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The short-time dynamic evolution of an Ising model embedded in an infinitely ramified fractal structure with
noninteger Hausdorff dimension was studied using Monte Carlo simulations. Completely ordered and disor-
dered spin configurations were used as initial states for the dynamic simulations. In both cases, the evolution
of the physical observables follows a power-law behavior. Based on this fact, the complete set of critical
exponents characteristic of a second-order phase transition was evaluated. Also, the dynamic exponentu of the
critical initial increase in magnetization, as well as the critical temperature, were computed. The exponentu
exhibits a weak dependence on the initialssmalld magnetization. On the other hand, the dynamic exponentz
shows a systematic decrease when the segmentation step is increased, i.e., when the system size becomes
larger. Our results suggest that the effective noninteger dimension for the second-order phase transition is
noticeably smaller than the Hausdorff dimension. Even when the behavior of the magnetizationsin the case of
the ordered initial stated and the autocorrelationsin the case of the disordered initial stated with time are very
well fitted by power laws, the precision of our simulations allows us to detect the presence of a soft oscillation
of the same type in both magnitudes that we attribute to the topological details of the generating cell at any
scale.
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I. INTRODUCTION

In recent years, fractal structures with noninteger Haus-
dorff dimensionsdHd have attracted the interest of research-
ers because these systems, besides serving to model natural
materials such as porous rocks, aerogel, etc.f1,2g, also offer
the possibility of theoretically exploring systems exhibiting
critical behavior close to their lower critical dimension, i.e.,
the larger integer dimension in which the system does not
exhibit any phase transition at a finite temperature.

The first studies of phase transitions using fractal struc-
tures are those of Gefen and co-workersf3–5g. Based on
renormalization methods, it has been shown that a second-
order phase transition at nonzero temperature occurs only if
the fractal substrate has an infinite ramification order. More-
over, since translational symmetry is a necessary condition to
proceed with dimensional perturbationf3g, the disagreement
between the critical exponents determined by current meth-
ods f6–11g and those obtained by continuation of« expan-
sions to noninteger dimensionf12g can be related to the to-
pological features of the fractal structure.

It is well known that for systems with translational sym-
metry, the influence of the underlying structure becomes neg-
ligible at the critical point, i.e., when the correlation length is
much larger than the cell spacing, and only the dimensional-
ity, the number of components of the order parameter to-
gether with its symmetry, and the nature of the couplings
concur to determine the values of the critical exponents and
the corresponding universality class. However, in fractal sys-
tems, where the translational symmetry is replaced by scale
invariance, the topological details of the generating cell are
present at any scale and such universal behavior is said to be

weak. The critical exponents and the critical temperature de-
pend not only ondH, but also on the connectivity and la-
cunarity of the fractalf13g. A direct quantitative study of
topological effects has been recently publishedf14g.

Most of the previously cited studies are based on the same
type of fractal, i.e., the Sierpiński carpetsSCd, which has an
infinite ramification order. Although the same kind of mag-
netic interactionsIsing modeld has been considered, these
previous studies yield controversial results. Table I summa-
rizes the list of published results for the case of the two-
dimensional SC withdH=1.8927, where the generating cell
is built by segmenting a square into nine subsquares and
removing the central one, so that this fractal is termed
SCs3,1d. In particular, different values have been obtained by
different authors for the critical temperaturesTc, see Table Id,
which in most cases is lower thanTc of the Ising model in
two dimensionss2Dd. Also, a considerable scattering in the
data corresponding to the critical exponentsb /n andg /n can
be observed. It should also be noticed that Monte Carlo
simulations and finite-size scalingsFSSd may predict either
dH.deff f7,9g or dH,deff f8g.

One of the reasons explaining the discrepancies reported
in the calculation ofTc is most likely related to the location
of the spins on the fractalssee Table Id, which could be at the
vertices f3,5,6,11g or at the centersf7–10g of the squares.
Consequently the mean number of nearest neighbors per site
is not the same. In addition, for the former the number of
spins as a function of the cell size does not follow a power
law and consequentlydH should not be expected to enter in
the description of the critical phenomena of such systems.
Another reason causing discrepancies is related to finite-size
effects, since scaling analyses reveal very strong scaling cor-
rections for dimensions smaller thand=2 f7–9g. Monceau
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and Perreauf9g have noticed that discrepancies with standard
finite-size scaling methods could also be due not only to the
operation of puresgenuined finite-size effects, but also to a
topological contribution to scaling correctionsf9g. They have
also pointed out that the hyperscaling lawdeff=2b /n+g /n
should remain valid fordeff=dH and the susceptibility should
follow the expected power-law behavior, which allows cal-
culation of the ratio of exponentsg /n and the anomalous
dimension exponenth in a reliable wayf15g. In addition,
these authors have shown the agreement of their results with
those determined by Monte Carlo renormalization group
techniquesf16g.

