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We analyze the process of informational exchange through complex networks by measuring network effi-
ciencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level.
We apply this method to an extension of the class of small worlds that inctletssterechetworks and show
that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems
with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is
also applied to characterize weighted networks. In particular we examine the properties of underground trans-
portation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
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I. INTRODUCTION preferentially to nodes of higher degrgEl]. Various modi-

Modeling of complex systems as networks of coupled elfications of this basic procedure have been proposed: nonlin-
ements, such as chemical systdih®], neural network§3],  €ar preferential attachmef82], initial attractivenesg33],
epidemiologica[4,5], and social networkgs] or the Internet ~and aging of sites and degree constraja@ or node fitness
[7], has been a subject of intense study in the last decad&34]. Moreover, introducing a finite memory of the nodes,
Networks can be classified into three broad grodpsregu-  large highly clustered systems can be obtained, representing
lar networks(ii) random networks, andii ) systems of com- a combination of scale-free networks and regular lattices
plex topology, including small-world8,9] and scale-free [35].
networks [6,10-13. In addition, networks can be un- Our aim is to compare the efficiency of informational
weighted or weighted, depending on whether links are equdransfer on the regular and complex networks described
or different. Weights can be physical distances, times ofbove. In Sec. Il we describe the networks and define the
propagation of informational packets, inverse velocity ofquantities used to characterize them. In Sec. Il A an exten-
chemical reactions, strength of interactions, gt&—17. sion of the class of small worlds, referred todeclustered

Commonly used regular networks are square or cubic latis proposed. In Sec. Il C we discuss the efficiency measures
tices, both having squares as basic cyfl&s-19. Aiming to  reported in the literature and propose the alternatives re-
describe clustering in social networks—i.e., to account forquired to handle nonclustered systems. Some of the new
triangles of connected nodes as basic cyfk§—clustered measures defined here are an extension of those reported in
rings were introduced, in which each site was linked to all its/36]. Section Ill is devoted to discuss the properties of vari-
neighbors from the first up to tHéth [4,14,21,22 The study  ous unweighted networks. Introducing physical distances, ef-
of random graph§23—-24 was motivated by the observation ficiencies of weighted networks are defined in Sec. IV and
of real networks that often appeared to be random. Complexsed to examine underground transportation systems. Our
networks having a topology in between those of random an@chievements are summarized in Sec. V.
regular networks were later introduced. An outstanding ex-
ample is the small-world moddl8,27]. Small worlds are
constructed by randomly rewiring links of a regular grggh Il. METHODS
(so that the number of links remains constant, while the
structure is changear adding new links to if28] (changing
both the structure and the number of linkgith a probability The networks analyzed here are clusters of the square
p. In this way, shortcuts between distant nodes are createéfittice, clustered and declustered regular rings, as examples
The rewiring and adding probabilify indicates, on average, of regular systems, and clustered Watts-Strogatz and declus-
the degree of disorder of the netwdikvaries fromp=0 for ~ tered small worlds, and ordinary Albert-Barabasi scale-free
a regular up tgp=1 for a random graph Small worlds are networks, representing complex systems. All networks are
highly clustered, showing triangles of nodes like regular netchosen so that the ratio between the number of lihksand
works, while having small distances between sites as in rarthe number of sites, is kept constanN,/N=2 (this gives
dom system§4,5,29-31. Recently, it was realized that many an average connectivit§k)=4).
social and biological networks had a degreennectivity Concerning regular two-dimensiongD) networks, cal-
distribution that was not Poisson like, as in random ancculations were performed fdex | clusters of the square lat-
small-world networks, but rather a power law. Such systeméice, with periodic boundary conditions: nddel,j)
were called scale-free systefi9—-13 and are continuously =nod€i,j) and nodé,j+l)=nodéi,j). In the case of regu-
growing open systems constructed by attaching new noddar rings, we analyze the simplest clustered lattices with ad-

A. Types of networks
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The clustering coefficien® measures to which extent are
neighbors of each site connected to each other. It is calcu-
lated as a network average:

1
C—@ Ci, (2)

whereC; is the ratio of the existing number of links between
the neighbors of a siteand the maximum possible number
3 2 0 1 2 3 of themki[k;—1]/2, k; being its connectivitydegreg.
It is worth noting that, although the clustering coefficient
FIG. 1. lllustrates the link structure in clustered ringppe) of almost all real networks is very hidi3], it seems that it
with connections to the second nearest neighlffrs2) and de-  is much less important for the collective dynamical behavior
clustered ringglower) with connections to the third nearest neigh- of a network than the average path length. Moreover, in
bors(K=3). some cases, like square lattices or declustered ring networks,
. ) . the usual clustering coefficient fails to correctly quantify the
ditional connections only to the next-nearest neighb®s ,qeriying order of the hierarchical structure of the system.
=2) [29,37];.see Flg._ 1 In addition, we study.rlng_s with a Recently it was proposed that such gridlike structures should
zero clustering coefficient constructed by adding links frompg characterized by a grid coefficient, numbering the fraction
each site tanly its nth neighbors. We call themdeclustered ¢ o the |00ps of length 4quadrilateralg passing through
regular ring networksand desygna}e their coordmapon Pa- aach nodd¢38,39. Analysis of real networks, such as Inter-
rameter ask=n (shown also in Fig. L Therefore, in our o "\nep “and scientific coauthorship, reveals a good local
notationK=n means that each site is additionally linked to : s .
all of its ring neighbors from the second to th&h, while rectangular clu_st_er|n@38]. However, S|m|IarI_y to ordmgry
d. clustering coefficient based exclusively on triangles, this new

K=n implies that only links to itsith neighbors are adde
For such declustered networks, basic loops are squares fgi€asure concentrates only on square loops. Any attempt to

any n, with edges on sites, i+n, i+1, andi+n+1. Our analyze more sparse netyvorks with Iong_e_r basic cycles
motivation to analyze networks with a negligible clusteringWould call for the introduction of new coefficients of even
comes from the fact that such systems can be quite oftefigher orders. It would be much more useful to find a single
found in nature or artifactfor instance, in transportation measure of local properties that could be applied to any type
underground networks Such networks are usually very of networks. Furthermore, it is not clear what is the physical
sparse with\, =N [36]. meaning of these various coefficients and how would they be
We differentiate between ordinary clustered small worldsrelated to the dynamical behavior of the network.
anddeclusteredsmall worlds, depending on the initial regu-
lar network. We will construct small-world networks starting
from clustered and declustered regular networks With2
and K =3, respectively. Moreover, as our focus is on the ef- Another approach to analyze global and local properties
fects of network topology, we compare networks with theof a network is introducing the concept of efficiency of in-
same links-to-size ratio. Thus, shortcuts are created by raformational exchange through the netw¢86,40,41.
domly rewiring links between each site and its more distant
neighbors with probability g<1, while connections to the 1. Global efficiency

nearest neighbors are kept unchanged. In this way, the ring We assume that it is easier to transfer information from

structure is preserved and the problem of dlsconnectegne site to another if they are closer to each other. Therefore,

graplr(;s IS avmde&ji% /;r}e tlotal r:\lurr';t_)er”of rewired tllnkts the efficiency in the communication between two sitesmd
wouild approactpN< oriargen. Finally, we COnsIIUct - ; 5 cajculated as the inverse of the shortest path ledgth

scale-free networks starting with a fully connected graph o etween these two sites;=1/d;. Contrary to the average

mp=5 nodes andy=10 links. At each step a new node is " : : ;
R > path length, efficiency can be determined even if there is no
ild/dﬁfl’zv.‘”ttm_tz edq{estto the old nodes, so that the ratlopath between andj, as in the case of disconnected graphs:
I/N=21S kept constant. Iimdijﬂm €;=0. The global efficiency of the network is calcu-

C. Efficiency of informational exchange

B. Average path length and clustering coefficient lated as the average over all pairs of nofizs),
The structural properties of a graph are usually quantified 1 1
by the average path lengthand the clustering coefficie@ EY > €]

[8,13]. The average path length is calculated as the network N(N-1)i dj ,
average of the shortest graph distances between two nod

(d;;) for all possible pairs:
1

8Rd is normalized to its possible largest vaN@N-1), for
totally connected graphs having(N-1)/2 edges. Physi-
cally, E? measures the efficiency of a system with parallel

L= N(N - 1)§ di, ) exchange of information, while 1/accounts for the effi-
7 ciency of a sequential propagation of a single informational
defined for connected graphs for which djl are finite. packet along the network. In the case of real netwoHSs,
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gives a better measure for the transfer of information than
1/L, although quite often 1/ could be a reasonable approxi-
mation of E9 [36].

