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A two-dimensional optimal velocity model was proposed for the study of pedestrian and granular flow. We
investigate the stability of homogeneous flow in the linear approximation and show the phase diagram of the
model. We also investigate the property of the model by numerical simulation in the cases of unidirectional and
counter flow. From these results, we present a unified understanding of the behavior of pedestrians and other
related systems.
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I. INTRODUCTION

In the past decade, traffic and some related systems are
investigated from the physical viewpoint of many-particle
systemsf1–6g. Pedestrian flow is one of such systems and
presents interesting phenomena such as lane formation or
blocking f7,8g. The behavior of pedestrians has been inves-
tigated not only in physics but also in engineering, and vari-
ous models are proposed to reproduce the phenomena
f9–16g. Several models, for example, cellular automata mod-
els, have already applied to the realistic problems such as the
evacuation from a building or a shipf17,18g. However, these
models are tuned to reproduce the behavior of each phenom-
enon, and the general study of pedestrian flow itself has not
been done. Dynamical models for pedestrian flow are useful
for such studies, especially for analytical studies, because the
motion of pedestrians is described by the dynamical equation
of motion. For the general study of pedestrian flow, it is
necessary to construct a simple model which can be investi-
gated analytically.

It is well known that there is a similarity among pedes-
trian flow, traffic flow and granular flow through a pipe. A
jam or a similar phenomenon is commonly observed inde-
pendent of the dimensionality; one-dimensional traffic flow,
two-dimensional pedestrian flow and three-dimensional
granular flow. Generally, a higher-dimensional system re-
duces to a lower one in a certain limit. When they have a
common property, we expect that the property can be ex-
plained by the same mechanism. As a candidate for the
model which can explain those phenomena in a unified
framework, we adopt the optimal velocitysOVd model
f19–21g in the following reasons. The property of one-
dimensional traffic flow is well understood by the OV model

and the traffic congestion is interpreted as a phase transition.
A density wave similar to traffic congestion is observed in
granular flow in liquid through a vertical pipe. In this case,
the system can be reduced to quasi-one-dimensional one,
which is expressed by a similar equation to the OV model
f22,23g. Moreover we can observe a density wave in a spe-
cial case of pedestrian flow such as a march of children,
where the system can be considered as one-dimensional flow.
Therefore we can expect that the behavior of pedestrians can
be explained in the framework of the OV model or its two-
dimensional extension.

We have proposed a two-dimensional OV model, which is
a natural extension of the original OV modelf24–27g. The
OV model for traffic flow is constructed in a simple concept:
A driver maintains his optimal velocity depending on the
distance to other vehicles. We can easily extend the model to
higher-dimensional systems along the same concept. In this
model, pedestrians are treated as identical particles moving
in the two-dimensional space, and each particle decides its
optimal velocity depending on distances to other particles.
The model reduces to the original OV model in a special
case where particles form a line. In this paper, we show that
the model gives a unified understanding of the phenomena in
pedestrian flow and in one-dimensional traffic flow. We in-
vestigate the linear stability of the homogeneous flow solu-
tion. It is shown that the homogeneous flow is unstable if the
density exceeds a certain critical value. In this case, the ho-
mogeneous distribution of particles is gradually broken, and
a density wave emerges spontaneously. Some typical station-
ary patterns are finally formed depending on the values of
parameters. This is the same phenomena as traffic conges-
tion, and can be interpreted as a phase transition from homo-
geneous flow to congested flow. We also show the existence
of a phase which does not exist in a one-dimensional system.
Typical profile of flow in each phase can be obtained by use
of numerical simulations.

In Sec. II we present the two-dimensional OV model after
the brief review of the one-dimensional OV model. We carry
out the linear analysis of the homogeneous flow and find the
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stability conditions in Sec. III. We also show the phase dia-
gram in this section. In Sec. IV, we show some typical fea-
tures of the phases by use of numerical simulations. Section
V is devoted to summary and discussion.

II. TWO-DIMENSIONAL OV MODEL

First we briefly review the one-dimensional OV model
f19g. The basic concept of the model is that each driver con-
trols the acceleration in order to reduce the difference be-
tween the optimal velocity and his real velocity. The model
is expressed by the equation of motion

d2

dt2
xnstd = aFVsDxnstdd −

d

dt
xnstdG , s1d

wherexn andDxn are the position and the headway of thenth
vehicle. a is “sensitivity,” which represents the strength of
reaction of each driver.VsDxd is “OV function,” which indi-
cates an optimal velocity depending on his headway. We
adopt a following form of OV function: VsDxd
=aftanhbsDx−bd+cg.