On the order hand, Pruessneret al. f10g have questioned
the validity of FSS studies on fractal structures. In fact, they
have pointed out that each segmentation step represents a
new thermodynamic system and cannot be treated as a scaled
version of the previous one. In order to avoid this shortcom-
ing, the authors have proposed the slope methodf10g. The
critical exponents obtained using this method suggest that
deff is smaller thandH f10g, in agreement with the 4−« renor-
malization group prediction. Furthermore, the obtained criti-
cal temperature is higher than those reported by other authors
by using FSSssee Table Id.

Another useful approach to obtain independent estima-
tions for the critical temperature and the critical exponents is
given by the short-time dynamicssSTDd f17g method sfor

available results see rows 1–3 of Table IId. By performing
simulations using both the fourth and fifth segmentation
steps, Pruessneret al. f10g have reported substantial differ-
ences between the critical temperature estimated by the STD
methodssee Table IId and the data corresponding to the FSS
approachssee Table Id. Furthermore, the exponentsnz, g, and
b ssee also Table IId strongly depend on the segmentation
step. In addition, Zheng and Lif11g have determined the
exponentu of the initial increase in magnetization which
seems to be slightly greater than the figure accepted for the
2D Ising model. However, this determination has to be taken
with caution because spins are located at the vertices of the
fractal and this approach is expected to give an inaccurate
estimation ofTc, as has already been discussed.

In view of the scattering of the available data for the
critical temperature and critical exponents, the aim of this
paper is to study the critical behavior of the Ising model on
the Sierpiński carpet fractal structure SCs3,1d using the
short-time dynamics approach. In order to achieve this goal,
we have used a segmentation step bigger than in a previous
STD study of this systemf10g. Furthermore, we have con-
firmed that the time dependence of the magnetization follows
a power-law behavior for times two orders of magnitude
larger than in a previous STD studyf10g. Additionally, we
have determinedTc and the complete set of critical expo-
nents starting the STD studies with two different initial con-

TABLE I. List of critical temperatures and critical exponents reported in the literature for the Ising model
in the SCs3,1d fractal. The methods used to obtain the data are real space group renormalizationsRSGRd;
Monte Carlo simulations and finite-size scalingsMC-FSSd; Monte Carlo renormalization groupsMC-RNGd;
Monte Carlo simulations and the slope methodsMC-sloped f10g. The indexk indicates the generation of
fractal used. The boundary conditionssBCd used are either periodicsPd or free sFd.

Reference Tc n b /n g /n deff k BC Method Spin location

f6g 2.06 1.12 P RSRG Vertices

f3g 3.12 F RSRG Vertices

f8g 1.482s15d 1.565s10d 0.0815s30d 1.76s1d 1.923s16d 7 P MC-FSS Center

f8g 1.482 1.73s3d 0.147s9d 1.625s20d 1.919s28d 7 F MC-FSS center

f7g 1.481 1.70s1d 0.080s1d 1.730s1d 1.890s2d 7 P MC-FSS Center

f9g 1.4795s5d 0.075s10d 1.732s4d 1.882s24d 8 P MC-FSS Center

f10g 1.4992s11d .1.7 6 P MC-Slope Center

f7g 1.479 546s16d P MC-RNG Center

Ising 2.269 1 0.125 1.75 2 Exact

TABLE II. List of critical temperatures and critical exponents reported in the literature for the Ising model
in the SCs3,1d fractal and obtained using Monte Carlo simulations and a short-time dynamics analysis. PW
indicates the present work. The boundary conditions used are periodic and the indexk indicates the genera-
tion of the fractal used.

Reference Tc nz g b u z k Spin location

f11g 2.033s4d 0.211s3d 2.38s4d 7 Vertices

f10g 1.5266s11d 3.06s11d 1.959s32d 0.1154s29d 4 Center

f10g 1.5081s12d 3.21s15d 2.048s49d 0.120s55d 5 Center

PW 1.4945s50d 3.546s12d 2.22s1d 0.121s5d 0.1815s6d 2.55s1d 6 Center

Ising 2.269 2.165f24g 1.75 0.125 0.191f24g 2.165f24g
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ditions: sid a fully ordered initial statesground state configu-
ration corresponding toT=0d, and sii d a fully disordered
initial state corresponding toT=`. Self-consistency of the
results was also carefully checked. On the other hand, we
have also obtained the value of the exponentu related to the
initial increase in magnetization at an early time, which have
not been previously determined for spins placed at the center
of the occupied subsquares of the fractal. Finally, the dy-
namic exponentz was evaluated for this fractal, by means of
two independent methods using the Binder cumulant and the
critical scaling of time correlation functions.

The STD approach has shown to be a powerful tool in the
study of critical phenomena because the critical exponents
can be determined before the critical slowing down of the
dynamics takes place and they are free from finite-size cor-
rections, provided that the correlation lengthjstd is always
smaller than the system sizeL fjstd!Lg f18,19g. However,
in the case that we are interested in, namely, SCs3,1d, an
intrinsic kind of finite-size effect due to the segmentation
stepk of the fractal can be observed, as is discussed in detail
below. Furthermore, the STD analysis is particularly useful
since the application of FSS to obtainTc is questionable for
segmentation steps smaller than 6f10g, which are the typical
sample sizes that one is forced to use in practical calculations
due to computing limitationsf7–9g.