2. Local efficiency

A similar definition can be implemented on a local level.
As a counterpart of the clustering coefficie@t the local
efficiency could be defined as an average efficiency of the
local subgraphs of the first neighbdjsk e I';) of each sitd
[36]:

average path length (L)

' 12 ! > 1 T 200 E
Eo=—2 77— - (4)
° N i ki[ki - 1]jikel‘1 d?k/i N (size)
Here d?k,i is the shortest path length between siteand k FIG. 2. Average path length versus network si®§ for the

passing only through other elements of that local subgraph aofetworks investigated in this wortall with average connectivity
neighbors(I'y), which is indicated by the superscript 0. In (ky=4). Regular rings: clustere=2 (circles, declusteredK=3
such a way, the clustering coefficient is equal to the localdiamonds, and clusters of the square latticgeguares Complex:
efficiency when only direct connections betwgeandk are  small worlds with a probability of rewiring op=10%—clustered
considered. K=2 (triangles up, declusterecK=3 (triangles dowjy scale-free
We propose a new definition of local efficiency, taking networks withmy=5 andm=2 (stars. Lines are fits of the numeri-
into account that neighbors of each referenceisi@n actu- cal results in the rangd=10-400: clustered ring=0.13N+0.39,
ally exchange information along paths including sites whichdeclustered ring-=0.083\+0.77, cluster of the square lattide

do not necessarily belong to the local subgrapiioheigh-  =0.5N%4, clustered small world.=1.61InN-2.24, declustered
bors(me& I';). In order to measure the efficiency of commu- small world L=1.48InN-2.08, and scale-free network
nication between the nearest neighborsi afhen it is re- =2.16InInN-0.32.

moved, we must only exclude sitdrom such a patfid;):

1 1 1 roundings of these sites will overlap in a great extent, defin-
== — > = (5) ing a common local region. Therefore, our definition of local
N7 ki[ki_l]j;&kel"l diii efficiency is logically consistent, as it depends mainly on

local topology.
When applying such a concept on graphs without triangle pology

cycles, we will see that they can transfer the information
quite efficiently on a local level, although their clustering IIl. CHARACTERIZATION OF UNWEIGHTED
coefficient is zero. It is worth noting that in the definition of NETWORKS
[36] [see Eq.(5)] local efficiency depends only on the links
present in the graph'; of the first neighbors of site It is i ,
calculated excluding both siieand the rest of the network  Figure 2 shows the average path lengttfor different
(meT'y). In the new definition, however, local efficiency de- YPES Of networks with a links-to-size rath/N=2, versus
pends on the full network topology and is calculated cuttin the size of the sy_stenN. F|tt|n_gs of the numencgl results are
off only sitei. given in the cgaptlon of the f|gure. In ordered_rmgsscales

The clustering coefficient was introduced to measure thdnearly with size(Ling~N), with a slope that is smaller for
closeness of sites or the locality of a netwd&. Locality  the declustered networlk=3 (the slopes given in the figure
tells us up to what extent the neighbors of a site remain closeaption are close to the exact results—namely, 1/8 and 1/12,
to each other after this site is cut off. Regular networks argespectively; sep42]). For square lattices, the dependence is
precisely those which show the highest locality. The criteriasublinear—i.e.Lsquaré= VN/2 [42]. Random graphs, in their
used for the calculation of the clustering coefficient take di-turn, are known to obey a logarithmic scalifigang~In N)
rect connections as a substitute for closeness. From o(il3]. Such a behavior is also observed in the case of Watts-
standpoint, it is not necessary to have two sites directly conStrogatz small worlds. As Fig. 2 clearly shows declustered
nected in order to conclude that they are close to each othesmall worlds behave qualitatively in the same way as Watts-
They will be far away only if the length of the path that Strogatz networks; in both cases the average path length is
connects thenigoing through the rest of the network, except proportional to InN. The average path length in declustered
sitei) turns out to be large. In this way, the level of closenessmall worlds is shorter than in the standard small worlds, as
(or locality) among neighbors of depends on network to- edges of basic square cycles of the initial declustered net-
pology. At first sight, our measure of locality mixes global work couple more distant sites. Finally, scale-free systems
and local properties. However, we must note that the patlappear to be ultrasmdgW4], with a double-logarithmic scal-
between sites that are close to each other does not gog Lg=InIn N (see Fig. 2
throughout the whole remaining network, but only through In order to differentiate between random graphs and small
the close surroundings of these sites. The immediate suworlds, both having the same scaling of the average path

