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Critical behavior of an Ising system on the Sierpinski carpet: A short-time dynamics study
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The short-time dynamic evolution of an Ising model embedded in an infinitely ramified fractal structure with
noninteger Hausdorff dimension was studied using Monte Carlo simulations. Completely ordered and disor-
dered spin configurations were used as initial states for the dynamic simulations. In both cases, the evolution
of the physical observables follows a power-law behavior. Based on this fact, the complete set of critical
exponents characteristic of a second-order phase transition was evaluated. Also, the dynamic éqfahent
critical initial increase in magnetization, as well as the critical temperature, were computed. The exponent
exhibits a weak dependence on the initiginall magnetization. On the other hand, the dynamic exponent
shows a systematic decrease when the segmentation step is increased, i.e., when the system size becomes
larger. Our results suggest that the effective noninteger dimension for the second-order phase transition is
noticeably smaller than the Hausdorff dimension. Even when the behavior of the magnefiratiencase of
the ordered initial stajeand the autocorrelatiofin the case of the disordered initial statith time are very
well fitted by power laws, the precision of our simulations allows us to detect the presence of a soft oscillation
of the same type in both magnitudes that we attribute to the topological details of the generating cell at any
scale.
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[. INTRODUCTION weak. The critical exponents and the critical temperature de-
pend not only ond,, but also on the connectivity and la-
In recent years, fractal structures with noninteger Hauseunarity of the fracta[13]. A direct quantitative study of
dorff dimension(dy) have attracted the interest of research-topological effects has been recently publishid].
ers because these systems, besides serving to model naturaMost of the previously cited studies are based on the same
materials such as porous rocks, aerogel, [@t@], also offer ~ type of fractal, i.e., the Sierfiski carpet(SC), which has an
the possibility of theoretically exploring systems exhibiting Infinite ramification order. Although the same kind of mag-
critical behavior close to their lower critical dimension, i.e., N€lic interaction(ising mode} has been considered, these

the larger integer dimension in which the system does noprevious studies yield controversial results. Table | summa-
exhibit any phase transition at a finite temperature. rizes the list of published results for the case of the two-

The first studies of phase transitions using fractal strucrd'menSIonaI SC with,; =1.8927, where the generating cell

tures are those of Gefen and co-workégs5]. Based on is built by segmenting a square into nine subsquares and

lizati thods. it has b h that removing the central one, so that this fractal is termed
renormaiization methods, 1t has been shown that a SeCoN& 3 1) |n particular, different values have been obtained by
order phase transition at nonzero temperature occurs only

T o ifferent authors for the critical temperatufe,, see Table)|
the fractal substrate has an infinite ramification order. Moreyhich in most cases is lower than, of the Ising model in

over, since translational symmetry is a necessary condition tgyo dimensiong2D). Also, a considerable scattering in the
proceed with dimensional perturbatif8], the disagreement gata corresponding to the critical exponefits andy/ v can
between the critical exponents determined by current methpe observed. It should also be noticed that Monte Carlo
ods[6-11] and those obtained by continuation ©fexpan-  simulations and finite-size scalif§SS may predict either
sions to noninteger dimensigf2] can be related to the to- d,>d. [7,9] or dy<des [8].
pological features of the fractal structure. One of the reasons explaining the discrepancies reported
It is well known that for systems with translational sym- in the calculation ofT. is most likely related to the location
metry, the influence of the underlying structure becomes negsf the spins on the fractésee Table), which could be at the
ligible at the critical point, i.e., when the correlation length is vertices[3,5,6,1] or at the center$7-10Q] of the squares.
much larger than the cell spacing, and only the dimensional€onsequently the mean number of nearest neighbors per site
ity, the number of components of the order parameter tois not the same. In addition, for the former the number of
gether with its symmetry, and the nature of the couplingsspins as a function of the cell size does not follow a power
concur to determine the values of the critical exponents anthw and consequentlgh; should not be expected to enter in
the corresponding universality class. However, in fractal systhe description of the critical phenomena of such systems.
tems, where the translational symmetry is replaced by scal@nother reason causing discrepancies is related to finite-size
invariance, the topological details of the generating cell areeffects, since scaling analyses reveal very strong scaling cor-
present at any scale and such universal behavior is said to bections for dimensions smaller thal+2 [7-9]. Monceau
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TABLE I. List of critical temperatures and critical exponents reported in the literature for the Ising model
in the S@3,1) fractal. The methods used to obtain the data are real space group renormaliR8BR);
Monte Carlo simulations and finite-size scalifddC-FS9; Monte Carlo renormalization grouMC-RNG);
Monte Carlo simulations and the slope meth®iC-slope [10]. The indexk indicates the generation of
fractal used. The boundary conditio(BC) used are either periodi®) or free (F).

