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The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated
in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensionss2Dd
a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the
asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up
vertically on the physical 2D lattice, they execute hard-core biased random walks on a transformed 1D lattice.
Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for
the interface velocity,v=Mfsg+g9dk+Hg, whereM, g+g9, and k are the interface mobility, stiffness, and
curvature, respectively. In 3D, we obtain the velocity of a curved interface near thek100l orientation from an
analysis of the self-similar evolution of 2D shrinking terraces. We show that this velocity is consistent with the
one predicted from the 3D tensorial generalization of the law for anisotropic curvature-driven motion. In this
generalization, both the interface stiffness tensor and the curvature tensor are singular at thek100l orientation.
However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this
kink-based kinetic description provides a useful framework for studying more complex situations by modeling
the effect of immobile dilute impurities.
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I. INTRODUCTION

Many bulk properties of polycrystals are strongly influ-
enced by the underlying microstructure. Much effort goes
into predicting the motion of grain boundaries in response to
a variety of driving forces. Depending on the nature of the
grains, their boundaries migrate in response to applied
stressesf1g or magnetic fieldsf2g, internal forces associated
with grain boundary curvaturef3g, concentration gradients
f4g, etc. Successful models of microstructure evolution must
be supplied with the details of the ways in which the grain
boundaries respond to the driving forces.

Based on general conclusions of nonequilibrium statistical
mechanics, one would expect the interface to have a unique
mobility—i.e., a unique response coefficient to disparate
driving forces. This conclusion was recently called into ques-
tion by both experiments in polycrystalsf5,6g and simula-
tions of Ising interfacesf7g. These works observed drasti-
cally different shapes of shrinking grains. Grains shrinking
under the influence of capillarity alone was roughly circular
whereas the presence of other driving forces resulted in
strongly anisotropic shapes. This observation was most sim-
ply interpreted in terms of different interfacial mobilities for
different driving forces. A resolution of this apparent paradox
in the Ising modelf8g, which does not require a nonunique
mobility, rests with identifying the crucial role of anisotropy
in the calculation of the capillary driving force. This driving
force is the strongly anisotropic interfacial stiffnessf3g—i.e.,
the sumg+g9 of the excess free energy of the interfaceg
and its second derivative with respect to inclination, rather
thang itself which is much less anisotropic. It turns out that
the reduced mobility—i.e., the product of the capillary driv-
ing force and the bare mobility—is roughly isotropic, and
therefore the grain shape is isotropic as well. Here we shed
further light on the microscopic mechanism for cancellation
of the anisotropies of the interfacial stiffness and the interfa-

cial mobility in both two and three dimensionss2D and 3Dd.
The precise microscopic mechanisms responsible for the

migration of grain boundaries are complex. However, there
is hope that generic features near equilibrium are shared by a
large class of models of moving interfaces. It is with this
hope in mind we use the kinetic Ising modelsKIM d, intro-
duced in Ref.f9g, as a proxy for studying grain boundaries.
The KIM is defined by a collection of spinssi = ±1 on a
lattice, a total energy which is a function of this collection,
and rules for dynamic evolution of the spins at some tem-
peratureb=1/kT. The energy in the presence of a magnetic
field H is

E = − Jo
ki j l

sisj − Ho
i

si , s1d

where the sum in the first term in Eq.s1d is over pairs of
nearest neighbors. Glauber dynamicsf9g is one possible
scheme for evolving the collection of spins in such a way as
to obtain correct distributions in equilibrium. This model is
perhaps the simplest representation of the nonequilibrium
dynamics of interfaces. It can be used to explore the effects
of lattice anisotropy on the motion of domain walls driven by
a magnetic field or capillary forces. In addition, domain
nucleation and late stages of phase separation can be ad-
dressed within the KIM. With simple modifications the KIM
can be used to study the phenomenology of interface motion
in the presence of mobile or quenched impurities.

Much is known about the equilibrium behavior of Ising
interfaces. For example, an exact expression for the interfa-
cial free energy has been derived in 2D on a square lattice
f10,11g. Approximate expressions for this free energy and
critical amplitudes in 3D have also been derivedf12,13g. The
nonequilibrium behavior of the KIM is more complicated.
Whereas several approximate analytic results exist for the
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mobility of a domain wall in 2Df14–16g, little progress has
been achieved is 3D.