This model has a trivial homogeneous flow solution

xn = hn+ Vshdt + const, s2d

where all vehicles run with the same velocityVshd and the
same headwayh. We can find the stability condition of the
solution by the linear analysis.

Let yn be a small fluctuation on the above solution. The
stability condition for the mode solutionynstd=expfinu
− ivsudtg is

a . V8shds1 + cosud. s3d

When the condition is not satisfied, the homogeneous flow is
unstable for the modeu. If unstable modes exist, the flow
transits to a congested flow with jam clusters.

In order to apply the OV model to the phenomena in
pedestrian flow, we construct a two-dimensional OV model
f24g. This model is a natural extension of the original one-
dimensional OV model. Hereafter we call pedestrians as
“particles” for convenience.

The equation of motion for a particle with the indexj is
given by

d2

dt2
x jstd = aFHV0 + o

k

F„xkstd − x jstd…J −
d

dt
x jstdG , s4d

where bold symbols are two-dimensional vectors.x j
=sxj ,yjd andxk=sxk,ykd are the positions ofj th andkth par-
ticles, respectively.V0 is a constant vector which expresses
“desired velocity.” A particle moves with the desired veloc-
ity, if it is alone. F expresses the interaction between par-
ticles and we choose the following form:

Fsxk − x jd = fsrkjds1 + coswdnkj, s5d

fsrkjd = aftanhbsrkj − bd + cg, s6d

where rkj= uxk−x ju ,cosw=sxk−xjd / rkj and nkj=sxk−x jd / rkj.
The strength of the interaction is determined by the distance

rkj betweenj th and kth particles and the anglew between
xk−x j andV0. Due to the terms1+coswd, a particle is more
sensitive to particles in front than those behind. Equations6d
is nothing but the OV function for the one-dimensional
model. We assume this form to understand both one- and
two-dimensional phenomena in a unified way.

For convenience, we setV0=sV0,0d, which means that
particles are supposed to move in the positive direction of
thex axis. We also setc.−1, that is,f ,0, which means that
the interaction is repulsivef31,32g. This is a natural assump-
tion for the interaction between pedestrians, but it is not es-
sential in the analysis of the stability. The parametera is set
to 1/4 for simplicity.

III. LINEAR ANALYSIS

A. Stability condition

In the same way as Ref.f19g, we investigate the linear
stability of homogeneous flow. To simplify the calculation,
we remove the sensitivitya from the equation by the replace-
ment t→ t /a,V0→aV0 andF→aF. Equations4d becomes

d2

dt2
x jstd = V0 + o

k

F„xkstd − x jstd… −
d

dt
x jstd. s7d

By numerical simulations, we find that a flow shown in
Fig. 1 is realized at a large distanceslow densityd f24g. We
study the linear stability of this flow in this subsection. This
homogeneous flow is expressed by the solutionx j =X j +vt.
HereX j =sXj ,Yjd is a constant vector which represents a site
on a triangular lattice, andv=svx,vyd represents a constant
velocity at which all particles move. The distances between
any nearest-neighbor pairs are the same, and we use the dis-
tance as a parameter instead of the density.

We consider a small perturbation as follows:

xj → Xj + vxt + xj ,

yj → Yj + vyt + yj ,

vx = V0 + o
k

FxsXk − Xj,Yk − Yjd,

vy = o
k

FysXk − Xj,Yk − Yjd, s8d

whereF=sFx,Fyd. The newxj andyj representx andy com-
ponents of the small deviation from the positionsXj ,Yjd.

From Eqs.s7d and s8d, we can write the linearized equa-
tions

FIG. 1. A snapshot of the homogeneous flow. A triangular struc-
ture is observed in a numerical simulation with periodic boundary
condition. All particles represented by black disks are moving
rightward.
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d2

dt2
xj = o

k

fAkjsxk − xjd + Bkjsyk − yjdg −
d

dt
xj , s9d

d2

dt2
yj = o

k

fCkjsxk − xjd + Dkjsyk − yjdg −
d

dt
yj , s10d

where parametersAkj ,Bkj ,Ckj ,Dkj are defined by

Akj = u]xFxsx,ydux=Xk−Xj,y=Yk−Yj
,

Bkj = u]yFxsx,ydux=Xk−Xj,y=Yk−Yj
,

Ckj = u]xFysx,ydux=Xk−Xj,y=Yk−Yj
,

Dkj = u]yFysx,ydux=Xk−Xj,y=Yk−Yj
. s11d

Suppose that the small wave propagates at the anglew
with the x axis ssee Fig. 2d. Then the wave vector isk
=skx,kyd=skx,pkxd where p; tanw. The two-dimensional
wave is classified into two types of modes: longitudinal
modes and transverse modes.