Reference T v Blv ylv et k BC Method Spin location
(6] 2.06 1.12 P RSRG Vertices
3] 3.12 F RSRG \ertices
[8] 1.48215 1.56510) 0.081%30) 1.761) 1.92316) 7 P MC-FSS Center
[8] 1.482 1.783) 0.1479) 1.62520) 1.91928) 7 F MC-FSS center
[7] 1.481 1.701) 0.0801) 1.7301) 1.8902) 7 P MC-FSS Center
[9] 1.47985) 0.07510) 1.7324) 1.88224 8 P MC-FSS Center
[10] 1.499211) =17 6 P MC-Slope Center
[7] 1.479 54616) P MC-RNG Center
Ising 2.269 1 0.125 1.75 2 Exact

and Perrea(Q] have noticed that discrepancies with standardavailable results see rows 1-3 of Tablg By performing
finite-size scaling methods could also be due not only to theimulations using both the fourth and fifth segmentation
operation of purggenuing finite-size effects, but also to a steps, Pruessnet al. [10] have reported substantial differ-
topological contribution to scaling correctiof. They have ences between the critical temperature estimated by the STD
also pointed out that the hyperscaling lag=28/v+ylv method(see Table I and the data corresponding to the FSS
should remain valid fods=d,, and the susceptibility should approachsee Table)l Furthermore, the exponenis, y, and
follow the expected power-law behavior, which allows cal- 8 (see also Table JIstrongly depend on the segmentation
culation of the ratio of exponentg/v and the anomalous step. In addition, Zheng and Lill] have determined the
dimension exponeny in a reliable way[15]. In addition, exponentd of the initial increase in magnetization which
these authors have shown the agreement of their results wideems to be slightly greater than the figure accepted for the
those determined by Monte Carlo renormalization group2D Ising model. However, this determination has to be taken
techniqueg16]. with caution because spins are located at the vertices of the
On the order hand, Pruessretral. [10] have questioned fractal and this approach is expected to give an inaccurate
the validity of FSS studies on fractal structures. In fact, theyestimation ofT., as has already been discussed.
have pointed out that each segmentation step represents aln view of the scattering of the available data for the
new thermodynamic system and cannot be treated as a scaledtical temperature and critical exponents, the aim of this
version of the previous one. In order to avoid this shortcompaper is to study the critical behavior of the Ising model on
ing, the authors have proposed the slope mefi@l The the Sierphski carpet fractal structure $81) using the
critical exponents obtained using this method suggest thathort-time dynamics approach. In order to achieve this goal,
desr is smaller thardy, [10], in agreement with the 4e-renor-  we have used a segmentation step bigger than in a previous
malization group prediction. Furthermore, the obtained criti-STD study of this systeril0]. Furthermore, we have con-
cal temperature is higher than those reported by other authofsmed that the time dependence of the magnetization follows
by using FSSsee Table)l a power-law behavior for times two orders of magnitude
Another useful approach to obtain independent estimalarger than in a previous STD stud§0]. Additionally, we
tions for the critical temperature and the critical exponents ihave determined,. and the complete set of critical expo-
given by the short-time dynamid$STD) [17] method (for  nents starting the STD studies with two different initial con-

TABLE II. List of critical temperatures and critical exponents reported in the literature for the Ising model
in the S@3,1) fractal and obtained using Monte Carlo simulations and a short-time dynamics analysis. PW
indicates the present work. The boundary conditions used are periodic and the iimdiicates the genera-
tion of the fractal used.

Reference Te (774 y B 0 z k Spin location
[11] 2.0334) 0.2113) 2.384) 7  \ertices
[10] 1.526611) 3.0611 1.95932) 0.115429 4 Center
[10] 1.508112) 3.21(15 2.04849) 0.12055) 5 Center
PW 1.494%50) 3.54612) 2.221) 0.12%5) 0.181%6) 2.551) 6 Center
Ising 2.269 2.16524] 1.75 0.125 0.19124] 2.165[24]
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ditions: (i) a fully ordered initial statéground state configu-
ration corresponding tar=0), and (ii) a fully disordered
initial state corresponding t®=cc. Self-consistency of the
results was also carefully checked. On the other hand, we
have also obtained the value of the expongntlated to the
initial increase in magnetization at an early time, which have
not been previously determined for spins placed at the center
of the occupied subsquares of the fractal. Finally, the dy-
namic exponent was evaluated for this fractal, by means of
two independent methods using the Binder cumulant and the
critical scaling of time correlation functions.