A. Average path length and clustering coefficient
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TABLE I. Average path length, clustering coefficient, and global 0.8 g
and local efficiencies for homogeneous networks.

P
L C E9 E} 5 06r 1
Regular clustered 12.88 0.5 0.154 0.722 %
Regular declustered 9.09 0 0.188 0.458 g 04 - 7
2D square 5.05 0 0.258 0.417 E
Random 3.40 0.02 0.328 0.280 _7.;‘ o2 L |
&

length and a Poisson distribution of degrees, the clustering 0.0 Lo C R
coefficient is used. Switching from highly clustered regular 0.01 0.1 1
graphs to small worlds by introducing a few shortcuts does probability of rewiring

not significantly alter the clustering coefficiel&,13]. It re- ) ] o

mains quite large up to high values of the rewiring parameter FIG. 3. Global(circles and local(diamonds efficiencies versus
p. For p=1 most triangle loops are broken, leading to ran- the rewiring parametep for clustered small worlds. The initial
dom graphs with negligible values &. The small-world regular ring was clustered withi=2.

behavior shows up at smagtl, when both the average path

length and the clustering coefficient have large va[@%3].

0.5 1

B. Efficiencies

<
s
T

The aforementioned criteria identify declustered small
worlds as random networks. But is this actually the case?
Applying the concept of global and the redefined local effi-
ciency, we clearly identify the crucial differences between
various networks. The clustered regular ring lattice with
=2 is locally very efficieniE'1:0.722, due to its high clus-
terization; see Table |. Global efficiency is quite Id#(N
=100=0.154, which corresponds to a long average path
length L(100=12.88. From our standpoint, a declustered 0.1 Lint A

ring lattice with K=3 has the same characteristics. Local 001 oo o L
e | . . probability of rewiring
efficiency E; =0.458 is relatively good, although the cluster-

ing coefficient and the originally proposed local measure of k|G, 4. Global(circles and local(diamonds efficiencies versus

efficiency [36] are both zero. Globally, we obtain slightly a the rewiring parametep for declustered small worlds. The initial
larger value oE9(100)=0.188[or shorter.(100)=9.09|, due regular ring was declustered with=3.

to the presence of longer-range links. Therefore, regular
rings are in general locally efficient and globally inefficient.
Introducing a small number of shortcuts into a regular

o
[
T

global and local efficiency
o
(S
T

graph to produce a small-world network does not signifi- 08— T

cantly alter its local topology and local efficiency. On the I

other hand, global efficiency is appreciably improved. As 07F MA% 7

illustrated in Figs. 3 and 4 this is valid for both clustered and I S,

declustered small worlds. The rewiring parametevas var- g 06 i ]

ied in the range 0.01-0@or each value of results for five 3‘2 05 - |

graph realizations are shoyrin a random grapfilarge p), CH Y wa

the efficiency on the global scale becomes even better, but £ 04 L i

local efficiency is strongly deteriorated. The distinction be- ~ I

tween regulagleft end, small-world(middle par}, and ran- 03 L J

dom networkgright end of curvekis clearly depicted in Fig. .

5. We can conclude that small worlds are bgtbbally and ot 1 . L. 1
0.10 015 020 025 030 035 040

locally efficient[36].

