity-particle correlation function can be
represented by the following formally exact integral equation

For later use, manipulation of E¢l1) simplifies the in-
troduction of a closure condition fa®! that allows for an
exact solution of the SPT integral equation for a limited
range ofA andR. Differentiating Eq.(11) with respect ta\,
using Leibnitz’s rule, yields the following derivative of

ag(\,R)  dB(\,R T
ILI=R p JA.R) _ SR ‘P(B()\,)\)f sin 6,d6,
PO\ R)AR = S0\, R)AR + ( J B Lpg L, R)dL )dR. n N 0
L=\ 27
(11 XJ dep,g* I\, 05, 5, R)
0
The origin of the two terms in Eq11) is illustrated in Fig. 1. _ RLZdLaﬂ()\,L) T 0,46
Let the particle whose center is foundRatin dR be labeled N N J, SN 02002

1. Now, particle 1 may be the nearest neighbor to the cavity, )

hence giving rise to the first term on the right-hand side of 4

Eq. (11). If particle 1 is not the nearest neighbor, then an- Xfo dgsg°(L, 0y, ¢2’R)>’ 12

other particle, say 2, is the nearest neighbor and is located at

L in dL. (Clearly, \~L<R, whereL=|L|.) The second where we have used., 6,, ¢,) as the coordinates for particle

term on the right-hand side of E¢l1) results from multi- 2 and expandedL to L2 sin 6,d6,d¢,. Because the system

plying B(\,L)dL, the probability that the nearest neighbor, is isotropic, there is n@, dependence. Thus, substitution of

particle 2, is aL in dL, by pg'®'(L ,R)dR, the probability of  Egs.(9) and (10) into Eq. (12) and integration over the,

observing particle 1 &R in dR given a cavity of radiug. at  terms reduces the above [t]

the origin and the nearest neighbor 2ain dL. The result-

ing total probability is then integrated over all positions in g\, R) = 4mp\2G(\)g(\,R)

which particle 2 is the nearest neighbor. Because the fluid is I\ P ’

isotropic,gl®! only depends o and not the vector position -

R. Hence,g®I(L ,R)=¢"*(L ,R). - 2mpN2G(\) f sin 6,d6,03(\, 6, R).
Equation (11), which describes the fluid structure sur- 0

rounding a cavity, is formallyexactbut cannot be used to (13)

solve forg(\,R) without knowledge ofB¥l(L ,R). g%l is not

known in general, however, and an approximate form, ofEquation(13) provides a more convenient starting point than

closure condition, must be introduced into H41). This Eq. (11) for obtaining g(\,R) when an expression for

SPT integral equation is fundamentally different from previ-g¥)(\, 6,,R) is generated. In Eq13), one can see that®! is

ous integral equations in that the definition of the three-bodyevaluated folL=\, meaning particle 2 always resides on the

correlationg® is not tied to Eq.(11). In fact, g®! can be surface of the cavitysee Fig. 2 This greatly simplifies fur-

computed directly from simulatiof6,8] without the use of ther analysis, since we only need to consider configurations

Eqg. (11). Consequently, the generation of closure conditionsvhere particle 2 is on the cavity surface when determining an

for g3l can rely heavily upon physical intuition. expression fogl®,
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B. Exact analysis ofgl®l(\, 6,,R) for A<a/2

Becausd.=\ in g3, the only configurations that need to

be considered are similar to the one displayed in Fig. 2, in

which the center of particle 2 is located on the cavity surface.

Furthermore, as illustrated in Fig. 2, whar=o/2, the ex- :

clusion sphere of particle @he spherical region of radius : r \\ 0

that surrounds a particle and cannot contain another particle ;

centej completely masks the cavity. No other particle center : ~

besides 2 may make contact with the surface of the cavity. N\

Hence, the conditional probability of observing a particle at

R is governed solely by the particle-partidle 2) correlation

rather than the cavity-particle-particlgt®)) correlation. Us-

ing this information, one can exactly say far<o¢/2 that

g®l(n, 6,,R)=g(s), whereg(s) is the value of the pair corre-

lation function for particles 1 and 2 separated by a distance '
Due to the hard core interaction between particles 1 and 2, z=0

g(s) is identically zero fors<o. If we now choose a fixed

value ofR, s will take on its maximum value when the cavity FIG. 3. An illustration of the chosen curvilinear coordinate sys-

and both particle centers are colinear, issR+\. There- tem.\ is the radius of the cavity centeredzth<0.r is a vector

fore, when R+\ <o, s is always less thanr so that originating from the cavity center and is described by the lemgth
g®l(\, 6,,R)=0. In this case, Eq13) reduces to and the angle#g and . The origin of thez axis is locatedr/2 from
the hard wall wherer is the diameter of a hard particle. Only the

_ 5 _C _ portion of the cavity that extends to the right o0 is shown in
_4’7Tp)\ G()\), )\\E, )\\R<U'_)\, which A=-h.