The STD approach has shown to be a powerful tool in the
study of critical phenomena because the critical exponents
can be determined before the critical slowing down of the
dynamics takes place and they are free from finite-size cor-
rections, provided that the correlation lengitt) is always

smaller than the system site[&(t) <L] [18,19. However, FIG. 1. Sketch of the Sierpinski carpet &) iterated up to

in the case that we are interested in, namely(35I}, an k=3 segmentation step. Spins are placed at the centers of the filled
intrinsic kind of finite-size effect due to the segmentationsquares.

stepk of the fractal can be observed, as is discussed in detalil

below. Furthermore, the STD analysis is particularly usefulnteracting nearest-neighbor pairs of spins, and the exchange
since the application of FSS to obtdlg is questionable for oy pling constand is positive (ferromagnetic interactions
segmentation steps smaller thafil®], which are the typical

sample sizes that one is forced to use in practical calculations
due to computing limitationg7—9]. lIl. SHORT-TIME DYNAMICS APPROACH

The outline of this paper is the following. In Sec. Il we FOR CRITICAL PHENOMENA
describe the magnetic model and the underlying fractal struc-
ture, in Sec. Il we briefly recall the main features of the According to field theoretical calculation$7], if a mag-
short-time dynamics method, and in Sec. IV, the results obnetic system at high temperature, with a small magnetization
tained from the dynamic simulations are presented. Finallyin, is suddenly quenched to the critical temperature, it may

our conclusions are stated and discussed in Sec. V. exhibit a universal dynamic evolution, which sets in right
after a time scalé,,.. It is expected that,;. should be large
II. THE ISING MODEL ON THE SIERPI NSKI CARPET in the microscopic sense, but still very small in the macro-

scopic sense necessary for equilibration. This STD approach

The SQb,c) is obtained as follows: for each segmenta-js free of the critical slowing down since the spatial correla-
tion step(k), a square of length is segmented intb? sub-  tion length is still small within the short-time regime, even at
squares and? subsquares are deleted from the center of théor neaj the critical point[17].
initial square; then the segmentation process is iterated on The kth moments of the magnetization are given by
the remaining subsquares. Figure 1 shows a sketch of tHag,19
S{3,1), which is used in the present work, corresponding to ‘ ko gk ezr Ll el
the k=3 segmentation step. In the linkit> « the mathemati- M¥(t, 7,L,mp) = b™"M(b™,b™"7,b™ "L, bmg)  (2)
cal fractal S@Cb,c) is obtained, and the Hausdorff dimension where 8 and v are the order parameter and the correlation
is given byd,;=In(b’~c?)/In b. In the case of the SB,1) the  |ength critical exponents is the dynamic critical exponent,
deviation of the mean number of nearest neighbors from that js the reduced temperature,is the system size, is the
corresponding to the thermodynamic limimathematical scaling dimension of the initial magnetization, ahds a
fractal), using periodic boundary conditions, as determinedscaling factor. For largé, at the critical pointr=0, and for
by the transfer-matrix method, becomes negligibleKeré ~ m,<1, from the scaling form given by E@2) one derives
[9]. the initial increase in magnetization, obtainifig,19

As mentioned above, this fractal has an infinite ramifica- \
tion order, which implies that the Ising model should exhibit _ 1 O (464l
a second-order phase transition at finite temperature. Spins M(t) = NZ S =met"F(t Mo) 3
were placed at the center of the occupied subsquares. Con- =t
sequently the number of spins increases as a power law afhere(---) denotes the averages taken over spin configura-

the lattice size, and the exponent is givendpy tions and[---] corresponds to averages taken over different
The Hamiltonian of the system is given by samples with equivalent initial conditions. Heré=(x,
—-B/v)lz, and the scaling function behaves k&) ~ 1 for
H=-32 SiSj (1) x—0 andF(x)~ 1/x for x— . It should be noticed that the

i time scale for this initial increase is of the order tf
where s assumes the values %1, the sum runs over alk mg”"O. 0 and x are the exponents of the initial increase
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and the scaling dimension of the order parameter. Since both 0.971—

' s, +  T=1.4795n_=120
exponents are related, one of them can be considered as a T=1.4895 n_=200
additional nontrivial critical exponent[18,19. Performing 0.8 =1.4945 n_=720
simulations for different values of the initial magnetization 2 T — Tw1.4895 1 =200

and extrapolating the results =0, the exponen# can be T =1'5095 e

obtained. Other interesting observables are the second mog>
ment of the magnetizatiopM?(t)] and the autocorrelation = 0.7] oo

[A(t)], which formy=0 andr=0 should behave according to = e
the following power-law scaling relationships: = “&%
P
N 2 0.7 ‘&“
MA(D) = (12 S) otz (4) . N
N i=1 10 10°  10°  10'  10° ﬁ“x&
t (units of MCS) S

and 10’ 10? 10° 10* 10°

t(units of MCS)

FIG. 2. Log-log plots of magnetization versus time obtained

starting from ordered initial conditiongny=1). The different tem-
(5 peratures used and the number of samples considered are also
respectively. shown in the figure. The inset shows the log-log ploMit) versus

Another important process that can be measured is thethat gives the best fit of Eq6) and is assumed to correspond to

dynamic relaxation from a completely ordered statath ~ the critical temperaturg,=1.4945.
my=1), which corresponds to a ground state configuration at
T=0, to T.. In this case, the magnetization, the logarithmicflipping a definite number of spins at randomly chosen sites.

