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Integral equations describing the structure of a hard sphere fluid surrounding a cavity that intersects a hard
wall are derived from scaled particle theorysSPTd. The new expressions are solved exactly for specific cavity
radii and the predictions are compared to simulation-generated results, showing excellent agreement. Addi-
tional simulation studies are conducted for cavity radii that fall outside the range of exact solution. For all
cavity sizes, an enhancement of the local density of hard spheres over that of the hard wall contact value is seen
for positions near the point of intersection of the cavity and the hard wall. The local density in front of the
cavity and away from the hard wall is depleted at small cavity sizes, but eventually approaches the density
profile created by a cavity placed within a bulk hard sphere fluid at larger cavity radii. The exact solutions and
simulation results are also used to understand why a minimum appears in the inhomogeneous SPT function
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I. INTRODUCTION

In our preceding paperf1g, the equations of scaled particle
theory sSPTd f2g were extended to a hard sphere fluid con-

fined by planar hard walls. A new function,Ḡsl ,hd, was
introduced to describe the average density of particle centers
contacting the surface of a cavity that intersected a hard wall
in which the cavity center was located a distanceh from a
chosen reference plane. This function was determined ex-
actly for various radii, similar to its bulk analog, and was
interpolated beyond the exact limit using an asymptotic se-

ries. Ḡsl ,hd was then used to describe the average pressure
exerted on the cavity surface or, more importantly, to calcu-
late the reversible work of cavity insertion. The work predic-
tions agreed quite well with simulation results.

The functionḠsl ,hd is related to the the key quantity of
any version of SPT,Gsl ,u ,hd, whererGsl ,u ,hd is defined
as the local density of hard sphere centers at an angleu in
contact with the surface of a cavity of radiusl centered at
z=hø0, andr is the density of particle centers in the bulk
phasessee Fig. 3 for the definition of the chosen coordinate
systemd. For a review of both traditional SPTf2,3g and the
development of inhomogeneous SPT, the reader is referred to
our companion paperf1g. In traditional SPT, where cavities
are inserted into a bulk uniform fluid,G is not a function of
u or h because the system is isotropic. Within inhomoge-
neous SPTsor I-SPTd this dependence cannot be overlooked
since the fluid is anisotropic near the hard wall. Conse-

quently, the average function,Ḡsl ,hd, exhibits behavior
markedly different from the bulkGsld. WhereasGsld begins
at unity sfor l=0d and asymptotically approachesp/rkT as

l→`, Ḡsl ,hd begins at the value ofp/rkT sfor l=−hd,

initially decreases for largerl, only to return to its final
value ofp/rkT asl→`. This behavior was attributed to the
influence of the fluid structure, and thereby the line tension,
that develops around the cavity that intersects the hard wall.
Yet, the development of I-SPT in Ref.f1g could not provide
any information about the exact geometric origin of this be-
havior. A more detailed explanation of the properties of

Ḡsl ,hd is the main purpose of this paper.
As shown in Ref.f1g, Gsl ,u ,hd may be averaged over the

valid u-range to produce the average SPT functionḠsl ,hd.
This average function is defined by

Ḡsl,hd =

2pE
0

cos−1s−h/ld
Gsl,u,hdsinudu

2pE
0

cos−1s−h/ld
sinudu

. s1d

A number of formallyexactexpressions can be obtained for

Ḡsl ,hd. For example, the probability of observing a cavity
of radius of at leastl centered atz=h relative to the wall,

P0sl ,hd, is related toḠsl ,hd via

rḠsl,hd =
− 1

2psl2 + lhd
] ln P0sl,hd

]l
. s2d

For løÎh2+ss /2d2, P0sl ,hd is known exactly in which

P0sl,hd = 1 −pE
0

l+h

rszdfl2 − sz− hd2gdz,

l øÎh2 + Ss

2
D2

, s3d

whererszd is the local density of hard spheres at a distancez
from the hard wall when no cavity is present. Substitution of*Electronic address: dscorti@ecn.purdue.edu
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the above into Eq.s2d yields the following exact form of

Ḡsl ,hd:

rḠsl,hd =

E
0

l+h

rszddz

sl + hdS1 − pE
0

l+h

rszdfl2 − sz− hd2gdzD ,

l øÎh2 + Ss

2
D2

. s4d

Integration of Eq.s2d also reveals that

P0sl,hd = expS− 2prE
–h

l

Ḡsr,hdsr2 + rhddrD . s5d

These four exact relations will prove useful in later sections
of this paper.

Although averagingGsl ,u ,hd over the surface of the cav-

ity to produce Ḡsl ,hd assists in the derivation of useful
physical and statistical mechanical quantities, more detailed
information regarding the fluid structure about the cavity,
i.e., information onGsl ,u ,hd, is unfortunately lost. A better
understanding ofGsl ,u ,hd is, for example, important for a
complete description of the depletion, or entropic, forces that
arise between a hard particle and a hard wall. The true origin
of depletion forces in hard particle systems resides in the
geometric distribution of solvent particle centers surrounding
the solute or the equivalent cavityf4g. Additional knowledge
of the u dependence ofGsl ,u ,hd will therefore lead to a
better understanding of the geometric effects that yield both
attractive and repulsive depletion phenomena.

In what follows, we present the derivation of an integral
equation that describes the fluid structure surrounding a cav-
ity that intersects a hard wall. Using this equation, we obtain
for certain cavity radii the exact form ofGsl ,u ,hd. This
integral equation is based on the SPT integral equation first
derived by Reiss and Casbergf5g to approximate the radial
distribution function of the hard sphere fluid. Leef6g later
derived the same equation, though starting from a set of re-
lations provided by Reisset al. f7g. Here, we extend the
approach of Refs.f6,7g to describe cavities intersecting a
hard wall and, when possible, solve the resultant equation
exactly. We also present simulation data at cavity sizes for
which the integral equation cannot be solved exactly. Over-
all, the integral equation provides the needed information to
understand why the I-SPT functionḠsl ,hd exhibits a mini-
mum f1g, despite the appearance of a density enhancement at
the point of intersection between the cavity and the hard
wall.