Normalizing the global efficiency of a given small world
to the values of the initial ringsee Fig. 6, we note that it is FIG. 5. Global versus local efficiencies for cluster@dangles
improved in a relatively better way in the case of clustered,p) and declustere@riangles dowh small worlds. The initial regu-
networks. This is due to the fact that initially there are only|ar rings were clusterekK=2, E9=0.258, andE'=0.722 and de-
short K=2 links to be rewired into links of longer range. clusteredK=3, E9=0.188, ancE'=0.459. A rewiring parameter of
Starting from a declustered regular rikg-3, links can even- 0.5 leads to a single random graph.

global efficiency
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FIG. 6. Global(open symbolsand local(solid symbol$ effi- FIG. 8. Global(solid line) and local(dashed ling efficiencies

ciencies normalized to the value of the initial regular ring versus thg,ersus the network sizéN) of complex networks with a constant

reyviring parametep, for clustered(triangles up and declustered  gyerage connectivitk)=4). Small worlds with a rewiring param-

(triangles dowh small worlds. eterp=0.1: clusteredK =2 (triangles up and declusteret{=§(tri-
angles dowj Scale-free networks withnp=5 andm=2 (stay.

tually be rewired into shorteK=2 links, which do not in-

crease the global efficiency. The same type of normalizatiogcale_free networks. While efficiency on a global level de-

can be done for the local efficiencies as shown in Fig. 6;0aqes with a slower rate with respect to the other networks,
Now, possible rewiring oK=3 links into K=2 links actually  |ocal efficiency is significantly decreased. The reason is that
improves local efficiency, assuring that normalized values fokhe clustering coefficient, giving the main contribution to the

declustered small worlds are always larger than values focal efficiency, decreases exponentially with the size of the

the clustered network. ordinary scale-free systefil3]. We expect that the local ef-
ficiency of highly clustered scale-free networkds] would
C. Size of the network be mainly independent of the network size, as their cluster-

The dependence of global and local efficiencies on ne,[i_ng coefficient approaches a high stationary value already for

work size (see Figs. 7 and)8shows that regular networks rl\lle:v&(?rzl.(ss[li%r]] awtﬁgrier;ﬁ)é IilSgtzerzirr\wledc?e?ffcailleen-:ree?/elgteirrnet
have a local efficiency that does vary with(i.e., unchanged ’ 9

local topology. The global efficiency decreases with size,tcéfr?;es rg\\//vir ckzr;s?rc]:ut(l:\geng;?]rts I olzg)ln;fggi;rslt:andpomt, the In-
with the minimale/"'=1/d;"* scaling as 1M. In the case of 9 » Keeping y.

small worlds, the Iiocal topology is not much affected by the. The reason for the observed decrease of global efficiency

presence of a few shortcuts, leading again to a approximatel'f relgted o the fact that, for a constant raNp'N=a, in- .

constant local efficiency. Global efficiency is now expected reasing the size produces gradually more sparse graphs_wnh

to decrease at a Iowér rate. because the minia® longer average path length. The total number of possible
’ i

— 1 Jmax oo links is given byN(N-1)/2, while the number of links ac-
=1/d;j*" scales as 1/IN. The results are quite different for wally present in the system N,=aN. This leads to a de-

crease of the density of links ag=2a/(N-1).

I

D. Normalized global efficiency and basic network

We can normalize the results for each type of network to
the values for clustered regul&r=2 rings of the same size
e9=EY/E}. The results are reported in Fig. 9. The normalized
global efficiency of a declustered regular network is slightly
larger, but does not change with size. On the contrary, it
increases with size for the square lattice, small-world, and
scale-free networks. This normalization is necessary if we
want to examine how a pure change of topology improves
transfer of information, without addition of new links. Equa-

N (size) tion (3) tells us how efficient is a network on a global scale
relatively to the ideal case of a fully connected graph. Such a

FIG. 7. Global(solid line) and local(dashed ling efficiencies =~ comparison can be misleading, because does not take into
versus network sizéN) for regular networks with a constant con- account that graphs are commonly sparse. Increasing the
nectivity (k;=4): clusteredk=2 (circles, declusteredk=3 (dia-  Size, while keeping th#l,/N ratio constant, global efficiency
monds, and clusters of the square latticsuares decreases for any kind of sparse networks. In contrast to a

efficiency

0.1
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6 using the formulas given in Sec. Il C, replacidg byaij. In

order to keep these quantities dimensionless, a suitable nor-
malization should be performed. The originally proposed ef-
ficiency measuref36] are normalized to the values for the
fully connected graph of the same size:

~

normalized global efficiency

1
2 i#] a_
Ey=—", (6)
1
0 L L L i#] Iij
0 100 200 300 400
N (size) wherel;; is a physical distancéor length of a possible direct

_ o link) between sites and j. We propose a slightly different
FIG. 9. Normalized global efficiency versus network sid  measure, which gives similar quantitative results. Instead of

with a constant average connectivitk)=4). The global efficiency comparing the network as a whole with the ideal graph, we
of each particular network is normalized to the value for the regular

clusteredK=2 network of the same size. Regular: declustefed analyze the efficiency of each particular shortest FﬂiFh

=3 (diamond$ and clusters of the square latti¢equares Com- separately:

plex: small worlds with a rewiring parametpr0.1—clusterecK

=2 (triangles up and declustere =3 (triangles dowiy scale-free ~Eg: ;E LJ_ (7)
networks withmy=5 andm=2 (starg. Fully connected graph: solid N(N- 1) aij

line.

The main reason for using this network average of path ef-
fully connected graph, each type of network would be seefiiciencies is that in weighted networks the shortest paths go-
as inefficient, no matter what is the underlying topology.ing through a lot of sites can very often be as efficient as
Therefore our opinion is that a particular network should bedirect links between pairs of sites, significantly contributing
compared with a corresponding basic network with the sameo the network efficiency. If we neglect possible delays be-
number of sitesN and linksN,. The basic network is a peri- tween received and subsequent emitted information, we see
odic system with the longest possible average path length ahat the straight path going through many sites is the same as
the smallest possible global efficiency for givéN,N)). It a direct straight link between two end nodes. The weighted

can be constructed in the following way. efficiency of such a straight-path regular graph will be the
(a) Start from an initial standard ring dfl sites andN  same as that of the corresponding fully connected system.
links. This simple example raises a question: is it necessary at all to

(b) Add links between each site and its closest surroundimpose a small-world topology in order to achieve a higher
ing sites (the next-nearest neighbors, the next-next-nearesjlobal efficiency in a weighted network? A closer look into a
neighbors, and so 9nup to allN, links are used. The result K=1 weighted ring shows that the weighted efficiency of the
is aK=N,/N regular ring. longest path between two opposite sites is very high—i.e.,

(c) In case that the ratibl;/N is not an integer, the last set l:/d;; = 2R/ (Rm)=2/. That is, 64% of the efficiency of the
of <N links should be evenly distributed among the sites.girect jink. For sites closer to each other or for a regular

In such a way, complex systems such as small worlds Ofeyork withk > 1, this ratio is even larger. This result is not
scale-free networks are identified to be globally efficient ing,, nrising, as we assume that the speed of informational
comparison with the corresponding inefficient basegula)  5nsfer through all the links is constant. Therefore links be-

networks. tween faraway sites do not represent shortcuts, because the
time needed to transfer the information increases with the
physical length of the link. The shortcut would be created if
the transfer is instantaneous or at least very fast, so that the
A. Efficiency measures corresponding transfer time is much shorter than the charac-

In this section we focus on a particular tvoe of wei hteolteristic times of the underlying dynamics. Such a case would
P yp 9 e a flight of an infected person by an airplane, when the

graphs, where physical distances are introduced. A real neE— . hanism i | di f the di h h
work is described by both the connectivity matrix and the asic mechanism Is a slow spreading of the disease throug

. . X . direct contactg4], but definitely not the transportation sys-
matrix of physical distancels86]. The shortest physical path tems (like railways where the speed of all the vehicles is

length ai,- between two sites and j is the path with the |imjted and usually constant.

smallest sum of distances, no matter the number of links the gjmilar measures can be defined on the local scale. The
network has. Only in the case of links of equal lengthsdo  original weighted local efficiency, when paths are going only
the physical and graph shortest paths coincide—idg., through the first nearest neighbors of a reference site, is
=\d;;. The efficiencies of a real network could be calculatedgiven by[36]

IV. WEIGHTED NETWORKS
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E 1 E 1 TABLE II. Performances of Barcelona and Madrid subway
Ty a1 - systems.