13 d
Alt) = [ NE s(1)s(0) ] wt™  with \ = fﬁ -,
i=1

derivative of the magnetization with respect tpand the In order to implement the time evolution, the system is
second-order Binder cumulaff4] should behave according updated by using the Metropolis algorithm. The well tested
to [21] Marsaglia-Zanan pseudorandom number generator is
iz used throughout the simulations. The time unit, defined as a
M(t) o t ’ (6) Monte Carlo time stefMCS), involves the update of a num-
ber of spins that corresponds to all spin sites of the sample.
V(1) =3, [In M(t,)]] =g t*77, (7)  In this way, during one MCS each spin is updated once, on
and average. Simulations starting from a disordefeddered

state are carried out up to 2000 MCZ0 000 MCS.
M?2(t) 4tz The magnetization, the autocorrelation, and the second
(t)= [M(®)]2 — Lo 7l () moment of the magnetization were averaged over a number
ng of samples with equivalent initial configurations. In addi-
respectively. FofT # T, but within the critical region, the tion, the time evolution of the ordered state was also studied
power-law behavior is modified by a scaling function, which for the segmentation stefps=3,4,5 inorder to apply a FSS
for the magnetization is given byl(t/%7). This fact can be method that allowed us to obtain an estimation of the dy-
used to determine the critical temperature from the localizanamic exponent. In order to estimate the error bars of the
tion of the optimal power-law behavior. evaluated exponents we have used a variant of the blocking
Summing up, the STD scaling study of a given systemmethod[22] fitting the time dependence of each observable
performed by starting from two extreme initial states, i.e., afor independent sets of measurements having the same sta-
completely ordered one and a completely disordered one, isstic.
sufficient to determine both the critical temperature and the

set of relevant critical exponents in a self-consistent fashion _ _ . . .
[18-20. B. Simulation of the dynamic evolution starting

from the ordered state

According to our experience, the determination of the

IV. NUMERICAL RESULTS critical temperature and exponents is more accurate when the
simulations start from the ordered state. In fact, in this case
the magnetization is large and decreases slowly during time

Monte Carlo simulations of the Ising model on the evolution and therefore statistical fluctuations are less promi-
SC(3,1) were performed for the segmentation step6 (L nent. Figure 2 shows the decay of the magnetization obtained
=729 with 262 144 spin sitesising periodic boundary con- at different temperatures fé=6. The critical temperature is
ditions, and starting either from an ordered state or from aletermined by finding the smallest standard deviation from
disordered state with zero or a small initial magnetization. Inthe power law given by Eq(6), which yields T.(k=6)
the latter case the initial magnetizatigm,) was obtained =1.4945%50), where the error bar is assessed by considering
from a disordered configuratiofof zero magnetizationby  the closest pair of temperatures that present noticeable but

A. Details on the simulations
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TABLE lII. List of critical exponents determined from the time dependence of the magnetiZaéoand
column, see Eq(6)], Binder’s cumulanfthird column, see Eq8)], the logarithmic derivative of magneti-
zation[fourth column, see Ed7)], and the susceptibilityfifth column). Data obtained starting the simula-
tions from an ordered initial state and for tke6 generation of the fractal. Slightly different exponents are
obtained by performing the fits after disregarding different initial time intertig|s), as listed in the first

column.
tmin (MCS) Blvz Osi/ Z 1/vz vlvz B y
20 0.034066) 0.6913) 0.2852) 0.6303) 0.1199) 2.21(2)
100 0.034127) 0.6932) 0.2821) 0.6262) 0.1215) 2.221)
150 0.034187) 0.6942) 0.2822) 0.6272) 0.1219) 2.222)

small standard deviations. This figure is in good agreement Figure 3 shows the determination of the expongpt z

with determinations performed by means of Monte Carlo(see the results in Table }JIfrom the time dependence of the

simulations analyzed by using the slope methbd]. Also,  Binder cumulant, according to E¢B). Considering that the

acceptable agreement with the value obtained by means slisceptibility is given byy(t) < U(H)[(M(t))]?<t”"?, the ex-

the STD analysis of Monte Carlo data is fou(sete Table . ~ ponenty/vz can also be obtainetsee inset in Fig. 3 and

