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Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model
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A two-dimensional optimal velocity model was proposed for the study of pedestrian and granular flow. We
investigate the stability of homogeneous flow in the linear approximation and show the phase diagram of the
model. We also investigate the property of the model by numerical simulation in the cases of unidirectional and
counter flow. From these results, we present a unified understanding of the behavior of pedestrians and other
related systems.
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[. INTRODUCTION and the traffic congestion is interpreted as a phase transition.
A density wave similar to traffic congestion is observed in
In the past decade, traffic and some related systems aganular flow in liquid through a vertical pipe. In this case,
investigated from the physical viewpoint of many-particlethe system can be reduced to quasi-one-dimensional one,
systems[1-6]. Pedestrian flow is one of such systems andwhich is expressed by a similar equation to the OV model
presents interesting phenomena such as lane formation §22,23. Moreover we can observe a density wave in a spe-
blocking [7,8]. The behavior of pedestrians has been invescial case of pedestrian flow such as a march of children,
tigated not only in physics but also in engineering, and variwhere the system can be considered as one-dimensional flow.
ous models are proposed to reproduce the phenomenrgierefore we can expect that the behavior of pedestrians can
[9-16]. Several models, for example, cellular automata modbe explained in the framework of the OV model or its two-
els, have already applied to the realistic problems such as tfémensional extension. . . o
evacuation from a building or a shjp7,18. However, these We have proposed a two-dimensional OV model, which is
models are tuned to reproduce the behavior of each phenori-natural extension of the original OV mod@4-27. The
enon, and the general study of pedestrian flow itself has ndpV. model for traffic flow is constructed in a simple concept:
been done. Dynamical models for pedestrian flow are usef driver maintains his optimal velocity depending on the

. : . : jstance to other vehicles. We can easily extend the model to
for S.UCh studies, Qspeqally for_ analytical stud|es,_ because.ﬂhlgher—dimensional systems along the game concept. In this
motion of pedestrians is described by the dynamical equat'oﬂwodel, pedestrians are treated as identical particles moving

of motion. For the genergl study of pedgstnan ﬂOW.' It 1Sih the two-dimensional space, and each particle decides its

necessary tq construct a simple model which can be InVeSthtimal velocity depending on distances to other particles.

gate(_j analytically. . o The model reduces to the original OV model in a special
Itis well known that there is a similarity among pedes- .,qa \yhere particles form a line. In this paper, we show that

.trian flow, t_raflfic ﬂ(r)lw and granglar flow thlrou%h a pige_. Q the model gives a unified understanding of the phenomena in
Jam or a simiar pneénomenon IS commonly ObSEVed INAeyqqyastrian flow and in one-dimensional traffic flow. We in-

pendent of the dimensionality; one-dimensional traffic fIOW’vestigate the linear stability of the homogeneous flow solu-

two-dimensional pedestrian flow and three-dimensionai,, ‘it is shown that the homogeneous flow is unstable if the
granular flow. Generally, a higher-dimensional system reqengjy exceeds a certain critical value. In this case, the ho-
duces to a lower one in a certain limit. When they have gy, anequs distribution of particles is gradually broken, and
common property, we expect t.hat the property can be &3 density wave emerges spontaneously. Some typical station-
plained by the same m.echamsm. As a cand|.date for. .th ry patterns are finally formed depending on the values of
model which can explain those phenomena in a unifieq,; o meters. This is the same phenomena as traffic conges-
framework, we adopt the optimal velocitjOV) model o, “and can be interpreted as a phase transition from homo-
[1.9_2]]. in the f_oIIowmg reasons. The property of one- geneous flow to congested flow. We also show the existence
dimensional traffic flow is well understood by the OV model of a phase which does not exist in a one-dimensional system.
Typical profile of flow in each phase can be obtained by use
of numerical simulations.

*Email address: g44153g@cc.nagoya-u.ac.jp In Sec. Il we present the two-dimensional OV model after
"Email address: hasebe@vega.aichi-u.ac.jp the brief review of the one-dimensional OV model. We carry
*Email address: genbey@eken.phys.nagoya-u.ac.jp out the linear analysis of the homogeneous flow and find the
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stability conditions in Sec. Ill. We also show the phase dia-
gram in this section. In Sec. IV, we show some typical fea-
tures of the phases by use of numerical simulations. Section
V is devoted to summary and discussion.

