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We analyze the process of informational exchange through complex networks by measuring network effi-
ciencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level.
We apply this method to an extension of the class of small worlds that includesdeclusterednetworks and show
that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems
with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is
also applied to characterize weighted networks. In particular we examine the properties of underground trans-
portation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
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I. INTRODUCTION

Modeling of complex systems as networks of coupled el-
ements, such as chemical systemsf1,2g, neural networksf3g,
epidemiologicalf4,5g, and social networksf6g or the Internet
f7g, has been a subject of intense study in the last decade.
Networks can be classified into three broad groups:sid regu-
lar networks,sii d random networks, andsiii d systems of com-
plex topology, including small-worldf8,9g and scale-free
networks f6,10–13g. In addition, networks can be un-
weighted or weighted, depending on whether links are equal
or different. Weights can be physical distances, times of
propagation of informational packets, inverse velocity of
chemical reactions, strength of interactions, etc.f14–17g.

Commonly used regular networks are square or cubic lat-
tices, both having squares as basic cyclesf17–19g. Aiming to
describe clustering in social networks—i.e., to account for
triangles of connected nodes as basic cyclesf20g—clustered
rings were introduced, in which each site was linked to all its
neighbors from the first up to theKth f4,14,21,22g. The study
of random graphsf23–26g was motivated by the observation
of real networks that often appeared to be random. Complex
networks having a topology in between those of random and
regular networks were later introduced. An outstanding ex-
ample is the small-world modelf8,27g. Small worlds are
constructed by randomly rewiring links of a regular graphf8g
sso that the number of links remains constant, while the
structure is changedd or adding new links to itf28g schanging
both the structure and the number of linksd with a probability
p. In this way, shortcuts between distant nodes are created.
The rewiring and adding probabilityp indicates, on average,
the degree of disorder of the networksit varies fromp=0 for
a regular up top=1 for a random graphd. Small worlds are
highly clustered, showing triangles of nodes like regular net-
works, while having small distances between sites as in ran-
dom systemsf4,5,29–31g. Recently, it was realized that many
social and biological networks had a degreesconnectivityd
distribution that was not Poisson like, as in random and
small-world networks, but rather a power law. Such systems
were called scale-free systemsf10–13g and are continuously
growing open systems constructed by attaching new nodes

preferentially to nodes of higher degreef11g. Various modi-
fications of this basic procedure have been proposed: nonlin-
ear preferential attachmentf32g, initial attractivenessf33g,
and aging of sites and degree constraintsf13g or node fitness
f34g. Moreover, introducing a finite memory of the nodes,
large highly clustered systems can be obtained, representing
a combination of scale-free networks and regular lattices
f35g.

Our aim is to compare the efficiency of informational
transfer on the regular and complex networks described
above. In Sec. II we describe the networks and define the
quantities used to characterize them. In Sec. II A an exten-
sion of the class of small worlds, referred to asdeclustered,
is proposed. In Sec. II C we discuss the efficiency measures
reported in the literature and propose the alternatives re-
quired to handle nonclustered systems. Some of the new
measures defined here are an extension of those reported in
f36g. Section III is devoted to discuss the properties of vari-
ous unweighted networks. Introducing physical distances, ef-
ficiencies of weighted networks are defined in Sec. IV and
used to examine underground transportation systems. Our
achievements are summarized in Sec. V.

II. METHODS

A. Types of networks

The networks analyzed here are clusters of the square
lattice, clustered and declustered regular rings, as examples
of regular systems, and clustered Watts-Strogatz and declus-
tered small worlds, and ordinary Albert-Barabási scale-free
networks, representing complex systems. All networks are
chosen so that the ratio between the number of links,Nl, and
the number of sites,N, is kept constantNl /N=2 sthis gives
an average connectivitykkl=4d.