The outline of this paper is the following. In Sec. II we
describe the magnetic model and the underlying fractal struc-
ture, in Sec. III we briefly recall the main features of the
short-time dynamics method, and in Sec. IV, the results ob-
tained from the dynamic simulations are presented. Finally,
our conclusions are stated and discussed in Sec. V.

II. THE ISING MODEL ON THE SIERPI ŃSKI CARPET

The SCsb,cd is obtained as follows: for each segmenta-
tion stepskd, a square of lengthL is segmented intob2 sub-
squares andc2 subsquares are deleted from the center of the
initial square; then the segmentation process is iterated on
the remaining subsquares. Figure 1 shows a sketch of the
SCs3,1d, which is used in the present work, corresponding to
thek=3 segmentation step. In the limitk→` the mathemati-
cal fractal SCsb,cd is obtained, and the Hausdorff dimension
is given bydH=lnsb2−c2d / ln b. In the case of the SCs3,1d the
deviation of the mean number of nearest neighbors from that
corresponding to the thermodynamic limitsmathematical
fractald, using periodic boundary conditions, as determined
by the transfer-matrix method, becomes negligible forkù6
f9g.

As mentioned above, this fractal has an infinite ramifica-
tion order, which implies that the Ising model should exhibit
a second-order phase transition at finite temperature. Spins
were placed at the center of the occupied subsquares. Con-
sequently the number of spins increases as a power law of
the lattice size, and the exponent is given bydH.

The Hamiltonian of the system is given by

H = − Jo
ki,jl

sisj s1d

where si assumes the values ±1, the sum runs over all

interacting nearest-neighbor pairs of spins, and the exchange
coupling constantJ is positivesferromagnetic interactionsd.

III. SHORT-TIME DYNAMICS APPROACH
FOR CRITICAL PHENOMENA

According to field theoretical calculationsf17g, if a mag-
netic system at high temperature, with a small magnetization
m0, is suddenly quenched to the critical temperature, it may
exhibit a universal dynamic evolution, which sets in right
after a time scaletmic. It is expected thattmic should be large
in the microscopic sense, but still very small in the macro-
scopic sense necessary for equilibration. This STD approach
is free of the critical slowing down since the spatial correla-
tion length is still small within the short-time regime, even at
sor neard the critical pointf17g.

The kth moments of the magnetization are given by
f18,19g

Mkst,t,L,m0d = b−kb/nMksb−zt,b1/nt,b−1L,bx0m0d s2d

whereb and n are the order parameter and the correlation
length critical exponents,z is the dynamic critical exponent,
t is the reduced temperature,L is the system size,x0 is the
scaling dimension of the initial magnetization, andb is a
scaling factor. For largeL, at the critical pointt=0, and for
m0!1, from the scaling form given by Eq.s2d one derives
the initial increase in magnetization, obtainingf18,19g

Mstd = FK 1

N
o
i=1

N

siLG = m0t
uFstu+b/nzm0d s3d

wherek¯l denotes the averages taken over spin configura-
tions andf¯g corresponds to averages taken over different
samples with equivalent initial conditions. Here,u=sx0

−b /nd /z, and the scaling function behaves asFsxd,1 for
x→0 andFsxd,1/x for x→`. It should be noticed that the
time scale for this initial increase is of the order oft0
,m0

−z/x0. u and x0 are the exponents of the initial increase

FIG. 1. Sketch of the Sierpinski carpet SCs3,1d iterated up to
k=3 segmentation step. Spins are placed at the centers of the filled
squares.
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and the scaling dimension of the order parameter. Since both
exponents are related, one of them can be considered as an
additional nontrivial critical exponentf18,19g. Performing
simulations for different values of the initial magnetization
and extrapolating the results tom0=0, the exponentu can be
obtained. Other interesting observables are the second mo-
ment of the magnetizationfM2stdg and the autocorrelation
fAstdg, which for m0=0 andt=0 should behave according to
the following power-law scaling relationships:

M2std = FKS 1

N
o
i=1

N

siD2LG ~ tfdeff/z−2b/nzg s4d

and

Astd = FK 1

N
o
i=1

N

sistdsis0dLG ~ t−l with l =
deff

z
− u,

s5d

respectively.
Another important process that can be measured is the

dynamic relaxation from a completely ordered stateswith
m0=1d, which corresponds to a ground state configuration at
T=0, to Tc. In this case, the magnetization, the logarithmic
derivative of the magnetization with respect tot, and the
second-order Binder cumulantf24g should behave according
to

Mstd ~ t−b/nz, s6d

Vtstd = ]tufln Mst,tdgut=0 ~ t1/nz, s7d

and

Ustd =
M2std

fMstdg2 − 1 ~ tdeff/z, s8d

respectively. ForTÞTc, but within the critical region, the
power-law behavior is modified by a scaling function, which
for the magnetization is given byMst1/nztd. This fact can be
used to determine the critical temperature from the localiza-
tion of the optimal power-law behavior.