FIG. 1. A snapshot of the homogeneous flow. A triangular struc-
ture is observed in a numerical simulation with periodic boundary
II. TWO-DIMENSIONAL OV MODEL condition. All particles represented by black disks are moving

. . . . . rightward.
First we briefly review the one-dimensional OV model

[19]. The basic concept of the model is that each driver con- . .
trols the acceleration in order to reduce the difference betki betweenjth andkth particles and the angle between

tween the optimal velocity and his real velocity. The model*k” % gndvo. Due to .the term1+cosg), a pa_rtlcle 'S more
is expressed by the equation of motion fsensmv.e to particles in front than those behind. Equa(@n
is nothing but the OV function for the one-dimensional
d model. We assume this form to understand both one- and
Exn(t) = 2] V(Ax,(1) - d_txn(t) , (1) two-dimensional phenomena in a unified way.

For convenience, we sa&ty=(Vy,0), which means that
wherex,, andAx, are the position and the headway of it particles are supposed to move in the positive direction of
vehicle. a is “sensitivity,” which represents the strength of thex axis. We also sat=-1, that is,f <0, which means that
reaction of each driVeV(AX) is “OV fUnCtion," which indi- the interaction is repulsivBl,32]' This is a natural assump-
cates an optimal velocity depending on his headway. Weion for the interaction between pedestrians, but it is not es-
adopt a following form of OV function: V(AX)  sential in the analysis of the stability. The parameids set
=a[tanhB(Ax-b) +c]. to 1/4 for simplicity.

This model has a trivial homogeneous flow solution

2

¥, =hn+V(hjt+const, 2 IIl. LINEAR ANALYSIS

where all vehicles run with the same velociyh) and the

same headwaf. We can find the stability condition of the ] ) )

solution by the linear analysis. In the same way as Ref19], we investigate the linear
Let y, be a small fluctuation on the above solution. TheStability of homogeneous flow. To simplify the calculation,

stability condition for the mode solutiory,(t)=exgding W€ remove the sensitivityt from the equation by the replace-
—iw(O)1] is mentt—t/a,Vo—aV, andF —aF. Equation(4) becomes

A. Stability condition

2
a>V'(h)(1+cosb). ) %xj (1) =Vo+ 2 FX(t) = x;(1) - d%xj(t). (7

When the condition is not satisfied, the homogeneous flow is k
unstable for the mod®. If unstable modes exist, the flow By numerical simulations, we find that a flow shown in
transits to a congested flow with jam clusters. Fig. 1 is realized at a large distan@ew density [24]. We

In order to apply the OV model to the phenomena instudy the linear stability of this flow in this subsection. This
pedestrian flow, we construct a two-dimensional OV modehomogeneous flow is expressed by the solutignX;+vt.
[24]. This model is a natural extension of the original one-HereX;=(X;,Y)) is a constant vector which represents a site
dimensional OV model. Hereafter we call pedestrians asn a triangular lattice, and=(v,,v,) represents a constant

“particles” for convenience. - ~ velocity at which all particles move. The distances between
~ The equation of motion for a particle with the indgxs  any nearest-neighbor pairs are the same, and we use the dis-
given by tance as a parameter instead of the density.
o2 d We consider a small perturbation as follows:
—X. = + - ¥X. —_ —X.
dtng(t) a|:{VO % F(Xk(t) Xj(t))} dtxj(t)‘| ) (4) Xj N Xj +ot+ Xj!

where bold symbols are two-dimensional vectors.
=(xj,yj) andx,=(x,Yi) are the positions ofth andkth par-
ticles, respectivelyV, is a constant vector which expresses
“desired velocity.” A particle moves with the desired veloc- vx=Vo+ > FuXie = X3, Y= Y)),
ity, if it is alone. F expresses the interaction between par- k

ticles and we choose the following form:

Yi— Yitutty;,

vy = > Fy(Xe= X, Y= Yo, 8
F(xc=x;) = f(ryg) (1 + cose)nyg, (5) /= 2B ®
s o whereF =(F,,F,). The newx; andy; represenk andy com-
f(rg) = altanhp(r; = b) +cl, ) ponents of the small deviation from the positiof}, Y;).
where rkj:|xk—xj|,cos<p:(xk—xj)/rkj and n;= (X=X /1. From Egs.(7) and(8), we can write the linearized equa-
The strength of the interaction is determined by the distancéons
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FIG. 2. A wave propagating in the(==/3) direction.

d2 d
EXJ' = zk: [Akj(xk - X]) + Bkj(yk - yj)] - E[Xj, (9)

d? 5
ai= 2 [Cij(x= ) + Dy = y)1 - at’” o
k
where parameter&y;, Bj, Cyj, Dy; are defined by

Akj = (?XFX(X:Y)|X:Xk—vaY:Yk_ i’
By = ayFX(X,y)|x:xk—xj,y:Yk‘ i’
ij = ﬁXFy(X,Y)|x=Xk—ijy=Yk_ j,
ij = (9yFy(X:y)|x:Xk—vay:Yk_YJ" v
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FIG. 3. Indices of six particles are shown. The positions of the
particle 1, 2, 3, 4, 5, 6 ar¢s,u),(s,-u),(0,2u),(0,-2u),(-s,u),
(=s,-u), respectively.