However, a careful inspection of the data shows a systematitable I1l). Notice that the above relationships were obtained

decrease i, when the segmentation step is increased, sugassuming that the hyperscaling laly=28/ v+ y/ v holds.

gesting that our result could be taken as an upper bound.  Simulations started from the ordered state also allow the
The exponent determined by fitting E@) [see the inset self-consistent determination of the order parameter critical

of Fig. 2] is listed in Table Ili(second column Our estima-  exponen{B and the exponeng of the susceptibility using the

tion, given byB/vz=0.03411), is slightly smaller than the exponents listed in the second and fourth columns, and in the

figures obtained by using the exponents listed in Table llfifth and fourth columns of Table Ill, respectively. The ob-

which correspond to STD studies far=4 and 5, namely, tained results are also listed in Table IIl. The trend of the data

Blvz=0.0377 and 0.037MLO], respectively. So our finding is for the exponenty, namely, a systematic increase wkhis

consistent with a systematic decreasefifwz that is ob- consistent with the observations reported by Pruessnat.

served wherk is increased. [10], which are listed in Table Il for the sake of comparison.
The logarithmic derivative of the magnetization with re- However,3 appears to be less sensitive to the change of the

spect tor is evaluated by taking the difference between thesegmentation step. It is worth mentioning that our best esti-

values ofM(t) at two temperatures close Tg. The result of mation of the order parameter critical exponent givengoy

this calculation, obtained takin®, =1.4795 andl,=1.5095, =0.1215) is very close to the exact value corresponding to

is shown in Fig. 3. From this figure it follows that the power- the Ising model ind=2 (8=0.125. However, y is clearly

law behavior expected from Eq7) is obtained aftet=70 greater in the case of the fractal substrate.

MCS, and the corresponding exponent is listed in Table III. It

should be noticed that using =1.4895 andl,=1.4995 one

also obtains the same critical exponémithin error barg but C. Simulations of the dynamic evolution starting

the data are more noisy. From the data shown in Table IlI it from a disordered state

follows thatvz=3.546, which is significantly larger than the

exponent reported fak=5, namely,rz=3.21[10]. Figure 4 shows the initial increase in magnetization, ob-
served for different values of the initidbmall) magnetiza-

10 tion (my), and obtained after quenching the systemTto
when the simulations started from the disordered state corre-
sponding toT=co,

Within the time regime considere@0-2000 MC$, the
magnetization always increases and the data can be fitted to a
10% power law with critical exponen, as expected from Eg3).

' Nevertheless, a soft curvature of the data can be observed for
larger times due to the fact that, is finite and the power
law is actually expected to hold in they— 0 limit. So, in
» order to determine the critical exponent we performed a fit of

10 — — " — — the data within the time interval 20-100 MCS. As can be

10 10 1t0(unit;00f MC%) observed in the inset of Fig. 4, the exponents show a weak
dependence om,. Then the exponem was evaluated by a

FIG. 3. Log-log plot of the logarithmic derivative of magnetiza- linear extrapolation tany,=0, yielding =0.181%6). So, ac-
tion versus time obtained at criticality, starting from ordered initial cording to our results, the exponefifor the SG3,1) fractal
conditions(my=1). The full line corresponds to the best fit obtained appears to be slightly smaller than the accepted value for the
for t>100 MCS, according to Eq7). Ising model ind=2, given by#=0.191[23].

—_—

el
%

>
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10% TABLE IV. List of critical exponents determined from the dy-
namic behavior of the second moment of the magnetizdteoond
column, see Eq4)] and autocorrelatiofthird column, see Eq5)].

10°4 Data obtained starting the simulations from disordered initial states
with my=0 and fork=6. The estimations ad./z listed in columns
€ 4 and 5 are obtained by using the autocorrelation diduiad col-
= Y umn) and the determined value #-=0.1815, and using the expo-
1073 nents listed in the second column in combination with the expo-
nents listed in the second column of Table IIl, respectively.
10°3 tmin (MCS)  def/z—2Blvz O/ z— 0 dett/ Z Ot/ Z
T T 20 0.66%2) 0.5182) 0.6992) 0.6992)
e — U L ) 100 0.6482) 0.5142) 0.6952) 0.6822)
10' 10° 10° 10* 10° 150 0.6462) 0.5123) 0.6933) 0.6802)
t (units of MCS