Concerning regular two-dimensionals2Dd networks, cal-
culations were performed forl 3 l clusters of the square lat-
tice, with periodic boundary conditions: nodesi + l , jd
=nodesi , jd and nodesi , j + ld=nodesi , jd. In the case of regu-
lar rings, we analyze the simplest clustered lattices with ad-
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ditional connections only to the next-nearest neighborssK
=2d f29,37g; see Fig. 1. In addition, we study rings with a
zero clustering coefficient constructed by adding links from
each site toonly its nth neighbors. We call themdeclustered
regular ring networksand designate their coordination pa-
rameter asK= n̄ sshown also in Fig. 1d. Therefore, in our
notationK=n means that each site is additionally linked to
all of its ring neighbors from the second to thenth, while
K= n̄ implies that only links to itsnth neighbors are added.
For such declustered networks, basic loops are squares for
any n̄, with edges on sitesi, i +n, i +1, and i +n+1. Our
motivation to analyze networks with a negligible clustering
comes from the fact that such systems can be quite often
found in nature or artifactssfor instance, in transportation
underground networksd. Such networks are usually very
sparse withNl <N f36g.

We differentiate between ordinary clustered small worlds
anddeclusteredsmall worlds, depending on the initial regu-
lar network. We will construct small-world networks starting
from clustered and declustered regular networks withK=2
andK=3̄, respectively. Moreover, as our focus is on the ef-
fects of network topology, we compare networks with the
same links-to-size ratio. Thus, shortcuts are created by ran-
domly rewiring links between each site and its more distant
neighbors with probability 2pø1, while connections to the
nearest neighbors are kept unchanged. In this way, the ring
structure is preserved and the problem of disconnected
graphs is avoidedf28g. The total number of rewired links
would approachpNøN/2 for largeN. Finally, we construct
scale-free networks starting with a fully connected graph of
m0=5 nodes andn0=10 links. At each step a new node is
added, withm=2 edges to the old nodes, so that the ratio
Nl /N=2 is kept constant.

B. Average path length and clustering coefficient

The structural properties of a graph are usually quantified
by the average path lengthL and the clustering coefficientC
f8,13g. The average path length is calculated as the network
average of the shortest graph distances between two nodes
sdijd for all possible pairs:

L =
1

NsN − 1doiÞ j

dij , s1d

defined for connected graphs for which alldij are finite.

The clustering coefficientC measures to which extent are
neighbors of each site connected to each other. It is calcu-
lated as a network average:

C =
1

N
o

i

Ci , s2d

whereCi is the ratio of the existing number of links between
the neighbors of a sitei and the maximum possible number
of themkifki −1g /2, ki being its connectivitysdegreed.

It is worth noting that, although the clustering coefficient
of almost all real networks is very highf13g, it seems that it
is much less important for the collective dynamical behavior
of a network than the average path length. Moreover, in
some cases, like square lattices or declustered ring networks,
the usual clustering coefficient fails to correctly quantify the
underlying order of the hierarchical structure of the system.
Recently it was proposed that such gridlike structures should
be characterized by a grid coefficient, numbering the fraction
of all the loops of length 4squadrilateralsd passing through
each nodef38,39g. Analysis of real networks, such as Inter-
net, Web, and scientific coauthorship, reveals a good local
rectangular clusteringf38g. However, similarly to ordinary
clustering coefficient based exclusively on triangles, this new
measure concentrates only on square loops. Any attempt to
analyze more sparse networks with longer basic cycles
would call for the introduction of new coefficients of even
higher orders. It would be much more useful to find a single
measure of local properties that could be applied to any type
of networks. Furthermore, it is not clear what is the physical
meaning of these various coefficients and how would they be
related to the dynamical behavior of the network.

C. Efficiency of informational exchange

Another approach to analyze global and local properties
of a network is introducing the concept of efficiency of in-
formational exchange through the networkf36,40,41g.

1. Global efficiency

We assume that it is easier to transfer information from
one site to another if they are closer to each other. Therefore,
the efficiency in the communication between two sitesi and
j is calculated as the inverse of the shortest path lengthdij
between these two sites:ei j =1/dij . Contrary to the average
path length, efficiency can be determined even if there is no
path betweeni and j , as in the case of disconnected graphs:
limdij→` ei j =0. The global efficiency of the network is calcu-

lated as the average over all pairs of nodesf36g,

Eg =
1

NsN − 1doiÞ j

1

dij
, s3d

and is normalized to its possible largest valueNsN−1d, for
totally connected graphs havingNsN−1d /2 edges. Physi-
cally, Eg measures the efficiency of a system with parallel
exchange of information, while 1/L accounts for the effi-
ciency of a sequential propagation of a single informational
packet along the network. In the case of real networks,Eg

FIG. 1. Illustrates the link structure in clustered ringssupperd
with connections to the second nearest neighborssK=2d and de-
clustered ringsslowerd with connections to the third nearest neigh-

bors sK=3̄d.
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gives a better measure for the transfer of information than
1/L, although quite often 1/L could be a reasonable approxi-
mation ofEg f36g.