v7

dlng(\,R)
N
(14)

by p(2). As shown in Fig. 3,h is the z coordinate of the
cavity center. Foh=0, the portion of the cavity that extends
beyondz=0 is hemispherical, while fan<0, the portion of
the cavity beyond=0 is shaped as a spherical dapwhich
N=-h). We do not consider cases for>0 in this paper.

where the bound oR is modified as a reminder th&= \.
The initial condition necessary for solving Eql4) is
g(0,R)=1, since no cavity-particle correlation exists when
A=0. By integrating and applying the initial condition we

obtain[3] Unlike a spherical cavity within a bulk fluid, the extension of
A 1 SPT to this inhomogeneous system requires the use of a cur-
g\,R) = exp<4pr G(r)rzdr> =, vilinear coordinate system. With the center of the cavity at
0 1- 577’))‘3 z=h chosen as the origin, the vector coordinatesrfare the

lengthr and the angle® and ¢. 6 is measured from a line
perpendicular t@=0. ¢ is the rotation around this line. The
o coordinates may be easily changed frGmé,h) to z by the
A= 2’ A<R<o-}, (15) relationshipz=r cosé+h.

where the known form o6(r) for r <o/2 has been substi-
tuted[2]. It is interesting to see that in this subspagk,R) A. General integral equation
is not a function ofR and is identical taG(\) [2].
Just like the bulk fluid, we begin by considering the fol-
lowing nearest neighbor distribution function. Consider an

ll. SPT INTEGRAL EQUATION FOR THE CONFINED arbitrary point withz coordinaten<0 and suppose that a
HARD SPHERE FLUID: CAVITY INTERSECTING cavity of radius\ is centered at that point. We now denote
A HARD WALL the nearest neighbor distribution function BgA ,R ,h) such

that B(\,R,h)dR is the probability of observing the nearest

In this section, the bulk fluid SPT integral equation is . . o
o - . eighbor to the cavity at the vector positiéh within the
modified to describe the local density of hard spheres abom\%olume elementdR (noting that|R|=)). As before, this

cavity that is intersecting a hard wall. Figure 3 defines the L .

system geometry for the fluid confined by hard walls at oné)mbab'“ty Is also given by

particular limit in thez direction, where thex andy direc-

tions are unconfined. Thecoordinate originates a distance

of o/2 from the actual hard waliz=0 is an effective hard B(\,R,h)dR = Py(|R|,h]\,h)pG(R,h)dR,  (16)
wall to the particle centers because the particle centers may

not approach the wall closer thar/2. As discussed in our

previous papef1], the local density of hard sphere centerswherePy(R,h|\,h) is the probability that a cavity of radius
(when no cavity is presents only a function ofz, denoted |R|=R exists atz=h on the condition that a cavity of radius
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R_
w =pG(R,6, h)exp(— prf G(r,h)(r*+ rh)dr)
A

X [2mpG(N, ) (A2 + \h)]
= 2r(\2 + \h)pG(\,h) B\, h,R), (19

where the second equality follows from substitution of Eq.
(19).

Analogous to Sec. I, we now introduce the cavity-particle
correlation functiong(\,h,R), wherepg(\,h,R)dR is the
probability of finding a particle coordinate Rtin dR on the

condition that a cavity of radius is at z=h. Note that for

FIG. 4. Two-dimensional representation of a particular configu-lR|=\, when the particle is at the cavity surface,

ration of hard particles surrounding a cavitghown by the long
dashed ling of radius\. The cavity is centered a=h=<0. The

g(\,h,R,0)=G(\,0,h). This conditional probability is de-
pendent on whether the particle locatedRaidenoted by 1 in

main particle of interest is labeled as particle 1 and its vector posiFig. 4) is the nearest neighbor to the cavity or another par-
tion is given byR. The particle that is the nearest neighbor to theticle (denoted by 2 in Fig. ¥is the nearest neighbor. Similar

cavity is labeled as particle 2 and its position is givenLhy

\ is already centered ath andpG(R,h)dR is the probabil-
ity that a particle center is found Btin dR on the surface of
the cavity. BothB(\,R,h) and G(R,h) are implicitly sym-
metric in ¢; thus B(\,R,h)=B(\,R,6,h) and G(R,h)
=G(R, 6,h). Note thatR>-h, otherwise the vector position
R would not identify a relevantz. By argument of condi-
tional probabilities,

Po(R,h)
Pyn, h)—ex% 277pf G(r h)(r +rh)dr>

17)

Po(RA\, ) =

where we have introduced the I-SPT functig(v\,h) using
Eq. (5). Entering the above into Eql16), we find that

R_
BO\LKR) = pG(R, 0,h)exp<— 27Tpf G(r,h) (2 + rh)dr) .
A
(18)

Again, the derivative of3(\,h,R) with respect ton proves
useful. Differentiation of Eq(18) yields