< 1 Kk~ pder, o,

Fo= 1 1 ® Barcelona Madrid

2> >

T kilki = 1A, ik N 104 188
N, 115 223
L 9.85 12.36

Allowing for paths going through the rest of the network we
define E; by simply replacingd}; by djg;. Finally, we can

again normalize each path separately, instead of normalizin§ 0.008 0.011
the whole sum by the value for fully connected netw(Ek). EY 0.153 0.127
E) 0.009 0.012
B. Analysis of subway transportation systems E'l 0.080 0.115
Underground transportation networks are important comeg 0.734 —
plex (but not randomsystems with negligible clustering co- ~; 0.753
efficient. Despite being small in size, they are ideal example§2 ' _
for demonstrating the strength of our method for the analysig, 0.019 —
of local efficiency. We have made a reinterpretation of theg 0.136 _
results obtained for the Boston subway netw¢86] and Ell 0.131 o
b .

performed an analysis of Barcelof®) and Madrid(M) un-
derground systems.

The Boston underground transportation system, consisting ) L i o
of N=124 stations ant\,=124 tunnels, was described both Measures to give clear criteria for its classification. They can

as an unweighted and a weighted grapt38]. In the un- only give a hint on up to which extent a particglar real net-
weighted case, it was found that it is neither globally norWork can replace the ideal fully connected weighted graph.
locally efficient, havingE9=0.1 andE=0.006. This small Furthermore, it seems that only the comparison with the
value for E9 gives a false impression of low global effi- ideal graph is plausible. In most of thg cases it is hard to find
ciency. Although it is only 10% of the largest value for fully Ut what should be the corresponding weighted “regular’
connected graph, we should check how much the COmp|e9etwork, because the geographical positions of the nodes in a

topology of the Boston subway system improves its eﬁi_real_c'omplex network are given and fixed, and usually not
ciency, compared to a regular ring with the same number ofauidistant. = _ _
sites and links. We found out that such a ring He% In the following analysis of Barcelona and Madrid sub-

=0.076, so that the Boston network is by 32% more efficientVayS We will include several technical details and make a
Locally, the original measure relying heavily on the presenc tep outside a pure theoretical research, offering proposals on

of triangles of neighbors has a very small vaIE{g,‘:0.00G ow'efficiencies of these networks could be impro_ved. Con-
[36], as a consequence of the typically low clustering in un-C€"MiNg the Barcelona syste6], we do not take into ac-
derground transportation systems. Another comparison coulUnt connections by a regular train, but only consider six
be made against a hub consisting of a central node of degrdBelr0 linés. The number of stations and tunnels M(B)
k.=125 and 125 peripheral nodes. Such a graph has the high-104 andNi(B)=115, respectively. When viewed as an un-
est possible global efficiency &~ 0.5 for the given num-  Weighted graph, this system has the average path length of
ber of 125 links, but local efficiencEl or E}) is zero. Any ~ L(B)=9.85, very small clustering coefficier@(B)=0.008
attempt to locally increase efficiency of a hub by rearrangingWhich is the most important contribution ), global ef-
links would eventually lead to a decrease of it on the globaficiency of E%(B)=0.153, and a redefined local efficiency of
scale. Therefore, we consider that in real systems, such as the(B)=0.080(see Table ). Comparing with the correspond-
Boston subway network, an appropriate pay-off between gloing basic(regula) network with L,=23.58 andEp=0.095,

bal and local efficiencies is achieved. Taking physical diswe see that the average path length is more than two times
tances into account, the global efficiency is increasefitto Shorter and the global efficiency improved by 61%, due to