1 d
I OSSN

1
0= (Akj_ BBkj‘*kaj_ij)(Xk‘Xj)- (19
k

Two special caseg=0(p=0) and ¢=7/2(p=2) should
be investigated separately from the general case. That is, the
analysis is carried out in three casés:modes along the
axis (¢=0), (ii) modes along thg axis (¢=m/2), and (iii)
other modeg0< o< 7/2).

In the homogeneous flow, the interaction with the nearest
neighbors is dominant and we can neglect the interaction
with further particles. Then the summation fois taken over

Suppose that the small wave propagates at the angle six particles aroundth one. For convenience, we omit the

with the x axis (see Fig. 2 Then the wave vector i&

=(ky,ky) =(k¢, pk) where p=tan¢. The two-dimensional

indexj and assign the number shown in Fig. 3 to the inkex
For example, the position of particle 1 igs,u)

wave is classified into two types of modes: longitudinal=(3r/2,r/2) wherer is the distance between two nearest-

modes and transverse modes.

The longitudinal modes in the direction are written by

xj = exfiot +ik -x] = exdiot +i6(X; + pY))], (12
Yi = PX, (13
where #=k,. The linearized equation®) and (10) are re-
written as
2

d d
@Xj = % (Ayj + PByy) (X — X)) — d_th, (14)

1
0=2> <Akj +pBy; - Bij - ij)(Xk = Xj), (15)
k

where the second equation is obtained by subtracting Eq.

(20) from Eq. (9).

As for the transverse modes, we obtain the equations

X; = exfdiot +ik - x] = exdiot +i0(X; + pY))], (16)
1
yJ =- [_)X] . (17)

neighbor particles. The parameters in Etll) are expressed

as A11A2! 1A61811821 'DG [e.g., A]_: aXFX(X,y)|X:s‘y:u].

The exact forms of these parameters are shown in Appendix
A.

The stability condition should be investigated in three
cases of directions of propagation for two polarizations. We
solve Eq.(14) under the constraintl5) for the longitudinal
modes and Eq(18) under the constraintl9) for the trans-
verse modes, and find the condition thatdoes not have
negative imaginary part. The results are shown as follows,
and the details are explained in Appendixes B-D.

The constraint§15) and (19) are automatically satisfied
for the modes along thg axis, and we can easily find the
stability conditions. The condition for the longitudinal mode
along thex axis is

(A Ag)®
a>2[1+cog6s)]————, 20
[1+cosfs]7, 7 (20
and the condition for the transverse mode alongxtlgis is
(D; - Dg)?
>2[1+ 0S) | ——. 21
a>2[1+cos6s)] D,+D. (21)

We note that Eqs(20) and (21) are similar equations to the

We note thatd=Kk, in this case. The linearized equations areextended OV model for one-dimensional syst8-30.
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The right-hand sides of Eq&20) and(21) take the maxi- ] longitudinal
mum values a¥=0, that is, the instability arises first from 5 fansverse
the longest wavelength mode for both cases. After substitut- i § ]
ing exact forms ofA;,As D; andDs, we set§=0. Then we S
obtain the stability conditions for the homogeneous flow. The § A
longitudinal modes are stable for o1 S B

- 3[3f + 2(f/r)]?
2[3f" +(fin)] ’

and the transverse modes are stable for 1} i

(22)

sensitivity a

; 23
2+ 3(f/r)] 23
0
wherer is the distance among particles, ahid the function 0.5 ;
(6) andf’ is its derivative. distance r

For off-x-axis modes, there exist three remarkable points.
First, the constraintl5) or (19) is satisfied only in the direc-
tions ¢=nw/6(n=1, 2, 3, 4, 5, 7, 8, 9, 10, }lthat is, no

FIG. 4. The phase diagram obtained by the linear analysis. Solid
and dashed curves represent the critical curves given by (Egs.

d uti L her di . It fic and (23), respectively. Dotted lines represent the critical limes
mode solutions exist in other directions. It is sufficient t0=1.05;=0.94, and =0.59. There are four phases that can be char-

analyze the stability in the three directiops 77/6'77/3 and  acterized by the type of unstable modes: longitudinal mode, trans-
/2. Second, only the shortest wavelength mode is allowegqrse mode. and their mixture.

in each direction and for each polarizatisee Appendixes
C and D. Third, the stability condition is decided only by
the distance independent of sensitivitg.