2. Local efficiency

A similar definition can be implemented on a local level.
As a counterpart of the clustering coefficientC, the local
efficiency could be defined as an average efficiency of the
local subgraphs of the first neighborss j ,kPGid of each sitei
f36g:

E0
l =

1

N
o

i

1

kifki − 1g o
jÞkPG1

1

djk/i
0 . s4d

Here djk/i
0 is the shortest path length between sitesj and k

passing only through other elements of that local subgraph of
neighborssG1d, which is indicated by the superscript 0. In
such a way, the clustering coefficient is equal to the local
efficiency when only direct connections betweenj andk are
considered.

We propose a new definition of local efficiency, taking
into account that neighbors of each reference sitei can actu-
ally exchange information along paths including sites which
do not necessarily belong to the local subgraph ofi ’s neigh-
borssm¹G1d. In order to measure the efficiency of commu-
nication between the nearest neighbors ofi when it is re-
moved, we must only exclude sitei from such a pathsdjk/id:

E1
l =

1

N
o

i

1

kifki − 1g o
jÞkPG1

1

djk/i
. s5d

When applying such a concept on graphs without triangle
cycles, we will see that they can transfer the information
quite efficiently on a local level, although their clustering
coefficient is zero. It is worth noting that in the definition of
f36g fsee Eq.s5dg local efficiency depends only on the links
present in the graphG1 of the first neighbors of sitei. It is
calculated excluding both sitei and the rest of the network
sm¹G1d. In the new definition, however, local efficiency de-
pends on the full network topology and is calculated cutting
off only site i.

The clustering coefficient was introduced to measure the
closeness of sites or the locality of a networkf8g. Locality
tells us up to what extent the neighbors of a site remain close
to each other after this site is cut off. Regular networks are
precisely those which show the highest locality. The criteria
used for the calculation of the clustering coefficient take di-
rect connections as a substitute for closeness. From our
standpoint, it is not necessary to have two sites directly con-
nected in order to conclude that they are close to each other.
They will be far away only if the length of the path that
connects themsgoing through the rest of the network, except
site id turns out to be large. In this way, the level of closeness
sor localityd among neighbors ofi depends on network to-
pology. At first sight, our measure of locality mixes global
and local properties. However, we must note that the path
between sites that are close to each other does not go
throughout the whole remaining network, but only through
the close surroundings of these sites. The immediate sur-

roundings of these sites will overlap in a great extent, defin-
ing a common local region. Therefore, our definition of local
efficiency is logically consistent, as it depends mainly on
local topology.

III. CHARACTERIZATION OF UNWEIGHTED
NETWORKS

A. Average path length and clustering coefficient

Figure 2 shows the average path lengthL for different
types of networks with a links-to-size ratioNl /N=2, versus
the size of the systemN. Fittings of the numerical results are
given in the caption of the figure. In ordered rings,L scales
linearly with sizesLring,Nd, with a slope that is smaller for

the declustered networkK=3̄ sthe slopes given in the figure
caption are close to the exact results—namely, 1/8 and 1/12,
respectively; seef42gd. For square lattices, the dependence is
sublinear—i.e.,Lsquare<ÎN/2 f42g. Random graphs, in their
turn, are known to obey a logarithmic scalingsLrand, ln Nd
f13g. Such a behavior is also observed in the case of Watts-
Strogatz small worlds. As Fig. 2 clearly shows declustered
small worlds behave qualitatively in the same way as Watts-
Strogatz networks; in both cases the average path length is
proportional to lnN. The average path length in declustered
small worlds is shorter than in the standard small worlds, as
edges of basic square cycles of the initial declustered net-
work couple more distant sites. Finally, scale-free systems
appear to be ultrasmallf44g, with a double-logarithmic scal-
ing Lsf~ ln ln N ssee Fig. 2d.