The paper is organized as follows. Section II reviews the
derivation of the bulk SPT integral equation. Section III in-
cludes a definition of the current system geometry and con-
tains a complete derivation of the SPT integral equation now
applicable to cavities located at a hard wall. An exact closure
condition is also presented. Section IV discusses the numeri-
cal results obtained from the solution of the integral equation
for hemispherical cavitiessh=0d in the exact range and

simulation data for those outside the exact range. The paper
is concluded in Section V.

II. REVIEW OF THE SPT INTEGRAL EQUATION FOR
THE BULK HARD SPHERE FLUID

Before discussing the extension of the SPT integral equa-
tion to inhomogeneous fluids, we provide a somewhat de-
tailed overview of the integral equation that is applicable to
unconfined, isotropic hard sphere fluids. This integral equa-
tion was first derived by Reiss and Casbergf5g, though the
derivation given below follows from a similar analysis de-
veloped later by Reisset al. f7g.

We begin with the definition of an auxiliary function.
Consider some arbitrary point within the fluid and suppose
that a cavity of radius of at leastl is centered at that point.
Let bsl ,RddR represent the probability of observing the
near particle centersi.e., nearest neighbord to the cavity atR
in dR, whereR is the vector joining the cavity centerscho-
sen to be the origind and the hard particle center. There is no
angular dependence in an isotropic fluid, thusbsl ,Rd
=bsl ,Rd, whereR;uRu. Later, we will see that this symme-
try does not exist for fluids confined between hard walls.
This nearest neighbor probability is related to two other sta-
tistical geometric quantities throughf7g

bsl,RddR = P0sRuldrGsRddR. s6d

The first term on the right side,P0sRuld, is the probability of
observing a cavity of radius of at leastR on the condition
that a cavity of radiusl is present at the origin.P0sRuld is
then multiplied by the probability of observing a particle at
R in dR, or rGsRddR, whererGsRd is the local density of
particle centers contacting a cavity of radiusR, to give the
probability of finding the nearest neighbor atR in dR. By
argument of conditional probabilities one can writef2g

P0sRuld =
P0sRd
P0sld

= expS− 4prE
l

R

Gsrdr2drD , s7d

where the exponential term results from substitution of the
SPT form forP0 similar to Eq.s5d. Therefore,

bsl,Rd = rGsRdexpS− 4prE
l

R

Gsrdr2drD . s8d

WhereR=l, we have that

bsl,ld = rGsld. s9d

Also, a derivative of Eq.s8d that will later prove useful isf7g

]bsl,Rd
]l

= rGsRdexpS− 4prE
l

R

Gsrdr2drDf4prGsldl2g

= 4prGsldl2bsl,Rd. s10d

A. Derivation of the bulk SPT integral equation

Now consider the cavity-particle correlation function
rgsl ,RddR, which denotes the probability of finding a par-
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ticle center atR in dR given that a cavity of radiusl is
located at the origin. Isotropy again demands thatgsl ,Rd
=gsl ,Rd. Since a cavity of radius ofl=s is also equivalent
to another hard particlef2g, gss ,Rd is identical togsRd, the
radial distribution function of the pure component hard
sphere fluid. The cavity-particle correlation function can be
represented by the following formally exact integral equation
f7g,

rgsl,RddR = bsl,RddR + SE
uL u=l

uL u=R

bsl,Ldrgf3gsL ,RddLDdR.

s11d

The origin of the two terms in Eq.s11d is illustrated in Fig. 1.
Let the particle whose center is found atR in dR be labeled
1. Now, particle 1 may be the nearest neighbor to the cavity,
hence giving rise to the first term on the right-hand side of
Eq. s11d. If particle 1 is not the nearest neighbor, then an-
other particle, say 2, is the nearest neighbor and is located at
L in dL . sClearly, løLøR, where L;uL u.d The second
term on the right-hand side of Eq.s11d results from multi-
plying bsl ,LddL , the probability that the nearest neighbor,
particle 2, is atL in dL , by rgf3gsL ,RddR, the probability of
observing particle 1 atR in dR given a cavity of radiusl at
the origin and the nearest neighbor 2 atL in dL . The result-
ing total probability is then integrated over all positions in
which particle 2 is the nearest neighbor. Because the fluid is
isotropic,gf3g only depends onR and not the vector position
R. Hence,gf3gsL ,Rd=gf3gsL ,Rd.

Equation s11d, which describes the fluid structure sur-
rounding a cavity, is formallyexact but cannot be used to
solve forgsl ,Rd without knowledge ofgf3gsL ,Rd. gf3g is not
known in general, however, and an approximate form, or
closure condition, must be introduced into Eq.s11d. This
SPT integral equation is fundamentally different from previ-
ous integral equations in that the definition of the three-body
correlationgf3g is not tied to Eq.s11d. In fact, gf3g can be
computed directly from simulationf6,8g without the use of
Eq. s11d. Consequently, the generation of closure conditions
for gf3g can rely heavily upon physical intuition.

For later use, manipulation of Eq.s11d simplifies the in-
troduction of a closure condition forgf3g that allows for an
exact solution of the SPT integral equation for a limited
range ofl andR. Differentiating Eq.s11d with respect tol,
using Leibnitz’s rule, yields the following derivative of
gsl ,Rd f5g,

r
]gsl,Rd

]l
=

]bsl,Rd
]l

− rSbsl,ldE
0

p

sinu2du2

3E
0

2p

df2g
f3gsl,u2,f2,Rd

−E
l

R

L2dL
]bsl,Ld

]l
E

0

p

sinu2du2

3E
0

2p

df2g
f3gsL,u2,f2,RdD , s12d

where we have usedsL ,u2,f2d as the coordinates for particle
2 and expandeddL to L2 sinu2du2df2. Because the system
is isotropic, there is nof2 dependence. Thus, substitution of
Eqs. s9d and s10d into Eq. s12d and integration over thef2
terms reduces the above tof5g

]gsl,Rd
]l

= 4prl2Gsldgsl,Rd

− 2prl2GsldE
0

p

sinu2du2g
f3gsl,u2,Rd.

s13d

Equations13d provides a more convenient starting point than
Eq. s11d for obtaining gsl ,Rd when an expression for
gf3gsl ,u2,Rd is generated. In Eq.s13d, one can see thatgf3g is
evaluated forL=l, meaning particle 2 always resides on the
surface of the cavityssee Fig. 2d. This greatly simplifies fur-
ther analysis, since we only need to consider configurations
where particle 2 is on the cavity surface when determining an
expression forgf3g.