The longitudinal modes in thew direction are written by

xj = expfivt + ik ·xg = expfivt + iusXj + pYjdg, s12d

yj = pxj , s13d

whereu;kx. The linearized equationss9d and s10d are re-
written as

d2

dt2
xj = o

k

sAkj + pBkjdsxk − xjd −
d

dt
xj , s14d

0 = o
k
SAkj + pBkj −

1

p
Ckj − DkjDsxk − xjd, s15d

where the second equation is obtained by subtracting Eq.
s10d from Eq. s9d.

As for the transverse modes, we obtain the equations

xj = expfivt + ik ·xg ; expfivt + iusXj + pYjdg, s16d

yj = −
1

p
xj . s17d

We note thatu;ky in this case. The linearized equations are

d2

dt2
xj = o

k
SAkj −

1

p
BkjDsxk − xjd −

d

dt
xj , s18d

0 = o
k
SAkj −

1

p
Bkj + pCkj − DkjDsxk − xjd. s19d

Two special casesw=0sp=0d and w=p /2sp=`d should
be investigated separately from the general case. That is, the
analysis is carried out in three cases:sid modes along thex
axis sw=0d, sii d modes along they axis sw=p /2d, and siii d
other modess0,w,p /2d.

In the homogeneous flow, the interaction with the nearest
neighbors is dominant and we can neglect the interaction
with further particles. Then the summation fork is taken over
six particles aroundj th one. For convenience, we omit the
index j and assign the number shown in Fig. 3 to the indexk.
For example, the position of particle 1 isss,ud
=sÎ3r /2 ,r /2d wherer is the distance between two nearest-
neighbor particles. The parameters in Eq.s11d are expressed
as A1,A2,… ,A6,B1,B2,… ,D6 fe.g., A1= u]xFxsx,ydux=s,y=ug.
The exact forms of these parameters are shown in Appendix
A.

The stability condition should be investigated in three
cases of directions of propagation for two polarizations. We
solve Eq.s14d under the constraints15d for the longitudinal
modes and Eq.s18d under the constraints19d for the trans-
verse modes, and find the condition thatv does not have
negative imaginary part. The results are shown as follows,
and the details are explained in Appendixes B–D.

The constraintss15d and s19d are automatically satisfied
for the modes along thex axis, and we can easily find the
stability conditions. The condition for the longitudinal mode
along thex axis is

a . 2f1 + cossusdg
sA1 − A5d2

A1 + A5
, s20d

and the condition for the transverse mode along thex axis is

a . 2f1 + cossusdg
sD1 − D5d2

D1 + D5
. s21d

We note that Eqs.s20d and s21d are similar equations to the
extended OV model for one-dimensional systemf28–30g.

FIG. 2. A wave propagating in thews=p /3d direction.
FIG. 3. Indices of six particles are shown. The positions of the

particle 1, 2, 3, 4, 5, 6 aress,ud ,ss,−ud ,s0,2ud ,s0,−2ud ,s−s,ud ,
s−s,−ud, respectively.
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The right-hand sides of Eqs.s20d ands21d take the maxi-
mum values atu=0, that is, the instability arises first from
the longest wavelength mode for both cases. After substitut-
ing exact forms ofA1,A5 D1 andD5, we setu=0. Then we
obtain the stability conditions for the homogeneous flow. The
longitudinal modes are stable for

a .
3f3f8 + 2sf/rdg2

2f3f8 + sf/rdg
, s22d

and the transverse modes are stable for

a .
3ff8 + 2sf/rdg2

2ff8 + 3sf/rdg
, s23d

wherer is the distance among particles, andf is the function
s6d and f8 is its derivative.

For off-x-axis modes, there exist three remarkable points.
First, the constraints15d or s19d is satisfied only in the direc-
tions w=np /6sn=1, 2, 3, 4, 5, 7, 8, 9, 10, 11d, that is, no
mode solutions exist in other directions. It is sufficient to
analyze the stability in the three directionsw=p /6 ,p /3 and
p /2. Second, only the shortest wavelength mode is allowed
in each direction and for each polarizationssee Appendixes
C and Dd. Third, the stability condition is decided only by
the distancer independent of sensitivitya.