In order to differentiate between random graphs and small
worlds, both having the same scaling of the average path

FIG. 2. Average path length versus network sizesNd for the
networks investigated in this worksall with average connectivity

kkl=4d. Regular rings: clusteredK=2 scirclesd, declusteredK=3̄
sdiamondsd, and clusters of the square latticessquaresd. Complex:
small worlds with a probability of rewiring ofp=10%—clustered

K=2 striangles upd, declusteredK=3̄ striangles downd; scale-free
networks withm0=5 andm=2 sstarsd. Lines are fits of the numeri-
cal results in the rangeN=10–400: clustered ringL=0.13N+0.39,
declustered ringL=0.083N+0.77, cluster of the square latticeL
=0.59N0.47, clustered small worldL=1.61 lnN−2.24, declustered
small world L=1.48 lnN−2.08, and scale-free networkL
=2.16 ln lnN−0.32.
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length and a Poisson distribution of degrees, the clustering
coefficient is used. Switching from highly clustered regular
graphs to small worlds by introducing a few shortcuts does
not significantly alter the clustering coefficientf8,13g. It re-
mains quite large up to high values of the rewiring parameter
p. For p<1 most triangle loops are broken, leading to ran-
dom graphs with negligible values ofC. The small-world
behavior shows up at smallp, when both the average path
length and the clustering coefficient have large valuesf8,13g.

B. Efficiencies

The aforementioned criteria identify declustered small
worlds as random networks. But is this actually the case?
Applying the concept of global and the redefined local effi-
ciency, we clearly identify the crucial differences between
various networks. The clustered regular ring lattice withK
=2 is locally very efficientE1

l =0.722, due to its high clus-
terization; see Table I. Global efficiency is quite lowEgsN
=100d=0.154, which corresponds to a long average path
length Ls100d=12.88. From our standpoint, a declustered

ring lattice with K=3̄ has the same characteristics. Local
efficiencyE1

l =0.458 is relatively good, although the cluster-
ing coefficient and the originally proposed local measure of
efficiency f36g are both zero. Globally, we obtain slightly a
larger value ofEgs100d=0.188for shorterLs100d=9.09g, due
to the presence of longer-range links. Therefore, regular
rings are in general locally efficient and globally inefficient.

Introducing a small number of shortcuts into a regular
graph to produce a small-world network does not signifi-
cantly alter its local topology and local efficiency. On the
other hand, global efficiency is appreciably improved. As
illustrated in Figs. 3 and 4 this is valid for both clustered and
declustered small worlds. The rewiring parameterp was var-
ied in the range 0.01–0.5sfor each value ofp results for five
graph realizations are shownd. In a random graphslarge pd,
the efficiency on the global scale becomes even better, but
local efficiency is strongly deteriorated. The distinction be-
tween regularsleft endd, small-worldsmiddle partd, and ran-
dom networkssright end of curvesd is clearly depicted in Fig.
5. We can conclude that small worlds are bothglobally and
locally efficientf36g.

Normalizing the global efficiency of a given small world
to the values of the initial ringssee Fig. 6d, we note that it is
improved in a relatively better way in the case of clustered
networks. This is due to the fact that initially there are only
short K=2 links to be rewired into links of longer range.

Starting from a declustered regular ringK=3̄, links can even-

TABLE I. Average path length, clustering coefficient, and global
and local efficiencies for homogeneous networks.

L C Eg E1
l

Regular clustered 12.88 0.5 0.154 0.722

Regular declustered 9.09 0 0.188 0.458

2D square 5.05 0 0.258 0.417

Random 3.40 0.02 0.328 0.280

FIG. 3. Globalscirclesd and localsdiamondsd efficiencies versus
the rewiring parameterp for clustered small worlds. The initial
regular ring was clustered withK=2.

FIG. 4. Globalscirclesd and localsdiamondsd efficiencies versus
the rewiring parameterp for declustered small worlds. The initial

regular ring was declustered withK=3̄.