ﬂ,B()\, h,R)
N

dg(\,h,R)
PN

cos X-h/L) 9 )\,h,L,H 27
f 2de sin 92‘”2%] dep,gl(L, 6, ¢2,R))-
0

to Eqg. (11), one can write the formallgxactintegral equa-
tion
ILI=R

B\ hL)p

L|=x

pg(\,h,R)dR = B(\,h,R)dR + (J
\

x gL ,R)dL)dR, (20)

wherepg®(L ,R)dR is the conditional probability of finding
a particle aR in dR, provided that a cavity of radius exists
at z=h and its nearest neighbor is htin dL. Again, the
definition of g3 is not tied to Eq.(20), and can be deter-
mined independently of Eq20) by either physical argu-
ments or molecular simulation. The second term in @G)

is integrated over all positions for which particle 2 is the
nearest neighbor, i.el<|L|<R. Note thatpg(-h,h,R)
=p(Rcos#+h), because foh=—h no portion of the cavity
extends beyond=0 so thatpg(—h,h,R) is simply the den-
sity of particles at the coordinate corresponding to the vec-
tor positionR. This same limit also applies f&>\ where
the influence of the cavity is no longer felt.

To obtain an expression fog(A,h,R) independent of
B(\,h,R), we continue by differentiating Eq20) with re-
spect to\. After expandingdL in terms of the curvilinear
coordinateqL, 6,, ¢,) for particle 2, the result is

cos’l(—h/A) 2m
—p[ A2 J sin 6,d6,80\, 0\, 6) f dep,0 (N, 62, 62, R)
0

(21)

This equation is simplified by recognizing tha\ ,h, A, 6;,) =pG(\, 65, h), which is the local density &, on the surface of the
cavity. Substituting Eq(19) into the above yields, upon rearrangement,

d9(\,h,R)

Py =2a(\?+ )\h)pa()\,h)g()\,h,R) - p)\zf

0

cos }(-h/\)

2
sin 6,d6,G(\, h, 6,) f de, 0PN, 65, $,R). (22
0
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Although the¢, dependence remains @! because the fluid

is not isotropic, the resulting integral equation fgi ,h,R) """"" ~.
is analogous to the expression derived by Reisal. [5,7] : S
for bulk cavities. Sincey®! is not known in general, further !
manipulation of the integral equation relies upon the genera-
tion of closure conditions fog!l. By closely examining Eq.
(22), we again see thdt=X in gi°l, meaning thag!®! needs

to be evaluated when the center of particle 2 resides on the
cavity surface. Similar to the bulk SPT integral equation, we
can use this restriction to provide an exact closure condition
and, hence, an exact solution of Eg2).

B. Exact closure ofgl3l(x, 6,, ¢,,R) K

1z=0
Sinceg® is evaluated fot. =\, the only configurations of 7=h
interest are similar to the one depicted in Fig. 5. For this
configuration, we choose= - h?+(o/2)2, which causes the FIG. 5. The two-dimensional representation of a relevant con-

exclusion sphere of particle 2 to completely mask the cavityfiguration forgi®l(x, 6, #,,R). The long dashed line represents the

In this case, the cavity does not contribute to the three-bod§avity of radius \ centered atz=h<0, in this case A
correlation. Only the particle-particle correlation matters.= V" +(0/2)?. Particle 2, the nearest neighbor, is located on the
Furthermore, particle-particlél, 2) interactions are not al- surface of the cavity as demanded 0¥/, 05,42, R). R is the
lowed for particle separation distancessdéss thans since distance from tht_a cavity center to particle 1 ae_nd; the distance

the hard cores of each particle prevent such overlaps frOrﬂetvyeen the particle c_enters. The dashed-dot line represents the ex-
occurring. Thus, for all configurations in whick<o, clusion sphere of particle 2.

g%\, 6,,#,,R) is identically zero. Unfortunately, this re-

quirement is fulfilled by a large number of radius-position gOuhR.6) = p(Rcosf+h) 1

combinations, and the resulting subspace is not easily de- T p Po(\,h)’

scribed. There is, however, a bound Bnbelow which all

combinations lie in this subspace. This boundRis found o\ 2

when the cavity and both particle centers are colinear along —h<A<./h+ (—) , s<o, (25)

the z=0 plane, i.e.s=\\?>-h?+\R?-h? (particle 2 resides 2

above the cavity and particle 1 is below the cayitgince  \yhere we have eliminated the vector notation.

R=\ and we are considering configurations in whifi o, Equation(25) can be used to generate exact information
the restriction orR for this formally exactregion becomes aphout the local density at the cavity surface, or the I-SPT
A<R<\0?-20\\?~h?+\2. With this restriction, the inte- function G(\,0,h). As noted before, whenR=X\,

gral equation reduces to g\,h,\,0)=G(\,6,h). Therefore, G(\,6,h) for this
o \-range is giverexactlyby
dlng(\,h,R
INAR) 2 NGO,
O\ p(Ncosf+h) 1
G(\, 6,h) =
PO()\!h)
2
—h<\a< h2+<g) , s<o. (23 _ p(\ cosf+ h)
- N+h )
_ 2 _(7_1)2
Finally, integration from H to \ yields P(l Wfo p(2[\° - (z-h) ]dz)
p(Rcoséh+h)
g\, hR)=——— oz
P -h=s\< \/h2+<—), (26)
N 2
X 2
exp(ZWpJ_h G(r.h(r+ rh)dr) ' where the second equality results from the substitution of the

exact form ofPy(A,h) given in Eq.(3). If the second line of
Eq. (26) is averaged over € #<cos(-h/\), followed by a