Consider the case ofw=p /2sy axisd as an example. Par-
ticles exist at intervals of the lengthu in the direction of the
y axis. Thereforeu=p /u is the largest wave number of the
wave which propagates along they axis. Each mode along
the y axis is restricted to the mode with this wave number.
Similar results are obtained in the directionsw=p /6 ,p /3.
By solving Eq.s14d or s18d with the above results, we find
the stability condition for each mode. For the longitudinal
mode in the directionw=p /2sy axisd, the condition results in

D1 + D5 =
1

2
f8 +

3

2
S f

r
D . 0. s24d

The stability condition for this mode does not depend on
sensitivitya and depends only on the distancer. The similar
conditions are obtained for modes in the directionw
=p /6 ,p /3 ssee Appendixes C and Dd. We note that this type
of the stability condition appears in off-x-axis directions.

B. Phase structure

We can draw the phase diagram from the results in the
previous subsection. As a typical case, we choose the param-
eters asa=1/4,b=2.5,b=1.0,c=−1.0 of the OV function
s6d. In Fig. 4, solid and dashed curves represent two critical
curves defined by Eqs.s22d and s23d. The longitudinal and
transverse modes along thex axis become unstable in the
region below the solid and dashed curve, respectively. Three
critical lines r =1.05,r =0.94, andr =0.59 correspond to the
stability condition in the off-x directions. Each mode in the
off-x direction is unstable in the left region of corresponding
dotted line. All the stability conditions are summarized in
Table I. We note that two critical values of distancer =0.59
and r =1.05 are common for various modes. These values
also appear as the singularity of stability condition for the

modes along thex axis: Equations22d is singular atr =0.59
and Eq.s23d is singular atr =1.05. The reason why the criti-
cal values for various modes coincide is not clear.

To summarize these results, the homogeneous flow is
stable in the regionA. In the regionB, only the transverse
modes along thex axis are unstable. In the regionC, only the
longitudinal modes along thex axis are unstable. The region
C corresponds to the unstable region of the homogeneous
flow in the one-dimensional system. However in the region
D, several modes become unstable simultaneously and it is
unpredictable within the linear analysis how the flow breaks.
Therefore it is not clear whether dotted curves or lines in the
region D are boundaries of phases or not. In the following
section, we investigate the property of the flow in each phase
by numerical simulations.

IV. NUMERICAL SIMULATIONS

In this section, we show a typical behavior in each phase
by numerical simulations. We adopt the periodic boundary
condition in both directions ofx and y axis for simplicity.
The parameters are chosen the same values as those we have
drawn the phase diagram by the linear analysis in Sec. III. In
each phase, we choose appropriate values of sensitivity and

FIG. 4. The phase diagram obtained by the linear analysis. Solid
and dashed curves represent the critical curves given by Eqs.s22d
and s23d, respectively. Dotted lines represent the critical linesr
=1.05,r =0.94, andr =0.59. There are four phases that can be char-
acterized by the type of unstable modes: longitudinal mode, trans-
verse mode, and their mixture.

TABLE I. Stability conditions for all modes. Numerical values
are calculated for the parametersa=1/4,b=2.5,b=1.0, and c
=−1.0.

w Longitudinal mode Transverse mode

0 sx axisd Eq. s22d Eq. s23d
p /6 r .1.05 r .0.59

p /3 r .0.59 r .1.05

p /2sy axisd r .1.05 r .0.94
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the distance among particles. They are shown as points in the
parameter space in Fig. 5. The pointP1 is in the phaseB, and
P2 andP7 are in the phaseC. P5 andP6 are in the phaseA,
andP3,P4 andP8 are in the phaseD.

A. Unidirectional flow

First we carry out simulations for unidirectional flow,
which corresponds to the situation investigated in the previ-
ous section. Figure 6 shows snapshots in the case of distance
r =1.06 and sensitivitya=3.0. This case corresponds to the
point P1 in the phaseB in Fig. 5. The simulation starts from
the homogeneous flowfFig. 6sadg, and after sufficient large
time we observe the transverse wavefFig. 6sbdg.

Figure 7 shows snapshots forr =1.3 anda=0.5, which
correspond to the pointP2 in the phaseC. The simulation
starts from the initial state shown in Fig. 6sad. Figure 7sad
shows the early stage where the longitudinal wave is ampli-

fied. The state after relaxation is shown in Fig. 7sbd, where
we can see clear density wave.

Figures 8 and 9 are snapshots of the states after relaxation
for r =1.0,a=3.0sP3 in Fig. 5d and r =0.5,a=1.0sP4 in Fig.
5d, respectively. In these cases, simulations start from the
same initial state shown in Fig. 6sad. The states in Figs. 7sbd,
8, and 9sP2,P3,P4d transit to each other continuously by the
change of parametersr and a. It is difficult to find clear
borders among them. In the result, we can clearly distinguish
the behaviors in the phasesA,B and C: the homogeneous
flow in phaseA, the transverse wave in phaseB and the
longitudinal wave in phaseC. However, the border between
phasesC andD is not clear from the results of simulations.