FIG. 5. Global versus local efficiencies for clusteredstriangles
upd and declusteredstriangles downd small worlds. The initial regu-
lar rings were clusteredsK=2, Eg=0.258, andEl =0.722d and de-

clusteredsK=3̄, Eg=0.188, andEl =0.458d. A rewiring parameter of
0.5 leads to a single random graph.
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tually be rewired into shorterK=2 links, which do not in-
crease the global efficiency. The same type of normalization
can be done for the local efficiencies as shown in Fig. 6.

Now, possible rewiring ofK=3̄ links into K=2 links actually
improves local efficiency, assuring that normalized values for
declustered small worlds are always larger than values for
the clustered network.

C. Size of the network

The dependence of global and local efficiencies on net-
work size ssee Figs. 7 and 8d shows that regular networks
have a local efficiency that does vary withN si.e., unchanged
local topologyd. The global efficiency decreases with size,
with the minimalei j

min=1/dij
max scaling as 1/N. In the case of

small worlds, the local topology is not much affected by the
presence of a few shortcuts, leading again to a approximately
constant local efficiency. Global efficiency is now expected
to decrease at a lower rate, because the minimalei j

min

=1/dij
max scales as 1/ lnN. The results are quite different for

scale-free networks. While efficiency on a global level de-
creases with a slower rate with respect to the other networks,
local efficiency is significantly decreased. The reason is that
the clustering coefficient, giving the main contribution to the
local efficiency, decreases exponentially with the size of the
ordinary scale-free systemf13g. We expect that the local ef-
ficiency of highly clustered scale-free networksf35g would
be mainly independent of the network size, as their cluster-
ing coefficient approaches a high stationary value already for
N,102. Such a tendency is observed in scale-free Internet
networks f45g, where the clustering coefficient even in-
creases over consecutive years. From our standpoint, the In-
ternet grows, keeping constant local efficiency.

The reason for the observed decrease of global efficiency
is related to the fact that, for a constant ratioNl /N=a, in-
creasing the size produces gradually more sparse graphs with
longer average path length. The total number of possible
links is given byNsN−1d /2, while the number of links ac-
tually present in the system isNl =aN. This leads to a de-
crease of the density of links ash=2a/ sN−1d.

D. Normalized global efficiency and basic network

We can normalize the results for each type of network to
the values for clustered regularK=2 rings of the same size
eg=Eg/Er

g. The results are reported in Fig. 9. The normalized
global efficiency of a declustered regular network is slightly
larger, but does not change with size. On the contrary, it
increases with size for the square lattice, small-world, and
scale-free networks. This normalization is necessary if we
want to examine how a pure change of topology improves
transfer of information, without addition of new links. Equa-
tion s3d tells us how efficient is a network on a global scale
relatively to the ideal case of a fully connected graph. Such a
comparison can be misleading, because does not take into
account that graphs are commonly sparse. Increasing the
size, while keeping theNl /N ratio constant, global efficiency
decreases for any kind of sparse networks. In contrast to a

FIG. 6. Globalsopen symbolsd and localssolid symbolsd effi-
ciencies normalized to the value of the initial regular ring versus the
rewiring parameterp, for clusteredstriangles upd and declustered
striangles downd small worlds.

FIG. 7. Globalssolid lined and localsdashed lined efficiencies
versus network sizesNd for regular networks with a constant con-

nectivity ski =4d: clusteredK=2 scirclesd, declusteredK=3̄ sdia-
mondsd, and clusters of the square latticessquaresd.

FIG. 8. Globalssolid lined and localsdashed lined efficiencies
versus the network sizesNd of complex networks with a constant
average connectivityskkl=4d. Small worlds with a rewiring param-

eterp=0.1: clusteredK=2 striangles upd and declusteredK=3̄ stri-
angles downd. Scale-free networks withm0=5 andm=2 sstard.
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fully connected graph, each type of network would be seen
as inefficient, no matter what is the underlying topology.
Therefore our opinion is that a particular network should be
compared with a corresponding basic network with the same
number of sitesN and linksNl. The basic network is a peri-
odic system with the longest possible average path length or
the smallest possible global efficiency for givensN,Nld. It
can be constructed in the following way.

sad Start from an initial standard ring ofN sites andN
links.

sbd Add links between each site and its closest surround-
ing sites sthe next-nearest neighbors, the next-next-nearest
neighbors, and so ond, up to allNl links are used. The result
is a K=Nl /N regular ring.

scd In case that the ratioNl /N is not an integer, the last set
of nl ,N links should be evenly distributed among the sites.