Consider the case af=/2(y axis) as an example. Par-
ticles exist at intervals of the lengthin the direction of the
y axis. Thereforef=1r/u is the largest wave number of the
wave which propagates along tlgeaxis. Each mode along
they axis is restricted to the mode with this wave number.
Similar results are obtained in the directiops 7/6,7/3.
By solving Eq.(14) or (18) with the above results, we find
the stability condition for each mode. For the longitudinal
mode in the directiorp=7/2(y axis), the condition results in

modes along the& axis: Equation(22) is singular atr=0.59
and Eq.(23) is singular ar =1.05. The reason why the criti-
cal values for various modes coincide is not clear.

To summarize these results, the homogeneous flow is
stable in the regior. In the regionB, only the transverse
modes along th& axis are unstable. In the regi@ only the
longitudinal modes along theaxis are unstable. The region
C corresponds to the unstable region of the homogeneous
flow in the one-dimensional system. However in the region
D, several modes become unstable simultaneously and it is
unpredictable within the linear analysis how the flow breaks.

f Therefore it is not clear whether dotted curves or lines in the
(—) > 0. (24)  regionD are boundaries of phases or not. In the following
section, we investigate the property of the flow in each phase
The stability condition for this mode does not depend onby numerical simulations.
sensitivitya and depends only on the distancelhe similar

1, 3

conditions are Obtaine_d for modes in the dll’ectl@ﬂ IV. NUMERICAL SIMULATIONS
=716,/ 3 (see Appendixes C and)DWe note that this type . _ . o
of the stability condition appears in offaxis directions. In this section, we show a typical behavior in each phase

by numerical simulations. We adopt the periodic boundary

condition in both directions ok andy axis for simplicity.

The parameters are chosen the same values as those we have
We can draw the phase diagram from the results in th@irawn the phase diagram by the linear analysis in Sec. Ill. In

previous subsection. As a typical case, we choose the parargach phase, we choose appropriate values of sensitivity and

eters asa=1/4,8=2.5b=1.0,c=-1.0 of the OV function

(6). In Fig. 4, solid and dashed curves represent two critical | £ |. stability conditions for all modes. Numerical values

curves defined by Eq$22) and (23). The longitudinal and  5re calculated for the parameters=1/4,8=2.5p=1.0, andc
transverse modes along theaxis become unstable in the —_q o

region below the solid and dashed curve, respectively. Three

B. Phase structure

critical linesr=1.05r=0.94, andr=0.59 correspond to the ® Longitudinal mode Transverse mode
stability condition in the offx directions. Each mode in the

off-x direction is unstable in the left region of corresponding___ 0 (x axis) Eq. (22 Eq. (23
dotted line. All the stability conditions are summarized in 6 r>1.05 r>0.59
Table I. We note that two critical values of distance0.59 w3 r>0.59 r>1.05
andr=1.05 are common for various modes. These values /5y axig r>1.05 r>094

also appear as the singularity of stability condition for the
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sensitivity a

distance r

FIG. 7. Atypical pattern of the flow at the early sta@eand the
FIG. 5. Black disksP,—P, and black squareBs—Pg represent flow after relaxation(b) at the pointP,(a=0.5,r=1.3) in the phase
parameters used in simulations for unidirectional flow and forC.
counter flow, respectively.
fied. The state after relaxation is shown in Figb)7 where
the distance among particles. They are shown as points in thge can see clear density wave.

parameter space in Fig. 5. The poitis in the phas®, and Figures 8 and 9 are snapshots of the states after relaxation
P, andP; are in the phas€. P5 andPg are in the phasd, for r=1.0,a=3.0(P3 in Fig. 5 andr=0.5,a=1.0(P, in Fig.
andP3,P, and Pg are in the phas®. 5), respectively. In these cases, simulations start from the

same initial state shown in Fig(#®. The states in Figs.(B),
8, and 9(P,, P3,P,) transit to each other continuously by the
A. Unidirectional flow change of parametens and a. It is difficult to find clear

First we carry out simulations for unidirectional flow, borders among them. In the result, we can clearly distinguish
which corresponds to the situation investigated in the previthe behaviors in the phasésB and C: the homogeneous
ous section. Figure 6 shows snapshots in the case of distanl@w in phaseA, the transverse wave in phageand the
r=1.06 and sensitivitp=3.0. This case corresponds to the longitudinal wave in phas€. However, the border between
point P; in the phaseB in Fig. 5. The simulation starts from Phase<C andD is not clear from the results of simulations.
the homogeneous floWFig. 6@)], and after sufficient large
time we observe the transverse wd¥ég. 6b)].