FIG. 1. Diagram of a given configuration of two hard spheres
near a spherical cavity of radiusl. The dashed line represents the
cavity in which its nearest neighbor is at positionL and is labeled
particle 2. The particle atR is labeled 1.s is the distance between
the two hard particle centers.u2 measures the angle betweenR and
L , while f2 measures the rotation aroundR.

FIG. 2. A particular configuration of two hard spheres that is
described by the correlation functiongf3gsl ,u2,Rd in which l
øs /2. The cavity of radiusl is denoted by the dashed line and the
center of particle 2 is found on the cavity surface. The exclusion
sphere of particle 2 is given by the dashed-dot line, denoting the
region in which no other particle center may be found. Particle 1 is
located a distance ofR from the cavity center and its distance to
particle 2 iss.
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B. Exact analysis ofg†3‡„l ,u2,R… for lÏs /2

BecauseL=l in gf3g, the only configurations that need to
be considered are similar to the one displayed in Fig. 2, in
which the center of particle 2 is located on the cavity surface.
Furthermore, as illustrated in Fig. 2, whenløs /2, the ex-
clusion sphere of particle 2sthe spherical region of radiuss
that surrounds a particle and cannot contain another particle
centerd completely masks the cavity. No other particle center
besides 2 may make contact with the surface of the cavity.
Hence, the conditional probability of observing a particle at
R is governed solely by the particle-particles1,2d correlation
rather than the cavity-particle-particlesgf3gd correlation. Us-
ing this information, one can exactly say forløs /2 that
gf3gsl ,u2,Rd=gssd, wheregssd is the value of the pair corre-
lation function for particles 1 and 2 separated by a distances.

Due to the hard core interaction between particles 1 and 2,
gssd is identically zero fors,s. If we now choose a fixed
value ofR, s will take on its maximum value when the cavity
and both particle centers are colinear, i.e.,s=R+l. There-
fore, when R+l,s, s is always less thans so that
gf3gsl ,u2,Rd=0. In this case, Eq.s13d reduces to

] ln gsl,Rd
]l

= 4prl2Gsld, l ø
s

2
, l ø R, s − l,

s14d

where the bound onR is modified as a reminder thatRùl.
The initial condition necessary for solving Eq.s14d is
gs0,Rd=1, since no cavity-particle correlation exists when
l=0. By integrating and applying the initial condition we
obtain f5g

gsl,Rd = expS4prE
0

l

Gsrdr2drD =
1

1 −
4

3
prl3

,

l ø
s

2
, l ø R, s − l, s15d

where the known form ofGsrd for r øs /2 has been substi-
tutedf2g. It is interesting to see that in this subspacegsl ,Rd
is not a function ofR and is identical toGsld f2g.

III. SPT INTEGRAL EQUATION FOR THE CONFINED
HARD SPHERE FLUID: CAVITY INTERSECTING

A HARD WALL

In this section, the bulk fluid SPT integral equation is
modified to describe the local density of hard spheres about a
cavity that is intersecting a hard wall. Figure 3 defines the
system geometry for the fluid confined by hard walls at one
particular limit in thez direction, where thex and y direc-
tions are unconfined. Thez coordinate originates a distance
of s /2 from the actual hard wall;z=0 is an effective hard
wall to the particle centers because the particle centers may
not approach the wall closer thans /2. As discussed in our
previous paperf1g, the local density of hard sphere centers
swhen no cavity is presentd is only a function ofz, denoted

by rszd. As shown in Fig. 3,h is the z coordinate of the
cavity center. Forh=0, the portion of the cavity that extends
beyondz=0 is hemispherical, while forh,0, the portion of
the cavity beyondz=0 is shaped as a spherical capsin which
lù−hd. We do not consider cases forh.0 in this paper.
Unlike a spherical cavity within a bulk fluid, the extension of
SPT to this inhomogeneous system requires the use of a cur-
vilinear coordinate system. With the center of the cavity at
z=h chosen as the origin, the vector coordinates forr are the
length r and the anglesu and f. u is measured from a line
perpendicular toz=0. f is the rotation around this line. The
coordinates may be easily changed fromsr ,u ,hd to z by the
relationshipz=r cosu+h.

A. General integral equation

Just like the bulk fluid, we begin by considering the fol-
lowing nearest neighbor distribution function. Consider an
arbitrary point withz coordinateh,0 and suppose that a
cavity of radiusl is centered at that point. We now denote
the nearest neighbor distribution function bybsl ,R ,hd such
that bsl ,R ,hddR is the probability of observing the nearest
neighbor to the cavity at the vector positionR within the
volume elementdR snoting that uRuùld. As before, this
probability is also given by

bsl,R,hddR = P0suRu,hul,hdrGsR,hddR, s16d

whereP0sR,hul ,hd is the probability that a cavity of radius
uRu=R exists atz=h on the condition that a cavity of radius

FIG. 3. An illustration of the chosen curvilinear coordinate sys-
tem.l is the radius of the cavity centered atz=hø0. r is a vector
originating from the cavity center and is described by the lengthr
and the anglesu andf. The origin of thez axis is locateds /2 from
the hard wall wheres is the diameter of a hard particle. Only the
portion of the cavity that extends to the right ofz=0 is shown in
which lù−h.
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l is already centered atz=h andrGsR ,hddR is the probabil-
ity that a particle center is found atR in dR on the surface of
the cavity. Bothbsl ,R ,hd and GsR ,hd are implicitly sym-
metric in f; thus bsl ,R ,hd=bsl ,R,u ,hd and GsR ,hd
=GsR,u ,hd. Note thatR.−h, otherwise the vector position
R would not identify a relevantz. By argument of condi-
tional probabilities,

P0sR,hul,hd =
P0sR,hd
P0sl,hd

= expS− 2prE
l

R

Ḡsr,hdsr2 + rhddrD ,

s17d

where we have introduced the I-SPT functionḠsl ,hd using
Eq. s5d. Entering the above into Eq.s16d, we find that

bsl,h,Rd = rGsR,u,hdexpS− 2prE
l

R

Ḡsr,hdsr2 + rhddrD .

s18d

Again, the derivative ofbsl ,h,Rd with respect tol proves
useful. Differentiation of Eq.s18d yields

]bsl,h,Rd
]l

= rGsR,u,hdexpS− 2prE
l

R

Ḡsr,hdsr2 + rhddrD
3 f2prḠsl,hdsl2 + lhdg

= 2psl2 + lhdrḠsl,hdbsl,h,Rd, s19d

where the second equality follows from substitution of Eq.
s18d.