Summing up, the STD scaling study of a given system
performed by starting from two extreme initial states, i.e., a
completely ordered one and a completely disordered one, is
sufficient to determine both the critical temperature and the
set of relevant critical exponents in a self-consistent fashion
f18–20g.

IV. NUMERICAL RESULTS

A. Details on the simulations

Monte Carlo simulations of the Ising model on the
SCs3,1d were performed for the segmentation stepk=6 sL
=729 with 262 144 spin sitesd using periodic boundary con-
ditions, and starting either from an ordered state or from a
disordered state with zero or a small initial magnetization. In
the latter case the initial magnetizationsm0d was obtained
from a disordered configurationsof zero magnetizationd by

flipping a definite number of spins at randomly chosen sites.
In order to implement the time evolution, the system is

updated by using the Metropolis algorithm. The well tested
f21g Marsaglia-Zanan pseudorandom number generator is
used throughout the simulations. The time unit, defined as a
Monte Carlo time stepsMCSd, involves the update of a num-
ber of spins that corresponds to all spin sites of the sample.
In this way, during one MCS each spin is updated once, on
average. Simulations starting from a disorderedsorderedd
state are carried out up to 2000 MCSs200 000 MCSd.

The magnetization, the autocorrelation, and the second
moment of the magnetization were averaged over a number
ns of samples with equivalent initial configurations. In addi-
tion, the time evolution of the ordered state was also studied
for the segmentation stepsk=3,4,5 inorder to apply a FSS
method that allowed us to obtain an estimation of the dy-
namic exponentz. In order to estimate the error bars of the
evaluated exponents we have used a variant of the blocking
methodf22g fitting the time dependence of each observable
for independent sets of measurements having the same sta-
tistic.

B. Simulation of the dynamic evolution starting
from the ordered state

According to our experience, the determination of the
critical temperature and exponents is more accurate when the
simulations start from the ordered state. In fact, in this case
the magnetization is large and decreases slowly during time
evolution and therefore statistical fluctuations are less promi-
nent. Figure 2 shows the decay of the magnetization obtained
at different temperatures fork=6. The critical temperature is
determined by finding the smallest standard deviation from
the power law given by Eq.s6d, which yields Tcsk=6d
=1.4945s50d, where the error bar is assessed by considering
the closest pair of temperatures that present noticeable but

FIG. 2. Log-log plots of magnetization versus time obtained
starting from ordered initial conditionssm0=1d. The different tem-
peratures used and the number of samples considered are also
shown in the figure. The inset shows the log-log plot ofMstd versus
t that gives the best fit of Eq.s6d and is assumed to correspond to
the critical temperatureTc=1.4945.
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small standard deviations. This figure is in good agreement
with determinations performed by means of Monte Carlo
simulations analyzed by using the slope methodf10g. Also,
acceptable agreement with the value obtained by means of
the STD analysis of Monte Carlo data is foundssee Table IId.
However, a careful inspection of the data shows a systematic
decrease inTc when the segmentation step is increased, sug-
gesting that our result could be taken as an upper bound.

The exponent determined by fitting Eq.s6d fsee the inset
of Fig. 2g is listed in Table IIIssecond columnd. Our estima-
tion, given byb /nz=0.0341s1d, is slightly smaller than the
figures obtained by using the exponents listed in Table II,
which correspond to STD studies fork=4 and 5, namely,
b /nz=0.0377 and 0.0374f10g, respectively. So our finding is
consistent with a systematic decrease inb /nz that is ob-
served whenk is increased.

The logarithmic derivative of the magnetization with re-
spect tot is evaluated by taking the difference between the
values ofMstd at two temperatures close toTc. The result of
this calculation, obtained takingT1=1.4795 andT2=1.5095,
is shown in Fig. 3. From this figure it follows that the power-
law behavior expected from Eq.s7d is obtained aftert=70
MCS, and the corresponding exponent is listed in Table III. It
should be noticed that usingT1=1.4895 andT2=1.4995 one
also obtains the same critical exponentswithin error barsd but
the data are more noisy. From the data shown in Table III it
follows thatnz=3.546, which is significantly larger than the
exponent reported fork=5, namely,nz=3.21 f10g.

Figure 3 shows the determination of the exponentdeff /z
ssee the results in Table IIId from the time dependence of the
Binder cumulant, according to Eq.s8d. Considering that the
susceptibility is given byxstd~UstdfkMstdlg2~ tg/nz, the ex-
ponentg /nz can also be obtainedssee inset in Fig. 3 and
Table IIId. Notice that the above relationships were obtained
assuming that the hyperscaling lawdeff=2b /n+g /n holds.

Simulations started from the ordered state also allow the
self-consistent determination of the order parameter critical
exponentb and the exponentg of the susceptibility using the
exponents listed in the second and fourth columns, and in the
fifth and fourth columns of Table III, respectively. The ob-
tained results are also listed in Table III. The trend of the data
for the exponentg, namely, a systematic increase withk, is
consistent with the observations reported by Pruessneret al.
f10g, which are listed in Table II for the sake of comparison.
However,b appears to be less sensitive to the change of the
segmentation step. It is worth mentioning that our best esti-
mation of the order parameter critical exponent given byb
=0.121s5d is very close to the exact value corresponding to
the Ising model ind=2 sb=0.125d. However,g is clearly
greater in the case of the fractal substrate.