FIG. 4. Log-log plot of Binder’s cumulant versus time obtained On the other hand, the decay of the autocorrelation func-

at criticality, starting from ordered initial conditioneny=1). The t!on (see ':'9- 6 sllghtly depends of, allowing us to con-
inset shows the zero field susceptibility) versus time. The full  fifM our estimation, namelyT.=1.494%50), and the corre-
lines correspond to the best fits obtained for100 MCS. sponding error bars, already evaluated using simulations
started from ordered configurations. The exponently/z
Figure 5 shows that the evolution from a disordered stater ¢ evaluated by fitting the data at criticalifgee inset of
with my=0, of the second moment of the magnetization has &ig. 6) is also listed in Table IV. It is worth mentioning that
weak dependence on temperature. This shortcoming hindebsy inserting the value ob already determined in the expo-
an independent estimation df. based on these measure- nent of the autocorrelation function, one can also calculate
ments. However, by using the valuef obtained by means d.s/z, as listed in the fourth column of Table IV. The ob-
of simulations started from the ordered state, it is possible téained results are in full agreement with the determination
evaluate the critical exponent of the second moment accorgperformed by starting simulations from ordered stdie=e
ing to Eq.(4), as shown in the inset of Fig. 5. The obtained Table III).
value is listed in Table IV. Also, inserting the exponemnt/ vz determined by means
of simulations started from the ordered st&tee the second

] / column of Table Il) in the expression of the exponent of the
/ second moment of the magnetization, given Hy/z
, // :T% —2B/vz, one can obtain an additional estimationdgf/z, as
10. -'/
| - T=1.4795 '
T=1.4895
3 T=1.4945
107 T=1.4995
1 « T=1.5095
0.180 \HJ\'\(\I\I\ NE 1
» l a5 10%
10 2'_ JB i =
01760 062 o0s 006 mm 10'4-: ; = ./
10 RS | s
. 1 - 10’ 10° 10°
t(units of MCS) . - ____t(units of MCS)
1 2 3
FIG. 5. Log-log plots of magnetization versus time obtained at 10 10 . 10
criticality, starting from disordered initial conditions slightly modi- t (UnItS Of MCS)
fied to obtain different values of the initial magnetizatiog. Data
corresponding t&=6 and different values afy, which from top to FIG. 6. Log-log plots of the second moment of magnetization

bottom are 0.06, 0.05, 0.04, 0.03, 0.02, 0.015, and 0.01, respe&ersus time, obtained at different temperatuiissed in the figurg,
tively. The full lines correspond to the best fits obtained for20  starting from disordered initial conditions witimy=0. Data ob-
<100 MCS, according to Eq3). Data obtained by averaging over tained by takingk=6. The inset shows the dependenceMs on
4000-10 000 different samples, dependingngn The inset shows time obtained at criticality(T.=1.4945, where the exponent
the dependence d@fon the initial magnetizatiom, that allowed us  dgs/z—2B/vz is obtained by fitting the data according to Ed).

to extrapolate the exponefitmy,— 0)=0.181%6). More details in ~ See also Table IV. Data obtained by averaging over 8000 different
the text. samples.
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N
19 » T=1.4795 1.2x10°
¢ T=1.4895
T=1.4945
) T=1.4995 6.0x10°
i T=1.5095 O
= S
N’ D
< |, ]
= 4.0x10°
2| = Ry,
10°7 =
1072 k=6
0.0 K e ————— T
e e e 0.0 20x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10*
—— - SbnfOtREEy t(units of MCS)
10 10° 10°

t (units of MCS) _ FIG. 8_. Scaling plots of th(_e second_—order Binder cumulant ob_-
tained using data corresponding to adjacent pairs of segmentation

FIG. 7. Log-log plots of autocorrelation versus time, obtained atStePS(ki, K1) with sizes(Lj, Li,1), respectively. The crossésolid
different temperaturedisted in the figurg starting from disordered N9 correspond to systems of sizes, (Lj). The time scale for
initial conditions withm,=0 andk=6. The inset shows the depen- the latter is rescaled by a factd;,,/L;)* in order to achieve su-
dence of autocorrelation on time obtained at criticalify, ~ PerPosition to the former; in each case the expoaesttaken as a
=1.4945, where the exponent=de/z- 8 is obtained by fitting the fitting parameter. Data _obtalned by averaging over 720, 17 000,
data according to Eq(5). See also Table IV. Data obtained by 47000, and 70000 different samples, fe=6 5, 4, and 3,
averaging over 8000 different samples. respectively.

listed in the fifth column of Table IV, which is slightly duence of intersection points occurring at “effective” critical

smaller than the estimations already performed by means d¢¢mPeratures, while the actual critical temperature was de-
different procedures. We attribute this small difference to thdin€d as the limit fork— < (Fig. §).

propagation of errors in the evaluation of exponents by com- Summing up, the FSS method applied to the dynamic
bining results from different measurements. behavior of Binder cumulant only allows us to establish an

upper bound to the dynamic exponent givenzs?2.603).
In order to obtain an independent estimation of the dy-
namic exponent that does not involve calculations with