Analogous to Sec. II, we now introduce the cavity-particle
correlation function,gsl ,h,Rd, wherergsl ,h,RddR is the
probability of finding a particle coordinate atR in dR on the
condition that a cavity of radiusl is at z=h. Note that for
uRu=l, when the particle is at the cavity surface,
gsl ,h,R,ud=Gsl ,u ,hd. This conditional probability is de-
pendent on whether the particle located atR sdenoted by 1 in
Fig. 4d is the nearest neighbor to the cavity or another par-
ticle sdenoted by 2 in Fig. 4d is the nearest neighbor. Similar
to Eq. s11d, one can write the formallyexact integral equa-
tion

rgsl,h,RddR = bsl,h,RddR + SE
uL u=l

uL u=R

bsl,h,L dr

3gf3gsL ,RddLDdR, s20d

wherergf3gsL ,RddR is the conditional probability of finding
a particle atR in dR, provided that a cavity of radiusl exists
at z=h and its nearest neighbor is atL in dL . Again, the
definition of gf3g is not tied to Eq.s20d, and can be deter-
mined independently of Eq.s20d by either physical argu-
ments or molecular simulation. The second term in Eq.s20d
is integrated over all positions for which particle 2 is the
nearest neighbor, i.e.,lø uL uøR. Note that rgs−h,h,Rd
=rsRcosu+hd, because forl=−h no portion of the cavity
extends beyondz=0 so thatrgs−h,h,Rd is simply the den-
sity of particles at thez coordinate corresponding to the vec-
tor positionR. This same limit also applies forR@l where
the influence of the cavity is no longer felt.

To obtain an expression forgsl ,h,Rd independent of
bsl ,h,Rd, we continue by differentiating Eq.s20d with re-
spect tol. After expandingdL in terms of the curvilinear
coordinatessL ,u2,f2d for particle 2, the result is

r
]gsl,h,Rd

]l
=

]bsl,h,Rd
]l

− rSl2E
0

cos−1s−h/ld
sinu2du2bsl,h,l,u2dE

0

2p

df2g
f3gsl,u2,f2,Rd

−E
l

R

L2dLE
0

cos−1s−h/Ld
sinu2du2

]bsl,h,L,u2d
]l

E
0

2p

df2g
f3gsL,u2,f2,RdD . s21d

This equation is simplified by recognizing thatbsl ,h,l ,u2d=rGsl ,u2,hd, which is the local density atu2 on the surface of the
cavity. Substituting Eq.s19d into the above yields, upon rearrangement,

]gsl,h,Rd
]l

= 2psl2 + lhdrḠsl,hdgsl,h,Rd − rl2E
0

cos−1s−h/ld
sinu2du2Gsl,h,u2dE

0

2p

df2g
f3gsl,u2,f2,Rd. s22d

FIG. 4. Two-dimensional representation of a particular configu-
ration of hard particles surrounding a cavitysshown by the long
dashed lined of radius l. The cavity is centered atz=hø0. The
main particle of interest is labeled as particle 1 and its vector posi-
tion is given byR. The particle that is the nearest neighbor to the
cavity is labeled as particle 2 and its position is given byL .
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Although thef2 dependence remains ingf3g because the fluid
is not isotropic, the resulting integral equation forgsl ,h,Rd
is analogous to the expression derived by Reisset al. f5,7g
for bulk cavities. Sincegf3g is not known in general, further
manipulation of the integral equation relies upon the genera-
tion of closure conditions forgf3g. By closely examining Eq.
s22d, we again see thatL=l in gf3g, meaning thatgf3g needs
to be evaluated when the center of particle 2 resides on the
cavity surface. Similar to the bulk SPT integral equation, we
can use this restriction to provide an exact closure condition
and, hence, an exact solution of Eq.s22d.

B. Exact closure ofg†3‡„l ,u2,f2,R…

Sincegf3g is evaluated forL=l, the only configurations of
interest are similar to the one depicted in Fig. 5. For this
configuration, we chooseløÎh2+ss /2d2, which causes the
exclusion sphere of particle 2 to completely mask the cavity.
In this case, the cavity does not contribute to the three-body
correlation. Only the particle-particle correlation matters.
Furthermore, particle-particles1, 2d interactions are not al-
lowed for particle separation distances ofs less thans since
the hard cores of each particle prevent such overlaps from
occurring. Thus, for all configurations in whichs,s,
gf3gsl ,u2,f2,Rd is identically zero. Unfortunately, this re-
quirement is fulfilled by a large number of radius-position
combinations, and the resulting subspace is not easily de-
scribed. There is, however, a bound onR below which all
combinations lie in this subspace. This bound onR is found
when the cavity and both particle centers are colinear along
the z=0 plane, i.e.,s=Îl2−h2+ÎR2−h2 sparticle 2 resides
above the cavity and particle 1 is below the cavityd. Since
Rùl and we are considering configurations in whichs,s,
the restriction onR for this formally exact region becomes
løR,Îs2−2sÎl2−h2+l2. With this restriction, the inte-
gral equation reduces to

] ln gsl,h,Rd
]l

= 2psl2 + lhdrḠsl,hd,

− h , l øÎh2 + Ss

2
D2

, s, s. s23d

Finally, integration from −h to l yields

gsl,h,Rd =
rsRcosu + hd

r

3expS2prE
−h

l

Ḡsr,hdsr2 + rhddrD ,

− h , l øÎh2 + Ss

2
D2

, s, s, s24d

where the initial conditionrsRcosu+hd /r has been entered
for gs−h,h,Rd. This expression for the cavity-particle corre-
lation function can be simplified by recognizing that the ex-
ponential term is equal to 1/P0sl ,hd fsee Eq.s5dg resulting
in

gsl,h,R,ud =
rsRcosu + hd

r

1

P0sl,hd
,

− h , l øÎh2 + Ss

2
D2

, s, s, s25d

where we have eliminated the vector notation.
Equations25d can be used to generate exact information

about the local density at the cavity surface, or the I-SPT
function Gsl ,u ,hd. As noted before, when R=l,
gsl ,h,l ,ud=Gsl ,u ,hd. Therefore, Gsl ,u ,hd for this
l-range is givenexactlyby

Gsl,u,hd =
rsl cosu + hd

r

1

P0sl,hd

=
rsl cosu + hd

rS1 − pE
0

l+h

rszdfl2 − sz− hd2gdzD ,

− h ø l øÎh2 + Ss

2
D2

, s26d

where the second equality results from the substitution of the
exact form ofP0sl ,hd given in Eq.s3d. If the second line of
Eq. s26d is averaged over 0øuøcos−1s−h/ld, followed by a

change of variables fromsl ,ud to z, Ḡsl ,hd as shown in Eq.
s4d is recovered, thereby demonstrating consistency with
I-SPT f1g.