C. Simulations of the dynamic evolution starting
from a disordered state

Figure 4 shows the initial increase in magnetization, ob-
served for different values of the initialssmalld magnetiza-
tion sm0d, and obtained after quenching the system toTc

when the simulations started from the disordered state corre-
sponding toT=`.

Within the time regime considereds20–2000 MCSd, the
magnetization always increases and the data can be fitted to a
power law with critical exponentu, as expected from Eq.s3d.
Nevertheless, a soft curvature of the data can be observed for
larger times due to the fact thatm0 is finite and the power
law is actually expected to hold in them0→0 limit. So, in
order to determine the critical exponent we performed a fit of
the data within the time interval 20–100 MCS. As can be
observed in the inset of Fig. 4, the exponents show a weak
dependence onm0. Then the exponentu was evaluated by a
linear extrapolation tom0=0, yieldingu=0.1815s6d. So, ac-
cording to our results, the exponentu for the SCs3,1d fractal
appears to be slightly smaller than the accepted value for the
Ising model ind=2, given byu=0.191f23g.

TABLE III. List of critical exponents determined from the time dependence of the magnetizationfsecond
column, see Eq.s6dg, Binder’s cumulantfthird column, see Eq.s8dg, the logarithmic derivative of magneti-
zation ffourth column, see Eq.s7dg, and the susceptibilitysfifth columnd. Data obtained starting the simula-
tions from an ordered initial state and for thek=6 generation of the fractal. Slightly different exponents are
obtained by performing the fits after disregarding different initial time intervalsstmind, as listed in the first
column.

tmin sMCSd b /nz deff /z 1/nz g /nz b g

20 0.03406s6d 0.697s3d 0.285s2d 0.630s3d 0.119s9d 2.21s2d
100 0.03412s7d 0.693s2d 0.282s1d 0.626s2d 0.121s5d 2.22s1d
150 0.03413s7d 0.694s2d 0.282s2d 0.627s2d 0.121s9d 2.22s2d

FIG. 3. Log-log plot of the logarithmic derivative of magnetiza-
tion versus time obtained at criticality, starting from ordered initial
conditionssm0=1d. The full line corresponds to the best fit obtained
for t.100 MCS, according to Eq.s7d.
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Figure 5 shows that the evolution from a disordered state,
with m0=0, of the second moment of the magnetization has a
weak dependence on temperature. This shortcoming hinders
an independent estimation ofTc based on these measure-
ments. However, by using the value ofTc obtained by means
of simulations started from the ordered state, it is possible to
evaluate the critical exponent of the second moment accord-
ing to Eq.s4d, as shown in the inset of Fig. 5. The obtained
value is listed in Table IV.

On the other hand, the decay of the autocorrelation func-
tion ssee Fig. 6d slightly depends onT, allowing us to con-
firm our estimation, namely,Tc=1.4945s50d, and the corre-
sponding error bars, already evaluated using simulations
started from ordered configurations. The exponentl=deff /z
−u evaluated by fitting the data at criticalityssee inset of
Fig. 6d is also listed in Table IV. It is worth mentioning that
by inserting the value ofu already determined in the expo-
nent of the autocorrelation function, one can also calculate
deff /z, as listed in the fourth column of Table IV. The ob-
tained results are in full agreement with the determination
performed by starting simulations from ordered statesssee
Table IIId.

Also, inserting the exponentb /nz determined by means
of simulations started from the ordered statessee the second
column of Table IIId in the expression of the exponent of the
second moment of the magnetization, given bydeff /z
−2b /nz, one can obtain an additional estimation ofdeff /z, as

FIG. 4. Log-log plot of Binder’s cumulant versus time obtained
at criticality, starting from ordered initial conditionssm0=1d. The
inset shows the zero field susceptibilitysxd versus time. The full
lines correspond to the best fits obtained fort.100 MCS.

FIG. 5. Log-log plots of magnetization versus time obtained at
criticality, starting from disordered initial conditions slightly modi-
fied to obtain different values of the initial magnetizationm0. Data
corresponding tok=6 and different values ofm0, which from top to
bottom are 0.06, 0.05, 0.04, 0.03, 0.02, 0.015, and 0.01, respec-
tively. The full lines correspond to the best fits obtained for 20ø t
ø100 MCS, according to Eq.s3d. Data obtained by averaging over
4000–10 000 different samples, depending onm0. The inset shows
the dependence ofu on the initial magnetizationm0 that allowed us
to extrapolate the exponentusm0→0d=0.1815s6d. More details in
the text.