2
—h<\=q/h?+ (g) , s<o, (24)  change of variables frort\ , ) to z, G(\ ,h) as shown in Eq.
(4) is recovered, thereby demonstrating consistency with

where the initial conditiomp(R cos#+h)/p has been entered [|-SPT[1].
for g(—h,h,R). This expression for the cavity-particle corre- A closer examination of Eq.26) provides the additional
lation function can be simplified by recognizing that the ex-derived information regarding the functioB(\,6,h). At
ponential term is equal to Pj(\,h) [see Eq.(5)] resulting least forz= ¢/2, the density profilep(z) decreases with an
in increase irz. Therefore,G(\, #,h) is an increasing function
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of g for fixed A andh. This trend is expected to continue for =\ and substituting the exact form &(\) to yield
cavity radii that fall outside the exact range. A particularly

interesting result is obtained fdi,=cos(-h/\), the inter- p(\ cos6) o
face of the “three phasestavity-wall-fluid) where the cav- G(\,0) = Y , NS > (30)
ity surface intersects the=0 plane. Entering, into Eq.(26) p<1 - Wf p(2)(N2 - zz)dz)
yields 0
G(\, 6,h) = @ 1 - P 1 , Evaluating the above ad=7/2, where the cavity overlaps
p Po(\,h) pkTPo(\,h) the hard wall, again reveals an enhancement of the local
density above the hard wall contact valugpdkT. This exact
N < /h2+ (g)2 27) form of G(\, 6) will be used in the next section to explain
2/ why the minimum of G(\) occurs befores/2, despite

Since Po(\.h)=1, G(\,00,)=p/pkT for radii in this C ™2 =P/PKT.

range. In other words, the local density at the three-phase
interface is enhanced above the hard wall contact value of IV. RESULTS
p/KT.

While this density enhancement can be explained using In what follows, we examine the cavity-particle correla-
physical argument&s will be done latér it is seemingly at  tion function as generated via the exact formulas and Monte
odds with the initialdecreasdn G(\,h) with an increase in  Carlo (MC) simulation. The density profiles may be gener-
\ reported in Ref[1]. Because the density at the three-phase?ted for any of the geometries described in the previous sec-
interface exceedp/kT, the density around the remaining 1N (N=0), but we show results for hemispherical cavities
portion of the cavity must therefore be less, perhaps signifionly- The conclusions drawn for the hemispherical cavity
cantly, thanp/kT so that the average density at the cavity Will apply to the other cases as well. _ _
surface is always less thankT. In fact, this can be inferred  We performed MC simulations in the isothermal-isobaric
analytically for cavities in the exact range. The ratio betweerfNPT) ensemble with hard walls imposed at thémits and

the local density at the cavity surface @0 and 9=, is  Periodic boundary conditions in theandy Cartesian direc-
given by tions [9,10]. The position of the cavity center located at

=h=0 and its radius\ were fixed for the duration of the
pG(\,0,h)  p(\+h) simulation. Five hundred hard particles were used to ensure
pG(\,6,h)  p(0) the existence of a bulk phase in the middle of the simulation
) ) ) i o cell. After a equilibration/relaxation period of 3
_Slnce simulation-generated density profiles |_nd_|cate;bI(13t x 10* cycles(N particle moves and one volume adjustment
is always less thap(0)=p/KT for z>0, the ratio in Eq(28)  er cyclg, the simulation began the production run of accu-
is always less thMLCOnsequently, for cavities in thenyating the appropriate averages. During the production
exact range\ < \h*+(o/2)?), the local density at the front ryn, the simulation sampled f@(\,h,R) by measuring the
of the cavity is less than that at the three-phase interfacgjensity profile surrounding randomly placed cavities every
[This result is true in general sin€&\ ,h)<p/pkT and, as  five cycles. Thex andy positions of the cavity centers were
observed via molecular simulation, a density enhancemerghosen at random, while theposition was fixed az=h
abovep/kT always appears at the three-phase interface forelative to one of the wall§the particular wall was also
larger radii] A detailed discussion of how the above- selected at randomlf a cavity was successfully inserted at
mentioned properties @(\, 6,h) give rise to a minimum in  this location(i.e., no particle centers were found inside the
G(\,h) is delayed to the following section. cavity), a counter was updated and the density profile sur-
Since the hemispherical cavith=0) was shown to be a rounding the cavity was then sampled by measuring the ra-
special case in that the minimum of its average I-SPT funcdial distanceR and angleéd to each particle center in the
tion, G(\), was always found in the exaot-range (\ simulation cell. AfterN trial msert.lons thg simulation re-
0sumed normal MC moves. Density profiles were sampled
after every 5 MC cycles with a total simulation length of 10
production cycles being performed. Afterward, the average
density at eachR, 6) position was normalized to yield the
X functiong(\,h,R, ). This method provides better sampling
p(Rcos6) — of the density profile around the cavity compared to gener-
9\ R6) = p exp<2wpfo G(r)rzdr> ating density profiles about a small humber of cavities that
are always maintained inside the simulation cell. Unfortu-
nately, this method becomes inefficient for large cavity radii
and higher bulk densities because the probability of ran-
29) domly observing large cavities is extremely low. Finally, the
details of howp(z) was generated during the simulation are

G(\, 0) for h=0 is recovered by evaluating ER9) at R  found in Ref.[1].