Figure 7 shows snapshots for1.3 anda=0.5, which B. Counter flow
correspond to the poin®, in the phaseC. The simulation Interesting phenomena in pedestrian flow are observed in
starts from the initial state shown in Fig(e. Figure 1@  counter flow. Here we suggest a mechanism for such phe-
shows the early stage where the longitudinal wave is amplinomena based on our analysis.

Figure 10 is the result of simulations of counter flow at
larger (low density. The figure shows two snapshots after
sufficient relaxation time. White or black particles are mov-
ing leftward and rightward, respectively. We set that a half
number of particles move in the opposite direction,
=(-V,,0). In Fig. 10a), we choose parameters es2.0 and

(@)

(b)

FIG. 6. Atypical pattern of the flow at the poiR in the phase

B. Sensitivitya is set to 3.0, and the distance among particlés FIG. 8. A snapshot of the flow after relaxation. Parameters are
1.06. The initial state is the homogeneous fl@y and the trans- a=3.0 andr=1.0(P; in Fig. 5). Particles move randomly but a
verse wave is observed after relaxatidmn. triangular structure emerges partly.
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FIG. 9. A snapshot of the flow after relaxation. Parameters are o o '..'3"}' :.. :. .. .
a=1.0 andr=0.5P, in Fig. 5). Particles move randomly and no .'3?5.. LI
structure is observed. '.:’3‘:‘!’. '.“ AT . ®
)
— ; ; ; R — ° 'o.'?' ‘3:..8:. °
a=1.0(Ps in Fig. 5), and in Fig. 10b), we choose=1.2 and -.:! SR
a=2.0(Pg). Clear lanes are formed, where particles are mov- 'i b ¥}
°® 0’.. ‘; e_o60® [] P |

ing in the opposite directiondane separation The formed
lanes are stable, since the unidirectional homogeneous flow FIG. 11. Typical blocking states of counter flow at the poi@s

is stable at the pointBs; andPg. Each lane can be considered P,(a=1.0,=1.24 and (b) Pg(a=3.0r=1.04. White or black

as unidirectional flow, and the stability condition is roughly gigis are particles moving leftward and rightward, respectively.
the same as that obtained for unidirectional flow. In the Cas@oundary conditions are periodic in botrandy directions.

that the lane is a single line of particles, it is essentially a

one-dimensional system, and the stability condition is th
same as the original OV model.

When the distance among particles is a little smaller thar?ro_l\f‘;]d' imulati i Fig. 11 ‘ q h .
the critical value obtained by the analysis of unidirectionalp _els(,)lmugai\tlgriszm_ Igﬁ are ger O;:me 4at tde rp])omt
flow, the temporal lane formation is observed but these Ianes7(a_ 0 andr=1.24 in t € regiont. in =g. 4, an the
are unstable. The final states in such cases are shown in Fig2"t Pg(r_:1.04_anda:3.0) in the regionD. From the re-
11. These are blocking states. Particles cannot movi ults of S|mulat|_ons, we conclude that the lane formanon
smoothly, because their motion is prevented by other patQccurs in the regioA where the homogeneous flow is stable,

ticles coming in the opposite direction. At shorter distance®"d the blocking occurs in the region where the homoge-

(r<1), no temporal lane formation is observed, and theN€0US flow is unstable. A rough sketch of the phase diagram

blocking state emerges immediately. The blocking state iﬂor counter flow is as f_OIIOWS' There are two phases; in one

our model is not completely frozef8], because we treat phase the lane formation occurs, and in the other phase the

pedestrians as point particles for simplicity. Particles mové)|9Ck'ng Occﬁrsb Thed bougdary bet\;]veen abovgBtvz:o phases

windingly in the crowd and pass through a tiny space be€XSts near the boundary between the regloand B(C) in
unidirectional flow(Fig. 4).

etween particles, and finally escape to the opposite side of the

(@)

V. SUMMARY AND DISCUSSION

el esaeaeseasssss e In this paper, we investigated the linear stability of the

ee00000000000 o e o homogeneous flow solution in the two-dimensional OV
AXXIAX XXX TAX LR LT XX LT XX L) model [24-27. We found two types of instability of mode

solutions. One is the instability of modes propagating in the
direction of the desired velocitgx axis). The stability con-
ditions of these modefransverse and longitudinatiepend
on the sensitivitya and the distance between nearest-
| neighbor particles. The other is the instability of modes
| which propagate in the off-axis direction. Such modes exist
"-0.'.-uu-.""”'.%'.’.'.'.'.'.'.l only in the directions with the angle=n=/6(n=1, 2, 3, 4,

Toooooooooooooooo.ooo.oo

(b)

[ ]

O L P LR LEER I 5,7, 8, 9, 10, 11 Moreover, only the shortest wavelength

| mode is allowed in each direction and for each polarization.