TABLE IV. List of critical exponents determined from the dy-
namic behavior of the second moment of the magnetizationfsecond
column, see Eq.s4dg and autocorrelationfthird column, see Eq.s5dg.
Data obtained starting the simulations from disordered initial states
with m0=0 and fork=6. The estimations ofdeff /z listed in columns
4 and 5 are obtained by using the autocorrelation datasthird col-
umnd and the determined value ofu=0.1815, and using the expo-
nents listed in the second column in combination with the expo-
nents listed in the second column of Table III, respectively.

tmin sMCSd deff /z−2b /nz deff /z−u deff /z deff /z

20 0.665s2d 0.518s2d 0.699s2d 0.699s2d
100 0.648s2d 0.514s2d 0.695s2d 0.682s2d
150 0.646s2d 0.512s3d 0.693s3d 0.680s2d

FIG. 6. Log-log plots of the second moment of magnetization
versus time, obtained at different temperaturesslisted in the figured,
starting from disordered initial conditions withm0=0. Data ob-
tained by takingk=6. The inset shows the dependence ofM2 on
time obtained at criticalitysTc=1.4945d, where the exponent
deff /z−2b /nz is obtained by fitting the data according to Eq.s4d.
See also Table IV. Data obtained by averaging over 8000 different
samples.
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listed in the fifth column of Table IV, which is slightly
smaller than the estimations already performed by means of
different procedures. We attribute this small difference to the
propagation of errors in the evaluation of exponents by com-
bining results from different measurements.

D. Determination of the dynamic exponentz

Although the application of FSS techniques to the evalu-
ation of critical exponents in systems with fractal structure is
questionable, as we have already mentioned in the Introduc-
tion, we used it at this point in order to obtain a first estima-
tion of dynamic exponentz. However, we will perform a
critical analysis of the obtained results and subsequently we
will perform a secondsmore accurated estimation ofz. We
carried out simulations up to 104 MCS for segmentation
stepsk=3, 4, 5, and 6sL=27, 81, 243, and 729, respectivelyd
and determined the dynamic exponentz using a FSS analysis
of the Binder cumulant. In fact, right atTc, the dynamic
exponentz can be determined from the Binder cumulant ac-
cording to the following scaling relation:

Ust,L1d = Ustbz,L2d, s9d

whereb=L2/L1. Figure 7 shows the data collapse obtained
when the time scale of the system of sizeL1 is rescaled by a
factor sL2/L1dz. The results obtained by rescaling lattices of
sizes 81/27, 243/81, and 729/243 arez=2.76s2d, 2.65s1d,
and 2.60s3d, respectively. So we observed a systematic de-
crease inz when the segmentation step of the fractal is in-
creased, and consequently it is no longer valid to set a single
value of the dynamic exponent for all segmentation steps.
This observed behavior is similar to an observation reported
previously f9g where the fixed point intersection of the
Binder cumulant for different sizes was replaced by a se-

quence of intersection points occurring at “effective” critical
temperatures, while the actual critical temperature was de-
fined as the limit fork→` sFig. 8d.

Summing up, the FSS method applied to the dynamic
behavior of Binder cumulant only allows us to establish an
upper bound to the dynamic exponent given byz=2.60s3d.

In order to obtain an independent estimation of the dy-
namic exponentz that does not involve calculations with
segmentation steps smaller than 6 we study the scaling be-
havior of the time correlation function:

Csr,td = FK 1

N
o
i=1

N

sistdsi+rstdLG , s10d

where i +r indicates a site displaced byr lattice spacings
relative to sitei. Our purpose is to study the onset of corre-
lations between spins when an initially completely disor-
dered systemsT=`d has been quenched toT=Tc. Conven-
tional critical scaling implies the following scaling form for
Csr ,td:

Csr,td = r−sd−2+hdfc„r/jstd…. s11d

Assuming that the hyperscaling relation given bydeff
=2b /n+g /n holds for this system, and usingh=2−g /n, we
may replaced−2+h in Eq. s11d by 2b /n. As 2b /nz has
already been obtained directly in the simulations from the
decay of the magnetization from the ordered statefEq. s6dg,
andjstd is expected to behave ast1/z, we may plot

FIG. 7. Log-log plots of autocorrelation versus time, obtained at
different temperaturesslisted in the figured, starting from disordered
initial conditions withm0=0 andk=6. The inset shows the depen-
dence of autocorrelation on time obtained at criticalitysTc

=1.4945d, where the exponentl=deff /z−u is obtained by fitting the
data according to Eq.s5d. See also Table IV. Data obtained by
averaging over 8000 different samples.

FIG. 8. Scaling plots of the second-order Binder cumulant ob-
tained using data corresponding to adjacent pairs of segmentation
stepsski ,ki+1d with sizessLi ,Li+1d, respectively. The crossesssolid
linesd correspond to systems of sizesLi+1 sLid. The time scale for
the latter is rescaled by a factorsLi+1/Lidz in order to achieve su-
perposition to the former; in each case the exponentz is taken as a
fitting parameter. Data obtained by averaging over 720, 17 000,
47 000, and 70 000 different samples, fork=6 5, 4, and 3,
respectively.
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r s2b/nzdzCsr,td vs
r

t1/z , s12d

and look for the value ofz that make the curves to collapse.
This procedure has been applied by Humayun and Brayf25g
to obtainz for the Ising model ford=2.