A closer examination of Eq.s26d provides the additional
derived information regarding the functionGsl ,u ,hd. At
least forzøs /2, the density profilerszd decreases with an
increase inz. Therefore,Gsl ,u ,hd is an increasing function

FIG. 5. The two-dimensional representation of a relevant con-
figuration forgf3gsl ,u2,f2,Rd. The long dashed line represents the
cavity of radius l centered at z=hø0, in this case l
øÎh2+ss /2d2. Particle 2, the nearest neighbor, is located on the
surface of the cavity as demanded bygf3gsl ,u2,f2,Rd. R is the
distance from the cavity center to particle 1 ands is the distance
between the particle centers. The dashed-dot line represents the ex-
clusion sphere of particle 2.
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of u for fixed l andh. This trend is expected to continue for
cavity radii that fall outside the exact range. A particularly
interesting result is obtained foruc=cos−1s−h/ld, the inter-
face of the “three phases”scavity-wall-fluidd where the cav-
ity surface intersects thez=0 plane. Enteringuc into Eq.s26d
yields

Gsl,uc,hd =
rs0d

r

1

P0sl,hd
=

p

rkT

1

P0sl,hd
,

l øÎh2 + Ss

2
D2

. s27d

Since P0sl ,hdø1, Gsl ,uc,hdùp/rkT for radii in this
range. In other words, the local density at the three-phase
interface is enhanced above the hard wall contact value of
p/kT.

While this density enhancement can be explained using
physical argumentssas will be done laterd, it is seemingly at

odds with the initialdecreasein Ḡsl ,hd with an increase in
l reported in Ref.f1g. Because the density at the three-phase
interface exceedsp/kT, the density around the remaining
portion of the cavity must therefore be less, perhaps signifi-
cantly, thanp/kT so that the average density at the cavity
surface is always less thanp/kT. In fact, this can be inferred
analytically for cavities in the exact range. The ratio between
the local density at the cavity surface atu=0 andu=uc is
given by

rGsl,0,hd
rGsl,uc,hd

=
rsl + hd

rs0d
. s28d

Since simulation-generated density profiles indicate thatrszd
is always less thanrs0d=p/kT for z.0, the ratio in Eq.s28d
is always less than unity. Consequently, for cavities in the
exact rangesløÎh2+ss /2d2d, the local density at the front
of the cavity is less than that at the three-phase interface.
fThis result is true in general sinceḠsl ,hdøp/rkT and, as
observed via molecular simulation, a density enhancement
abovep/kT always appears at the three-phase interface for
larger radii.g A detailed discussion of how the above-
mentioned properties ofGsl ,u ,hd give rise to a minimum in
Ḡsl ,hd is delayed to the following section.

Since the hemispherical cavitysh=0d was shown to be a
special case in that the minimum of its average I-SPT func-

tion, Ḡsld, was always found in the exactl-range sl
øs /2d f1g, we now present some equations applicable to
this system. For ease of notation we drop theh dependence,
so thatgsl ,h=0,R,ud;gsl ,R,ud. Hence, enteringh=0 into
Eq. s24d yields the formallyexactrelation

gsl,R,ud =
rsRcosud

r
expS2prE

0

l

Ḡsrdr2drD
=

rsRcosud
r

1

P0sld
, l ø

s

2
, l ø R, s − l.

s29d

Gsl ,ud for h=0 is recovered by evaluating Eq.s29d at R

=l and substituting the exact form ofP0sld to yield

Gsl,ud =
rsl cosud

rS1 − pE
0

l

rszdsl2 − z2ddzD , l ø
s

2
. s30d

Evaluating the above atu=p /2, where the cavity overlaps
the hard wall, again reveals an enhancement of the local
density above the hard wall contact value ofp/kT. Thisexact
form of Gsl ,ud will be used in the next section to explain
why the minimum of Ḡsld occurs befores /2, despite
Gsl ,p /2dùp/rkT.

IV. RESULTS

In what follows, we examine the cavity-particle correla-
tion function as generated via the exact formulas and Monte
Carlo sMCd simulation. The density profiles may be gener-
ated for any of the geometries described in the previous sec-
tion shø0d, but we show results for hemispherical cavities
only. The conclusions drawn for the hemispherical cavity
will apply to the other cases as well.

We performed MC simulations in the isothermal-isobaric
sNpTd ensemble with hard walls imposed at thez-limits and
periodic boundary conditions in thex andy Cartesian direc-
tions f9,10g. The position of the cavity center located atz
=hø0 and its radiusl were fixed for the duration of the
simulation. Five hundred hard particles were used to ensure
the existence of a bulk phase in the middle of the simulation
cell. After a equilibration/relaxation period of 3
3104 cyclessN particle moves and one volume adjustment
per cycled, the simulation began the production run of accu-
mulating the appropriate averages. During the production
run, the simulation sampled forgsl ,h,Rd by measuring the
density profile surrounding randomly placed cavities every
five cycles. Thex andy positions of the cavity centers were
chosen at random, while thez-position was fixed atz=h
relative to one of the wallssthe particular wall was also
selected at randomd. If a cavity was successfully inserted at
this locationsi.e., no particle centers were found inside the
cavityd, a counter was updated and the density profile sur-
rounding the cavity was then sampled by measuring the ra-
dial distanceR and angleu to each particle center in the
simulation cell. AfterN trial insertions the simulation re-
sumed normal MC moves. Density profiles were sampled
after every 5 MC cycles with a total simulation length of 106

production cycles being performed. Afterward, the average
density at eachsR,ud position was normalized to yield the
function gsl ,h,R,ud. This method provides better sampling
of the density profile around the cavity compared to gener-
ating density profiles about a small number of cavities that
are always maintained inside the simulation cell. Unfortu-
nately, this method becomes inefficient for large cavity radii
and higher bulk densities because the probability of ran-
domly observing large cavities is extremely low. Finally, the
details of howrszd was generated during the simulation are
found in Ref.f1g.
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A. Exact g„l ,R…: Hemispherical cavity