In such a way, complex systems such as small worlds or
scale-free networks are identified to be globally efficient in
comparison with the corresponding inefficient basicsregulard
networks.

IV. WEIGHTED NETWORKS

A. Efficiency measures

In this section we focus on a particular type of weighted
graphs, where physical distances are introduced. A real net-
work is described by both the connectivity matrix and the
matrix of physical distancesf36g. The shortest physical path

length d̃ij between two sitesi and j is the path with the
smallest sum of distances, no matter the number of links the
network has. Only in the case of links of equal lengthssld do

the physical and graph shortest paths coincide—i.e.,d̃ij
=ldij . The efficiencies of a real network could be calculated

using the formulas given in Sec. II C, replacingdij by d̃ij . In
order to keep these quantities dimensionless, a suitable nor-
malization should be performed. The originally proposed ef-
ficiency measuresf36g are normalized to the values for the
fully connected graph of the same size:

Ẽ1
g =

o
iÞ j

1

d̃ij

o
iÞ j

1

l i j

, s6d

wherel i j is a physical distancesor length of a possible direct
linkd between sitesi and j . We propose a slightly different
measure, which gives similar quantitative results. Instead of
comparing the network as a whole with the ideal graph, we

analyze the efficiency of each particular shortest pathd̃ij
separately:

Ẽ2
g =

1

NsN − 1doiÞ j

l i j

d̃i j

. s7d

The main reason for using this network average of path ef-
ficiencies is that in weighted networks the shortest paths go-
ing through a lot of sites can very often be as efficient as
direct links between pairs of sites, significantly contributing
to the network efficiency. If we neglect possible delays be-
tween received and subsequent emitted information, we see
that the straight path going through many sites is the same as
a direct straight link between two end nodes. The weighted
efficiency of such a straight-path regular graph will be the
same as that of the corresponding fully connected system.
This simple example raises a question: is it necessary at all to
impose a small-world topology in order to achieve a higher
global efficiency in a weighted network? A closer look into a
K=1 weighted ring shows that the weighted efficiency of the
longest path between two opposite sites is very high—i.e.,

l i j / d̃ij <2R/ sRpd=2/p. That is, 64% of the efficiency of the
direct link. For sites closer to each other or for a regular
network withK.1, this ratio is even larger. This result is not
surprising, as we assume that the speed of informational
transfer through all the links is constant. Therefore links be-
tween faraway sites do not represent shortcuts, because the
time needed to transfer the information increases with the
physical length of the link. The shortcut would be created if
the transfer is instantaneous or at least very fast, so that the
corresponding transfer time is much shorter than the charac-
teristic times of the underlying dynamics. Such a case would
be a flight of an infected person by an airplane, when the
basic mechanism is a slow spreading of the disease through
direct contactsf4g, but definitely not the transportation sys-
tems slike railwaysd where the speed of all the vehicles is
limited and usually constant.

Similar measures can be defined on the local scale. The
original weighted local efficiency, when paths are going only
through the first nearest neighbors of a reference site, is
given by f36g

FIG. 9. Normalized global efficiency versus network sizesNd
with a constant average connectivityskkl=4d. The global efficiency
of each particular network is normalized to the value for the regular
clusteredK=2 network of the same size. Regular: declusteredK

=3̄ sdiamondsd and clusters of the square latticessquaresd. Com-
plex: small worlds with a rewiring parameterp=0.1—clusteredK

=2 striangles upd and declusteredK=3̄ striangles downd; scale-free
networks withm0=5 andm=2 sstarsd. Fully connected graph: solid
line.

VRAGOVIĆ, LOUIS, AND DÍAZ-GUILERA PHYSICAL REVIEW E 71, 036122s2005d

036122-6



Ẽ0
l =

o
i

1

kifki − 1g o
jÞkPG1

1

d̃jk/i
0

o
i

1

kifki − 1g o
jÞkPG1

1

l jk

. s8d

Allowing for paths going through the rest of the network we

define Ẽ1
l by simply replacingd̃jk/i

0 by d̃jk/i. Finally, we can
again normalize each path separately, instead of normalizing

the whole sum by the value for fully connected networksẼ2
l d.