_Although the application of FSS techniques to the evalusegmentation steps smaller than 6 we study the scaling be-
ation of critical exponents in systems with fractal structure ishavior of the time correlation function:

questionable, as we have already mentioned in the Introduc-

tion, we used it at this point in order to obtain a first estima-

tion of dynamic exponenz. However, we will perform a 1 N

critical analysis of the obtained results and subsequently we C(r,t)= [ =D s(t)s4 (1) ] , (10)

will perform a secondmore accurateestimation ofz. We Niz

carried out simulations up to 1OMCS for segmentation

stepsk=3, 4, 5, and §L=27, 81, 243, and 729, respectively

and determined the dynamic exponenising a FSS analysis wherei+r indicates a site displaced hy lattice spacings
of the Binder cumulant. In fact, right af;, the dynamic relative to sitei. Our purpose is to study the onset of corre-
exponentz can be determined from the Binder cumulant ac-lations between spins when an initially completely disor-

D. Determination of the dynamic exponentz

cording to the following scaling relation: dered systen{T=«) has been quenched #=T.. Conven-
tional critical scaling implies the following scaling form for
U(t,Ly) = U(th?Ly), ©  Cro: g1mp g seaing

whereb=L,/L,. Figure 7 shows the data collapse obtained

when the time scale of the system of slzgeis rescaled by a

factor (L,/L,)% The results obtained by rescaling lattices of C(r,t) = r@2*7¢ (r/£(1)). (12
sizes 81/27, 243/81, and 729/243 are2.762), 2.651),

and 2.603), respectively. So we observed a systematic de-

crease inz when the segmentation step of the fractal is in-Assuming that the hyperscaling relation given ol
creased, and consequently it is no longer valid to set a single28/ v+y/ v holds for this system, and using=2-v/v, we
value of the dynamic exponent for all segmentation stepsmay replaced-2+% in Eq. (11) by 28/v. As 2B8/vz has
This observed behavior is similar to an observation reporteclready been obtained directly in the simulations from the
previously [9] where the fixed point intersection of the decay of the magnetization from the ordered sf&ig. (6)],
Binder cumulant for different sizes was replaced by a seand () is expected to behave &%, we may plot
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0.8 0.8 On the other hand, using the valuev¥#0.282 deter-

0.6 mined from the slope of the logarithmic derivative of the

order parametdrsee Eq(7)] andz=2.55, our estimation for

> — the lower bound of the correlation length exponent becomes
i v=1.39, which is significantly larger than the exact value of

the Ising model given by=1.

V. DISCUSSION AND CONCLUSIONS

It is shown that the short-time dynamics approach is a
powerful method for the study of the critical behavior of the
Ising model embedded in a fractal structure, where the trans-
== lational symmetry is changed for the scale invariance. This

- 260 " 36 " 400 metho_q allows us to obtain a self-consistent determinatic_)n of
t (units 0? MCS) the critical temperature and the complete set of the critical
exponents. This self-consistency is achieved by using three

FIG. 9. Time correlation function€(r ,t) for r ranging fromr  different initial conditions for the study of the dynamics.
=\17 (upper curvg to r=1530 (lower curve obtained for the The critical temperature determined in the present work
SQ3,1) and k=6. The inset shows plots of the scaled correlationfor k=6 (an upper bound for this systers in agreement
y=r282C(r t) as a function of the scaled variabker/tY2 for ~ With the value reported by Prusseredral. [10], which was
z=2.55 and B/vz=0.0682. We have taken the value @/2zfrom  obtained from equilibrium measurements. We note that these
the decay oM(t) obtained in this work and adjusted the valuezof authors have used the slope method, a procedure that is free
that gives the best collapse of the curves. FoR.50 and 2.60 the of the finite-size effects involved in FSS calculations. A criti-
curves show noticeable deviations from the collapsed fomot  cal discussion of the values reported by other authors em-
shown here for the sake of space ploying different techniques is presented in the discussion of

the results listed in Tables | and II.

r The exponent of the initial increase iM(t) determined
r@ADIC(r 1) vs 2 (12)  for the segmentation step=6 and extrapolated to the,

— 0 limit is slightly smaller than the value corresponding to
and look for the value of that make the curves to collapse. the two dimensional Ising modésee Table )l Our result is
This procedure has been applied by Humayun and B8}  also in agreement with that reported by Zheng andii,
to obtainz for the Ising model ford=2. obtained by locating the spins at the vertices of th¢331}