Figure 6sad displays the exactgsl ,R,ud for a hemispheri-
cal cavitysh=0d of l=s /4 in the range ofRø3s /4 and for
a bulk density ofrs3=0.5. For this cavity radius and bulk

densityP0sld=0.9597 as calculated fromḠsld f1g. We also
observe thatgsl ,R,p /2d=3.446 sfor positions correspond-
ing to z=0d, which exceeds the hard wall contact value of
p/rkT=3.307. In addition, Fig. 6sad reveals thatgsl ,R,ud is
constant for a fixedz and thatgsl ,R,ud decreases with an
increase inz, results which are both predicted by Eq.s29d. In
fact, gsl ,R,ud decreases below unity for positions nearu
=0 scorresponding tox,y=0 in the figured, indicating that the
density of particle centers near the front of the cavity is de-
pleted below that of the bulk density. This behavior of

gsl ,R,ud is common to radii in the exact rangesløs /2d for
any fluid density. We also present in Fig. 6sbd the corre-
sponding simulation-generatedgsl ,R,ud. The simulation re-
sults are nearly identical to the exactgsl ,R,ud. An enhance-
ment in the local density abovep/rkT is seen forz=0,
gsl ,R,ud is constant for fixedz, andgsl ,R,ud decreases as
z increases.

In both plots of Fig. 6, the cause of the initial decrease in

Ḡsld with an increase inl becomes apparent. As anticipated
by the analytical expressions forGsl ,R,ud, the local density
at the frontsu=0d of the cavity is less than that at the three-
phase interfacesu=p /2d. The local density around most of
the cavity, however, is sufficiently lower than thel=0 limit

of rḠs0d=p/kT, thereby causing the average density to fall
below p/kT. As the radius of the hemispherical cavity ini-
tially increases, the cavity “sees” a rapidly decreasing local
density at the front of cavity. The net effect is a reduction of
the average density surrounding the cavity.

B. Simulation g„l ,R…: Hemispherical cavity

We also used molecular simulation to investigate
gsl ,R,ud for cavity radii, as well as values ofR, outside the
exact range. Figure 7 extends the range of the results in Fig.
6sbd beyond the exact limit ofR=3s /4 for l=s /4 and
rs3=0.5. Although the density of particle centers is en-
hanced in the region immediately surrounding the cavity, the
density perturbation caused by the cavity does not extend
that far into the fluid. For distances in thez direction greater
than about 1.5s from the cavity center, the distribution of
particles resumes its normal shape, becoming nearly identi-
cal to rszd. The apparent decrease ingsl ,R,ud alongz=0 in
Fig. 7 is an artifact of the method used to determineg, not an
actual decrease. Particle centers are counted in solid angle

FIG. 6. sColor onlined sad gsl ,R,ud calculated from simulation-
generatedrszd for l=s /4 and rs3=0.5. The hard wall contact
value ofp/rkT=3.3070 is indicated by the arrow.z is the distance
from the effective hard wall and is related tosR,ud by z=Rcosu. x
and y represent normal distances to the cavity center.gsl ,R,ud
exceedsp/rkT for u=p /2, corresponding toz=0 su=0 corresponds
to x,y=0d. For fixedz, gsl ,R,ud is constant.sbd gsl ,R,ud gener-
ated via MC simulation forl=s /4 andrs3=0.5. The simulation-
generatedgsl ,R,ud is nearly identical to the exact result, showing
enhancement beyondp/rkT for u=p /2 and constantgsl ,R,ud for
fixed z.

FIG. 7. sColor onlined gsl ,R,ud generated via MC simulation
for l=s /4 andrs3=0.5. z is the distance from the effective hard
wall, while x andy represent the respective distance from the cavity
center. The local density is enhanced beyondp/kT for z=0 and for
small x or y. For positions far from the cavity center,gsl ,R,ud
resembles the wall-fluid density profilerszd. The apparent decrease
in gsl ,R,ud alongz=0 is not a true decrease, but is a result of the
method used to count particle centers in a solid angle wedge.
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wedges that become larger with increasingR, artificially de-
creasingg for large R and u nearp /2. Far from the cavity
center, the correct value ofg for u=p /2 sz=0d is p/rkT.

The shape ofgsl ,R,ud, however, is quite different at
larger cavity radii. Figure 8 showsgsl ,R,ud for l=s and
rs3=0.5 as generated by MC simulation.fAgain, the previ-
ously mentioned artificial decrease appears alongz=0, due to
the method chosen to count particles at varioussR,ud pairs.g
Note that this cavity is equivalent to a hard sphere placed at
z=0. In this case,gsl ,R,ud at R=l andu=p /2 is enhanced
to 5.588, exceeding the corresponding values for cavities of
løs /2 fe.g., for rs3=0.5 andl=s /2, gsl ,R,ud at R=l
andu=p /2 equals 3.512g. Yet, the enhancement at the three-
phase contact rapidly decays withu; the density increase is
concentrated within a narrow region in contrast to the broad
enhancement observed for small cavities. We also see that
the first minimum of the density profile nearly wraps around
the cavity, forming a distinct trough ingsl ,R,ud. The loca-
tion of this minimum is commensurate with the first mini-
mum of the wall-fluid density profilerszd for positions near
u=p /2 or far from the cavity, but resembles the bulk radial
distribution functionsRDFd, gsRd, for positions nearu=0. In
Fig. 9, bothgsl ,R,ud for l=s andu=0 and the bulk RDF,
obtained from a separate bulk fluid MC simulation, are
shown forrs3=0.5. The two correlation functions are nearly
identical, suggesting that particles nearu=0 interact with the
cavity without regard to the wall, i.e., the particles in front of
the cavity are unable to “sense” the wall. For intermediate
values of u, gsl ,R,ud transitions betweengsRd and rszd.
Trends similar to those seen in Figs. 7 and 8 are also ob-
served forh,0.