B. Counter flow

Interesting phenomena in pedestrian flow are observed in
counter flow. Here we suggest a mechanism for such phe-
nomena based on our analysis.

Figure 10 is the result of simulations of counter flow at
large r slow densityd. The figure shows two snapshots after
sufficient relaxation time. White or black particles are mov-
ing leftward and rightward, respectively. We set that a half
number of particles move in the opposite direction,V0
=s−V0,0d. In Fig. 10sad, we choose parameters asr =2.0 and

FIG. 5. Black disksP1–P4 and black squaresP5–P8 represent
parameters used in simulations for unidirectional flow and for
counter flow, respectively.

FIG. 6. A typical pattern of the flow at the pointP1 in the phase
B. Sensitivitya is set to 3.0, and the distance among particlesr is
1.06. The initial state is the homogeneous flowsad and the trans-
verse wave is observed after relaxationsbd.

FIG. 7. A typical pattern of the flow at the early stagesad and the
flow after relaxationsbd at the pointP2sa=0.5,r =1.3d in the phase
C.

FIG. 8. A snapshot of the flow after relaxation. Parameters are
a=3.0 andr =1.0 sP3 in Fig. 5d. Particles move randomly but a
triangular structure emerges partly.
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a=1.0sP5 in Fig. 5d, and in Fig. 10sbd, we chooser =1.2 and
a=2.0sP6d. Clear lanes are formed, where particles are mov-
ing in the opposite directionsslane separationd. The formed
lanes are stable, since the unidirectional homogeneous flow
is stable at the pointsP5 andP6. Each lane can be considered
as unidirectional flow, and the stability condition is roughly
the same as that obtained for unidirectional flow. In the case
that the lane is a single line of particles, it is essentially a
one-dimensional system, and the stability condition is the
same as the original OV model.

When the distance among particles is a little smaller than
the critical value obtained by the analysis of unidirectional
flow, the temporal lane formation is observed but these lanes
are unstable. The final states in such cases are shown in Fig.
11. These are blocking states. Particles cannot move
smoothly, because their motion is prevented by other par-
ticles coming in the opposite direction. At shorter distance
sr ,1d, no temporal lane formation is observed, and the
blocking state emerges immediately. The blocking state in
our model is not completely frozenf8g, because we treat
pedestrians as point particles for simplicity. Particles move
windingly in the crowd and pass through a tiny space be-

tween particles, and finally escape to the opposite side of the
crowd.

The simulations in Fig. 11 are performed at the point
P7sa=1.0 andr =1.24d in the regionC in Fig. 4, and the
point P8sr =1.04 anda=3.0d in the regionD. From the re-
sults of simulations, we conclude that the lane formation
occurs in the regionA where the homogeneous flow is stable,
and the blocking occurs in the region where the homoge-
neous flow is unstable. A rough sketch of the phase diagram
for counter flow is as follows. There are two phases; in one
phase the lane formation occurs, and in the other phase the
blocking occurs. The boundary between above two phases
exists near the boundary between the regionA andBsCd in
unidirectional flowsFig. 4d.

V. SUMMARY AND DISCUSSION

In this paper, we investigated the linear stability of the
homogeneous flow solution in the two-dimensional OV
model f24–27g. We found two types of instability of mode
solutions. One is the instability of modes propagating in the
direction of the desired velocitysx axisd. The stability con-
ditions of these modesstransverse and longitudinald depend
on the sensitivitya and the distancer between nearest-
neighbor particles. The other is the instability of modes
which propagate in the off-x-axis direction. Such modes exist
only in the directions with the anglew=np /6sn=1, 2, 3, 4,
5, 7, 8, 9, 10, 11d. Moreover, only the shortest wavelength
mode is allowed in each direction and for each polarization.
The stability conditions for off-x-axis modes depend only on
the distancer and not on the sensitivitya. These properties
are remarkable differences from those of the modes along the
x axis.

From the results of the linear analysis, we can draw the
phase diagram. There exist roughly four phases: phaseA sthe
region A in Fig. 4d where the homogeneous flow is stable,

FIG. 9. A snapshot of the flow after relaxation. Parameters are
a=1.0 andr =0.5sP4 in Fig. 5d. Particles move randomly and no
structure is observed.

FIG. 10. Typical stationary patterns of counter flow at the points
sad P5sa=1.0,r =2.0d and sbd P6sa=2.0,r =1.2d in the regionA.
White or black disks represent particles moving leftward and right-
ward, respectively. Boundary conditions are periodic in bothx andy
directions.