In Fig. 9 we show plots ofC(r,t) as a function oft ob-  and for the same segmentation step. In this way, these results
tained for different values of ranging from 4 to 23. The suggest that the fractal structure does not significantly affect
inset shows the best collapse of the curves obtained: for the exponend.
=2.55. This value was obtained by performing a fit of the The dynamic exponerz has been obtained by means of
scaled data to a four-parameter function given by two independent measurements. Binder’s cumulant method
allows us to determine the decreasing trendz efhenk is
increased, so we obtained an upper bound givem=1.60.
Further analysis of correlation functions allows us to im-
prove the estimation of this upper bound, which is given by
which we have empirically found to fit the data quiet well. z=2 .55,

We have also checked that other functional dependences for Our value for the exponen=0.121 of the order param-
f(x) that also fit the data only modify the value oby less  eter for the segmentation st&p 6 is also in agreement with
than 0.01. The obtained value f&=6, i.e.,z=2.551), is  the trend of the results reported by Pruessteal. [10] for
consistent with the trend observed from the FSS analysis afegmentation stegs=4 and 5(see Table I, suggesting that
Binder’s cumulant and sets our upper bound for the dynamiour estimation can be taken as a lower bound. This value is
exponent. only slightly smaller than the exact exponent corresponding

The relationshipde;/z=0.693 has been determined quite to the 2D Ising magnet, namelg=0.125. So, we should not
accurately by using three different kinds of measurementgdisregard the possibility that fdt— oo the order parameter
the Binder cumulant, the slope of the second moment of theritical exponent may adopt the same value for both systems.
order parameter, and the autocorrelation functeee Table On the other hand, our estimations of the exponents
lll). So, takingz=2.55 the effective dimension becomes =2.22 of the susceptibility and=1.39 of the correlation
der=1.77, i.e., a figure that is noticeably smaller than thelength, are significantly larger than those obtained for the 2D
Haussdorf dimension,;=1.89 of the SC3,1). It should be Ising system, namelyy=1.75 andv=1, respectively. Ob-
noted that previous estimations using FSS studies gave vaserving the trend reported by Pruesseeal.[10] (see Table
ues ofd. very close tody (for a compilation of published 1) it is expected that our estimation fercould be taken as
results see Table.IHowever, Pruessnat al.[10] have es- a lower bound. Alsoy may be taken as a lower bound be-
timatedd.;=1.7, also smaller than the Haussdorf dimensioncause it is evaluated from the measurementvothat in-

0.24///

0 100

~ 1 X ru-a)lo o,
f(X) =mx+b-mm evdudv, (13
0 —o0
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volves our estimation of an upper bound for 2.0x10%
The relationshipdes/z=0.693 has been determined quite

accurately; then taking=2.55 we conclude thades~1.77

<dy. 1.0x109
Finally we would like to remark that due to the huge

statistic achieved in the evaluation of the dynamic properties ="

a soft oscillation around the power-law decay of the magne-g

tization was observed at criticalitisee Fig. 2 The same

oscillation was also observed for the disordered initial state of 1ox10”

in the behavior of the autocorrelatigsee Fig. 7. The oscil- -1.0x10

lation can clearly be detected by subtracting the fitted power 1S 00

law from the actual data, as shown in Fig. 10. This oscilla-  , , (oo &

tion is very nicely reproduced in both measuremenis to

t=2x10%in Fig. 10 and, to the best of our knowledge, this 11Xl 100 ot

is the first evidence reported about this interesting behaviol 3 gxqgd——rrm———rtnits of MCS)
of the dynamic properties of the Ising model in a fractal 10' 10° 10° 10°* 10°
substrate. We have clear signs that the observed oscillation t(units of MCS)

are related to the topological properties of the fractal lattice.

A more detailed investigation of these oscillations for the FIG. 10. Linear-log plots of the difference between the actual
S{3,1) and other fractals will be published elsewhg2é)]. data corresponding to the decay of the order parameter obtained
We would finally like to note the self-consistency of our starting withmy=1 and the best power-law fit of the curve versus
results obtained by the application of the STD method to theime. The inset shows a similar plot but corresponding to the auto-

study of the critical behavior of the Ising model on fractal correlation measured starting withy=0.

structures. However, it should be recognized that there are

still discrepancies in the values of the critical exponentsphysical observables upon the number of iteration steps of
when STD results are compared to those obtained using stathe structure.

dard finite-size scaling of equilibrium data. For example, in

contrast to our data, recent FSS results of Carnedra. [7] ACKNOWLEDGMENTS

and Monceau and Perreg®] lead to an effective dimension This work was supported by CONICET, UNLP, ANPCyT,
almost equal to the Hausdorff one. So we conclude that thand Fundacién Antorchd&RGENTINA). The A. von Hum-
origin of the discrepancies may be related to the fact that theéoldt FoundatiofGermany is greatly acknowledged for the
critical behavior of the Ising magnet on fractal substrates igprovision of valuable computer equipment. The authors
very particular, since it is linked to the dependence of mosthank Silvio Franz for fruitful discussions.
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