B. Analysis of subway transportation systems

Underground transportation networks are important com-
plex sbut not randomd systems with negligible clustering co-
efficient. Despite being small in size, they are ideal examples
for demonstrating the strength of our method for the analysis
of local efficiency. We have made a reinterpretation of the
results obtained for the Boston subway networkf36g and
performed an analysis of BarcelonasBd and MadridsMd un-
derground systems.

The Boston underground transportation system, consisting
of N=124 stations andNl =124 tunnels, was described both
as an unweighted and a weighted graph inf36g. In the un-
weighted case, it was found that it is neither globally nor
locally efficient, havingEg=0.1 andE0

l =0.006. This small
value for Eg gives a false impression of low global effi-
ciency. Although it is only 10% of the largest value for fully
connected graph, we should check how much the complex
topology of the Boston subway system improves its effi-
ciency, compared to a regular ring with the same number of
sites and links. We found out that such a ring hasEr

g

=0.076, so that the Boston network is by 32% more efficient.
Locally, the original measure relying heavily on the presence
of triangles of neighbors has a very small valueE0

l =0.006
f36g, as a consequence of the typically low clustering in un-
derground transportation systems. Another comparison could
be made against a hub consisting of a central node of degree
kc=125 and 125 peripheral nodes. Such a graph has the high-
est possible global efficiency ofEhub

g <0.5 for the given num-
ber of 125 links, but local efficiencysE0

l or E1
l d is zero. Any

attempt to locally increase efficiency of a hub by rearranging
links would eventually lead to a decrease of it on the global
scale. Therefore, we consider that in real systems, such as the
Boston subway network, an appropriate pay-off between glo-
bal and local efficiencies is achieved. Taking physical dis-

tances into account, the global efficiency is increased toẼ1
g

=0.63, while locally remains quite lowẼ0
l =0.03 f36g. Only

after the network is extended to include the Boston bus sys-

tem does it become efficient on both scales, withẼ1
g=0.72

and Ẽ0
l =0.46 f36g. This final result was interpreted as a

small-world behavior. On the basis of our previous discus-
sion of weighted regular networks it is evident that such an
interpretation is not correct. A simple weighted regular ring
with K=2 is both globally and locally very efficient, due to
the constant speed of trains and high clustering coefficient,
respectively. Weighted efficiencies in real networks with
constant speed of informational transfer are not appropriate

measures to give clear criteria for its classification. They can
only give a hint on up to which extent a particular real net-
work can replace the ideal fully connected weighted graph.
Furthermore, it seems that only the comparison with the
ideal graph is plausible. In most of the cases it is hard to find
out what should be the corresponding weighted “regular”
network, because the geographical positions of the nodes in a
real complex network are given and fixed, and usually not
equidistant.

In the following analysis of Barcelona and Madrid sub-
ways we will include several technical details and make a
step outside a pure theoretical research, offering proposals on
how efficiencies of these networks could be improved. Con-
cerning the Barcelona systemf46g, we do not take into ac-
count connections by a regular train, but only consider six
metro lines. The number of stations and tunnels areNsBd
=104 andNlsBd=115, respectively. When viewed as an un-
weighted graph, this system has the average path length of
LsBd=9.85, very small clustering coefficientCsBd=0.008
swhich is the most important contribution toE0

l d, global ef-
ficiency of EgsBd=0.153, and a redefined local efficiency of
E1

l sBd=0.080ssee Table IId. Comparing with the correspond-
ing basic sregulard network with Lb=23.58 andEb

g=0.095,
we see that the average path length is more than two times
shorter and the global efficiency improved by 61%, due to
the complex topology of the Barcelona system. Furthermore,
the local efficiency is nine to 10 times larger than if it would
have been estimated on the basis of the original equation
f36g or the clustering coefficient. Similar results are obtained
for the Madrid systemf47g. It consists of 13 metro lines
sincluding the ringMetroSurd, forming an unweighted net-
work of N=188 nodes andNl =223 links. Due to its larger
size, the average path lengthLsMd=12.36 is longer than in
the Barcelona system and the global efficiency is smaller
EgsMd=0.127; see Table II. Nevertheless, the values of these
two quantities are much better than for the corresponding
basic network withLb=38.64 andEb

g=0.064. The complex

TABLE II. Performances of Barcelona and Madrid subway
systems.