FIG. 11. Typical blocking states of counter flow at the pointssad
P7sa=1.0,r =1.24d and sbd P8sa=3.0,r =1.04d. White or black
disks are particles moving leftward and rightward, respectively.
Boundary conditions are periodic in bothx andy directions.
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phaseB where the transverse modes along thex axis are
unstable, phaseC where the longitudinal modes along thex
axis are unstable and phaseD where several modes are un-
stable. The value of sensitivity decides which type of insta-
bility occurs. The instability of transverse modesphasesBd
occurs in high sensitivity and high density. In contrast, the
instability of longitudinal modesphaseCd occurs in low sen-
sitivity and comparably low density. We carried out numeri-
cal simulation to investigate the behavior of flow in each
phase. We can distinguish the behaviors in the phasesA,B
andC. However, the behaviors in the phasesC andD seem
to transit each other continuously.

We also perform numerical simulations of counter flow.
The lane formation occurs at a large distanceslow densityd
and the blocking occurs at a small distanceshigh densityd.
The border between these two states exists near the critical
curve of the stability condition for the unidirectional flow.
The transition from the lane formed state to the blocking
state can be explained as follows. When the lanes are
formed, there is almost no interaction between particles mov-
ing in different lanes. Each lane can be considered as unidi-
rectional flow and is stable at the density where the homo-
geneous flow is stablesphaseA in Fig. 4d. If the density is a
little higher sphaseB and phaseCd, lanes are formed tempo-
rally. Each lane cannot be maintained due to the unstable
modes in thex direction and the blocking phenomenon oc-
curs finally. At much higher density, several modes in the
off-x direction are unstable simultaneously, and the blocking
state emerges immediately. The results of simulations in
counter flow can be understood by use of the results of linear
analysis for unidirectional flow. Therefore we conclude that
the two-dimensional OV model can present a unified under-
standing of these phenomena in pedestrian flow.

Beyond the analysis for the pedestrian flow, the model can
be applied to granular flow in liquid through a vertical pipe.
It is well known that the granular flow shows a similar phe-
nomena to traffic congestion. The emergence of jam clusters
can be understood in the framework of the OV model, be-
cause the analysis does not depend on the detail of the OV
function. A congestion phenomenon is a common feature in
the system similar to traffic flow. It is not essential that the
difference between the interaction among granules and the
interaction among pedestrians.
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APPENDIX A: EXACT FORMS OF A ,B ,C,D

The exact forms of parameters defined by Eq.s11d are as
follows:

A1 = A2 = f8S3

4
+

3Î3

8
D +

f

r
S1

4
+

Î3

4
D , sA1d

A3 = A4 =
f

r
, sA2d

A5 = A6 = f8S3

4
−

3Î3

8
D +

f

r
S1

4
−

Î3

4
D , sA3d

B1 = − B2 = f8S3

8
+

Î3

4
D +

f

r
S−

3

4
−

Î3

4
D , sA4d

B3 = − B4 = 0, sA5d

B5 = − B6 = f8S3

8
−

Î3

4
D +

f

r
S−

3

4
+

Î3

4
D , sA6d

C1 = − C2 = f8S3

8
+

Î3

4
D +

f

r
S−

1

4
−

Î3

4
D , sA7d

C3 = − C4 =
f

r
, sA8d

C5 = − C6 = f8S3

8
−

Î3

4
D +

f

r
S−

1

4
+

Î3

4
D , sA9d

D1 = D2 = f8S1

4
+

Î3

8
D +

f

r
S3

4
+

Î3

4
D , sA10d

D3 = D4 = f8, sA11d

D5 = D6 = f8S1

4
−

Î3

8
D +

f

r
S3

4
−

Î3

4
D . sA12d

APPENDIX B: MODES ALONG x AXIS

1. Longitudinal modes

In this casesp=0d, the equations corresponding to Eqs.
s12d–s15d are

xj = expfivt + ik ·xg = expfivt + iuXjg, sB1d

yj = 0, sB2d

and

d2

dt2
xj = o

k

Akjsxk − xjd −
d

dt
xj , sB3d

0 = o
k

Ckjsxk − xjd. sB4d

We can easily find that Eq.sB4d is automatically satisfied as
follows:

o
k

Ckjsxk − xjd = o
k

CkjfeiuXk − eiuXjgeivt

~ sC1 + C2dseius − 1d + sC5 + C6dse−ius − 1d

= 0. sB5d

EquationsB3d becomes
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− v2 = 2A1seius − 1d + 2A5se−ius − 1d − iv. sB6d

This is the same equation as the extended OV model for
one-dimensional systemf28–30g. Therefore we can easily
find the stability condition for the modesB1d:

a . 2f1 + cossusdg
sA1 − A5d2

A1 + A5
, sB7d

where the sensitivitya is restored byf → f /a.