The density enhancement exhibited bygsl ,R,ud near the
three-phase interface is an interesting conclusion of our inte-
gral equation and simulation studies. This enhancement is
not, however, entirely unexpected as similar behavior was

reported by Henderson in a study of hard spheres adsorbed in
wedgesf11g. Since hard particles are most likely to reside in
locations that are protected from collisions with other par-
ticles, particles therefore congregate near a given boundary.
For the cavity geometries studied here, a particle is most
shielded from interactions with other particles when it is lo-
cated at the intersection of the cavity with the hard wall. A
particle at this position will experience collisions only from
the “fluid” side of the particle; no collisions will occur on the
cavity side. Thus, an effective force develops that serves to
push the particle towards the three-phase interface. This ef-
fective force is strongest around the point where the cavity
intersects the hard wall, so that the density enhancement is
largest in the three-phase interfacial region. Moreover, and
particularly for smalll, this enhancement will deplete the
number of particles that reside near the remaining portion of
the cavity surface. The exclusion sphere of a particle located
at the three-phase interface overlaps the majority of the cav-
ity surfacesor completely covers the cavity whenløs /2d,
thereby lowering the probability, and so local density, of
finding a particle away fromz=0.

The comparison of Fig. 8 with Fig. 6 also reveals why

Ḡsld begins to increase again for large enoughl. The aver-
age density along the cavity surface forl=s clearly exceeds

the average density forl=s /4, i.e., Ḡssd.Ḡss /4d. So

while Fig. 6 shows thatḠsld initially decreases, Fig. 8 indi-

cates thatḠsld begins to increase at a large enough cavity

radius. Consequently,Ḡsld exhibits a minimum at some in-
termediate cavity radius.

Figure 8 also validates the limiting condition ofḠsld for
l→` used in Ref.f1g. In Fig. 8, gsl ,R,ud=gsl ,Rd sthe
bulk cavity-particle correlation functiond around u=0. So,
along this portion of the cavity surface,gsl=Rd=Gsld,

FIG. 8. sColor onlined gsl ,R,ud for l=s and rs3=0.5 gener-
ated via MC simulation.z is the distance from the effective hard
wall and x and y measure the perpendicular distances from the
cavity center. The density is enhanced beyondp/rkT at the three-
phase interface, but the enhancement is localized close tox=y=s
and z=0. Far from the cavity center,gsl ,R,ud resemblesrszd.
Along u=0, however,gsl ,R,ud resembles the bulk RDFgsRd.

FIG. 9. The cavity-particle functiongss ,R,0d and bulk RDF
gsRd plotted versus radial distanceR for rs3=0.5. gsRd is denoted
by the solid line andgss ,R,0d by the circles. A cavity of radius
l=s is equivalent to a particle of diameters f2g. The two functions
are nearly identical and deviations may be attributed to simulation
noise.
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whereGsld is the bulk SPT cavity function. For largerl, the
local density of particle centers at the cavity surface will still
equal the bulkGsld, but for an even larger range ofu about
u=0. Thus, asl→`, the average density at the cavity sur-
face should approachGs`d, thereby confirming the limit that

Ḡs`d=Gs`d=p/rkT. In addition, since the density around
u=p /2 is greater thanp/kT, the average density at the cavity
surface exceedsGsld. This explains the trend seen in Ref.
f1g in which ḠsldùGsld. The appearance of the density

enhancement atu=p /2 also explains whyḠsld approaches
its limiting value of p/rkT much faster thanGsld. Further-
more, the enhancement of the local density abovep/kT at

u=p /2 implies thatḠs`d goes top/rkT from above, and not
from below as was observed in Ref.f1g. The corresponding
density depletion away from, but still near,u=p /2, shows,

however, whyḠs`d approachesp/rkT from below.

C. Minimum in Ḡ„l…

Taken together, Figs. 6 and 8 provide an explanation as to

why Ḡ exhibits a minimum. In light of Fig. 8, one might also
expect that the minimum appears at a cavity radii close to

l=s. Yet, in Ref.f1g the minimum inḠsld always appeared
for løs /2, where the density profiles that develop around
the cavities are similar to those shown in Figs. 6 and 7sand
not Fig. 8d.

Since the minimum inḠsld always falls within the exact
range ofløs /2, the exact solution of the integral equation
allows us to explore in greater detail the origin and location
of the minimum. For example,Gsl ,ud at rs3=0.5, obtained
using Eq.s30d and a simulation generatedrszd, is plotted
versusu /p in Fig. 10 for various cavity radiil less than
s /2. As the cavity radius increases, two trends appear: the

density atu=p /2 increases while the density atu=0 de-
creases. These trends show that the hard wall has different
effects onGsl ,ud depending on the value ofu. Regardless of
l, Gsl ,ud is greater thanp/rkT at u=p /2, indicating that
the hard wall plays a large role in determining the fluid struc-
ture. The trend foru=0 is more complex. The decrease in
Gsl ,ud for u near zero seems to depend on how much fluid
is displaced by the cavity and the portion ofrszd the cavity
“sees” upon insertion. For example, a cavity of radiusl
=0.1s displaces a small amount of fluid. Hence, the fluid
environment that surrounds the cavity is very similar torszd,
leading to aḠsld that is close in value tosthough less thand
p/rkT. Forl=0.5s, however, more fluid is displaced and the
resulting fluid environment yields a much reduced average
density in contact with the cavity surface.