(28)

this system. For ease of notation we drop théependence,
so thatg(\,h=0,R, §)=g(\,R, 6). Hence, entering=0 into
Eq. (24) yields the formallyexactrelation

_p(Rcosh) 1

o
, A=—", As=sR<o-A\.
p Po(\) 2
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FIG. 7. (Color online g(\,R, 6 generated via MC simulation
for A\=0/4 andpc®=0.5.z is the distance from the effective hard
wall, while x andy represent the respective distance from the cavity
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ad \\\\\\\\\\\\\\\\\Q\\\t\‘\\\\\\\\g‘\\\i\\\““t““ center. The local den;iFy is enhanced beyprhkﬂ for z=0 and for
Mk W small x or y. For positions far from the cavity centeg(\,R, 6)
. 2-5““ \ resembles the wall-fluid density profiléz). The apparent decrease
;’g 25 in g(\,R, 0 alongz=0 is not a true decrease, but is a result of the
< 1.54 method used to count particle centers in a solid angle wedge.
()]
14
0.54- g(\,R, 0) is common to radii in the exact ran@e< o/2) for
05l any fluid density. We also present in Fig(bp the corre-
0 sponding simulation-generateg , R, 6). The simulation re-
) 0,05 sults are nearly identical to the exaygh ,R, 6). An enhance-
z/c 0.5 05 xyio ment in the local density abovp/pkT is seen forz=0,
() 0.75 0.75 ’ g(\,R, 0) is constant for fixed, andg(\,R, 6) decreases as
z increases.
FIG. 6. (Color onling (a) g(\,R, 6) calculated from simulation- In both plots of Fig. 6, the cause of the initial decrease in

generatedp(z) for A\=c/4 and pa®=0.5. The hard wall contact

value ofp/pkT=3.3070 is indicated by the arrow.is the distance . . .
from the effective hard wall and is related {®, 6) by z=R cosé. x by the analytical expressions G\, R, 6), the local density

andy represent normal distances to the cavity cengé.,R, 6) at the f_ront(0=0) of the cavity is less tha_m that at the three-
exceed/ pkT for 6=m/2, corresponding ta=0 (/=0 corresponds phase '_nterfacéa: 77/_2)' Th_e_local density around m_os_t of
to x,y=0). For fixedz g(\,R, 6) is constant(b) g(\,R, §) gener-  the cavity, however, is sufficiently lower than the=0 limit
ated via MC simulation foan=c/4 andps®=0.5. The simulation-  of pG(0)=p/kT, thereby causing the average density to fall
generatedj(\, R, 6) is nearly identical to the exact result, showing below p/kT. As the radius of the hemispherical cavity ini-
enhancement beyorl pkT for 6=/2 and constang(A,R, 6) for  tjally increases, the cavity “sees” a rapidly decreasing local
fixed z density at the front of cavity. The net effect is a reduction of
the average density surrounding the cavity.

a()\) with an increase in becomes apparent. As anticipated

A. Exact g(\,R): Hemispherical cavity

B. Simulation g(\,R): Hemispherical cavity

CalF(!g\L/Iirte (Gha—) (()j)lsoaliy—s t/h f I?]Xt?]cg(r);,nR,eﬂ)og)L% h/ejfn ;Sn%hg: We also used molecular simulation to investigate
yih= -7 9 =7 og(\,R, 6) for cavity radii, as well as values &, outside the

. 3 ) : .
a bUI.k density ofpo™=0.5. For this cavity radius and bulk exact range. Figure 7 extends the range of the results in Fig.
densityPo(\)=0.9597 as calculated fro@(\) [1]. We also () beyond the exact limit oR=30/4 for A=¢/4 and

observe thag(\,R,7/2)=3.446 (for positions correspond- (53=0.5. Although the density of particle centers is en-
ing to z=0), which exceeds the hard wall contact value ofhanced in the region immediately surrounding the cavity, the
p/pkT=3.307. In addition, Fig. @ reveals thag(\,R,0) is  density perturbation caused by the cavity does not extend
constant for a fixedz and thatg(\,R, 6) decreases with an that far into the fluid. For distances in taelirection greater
increase irg, results which are both predicted by Eg9). In  than about 1.5 from the cavity center, the distribution of
fact, g(\,R, 0) decreases below unity for positions near particles resumes its normal shape, becoming nearly identi-
=0 (corresponding ta,y=0 in the figureg, indicating that the cal top(z). The apparent decreasedt\,R, ) alongz=0 in
density of particle centers near the front of the cavity is de+ig. 7 is an artifact of the method used to deterngnaot an
pleted below that of the bulk density. This behavior of actual decrease. Particle centers are counted in solid angle
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FIG. 8. (Color onling g(\,R, §) for A\=¢ and pa>=0.5 gener- Ric

ated via MC simulationz is the distance from the effective hard . . .