2. Transverse modes

The transverse modes along thex axis are expressed as

xj = 0, sB8d

yj = expfivt + ik ·xg = expfivt + iuXjg, sB9d

and Eqs.s9d and s10d become

0 = o
k

Bkjsyk − yjd, sB10d

d2

dt2
yj = o

k

Dkjsyk − yjd −
d

dt
yj . sB11d

We can easily verify that Eq.sB10d is satisfied in the same
way as Eq.sB5d. EquationsB11d also gives the similar equa-
tion to Eq.sB6d, and therefore the stability condition for this
mode is

a . 2f1 + cossusdg
sD1 − D5d2

D1 + D5
. sB12d

APPENDIX C: MODES ALONG y AXIS

1. Longitudinal modes

The longitudinal modes along they axis sp=`d are writ-
ten as

xj = 0, sC1d

yj = expfivt + ik ·xg = expfivt + iuYjg, sC2d

and Eqs.s9d and s10d become

0 = o
k

Bkjsyk − yjd, sC3d

d2

dt2
yj = o

k

Dkjsyk − yjd −
d

dt
yj . sC4d

EquationsC3d gives a nontrivial constraint

0 = seiuu − e−iuudsB1 + B5d. sC5d

In the present case, we can easily findB1+B5Þ0, and the
solution is

u =
np

u
, sC6d

wheren is an integer. HerenÞ1 is meaningless becauseu is
the minimal length ofuYk−Yju. Thereforeu=p /u is the only
mode which propagates in they direction.

Inserting Eq.sC2d into Eq. sC4d, we find

− v2 = − 4sD1 + D5d − iv, sC7d

where we useduu=p. The stability condition for this mode
is given by

D1 + D5 =
1

2
f8 +

3

2
S f

r
D . 0. sC8d

As an example, we set parameters asa=1/4,b=2.5,b
=1.0,c=−1.0. Then Eq.sC8d is satisfied forr .1.05.

2. Transverse modes

The transverse modes are

xj = expfivt + ik ·xg = expfivt + iuYjg, sC9d

yj = 0, sC10d

and the equations are

d2

dt2
xj = o

k

Akjsxk − xjd −
d

dt
xj , sC11d

0 = o
k

Ckjsxk − xjd. sC12d

The constraintsC12d becomes

0 = seiuu − e−iuudhC1 + C5 + C3seiuu + e−iuudj, sC13d

and this is satisfied in the following two cases.
s1d seiuu−e−iuud=0. In the same way as the previous sub-

section, we finduu=p and the stability condition

A1 + A5 =
3

2
f8 +

1

2
S f

r
D . 0. sC14d

This condition is satisfied ifr .0.59 for the same parameters
as Appendix C 1.

s2d C1+C5+C3seiuu+e−iuud=0. BecauseC3Þ0, the solu-
tion is

cossuud = −
C1 + C5

2C3
. sC15d

Therefore Eq.sC11d becomes

− v2 = F− 2sA1 + 2A3 + A5d −
sA1 + A5dsC1 + C5d

C3

+ A3
sC1 + C5d2

C3
2 G − iv. sC16d

From the first term of the right-hand side of Eq.sC16d, we
find the stability condition
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−
r

f
F f8 + 2

f

r
GF f8 + 4

f

r
G . 0. sC17d

In this case, the necessary condition for the stability is not
only Eq. sC17d but also the condition that Eq.sC15d has a
solution. We can find the range ofr numerically and the
result isr .0.94.

APPENDIX D: MODE IN GENERAL DIRECTION

1. Longitudinal modes

For the stability of longitudinal modes in the direction
s0,w,p /2d, we simplify the equations first. By use of the
mode functions12d, the constraints15d is rewritten as

0 = eiuss+pudSA1 − D1 + pB1 −
1

p
C1D + eiuss−pudSA1 − D1 − pB1

+
1

p
C1D + e2iupuSA3 − D3 −

1

p
C3D + e−2iupuSA3 − D3

+
1

p
C3D + e−iuss−pudSA5 − D5 + pB5 −

1

p
C5D

+ e−iuss+pudSA5 − D5 − pB5 +
1

p
C5D . sD1d

Becauses=Î3r /2 andu=r /2, the equation can be simplified
by the replacementp=Î3/q, whereq is a real number. Note
that q=1 andq=3 correspond tow=p /3 and w=p /6, re-
spectively. The arguments of exponential functions in Eq.
sD1d become

2upu=
Î3

q
ru ; 2f, s± pu= SÎ3

2
±

Î3

2q
Dr = sq ± 1df.

sD2d

The meaning of the parametrization is shown in Fig. 12.
Note 2f=2upu= ukul3, where l3=2u sinw is the length of
projection of s0,2ud to the direction of vectork and u=kx

= ukucosw. Similarly, sq+1df= ukul1 andsq−1df= ukul2, where
l1 and l2 are the lengths of projection ofss,ud and ss,−ud,
respectively. Figure 12 shows the situation forq.3, and in
such a casel3 is the minimum length among them. Therefore
2f=p corresponds to the largest wave number of modes
which propagate in thew direction shown in Fig. 12.