The cause of the initial decrease ofḠsld from p/rkT is
readily apparent in Fig. 10. While the density atp /2 in-
creases with an increase inl, the large decrease in the den-
sity along the majority of the cavity surface is sufficient to
cause theaveragedensity to decrease. These two effects are
in competition to determine whetherḠsld will increase or
decrease with a change inl. This competition is displayed
more clearly in Fig. 11, where plots ofGsl ,ud multiplied by
sinu, the actual term that is integrated in Eq.s1d to obtain

Ḡsld, are shown. In Fig. 11, the plots for each radii must
necessarily begin at zero, further diminishing the contribu-

tion to Ḡsld for small u. BecauseḠsld is defined as the
integral of Gsl ,udsinu, the area under each curve equals
Ḡsld. One can see in Fig. 11 that the area under each curve
decreases asl approaches 0.4s, but then increases asl in-

creases to 0.5s. In other words,Ḡsld has passed through a
minimum, just as is observed in Fig. 4 of Ref.f1g. The actual
minimum for this density occurs atl=0.405s f1g. Closer
examination of Figs. 10 and 11 shows that the increase in

FIG. 10. Gsl ,ud versusu /p for rs3=0.5 and various cavity
radii. l is the cavity radius andu measures the angle from thez
axis. The upper horizontal dashed line denotesGsl=0,ud=p/rkT
=3.30704. The density enhancement atu /p=1/2 sor u=p /2d in-
creases withl, while the density decreases withl at u=0.

FIG. 11. Gsl ,udsinu versusu /p for rs3=0.5 and various cav-
ity radii. l is the cavity radius andu measures the angle from thez
axis. Gsl ,ud is multiplied by sinu to show the term that is inte-

grated to obtainḠsld. In this figure,Ḡsld is equivalent to the area
under the curve.
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Ḡsld asl increases from 0.4s to 0.5s is almost entirely due
to the density enhancement nearu=p /2. From u=0 to u
<p /3, Gsl ,ud does not vary much in value asl increases
from 0.4s to 0.5s. Similar trends are also seen at other den-
sities. Another interesting result of Fig. 11 is that the curva-
ture ofGsl ,udsinu changes sign from negative to positive as
l increases from 0.1s to 0.2s. This seems to be due to the
relatively small slope ofGsl ,ud for l=0.1s, which yields a
negative curvature when multiplied by sinu.

Although such plots ofGsl ,udsinu clearly indicate why
Ḡsld exhibits a minimum, these curves still do not reveal
precisely why the minimum always occurs beforel=s /2 for
all fluid densities. This is an issue which remains to be re-
solved. A derivative ofGsl ,ud in Eq. s30d with respect tol
does not, unfortunately, prove to be particularly useful in
understanding the behavior ofGsl ,udsinu since the proper-
ties of rszd are not known in general. Figure 10 reveals that
]Gsl ,ud /]l=0 for all l but only within a small range ofu
nearp /2. In turn,]Gsl ,ud /]l=0 is connected to the appear-

ance of the minimum inḠsld as seen in Fig. 11. But it is
difficult to infer why ]Gsl ,ud /]l=0 only for certainu, since
rszd is not known in general and varies considerably with the
bulk density. One can show, however, that]Gsl ,ud /]l=0
does not coincide with the appearance of the first local mini-
mum in rszd.

The minimum inḠsld, which may also be interpreted as a
decrease in the pressure on the cavity surface, also has ties to
surface thermodynamics. The decrease inḠ can be con-
nected to the appearance of the three-phase interfacescavity-
wall-fluidd and its associated line tension.sIn the hard disk
fluid, it would be thepoint tension f12g.d When a cavity
grows in a uniform hard particle fluid, the local fluid pressure
on its surface will increase. For cavities placed at a hard
wall, however, another relation, the mechanical balance of
forces at the three-phase interface, is required to fully de-
scribe the surface thermodynamics. This second relation al-
lows either an increase or decrease in the local fluid pressure
at the cavity surface depending on the sign of the line ten-
sion. Because inhomogeneous SPT predicts a decrease in
Ḡsld, so that the local fluid pressure decreases as well, the
corresponding line tension should be negative. At large
enough cavity sizes, the pressure on the cavity surface will
eventually exceed the contribution of the three-phase interfa-

cial tension so thatḠsld must increase with an increase inl.

V. CONCLUSION

We have presented a new SPT integral equation that de-
scribes the fluid structure surrounding cavities which overlap
a hard, structureless wall. The equation is based on the ideas
of scaled particle theory and is valid for the hard sphere fluid
confined between planar hard walls. Derivation of the inte-
gral equation relies on the definition of an exact three-body

correlationgf3g, which is not known in general. Consider-
ation of specific cavity sizes and positions, however, pro-
vides a closure condition ongf3g and, in turn, an exact solu-
tion of the integral equation. Plots ofgsl ,R,ud generated by
the solution of the integral equation agree with simulation
results within the range of the exact closure. The integral
equation can also be easily extended to cavities within the
two-dimensional hard disk fluidf13g.

Solution of the integral equation shows that the density of
particle centers is enhanced in the region where the cavity
overlaps the effective hard wall. At small cavity sizes, this
enhancement extends uniformly along the hard wall. Simu-
lation results showed that the enhancement is localized at the
three-phase interface for cavity radii outside the exact range
sløs /2d. The density enhancement is also responsible at
small cavity radii for reducing the density around the remain-
ing portion of the cavity. The balance between these two
competing effectssenhancement versus depletiond deter-
mines the behavior of the average density surrounding a
cavity and ultimately explains whyḠsld displays a mini-
mum. Why the minimum always occurs forl,s /2, how-
ever, is still not clearly known.

As noted in the Introduction, insights into the various
properties ofGsl ,u ,hd have the potential to help explain
various depletion phenomena of hard particle systems. The
reported enhancement at the three-phase interface is likely to
play a large role in determining whether the depletion force
is attractive or repulsive since the large enhancement might
counteract particles “pushing” the cavitysor equivalent sol-
uted toward the wall. With the range over which the integral
equation can be solved essentially limited toløs /2, our
analytical approach is so far restricted to small cavities, but
the conclusions drawn here should shed light on depletion
effects in general. In a forthcoming paper, the exact knowl-
edge ofGsl ,u ,hd is shown to be important in understanding
the behavior exhibited by the normal force needed to “push”
a cavity from behind the wall and into the fluid.

Overall, the present work provides a crucial first step in
fully describing the fluid structure surrounding a cavity near
a hard wall. Beyond the simple exact closure condition used
here to solve the integral equation, there remains the oppor-
tunity to propose additional approximate closure conditions
for the three-body correlation function to solve the integral
equation for a larger range ofl and R. Also, the presented
equations are valid only for cavity centers in whichhø0 and
can be extended to account forh.0. A full treatment and
solution of the integral equations should provide invaluable
information regarding the structure of the confined hard
sphere fluid and the behavior of hard spherelike colloidal
dispersions.
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