wall and x and y measure the perpendicular distances from the FIG. 9. The cawty-partlple functiog(c,R,0) and _bU|k RDF

cavity center. The density is enhanced beypigkT at the three- g(R) plotted versus radial distané@for po*=0.5.9(R) is denoted

phase interface, but the enhancement is localized cloge Y& o b{ the solid Iilne andy(o,R, ?) b%’ the circles. Ahcavityfof radius
and z=0. Far from the cavity centeg(\ R, resemblesp(z). =0 IS €quivalent to a particle of diameter{2]. The two functions

Along =0, howeverg(\,R, 6) resembles the bulk RDE(R). are nearly identical and deviations may be attributed to simulation
noise.

wedges that become larger with increasRaartificially de-
creasingg for large R and ¢ near /2. Far from the cavity ~reported by Henderson in a study of hard spheres adsorbed in
center, the correct value offor §=7/2 (z=0) is p/ pkT. wedgeq 11]. Since hard particles are most likely to reside in
The shape ofg(\,R, 6), however, is quite different at locations that are protected from collisions with other par-
larger cavity radii. Figure 8 shows(\,R, 6) for A\=c and  ticles, particles therefore congregate near a given boundary.
pa3=0.5 as generated by MC simulatidigain, the previ- Fo_r the cavity geometries studled here,_ a particle is most
ously mentioned artificial decrease appears aton@, due to  Shielded from interactions with other particles when it is lo-
the method chosen to count particles at vari(Rs) pairs] cate_d at the intersection _of the cavity W|th_the hard wall. A
Note that this cavity is equivalent to a hard sphere placed (Rarticle_ at this position will experience collisions only from
z=0. In this caseg(\,R, §) atR=\ and #=/2 is enhanced the “fluid” side of the particle; no collisions will occur on the

to 5.588, exceeding the corresponding values for cavities chavity side. Thus, an effective force develo_ps that serves to
N=0/2 [e.g., for po®=0.5 and\=a/2, g(\,R, 6) at R=\ push the particle towards the three-phase interface. This ef-

and 6= /2 equals 3.51P Yet, the enhancement at the three- fectlve force is strongest around the point where the cavity

phase contact rapidly decays with the density increase is mterse)z{c_ts tt::e thhard Wﬁ”’ S0 t?a:c th_eldens_lty el\?lhancement ('js
concentrated within a narrow region in contrast to the broadargt_es Iml fe ree]lp;\ a;f n err] acia reglton._" doreIO\t/er,than
enhancement observed for small cavities. We also see thBficuiarly for smalia, this enhancement will depiete the

the first minimum of the density profile nearly wraps aroundnumber. of particles that feSid‘? hear the remaining portion of
the cavity, forming a distinct trough ig(\,R, 6). The loca- the cavity surface. The exclusion sphere of a particle located

tion of this minimum is commensurate with the first mini- at the three-phase interface overlaps the_ majority of the cav-
mum of the wall-fluid density profile(z) for positions near ity surface(or completely covers the cavity when= o/2),

0=/2 or far from the cavity, but resembles the bulk radial ;&%riizyalgggirgg at\t]vz pfrr%t?;t:mgty, and so local density, of
distribution function(RDF), g(R), for positions neap=0. In y )

. Th i f Fig. ith Fig. I Is wh
Fig. 9, bothg(\,R, 0) for A=c and =0 and the bulk RDF, — © cc.)mpan'son or g 8 V\;It | '9. 6 asoﬁr_ehveas Wiy
obtained from a separate bulk fluid MC simulation, areG()‘) begins to increase again for large enouglThe aver-

shown forpa3=0.5. The two correlation functions are nearly 29 density along the cavity surface for o clearly exceeds
identical, suggesting that particles near0 interact with the ~ the average density fok=0/4, i.e., G(o)>G(o/4). So

cavity without regard to the wall, i.e., the particles in front of while Fig. 6 shows thag()\) initially decreases, Fig. 8 indi-

the cavity are unable to “sense” the wall. For intermediate : . :
values of 6, g(\ R, 6) transitions betweerny(R) and p(2). cates thatG()\) begins to increase at a large enough cavity

Trends similar to those seen in Figs. 7 and 8 are also ofdius. Consequentlyz(A) exhibits a minimum at some in-
served forh< 0. termediate cavity radius.