_ . . . ~ the complex topology of the Barcelona system. Furthermore,
=0.63, while locally remains quite lo,=0.03[36]. Only the local efficiency is nine to 10 times larger than if it would

after the network is extended to include the BOS}O” bus SYShave been estimated on the basis of the original equation
tem does it become efficient on both scales, vé#¥0.72  [36] or the clustering coefficient. Similar results are obtained
and E,=0.46 [36]. This final result was interpreted as a for the Madrid systen{47]. It consists of 13 metro lines
small-world behavior. On the basis of our previous discus{including the ringMetroSuy, forming an unweighted net-
sion of weighted regular networks it is evident that such arwork of N=188 nodes andN,=223 links. Due to its larger
interpretation is not correct. A simple weighted regular ringsize, the average path lengtiiM)=12.36 is longer than in
with K=2 is both globally and locally very efficient, due to the Barcelona system and the global efficiency is smaller
the constant speed of trains and high clustering coefficieng9(M)=0.127; see Table Il. Nevertheless, the values of these
respectively. Weighted efficiencies in real networks withtwo quantities are much better than for the corresponding
constant speed of informational transfer are not appropriatbasic network withL,=38.64 andEf=0.064. The complex
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topology improves the global efficiency by more than 98%. After accomplishing the first task, we proceeded with a
The clustering coefficient is larger than in Barcelonasystematic analysis of different types of regular and complex
[C(M)=0.011], because several triangles are form{gdr-  networks. Calculating global and modified local efficiencies
ticularly around station&Gran Via and Goya. The higher and taking into account the dist_ri_buti_on of co_nnectivity, we
redefined local efficiency dfj(M)=0.115 is a consequence Were able to make a clear classificationuiweighteccom-
of the larger clustering coefficient, as well as the presence d?l€X networks. The main conclusions that emerge from this
two rings (metro lines number &ircular and number 12 Study are the following. _ _
MetroSu). Cutting off a reference site belonging to one of () The class of small worlds can be generalized to include
these two rings, its ring neighbors can still exchange trainSystems with negligible clustering coefficient. We mtroduced
along the rest of the ring. a new type of networks_that h_as a small number of triangle
Similarly to the Boston subway system, the global effi- cycles,.but st|II_ clearly distinguishable from_ randorr_1 systems
ciency of the weighted Barcelona network is quite high:due to its relatively good local transfer of information.

E%(B):0.734 orE%(B):0.754. The main contributions come (i) Small worlds(both clustered and declustejeai ho-

f | iaht-li b h hat b mogeneous systems and scale-free networks as heteroge-
rom severa stra|g. tline su grapl(lsug as t at. etvyeen neous systems are identified to be both globally and locally
stationsSanta Eulaliaand Sagrada Familig, being identical

. i fficient.
to fully connected weighted subgraphs. The redefined Ioca? Showing that declustered small worlds behave qualita-

efficiency takes values oEy(B)=0.136 or Ej(B)=0.131, ftively in the same way as standard clustered small worlds,
which are about 7 times larger than when calculated usingve addressed today’s paradigm of the importance of the clus-
the original equation/36]; see Table Il. The efficiencies tering coefficient.

could be further improved by directly connecting a few sta-  Applying our method to real networks with physical dis-
tions that are separated by a long path, although physicallfances and a constant speed of informational transfer, we
close to each other. Adding only two links, one betweenfound thatweightedefficiencies can be used only to compare
stationsCan Serraand Can Vidaletand another between a particular real network with the ideal fully connected
ValldauraandHorta, two new rings are created. The number weighted graph. As highly clustered weighted regular rings
of links is increased by only 1.7%, while the increase of thecan be both globally and locally efficient, it is hard to estab-
global efficiency iséﬁ%(B):&S% and that of the local effi- lish clear criteria for identification of small-world behavior.

ciency&E'l(B):26.5%. Obviously, we can even assume that" particular our analysis of the underground 'transportation
the stations within these pairs atennectedor represent a systems of Bostori36], Barcelona, and Madrid reveals a

single stationas we can simply walk from one to the other. proper balance b_etween global and local performance. D_e-
spite the constraints on the number of tunnels, global effi-

ciency is noticeably high due to the complex topology of

these networks. On the other hand, allowing for the use of

alternative paths after one station is cut off, the local effi-
In this work we focused on two objective$) introducing  ciency turns to be 5-10 times larger than the results reported

a new definition of local efficiency that does not dependin Ref.[36].

exclusively on the clustering coefficient affid) using that

definition to show that there is another class of complex ACKNOWLEDGMENTS

networks with short average path length and Poisson distri- Financial support by Fet Open Project No. COSIN IST-
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V. CONCLUDING REMARKS
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