The stability conditions for offaxis modes depend only on

the distance and not on the sensitivitg. These properties
FIG. 10. Typical stationary patterns of counter flow at the points@€ r_emarkable differences from those of the modes along the

(@ Ps(a=1.0,r=2.0 and (b) Pg(a=2.0,r=1.2 in the regionA. X axis.

White or black disks represent particles moving leftward and right- From the results of the linear analysis, we can draw the

ward, respectively. Boundary conditions are periodic in baeindy ~ phase diagram. There exist roughly four phases: pAd#ee

directions. region A in Fig. 4 where the homogeneous flow is stable,
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phaseB where the transverse modes along thexis are 3 33\ f/1 3

unstable, phas€ where the longitudinal modes along tke As=Ag=F"{-——|+-\7-—] (A3)
; 4 8 r\4 4

axis are unstable and phaBewhere several modes are un-

stable. The value of sensitivity decides which type of insta- - =

bility occurs. The instability of transverse mo¢ighasesB) B.=—B,= f,<3 \'3) + f(_ 3 \_3> (A4)

occurs in high sensitivity and high density. In contrast, the ! 2 r\ 4 4)°

instability of longitudinal moddphaseC) occurs in low sen-

sitivity and comparably low density. We carried out numeri- By=-B,=0, (A5)
cal simulation to investigate the behavior of flow in each

phase. We can distinguish the behaviors in the phas8s 3 3\ f/ 3 3

andC. However, the behaviors in the phagsesandD seem Bs=-Bg= f’<§ - %) F( 2 + Z) , (AB)

to transit each other continuously.
We also perform numerical simulations of counter flow.
. . . =~ =
The lane formation occurs at a large distarflcav density B f,<3 \’3) f( 1 \’3)

and the blocking occurs at a small distaribégh density. Ci=-Co=1 o+ a4/ r\ a4 (A7)
The border between these two states exists near the critical

curve of the stability condition for the unidirectional flow. f

The transition from the lane formed state to the blocking C3=-Cy=-, (A8)
state can be explained as follows. When the lanes are r

formed, there is almost no interaction between particles mov- _ _

ing in different lanes. Each lane can be considered as unidi- (3 N3) ff 1 43

rectional flow and is stable at the density where the homo- Co=-Co=1 (5 - Z) * F<_ 2" Z) (A9)

geneous flow is stablghaseA in Fig. 4). If the density is a

little higher (phaseB and phase&€), lanes are formed tempo- 1 3\ /3 \3
rally. Each lane cannot be maintained due to the unstable D,= DZ:f’(—+\—> +—<—+\—>, (A10)
modes in thex direction and the blocking phenomenon oc- r

curs finally. At much higher density, several modes in the

off-x direction are unstable simultaneously, and the blocking D3=D,=1', (A11)
state emerges immediately. The results of simulations in

counter flow can be understood by use of the results of linear 1 \E (3 \E

analysis for unidirectional flow. Therefore we conclude that Ds=Dg=f’ Y ALV (A12)

the two-dimensional OV model can present a unified under-
standing of these phenomena in pedestrian flow.

Beyond the analysis for the pedestrian flow, the model can
be applied to granular flow in liquid through a vertical pipe.
It is well known that the granular flow shows a similar phe-
nomena to traffic congestion. The emergence of jam clusters In this case(p=0), the equations corresponding to Egs.
can be understood in the framework of the OV model, be{12)—(15) are
cause the analysis does not depend on the detail of the OV

APPENDIX B: MODES ALONG x AXIS

1. Longitudinal modes

function. A congestion phenomenon is a common feature in X = exiot +ik -x] = exdiot +i6X], (B1)
the system similar to traffic flow. It is not essential that the
difference between the interaction among granules and the y;=0, (B2)
interaction among pedestrians. and
ACKNOWLEDGMENT 2
d_ng => Ai(Xie= X)) = Exj, (B3)
This work is partly supported by a Grant-in-Aid for Sci- dt k dt
entific ResearcliC) (No.1556005) of the Japanese Ministry
of Education, Science, Sports and Culture. 0=> Ci(Xc— %) (B4)
k

APPENDIX A: EXACT FORMS OF A,B,C,D

] We can easily find that EqB4) is automatically satisfied as
The exact forms of parameters defined by Bd) are as  fgjjows:

follows:
3 3V3) f(1 43 Ek) %) Ek) ol !
A=A = —+— -l =-+—], (A1) . -
8/ r4 4 % (Cy+ Co)(€% - 1) + (Cy+ Co)€7 "~ 1)
f =0. (B5)
Aa=Ae= v (A2) Equation(B3) becomes
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_nm

0=—, (C6)

This is the same equation as the extended OV model for u
one-dimensional systerf28-30. Therefore we can easily \yheren is an integer. Here # 1 is meaningless becausés

find the stability condition for the mod@1):

(AL - A)°

a>2[1+cos6s
[1+cogos)],

: (B7)

where the sensitivity is restored byf — f/a.