The density enhancement exhibited ¢ix , R, #) near the Figure 8 also validates the limiting condition Gf(\) for
three-phase interface is an interesting conclusion of our intex — used in Ref.[1]. In Fig. 8, g(\,R,0)=g(\,R) (the
gral equation and simulation studies. This enhancement iBulk cavity-particle correlation functionaround #=0. So,
not, however, entirely unexpected as similar behavior waslong this portion of the cavity surfacg(\=R)=G(\),
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FIG. 10. G(\,6) versus 6/ for pa3=0.5 and various cavity FIG. 11. G(\, 6)sin 6 versusé/ r for pa®=0.5 and various cav-
radii. A is the cavity radius an@ measures the angle from tlze ity radii. \ is the cavity radius an@ measures the angle from tae
axis. The upper horizontal dashed line dend®s=0,6)=p/pkT  axis. G(\,6) is multiplied by sind to show the term that is inte-

=3.30704. The density enhancementdtr=1/2 (or 6=m/2) in-  grated to obtairG(\). In this figure,G(\) is equivalent to the area
creases with\, while the density decreases wixhat 6=0. under the curve.

whereG()) is the bulk SPT cavity function. For largarthe ~ density atf=m/2 increases while the density &=0 de-
local density of particle centers at the cavity surface will still créases. These trends show that the hard wall has different

equal the bulkG(\), but for an even larger range éfabout  effects onG(x, 6) depending on the value &f Regardless of
6=0. Thus, as\— =, the average density at the cavity sur- »» G(\, 6) is greater tharp/pkT at #=/2, indicating that
face should approadB(=), thereby confirming the limit that the hard wall plays a Iarge role in determining the fluid struc-
G(22)=G(¢) =p/ pkT. In addition, since the density around ture. The trend forg=0 is more complex. The decrease in

N . . ... G(\, 6) for 0 near zero seems to depend on how much fluid
0=1l2 is greater thap/kT, the average density at the cavity is displaced by the cavity and the portion i) the cavit
surface exceed&(\). This explains the trend seen in Ref. P y y P Y

. . . “sees” upon insertion. For example, a cavity of radius
[1] in which G(\)=G(»). The appearance of the density =0.10 dispplaces a small amount F())f fluid. He)rllce, the fluid

enhancement ad=/2 also explains whyG(\) approaches environment that surrounds the cavity is very similapto),
its limiting value of p/ pkT much faster tharis(\). Further- leading to aG(\) that is close in value téthough less than
more, the enhancement of the local density abpXeT at /KT, For\=0.50, however, more fluid is displaced and the
0=/ 2 implies thatG(«) goes top/ pkT from above, and not resulting fluid environment yields a much reduced average
from below as was observed in R¢L]. The corresponding density in contact with the cavity surface.
density depletion away from, but still near==/2, shows, The cause of the initial decrease @f\) from p/pkT is
however, whyG(«) approache®/pkT from below. readily apparent in Fig. 10. While the density a2 in-
creases with an increase Wy the large decrease in the den-
_ sity along the majority of the cavity surface is sufficient to
C. Minimum in  G(A) cause theweragedensity to decrease. These two effects are
Taken together, Figs. 6 and 8 provide an explanation as tth competition to determine wheth&(\) will increase or
why G exhibits a minimum. In light of Fig. 8, one might also décrease with a change J This competition is displayed

expect that the minimum appears at a cavity radii close té"°"® clearly in Fig. 11, where plots @(\, ) multiplied by

A= Yet, in Ref.[1] the minimum inG(\) always appeared sin ¢, the actual term that is integrated in Hd) to obtain

for A< o/2, where the density profiles that develop around®(\), aré shown. In Fig. 11, the plots for each radii must
the cavities are similar to those shown in Figs. 6 ar@md ~ hecessarily begin at zero, further diminishing the contribu-
not Fig. 8. tion to G(\) for small 6. BecauseG(\) is defined as the
Since the minimum irG(\) always falls within the exact integral of G(x, )sin 6, the area under each curve equals
range of\ <¢/2, the exact solution of the integral equation G(A). One can see in Fig. 11 that the area under each curve
allows us to explore in greater detail the origin and locationdecreases as approaches Od4 but then increases asin-
of the minimum. For example3(\, 6) at po®=0.5, obtained  creases to 0 In other wordsG(\) has passed through a
using Eq.(30) and a simulation generatge(z), is plotted  minimum, just as is observed in Fig. 4 of REf]. The actual
versus @/ in Fig. 10 for various cavity radih less than minimum for this density occurs at=0.405 [1]. Closer
ol2. As the cavity radius increases, two trends appear: thexamination of Figs. 10 and 11 shows that the increase in
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G(\) ash increases from Odto 0.5 is almost entirely due ~ correlationg'®, which is not known in general. Consider-
to the density enhancement neg /2. From 9=0 to ¢  ation of specific cavity sizes and positions, however, pro-
~ /3, G(\, #) does not vary much in value asincreases vides a closure condition ogt®! and, in turn, an exact solu-
from 0.4 to 0.50. Similar trends are also seen at other den-{ion of the integral equation. Plots gfA, R, ¢) generated by
sities. Another interesting result of Fig. 11 is that the curva-he solution of the integral equation agree with simulation
ture of G(\, #)sin & changes sign from negative to positive as resultg within the range qf the exact closure..'The '|nt'egral
\ increases from Od to 0.20. This seems to be due to the €duation can also be easily extended to cavities within the

relatively small slope of5(\, 6) for A=0.1o, which yields a  tWo-dimensional hard disk fluiffL3]. _
negative curvature when multiplied by i Solution of the integral equation shows that the density of