In Fig. 9 we show plots ofCsr ,td as a function oft ob-
tained for different values ofr ranging from 4 to 23. The
inset shows the best collapse of the curves obtained forz
=2.55. This value was obtained by performing a fit of the
scaled data to a four-parameter function given by

fsxd = mx+ b − mp−1/2E
0

xE
−`

su−ad/s

e−v2
du dv, s13d

which we have empirically found to fit the data quiet well.
We have also checked that other functional dependences for
fsxd that also fit the data only modify the value ofz by less
than 0.01. The obtained value fork=6, i.e., z=2.55s1d, is
consistent with the trend observed from the FSS analysis of
Binder’s cumulant and sets our upper bound for the dynamic
exponent.

The relationshipdeff /z=0.693 has been determined quite
accurately by using three different kinds of measurements:
the Binder cumulant, the slope of the second moment of the
order parameter, and the autocorrelation functionssee Table
III d. So, taking z=2.55 the effective dimension becomes
deff.1.77, i.e., a figure that is noticeably smaller than the
Haussdorf dimensiondH=1.89 of the SCs3,1d. It should be
noted that previous estimations using FSS studies gave val-
ues ofdeff very close todH sfor a compilation of published
results see Table Id. However, Pruessneret al. f10g have es-
timateddeff.1.7, also smaller than the Haussdorf dimension.

On the other hand, using the value 1/nz=0.282 deter-
mined from the slope of the logarithmic derivative of the
order parameterfsee Eq.s7dg andz=2.55, our estimation for
the lower bound of the correlation length exponent becomes
n.1.39, which is significantly larger than the exact value of
the Ising model given byn=1.

V. DISCUSSION AND CONCLUSIONS

It is shown that the short-time dynamics approach is a
powerful method for the study of the critical behavior of the
Ising model embedded in a fractal structure, where the trans-
lational symmetry is changed for the scale invariance. This
method allows us to obtain a self-consistent determination of
the critical temperature and the complete set of the critical
exponents. This self-consistency is achieved by using three
different initial conditions for the study of the dynamics.

The critical temperature determined in the present work
for k=6 san upper bound for this systemd is in agreement
with the value reported by Prusseneret al. f10g, which was
obtained from equilibrium measurements. We note that these
authors have used the slope method, a procedure that is free
of the finite-size effects involved in FSS calculations. A criti-
cal discussion of the values reported by other authors em-
ploying different techniques is presented in the discussion of
the results listed in Tables I and II.

The exponentu of the initial increase inMstd determined
for the segmentation stepk=6 and extrapolated to them0
→0 limit is slightly smaller than the value corresponding to
the two dimensional Ising modelssee Table Id. Our result is
also in agreement with that reported by Zheng and Lif11g,
obtained by locating the spins at the vertices of the SCs3,1d
and for the same segmentation step. In this way, these results
suggest that the fractal structure does not significantly affect
the exponentu.

The dynamic exponentz has been obtained by means of
two independent measurements. Binder’s cumulant method
allows us to determine the decreasing trend ofz when k is
increased, so we obtained an upper bound given byz=2.60.
Further analysis of correlation functions allows us to im-
prove the estimation of this upper bound, which is given by
z=2.55.

Our value for the exponentb=0.121 of the order param-
eter for the segmentation stepk=6 is also in agreement with
the trend of the results reported by Pruessneret al. f10g for
segmentation stepsk=4 and 5ssee Table IId, suggesting that
our estimation can be taken as a lower bound. This value is
only slightly smaller than the exact exponent corresponding
to the 2D Ising magnet, namely,b=0.125. So, we should not
disregard the possibility that fork→` the order parameter
critical exponent may adopt the same value for both systems.

On the other hand, our estimations of the exponentsg
=2.22 of the susceptibility andn=1.39 of the correlation
length, are significantly larger than those obtained for the 2D
Ising system, namely,g=1.75 andn=1, respectively. Ob-
serving the trend reported by Pruessneret al. f10g ssee Table
II d it is expected that our estimation forg could be taken as
a lower bound. Also,n may be taken as a lower bound be-
cause it is evaluated from the measurement ofnz that in-

FIG. 9. Time correlation functionsCsr ,td for r ranging fromr
=Î17 supper curved to r =Î530 slower curved obtained for the
SCs3,1d and k=6. The inset shows plots of the scaled correlation
y=r s2b/nzdzCsr ,td as a function of the scaled variablex=r / t1/z, for
z=2.55 and 2b /nz=0.0682. We have taken the value of 2b /nz from
the decay ofMstd obtained in this work and adjusted the value ofz
that gives the best collapse of the curves. Forz=2.50 and 2.60 the
curves show noticeable deviations from the collapsed formsnot
shown here for the sake of spaced.
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volves our estimation of an upper bound forz.
The relationshipdeff /z=0.693 has been determined quite

accurately; then takingz=2.55 we conclude thatdeff,1.77
,dH.