2. Transverse modes

The transverse modes along thexis are expressed as

X =0, (B8)
yj = exdiot +ik - x] = exdiot +16X], (B9)
and Eqgs.(9) and(10) become
0= Byi(yi— Yy, (B10)
k
d? d

—5Y= 2 Di(Yi=¥) = ;- (B11)

g2’ - kiv Yk — Y] dt’

We can easily verify that EqB10) is satisfied in the same
way as Eq(B5). Equation(B11) also gives the similar equa-
tion to Eq.(B6), and therefore the stability condition for this
mode is

a>2[1+cog6s)]

_ 2
(D1 =Dy (B12)
Dy

+Dg

APPENDIX C: MODES ALONG y AXIS

1. Longitudinal modes

The longitudinal modes along theaxis (p=<) are writ-
ten as

Xj = O, (Cl)
yj = exdiot +ik - x]=exdiot +i6Y|], (C2
and Eqgs.(9) and(10) become
0=2 Byj(yk— V). (C3)
k
d? d

—5Y= 2 D= ¥) = Y- (C4

d2” - Kk Y37 g

Equation(C3) gives a nontrivial constraint

0=(e™-e"™) (B, +Bs). (CH)

In the present case, we can easily fidgtBg# 0, and the
solution is

the minimal length ofY,—Y;|. Therefored==/u is the only
mode which propagates in thyedirection.

Inserting Eq.(C2) into Eg. (C4), we find

- w?=-4(D;+Dg) - iw, (C7)

where we usedu=1. The stability condition for this mode
is given by
f

1 3
D1+D5:§f’+— -|>0.

2\r (€8

As an example, we set parameters @sl1/4,8=2.5pb
=1.0,c=-1.0. Then Eq(C9) is satisfied for >1.05.

2. Transverse modes

The transverse modes are

x; = exfiot +ik - x] = exdiot +i16Y}], (C9
y;=0, (C10)
and the equations are

d? d
@X] = % Akj(xk - Xj) - d_th, (Cll)
0=, Cyi(X—X)). (C12

k
The constrain{C12 becomes

0=(@M-e"™){C,+Cs+ Cy(e™+e™ ™)}, (C13

and this is satisfied in the following two cases.
(1) (¢%-e™)=0. In the same way as the previous sub-
section, we finddu= and the stability condition

f

3 1
A1+A5:§f’+_<_)>0. (C14)

2\r
This condition is satisfied if >0.59 for the same parameters
as Appendix C 1. _
(2) C;+Cs+Cy(eM+e7'™)=0. BecauseC;# 0, the solu-
tion is

Ci+GCs
coJlu)=————. C1
g ou) 2C, (C1H
Therefore Eq(C11) becomes
AL+ C,+C
—wzz{—Z(Al+2A3+A5)—( 1+ A5)(Cy + Co)
Cs
C,+Cs)?
+A3(1—25)} i (C16)
C3

From the first term of the right-hand side of EE16), we
find the stability condition
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— Aot 1 -i(g+D) o
O—e Al_Dl+pBl_ECl +e A5_D5_pBS

1 - 1
+ BCS) + e'(q_1)¢(A1 ~D1-pB + BCl)

" A 1 . 1
\‘l/zvb 2 + e"““l)‘/’(Ag, - Ds+pBs- 5(:5) + e2'<f)(A3 -Ds- 5(:3)
FIG. 12. Parameters,|,, andl; are graphically shown. ‘ 1
+ e‘2'¢(A3 -D3+ 5C3> . (D3)
ri, f ,
- ?{f + 2;} [f + 4;] > 0. (C17  This constraint decides the value ¢f that is,k, depending

on r for given q~ ¢. Here we consider the modes whose
In this case, the necessary condition for the stability is nowave numbek is independent of distanae The parameters
only Eq. (C17 but also the condition that EGC15 has a  As,-.-,Dg consist of two terms: one is proportional f@)/r
solution. We can find the range of numerically and the and the other is proportional t&'(r) (see Appendix A
result isr >0.94. Therefore both coefficients df(r)/r and f’(r) in the con-
straint (D3) must be zerd33]. As a result, we obtain two
complex-valued conditions from E4D3), which reduce to
four real-valued conditions. Because two among four condi-
tions are identical, three conditions remain as follows:

APPENDIX D: MODE IN GENERAL DIRECTION

1. Longitudinal modes 0=(q-3)(q+ Lcosa+ - (q+3)(q- Lcosq-1)¢
For the stability of longitudinal modes in the direction +4q cos 2p,
(0< o< m/2), we simplify the equations first. By use of the
mode function(12), the constraint15) is rewritten as 0=(q-3)(q+ 3)sin(q+ 1)¢ - (q+ 3)(q-3)sin(q - 1)

_ 1 . - 4gPsin 2,
0= e"9(5+p“)<A1 -D;+pB; - 501) +¢ "<S‘p“><Al -D;-pB,
L L 0=(a-3)(g+sin(@+ ¢ -(q+3)(q-Dsin(q-1)¢.
+ 5C1> +é? GPU<A3 - D3~ 503) +e72 f'P“(Ag -Ds (D4)

We found the solutions only fagy=1 orq=3. For general
+ }C3> + e“"<s'p”)<A5 — D+ pBs— 105> g, we have investigated the existence of solutions numeri-
p p cally, and could not find any other solutions.
. 1 Here we show the results.
+g (’(S*p“)<A5 - Dg - pBg + F_)C5> . (D1) (1) =1 (¢=/3). In this case, Eq4D4) become

— 0=-4cos 2+ 4 cos 2,
Becauses=3r/2 andu=r/2, the equation can be simplified

by the replacement=13/q, whereq is a real number. Note —_Qaci —4si
that q=1 andg=3 correspond tap=7/3 and ¢=/6, re- 0 8sin2)-4sin 2,
spectively. The arguments of exponential functions in Eq.

(D1) become 0=-4sin2p, (D5)
3 5 3 and are reduced to a single equation sip=2®. Only the
26pu= Yrg= 24, s+pu= (\? + ;_q)r =(q+1)o. mode 2p= 1 exists and the stability condition of this mode is

f
(D2) 3f’ + ; >0. (D6)

The meaning of the parametrization is shown in Fig. 12
Note 2p=26pu=|K|l5, wherel;=2using is the length of
projection of (0,2u) to the direction of vectok and 6=k,
=|k|cose. Similarly, (q+1)¢=|K|l, and(q-1) =]k, where
[, andl, are the lengths of projection @&,u) and (s,-u),
respectively. Figure 12 shows the situation fpr 3, and in

This is the same condition as E(C14) and the mode is
stable forr >0.59.

(2) g=3 (¢=7/6). Also in this case, only the mode¢2
=1 exists. The stability condition is

such a cask; is the minimum length among them. Therefore '+ 3; > 0. (D7)

2¢=1 corresponds to the largest wave number of modes

which propagate in the direction shown in Fig. 12. This is the same condition as E¢8) and the mode is stable
In the notation(D2), Eq. (D1) is rewritten as for r>1.05.
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2. Transverse modes 0=(q-3)(q+sin(q+1)¢~(q+3)(q- Dsin(q-1)¢.

For the transverse modes in the directi@< ¢ < m/2), (D9)

the constrain{19) becomes
(19 In Egs.(D9), only the second equation is different from that

. 1 _ 1 in Egs. (D4).
0 :e|(q+1)d>(A1 -D;- IB|31 + pC1> te '<q+l)¢<A5 ~Ds+ 535 The solutions exist only fog=1 andg=3. The results are
as follows.
(1) g=1 (¢=m/3). Only the mode &= exists and the
stability condition of this mode is

. 1
- pC5> + e'(q_l)¢<A1 —-Dy+ 551 - pcl)

+ e_'(q_l)¢<A5‘ Ds - 555*' pCs) +&%(Ag— D3+ pCy) faaso. (D10)
r

—2i¢ _
+e7 (A= Dyt pCy), (D8) This is the same condition as E8) and the mode is stable

where we useg= \@/q and 2pu=2¢. In the same way as for r>1.05.

the previous subsection, we find three conditions (2) q=3 (¢=7/6). Only the mode &= exists and the
stability condition is
0=(q-3)(q+Dcosq+ Db~ (q+3)(q - Deosa - b g
+4q cos 2, 3+ 1~ 0. (D11)
r

0=(q-D(g+ Dsin(q+ 1o —-(q+1)(q-Dsin(g- 1) ¢ This is the same condition as E¢C14) and the mode is
+ 4 sin 2p, stable forr >0.59.
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