Although such plots of5(, 6)sin ¢ clearly indicate why particle centers is _enhanced in the region where .the ca\_/ity
G(\) exhibits a minimum, these curves still do not revealoverlaps the effective hard wall. At small cavity sizes, this

precisely why the minimum always occurs befarea/2 for enhancement extends uniformly along the hard wall. Simu-

a1l fluid densities. This is an issue which remains to be re_Iation results showed that the enhancement is localized at the
solved. A derivative oG(x, ) in Eq. (30) with respect to\ three-phase interface for cavity radii outside the exact range

. . (N=<0c/2). The density enhancement is also responsible at
does not, L_mfortunately, prove to b_e pa_rtlcularly useful Nsmall cavity radii for reducing the density around the remain-
u_nderstandmg the behawqr G()\,H)SII’IQSIHCG the proper- ing portion of the cavity. The balance between these two
ties of p(z) are not known in gener'al.' Figure 10 reveals thatCompeting effects(enhancement versus depletiodeter-
dG(\, 6)/an=0 for all \ but only within a small range 06 1ines the behavior of the average density surrounding a
nears/2. In turn,dG(\, 6)/ A =0 is connected to the appear- cavity and ultimately explains wha(\) displays a mini-
ance of the minimum irG(\) as seen in Fig. 11. But it is mum. Why the minimum always occurs far<o/2, how-
difficult to infer why dG(\, 6)/ IN=0 only for certaing, since  ever, is still not clearly known.

p(2) is not known in general and varies considerably with the As noted in the Introduction, insights into the various
bulk density. One can show, however, th&(\,0)/dN=0  properties of G(\, #,h) have the potential to help explain
does not coincide with the appearance of the first local minivarious depletion phenomena of hard particle systems. The
mum in p(2). reported enhancement at the three-phase interface is likely to

The minimum inG(\), which may also be interpreted as a play a Iarge role in dgtermining whether the depletion forpe
decrease in the pressure on the cavity surface, also has ties'fodttractive or _repulilve since the large enhancement might
surface thermodynamics. The decreaseGncan be con- counteract particles pl_Jshmg the cavifgr eq_wvalem sol-
nected to the appearance of the three-phase inteftatty- ute) toward the wall. With the range over which the integral

wall-fluid) and its associated line tensiofn the hard disk equatl_on can be soI.ved essent|a[ly limited Ne= 0/2'. our
fluid, it would be thepoint tension[12].) When a cavity analytical approach is so far restricted to small cavities, but

grows in a uniform hard particle fluid, the local fluid pressuretr}:3 cton_clusmns Idrflwn fhetrr? ShQUId shed l;%ht on c:ekpletloln
on its surface will increase. For cavities placed at a hard'€CtS IN genera’. in a forthcoming paper, the exact Xnowl-

wall, however, another relation, the mechanical balance O?dge ofG(X, 6,h) is shown to be important in understanding

forces at the three-phase interface, is required to fully deth® Pehavior exhibited by the normal force needed to “push”

scribe the surface thermodynamics. This second relation aft cavity from behind the wall and_into the ﬂUi_d' ) .
lows either an increase or decrease in the local fluid pressure Overall, the present work provides a crucial first step in

at the cavity surface depending on the sign of the line tenfully describing the fluid structure surrounding a cavity near

sion. Because inhomogeneous SPT predicts a decrease ar'ard wall. Beyond the simple exact closure condition used
6()\)' so that the local fluid pressure decreases as well, th ere to solve the integral equation, there remains the oppor-

corresponding line tension should be negative. At larg tunity to propose additional approximate closure conditions
N L Jor the three-body correlation function to solve the integral
enough cavity sizes, the pressure on the cavity surface Wﬁe‘:oquation for a Iar};er range of andR. Also, the presente%

eventually exceed the contribution of the three-phase mterfaéquations are valid only for cavity centers in whitk 0 and

cial tension so thaB(\) must increase with an increaseNn  -5n pe extended to account for>0. A full treatment and
solution of the integral equations should provide invaluable
V. CONCLUSION information regarding the structure of the confined hard
sphere fluid and the behavior of hard spherelike colloidal

We have presented a new SPT integral equation that d ispersions.

scribes the fluid structure surrounding cavities which overlap
a hard, structureless wall. The equation is based on the ideas
of scaled particle theory and is valid for the hard sphere fluid
confined between planar hard walls. Derivation of the inte- This material is based upon work supported by the Na-
gral equation relies on the definition of an exact three-bodyional Science Foundation under Grant No. 0133780.
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