Finally we would like to remark that due to the huge
statistic achieved in the evaluation of the dynamic properties,
a soft oscillation around the power-law decay of the magne-
tization was observed at criticalityssee Fig. 2d. The same
oscillation was also observed for the disordered initial state
in the behavior of the autocorrelationssee Fig. 7d. The oscil-
lation can clearly be detected by subtracting the fitted power
law from the actual data, as shown in Fig. 10. This oscilla-
tion is very nicely reproduced in both measurementssup to
t.23103 in Fig. 10d and, to the best of our knowledge, this
is the first evidence reported about this interesting behavior
of the dynamic properties of the Ising model in a fractal
substrate. We have clear signs that the observed oscillations
are related to the topological properties of the fractal lattice.
A more detailed investigation of these oscillations for the
SCs3,1d and other fractals will be published elsewheref26g.

We would finally like to note the self-consistency of our
results obtained by the application of the STD method to the
study of the critical behavior of the Ising model on fractal
structures. However, it should be recognized that there are
still discrepancies in the values of the critical exponents
when STD results are compared to those obtained using stan-
dard finite-size scaling of equilibrium data. For example, in
contrast to our data, recent FSS results of Carmonaet al. f7g
and Monceau and Perreauf9g lead to an effective dimension
almost equal to the Hausdorff one. So we conclude that the
origin of the discrepancies may be related to the fact that the
critical behavior of the Ising magnet on fractal substrates is
very particular, since it is linked to the dependence of most

physical observables upon the number of iteration steps of
the structure.

ACKNOWLEDGMENTS

This work was supported by CONICET, UNLP, ANPCyT,
and Fundación AntorchassARGENTINAd. The A. von Hum-
boldt FoundationsGermanyd is greatly acknowledged for the
provision of valuable computer equipment. The authors
thank Silvio Franz for fruitful discussions.

f1g Fractals and Disordered Sytems, edited by A. Bunde and S.
Havlin sSpringer-Verlag, Berlin, 1991d.

f2g Fractals in Science, edited by A. Bunde and S. Havlin
sSpringer-Verlag, Berlin, 1995d.

f3g Y. Gefen, B. B. Mendelbrot, and A. Aharony, Phys. Rev. Lett.
45, 855 s1980d.

f4g Y. Gefen, A. Aharony, and B. B. Mendelbrot, J. Phys. A16,
1267 s1983d.

f5g Y. Gefen, A. Aharony, and B. B. Mendelbrot, J. Phys. A17,
1277 s1984d.

f6g B. Bonnier, Y. Leroyer, and C. Meyers, Phys. Rev. B40, 8961
s1989d.

f7g J. M. Carmona, U. M. B. Marconi, J. J. Ruis-Lorenzo, and A.
Tarancón, Phys. Rev. B58, 14387s1998d.

f8g P. Monceau, M. Perreau, and F. Hébert, Phys. Rev. B58, 6386
s1998d.

f9g P. Monceau and M. Perreau, Phys. Rev. B63, 184420s2001d.
f10g G. Pruessner, D. Loison, and K. D. Schotte, Phys. Rev. B64,

134414s2001d.
f11g G. P. Zheng and Mo Li, Phys. Rev. E62, 6253s2000d.

f12g J. C. Le Guillou and J. Zinn Justin, J. Phys.sParisd 48, 19
s1987d.

f13g L. Hao and Z. R. Yang, J. Phys. A19, 1627s1987d.
f14g P. Monceau and P. Y. Hsiao, Physica A331, 1 s2004d.
f15g P. Monceau and P. Y. Hsiao, Phys. Lett. A300, 687 s2002d.
f16g P. Hsiao and P. Monceau, Phys. Rev. B67, 064411s2003d.
f17g H. K. Janssen, B. Schaub, and B. X. Schmittmann, Z. Phys. B:

Condens. Matter73, 539 s1989d.
f18g B. Zheng, M. Schulz, and S. Trimper, Phys. Rev. Lett.82,

1891 s1999d.
f19g B. Zheng, Int. J. Mod. Phys. B12, 1419s1998d.
f20g L. Schülke and B. Zheng, Phys. Lett. A215, 81 s1996d.
f21g I. Vattulainen, T. Ala-Nissila, and K. Kankaala, Phys. Rev. E

52, 3205s1995d.
f22g M. E. J. Newman and G. T. Barkema,Monte Carlo Methods in

Statistical PhysicssClarendon Press, Oxford, 2001d.
f23g P. Grassberger, Physica A214, 547 s1995d.
f24g B. Zheng, Physica A283, 80 s2000d.
f25g K. Humayun and A. J. Bray, J. Phys. A24, 1915s1991d.
f26g M. A. Bab, G. Fabricius, and E. V. Albanosunpublishedd.

FIG. 10. Linear-log plots of the difference between the actual
data corresponding to the decay of the order parameter obtained
starting withm0=1 and the best power-law fit of the curve versus
time. The inset shows a similar plot but corresponding to the auto-
correlation measured starting withm0=0.
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