In the notationsD2d, Eq. sD1d is rewritten as

0 = eisq+1dfSA1 − D1 + pB1 −
1

p
C1D + e−isq+1dfSA5 − D5 − pB5

+
1

p
C5D + eisq−1dfSA1 − D1 − pB1 +

1

p
C1D

+ e−isq−1dfSA5 − D5 + pB5 −
1

p
C5D + e2ifSA3 − D3 −

1

p
C3D

+ e−2ifSA3 − D3 +
1

p
C3D . sD3d

This constraint decides the value off, that is,k, depending
on r for given q,w. Here we consider the modes whose
wave numberk is independent of distancer. The parameters
A1,… ,D6 consist of two terms: one is proportional tofsrd / r
and the other is proportional tof8srd ssee Appendix Ad.
Therefore both coefficients offsrd / r and f8srd in the con-
straint sD3d must be zerof33g. As a result, we obtain two
complex-valued conditions from Eq.sD3d, which reduce to
four real-valued conditions. Because two among four condi-
tions are identical, three conditions remain as follows:

0 = sq − 3dsq + 1dcossq + 1df − sq + 3dsq − 1dcossq − 1df

+ 4q cos 2f,

0 = sq − 3dsq + 3dsinsq + 1df − sq + 3dsq − 3dsinsq − 1df

− 4q2sin 2f,

0 = sq − 3dsq + 1dsinsq + 1df − sq + 3dsq − 1dsinsq − 1df.

sD4d

We found the solutions only forq=1 or q=3. For general
q, we have investigated the existence of solutions numeri-
cally, and could not find any other solutions.

Here we show the results.
s1d q=1 sw=p /3d. In this case, Eqs.sD4d become

0 = − 4 cos 2f + 4 cos 2f,

0 = − 8 sin 2f − 4 sin 2f,

0 = − 4 sin 2f, sD5d

and are reduced to a single equation sin 2f=0. Only the
mode 2f=p exists and the stability condition of this mode is

3f8 +
f

r
. 0. sD6d

This is the same condition as Eq.sC14d and the mode is
stable forr .0.59.

s2d q=3 sw=p /6d. Also in this case, only the mode 2f
=p exists. The stability condition is

f8 + 3
f

r
. 0. sD7d

This is the same condition as Eq.sC8d and the mode is stable
for r .1.05.

FIG. 12. Parametersl1, l2, and l3 are graphically shown.
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2. Transverse modes

For the transverse modes in the directions0,w,p /2d,
the constraints19d becomes

0 = eisq+1dfSA1 − D1 −
1

p
B1 + pC1D + e−isq+1dfSA5 − D5 +

1

p
B5

− pC5D + eisq−1dfSA1 − D1 +
1

p
B1 − pC1D

+ e−isq−1dfSA5 − D5 −
1

p
B5 + pC5D + e2ifsA3 − D3 + pC3d

+ e−2ifsA3 − D3 + pC3d, sD8d

where we usedp=Î3/q and 2upu=2f. In the same way as
the previous subsection, we find three conditions

0 = sq − 3dsq + 1dcossq + 1df − sq + 3dsq − 1dcossq − 1df

+ 4q cos 2f,

0 = sq − 1dsq + 1dsinsq + 1df − sq + 1dsq − 1dsinsq − 1df

+ 4 sin 2f,

0 = sq − 3dsq + 1dsinsq + 1df − sq + 3dsq − 1dsinsq − 1df.

sD9d

In Eqs.sD9d, only the second equation is different from that
in Eqs.sD4d.

The solutions exist only forq=1 andq=3. The results are
as follows.

s1d q=1 sw=p /3d. Only the mode 2f=p exists and the
stability condition of this mode is

f8 + 3
f

r
. 0. sD10d

This is the same condition as Eq.sC8d and the mode is stable
for r .1.05.

s2d q=3 sw=p /6d. Only the mode 2f=p exists and the
stability condition is

3f8 +
f

r
. 0. sD11d

This is the same condition as Eq.sC14d and the mode is
stable forr .0.59.
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