Barcelona Madrid

N 104 188

Nl 115 223

L 9.85 12.36

C 0.008 0.011

Eg 0.153 0.127

E0
l 0.009 0.012

E1
l 0.080 0.115

Ẽ1
g 0.734 —

Ẽ2
g 0.753 —

Ẽ0
l 0.019 —

Ẽ1
l 0.136 —

Ẽ2
l 0.131 —
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topology improves the global efficiency by more than 98%.
The clustering coefficient is larger than in Barcelona
fCsMd=0.011g, because several triangles are formedspar-
ticularly around stationsGran Via and Goyad. The higher
redefined local efficiency ofE1

l sMd=0.115 is a consequence
of the larger clustering coefficient, as well as the presence of
two rings smetro lines number 6Circular and number 12
MetroSurd. Cutting off a reference site belonging to one of
these two rings, its ring neighbors can still exchange trains
along the rest of the ring.

Similarly to the Boston subway system, the global effi-
ciency of the weighted Barcelona network is quite high:

Ẽ1
gsBd=0.734 orẼ2

gsBd=0.754. The main contributions come
from several straight-line subgraphsssuch as that between
stationsSanta EulaliaandSagrada Familiad, being identical
to fully connected weighted subgraphs. The redefined local

efficiency takes values ofẼ1
l sBd=0.136 or Ẽ2

l sBd=0.131,
which are about 7 times larger than when calculated using
the original equationf36g; see Table II. The efficiencies
could be further improved by directly connecting a few sta-
tions that are separated by a long path, although physically
close to each other. Adding only two links, one between
stationsCan Serraand Can Vidalet and another between
ValldauraandHorta, two new rings are created. The number
of links is increased by only 1.7%, while the increase of the

global efficiency isdẼ1
gsBd=3.3% and that of the local effi-

ciencydẼ1
l sBd=26.5%. Obviously, we can even assume that

the stations within these pairs areconnectedor represent a
single station, as we can simply walk from one to the other.

V. CONCLUDING REMARKS

In this work we focused on two objectives:sid introducing
a new definition of local efficiency that does not depend
exclusively on the clustering coefficient andsii d using that
definition to show that there is another class of complex
networks with short average path length and Poisson distri-
bution of degrees that is not random although its clustering
coefficient is negligible.

After accomplishing the first task, we proceeded with a
systematic analysis of different types of regular and complex
networks. Calculating global and modified local efficiencies
and taking into account the distribution of connectivity, we
were able to make a clear classification ofunweightedcom-
plex networks. The main conclusions that emerge from this
study are the following.

sid The class of small worlds can be generalized to include
systems with negligible clustering coefficient. We introduced
a new type of networks that has a small number of triangle
cycles, but still clearly distinguishable from random systems
due to its relatively good local transfer of information.

sii d Small worldssboth clustered and declusteredd as ho-
mogeneous systems and scale-free networks as heteroge-
neous systems are identified to be both globally and locally
efficient.

Showing that declustered small worlds behave qualita-
tively in the same way as standard clustered small worlds,
we addressed today’s paradigm of the importance of the clus-
tering coefficient.

Applying our method to real networks with physical dis-
tances and a constant speed of informational transfer, we
found thatweightedefficiencies can be used only to compare
a particular real network with the ideal fully connected
weighted graph. As highly clustered weighted regular rings
can be both globally and locally efficient, it is hard to estab-
lish clear criteria for identification of small-world behavior.
In particular our analysis of the underground transportation
systems of Bostonf36g, Barcelona, and Madrid reveals a
proper balance between global and local performance. De-
spite the constraints on the number of tunnels, global effi-
ciency is noticeably high due to the complex topology of
these networks. On the other hand, allowing for the use of
alternative paths after one station is cut off, the local effi-
ciency turns to be 5–10 times larger than the results reported
in Ref. f36g.
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