Here we construct a simple and intuitive kinetic descrip-
tion of low-temperature domain walls in the KIM based on
the kink degrees of freedom. The density of kinks is shown
to obey a nonlinear diffusion equation, which is equivalent to
the law of anisotropic interface motion driven by curvature
and/or an external field, derived from the interface free en-
ergy and mobility. It is important to emphasize that, in our
kink description, we obtain the law of interface motion di-
rectly in the continuum limitwithout these expressions as
input into our calculation. Hence, our kink-based theory can
be viewed as a direct microscopic derivation of the law of
interface motion in the low-temperature limit of the KIM,
free of extraneous assumptions. Moreover, the kink-based
description is useful for analyzing more complicated situa-
tions. We illustrate this point both by extending the analysis
of anisotropic interface motion to 3D and by examining im-
purity effects in 2D.

Section II of this paper is devoted to the 2D KIM while
the following Sec. III extends our results to 3D. In Sec. II A,
we review the existing results concerning the KIM in 2D
with the focus on the nonequilibrium response of an interface
to curvature and magnetic field. In Sec. II B, we rederive the
velocity of a curved Ising domain wall driven by capillary
forces using kinks as the degrees of freedom responsible for
the motion of the interface. This description is accurate at
low temperatures when the rate of nucleation of kink-
antikink pairs is small. We obtain the shape of a shrinking
Ising grain analytically in Sec. II C. In the following Sec.
II D we illustrate the usefulness of the kink description by
considering the influence of impurities on the grain boundary
motion. In Sec. III, we study curvature driven motion in 3D
near a high-symmetry singular orientation where the inter-
face can be represented by a collection of terraces composed
of kinks. This allows us to use the 2D analytic results to
calculate the interface velocity and therefore the mobility
tensor near this symmetry direction. Finally, conclusions are
given in Sec. IV.

II. TWO-DIMENSIONAL KINETIC ISING MODEL

A. Low-temperature expansion of the interface
free energy and mobility

Let us summarize the analytical results obtained so far for
the KIM, focusing on the expressions that have been derived
for the interface mobility. In 2D, the exact interfacial free
energy is knownf10,11g. For our purposes it suffices to write
down the first two terms in the temperature expansionsen-
thalpic and entropic respectivelyd. When the spins are ar-
ranged on a squaresdenoted by ahd lattice of unit lattice
spacing, this energy is

g2D
h sfd = 2Jsc + sd +

1

b
fc ln c + s ln s− sc + sdlnsc + sdg,

s2d

wherec= ucosfu, s= usinfu, andf is the inclination defined
as the angle of the interface normal with respect to thek10l
axis of the underlying lattice.

When spins flip according to nonconserved Glauber dy-
namicsf9g, the interface moves to minimize the free energy
of the system which consists of the bulk and interface con-
tributions. Spohnf14g has derived the sharp interface con-
tinuum description of a domain wall in the KIM. It follows
from his derivation that the normal velocity of the interfacev
is the product of the mobilityM and a driving force. From
the continuum description it also follows that in the absence
of magnetic field, the driving force is the product of the
mean curvature of the interfacek and the interface stiffness.
In 2D, the stiffness isg+g9, whereg9 denotes the second
derivative ofg with respect tof. Using a Green-Kubo per-
turbative formalism, Spohn obtained the interface mobility in
the limit of small temperature and small driving magnetic
field. The same result was obtained earlier by Barmaf15g
using a mapping of the dynamics of the low-temperature
Ising interface to the one-dimensional exclusion process.
Rikvold and Kolesik obtained analytical expressions valid
for large fields and temperaturesf16g. The leading term in
the temperature expansion of the mobility diverges like 1/T:

M2D
h sfd =

b

2t

usin 2fu
ucosfu + usinfu

,

M2D
n sfd =

bÎ3

2t

sinfScosf −
1
Î3

sinfD
cosf +

1
Î3

sinf

, s3d

where h refers to a square lattice andn to a triangular
lattice. In addition,t is the intrinsic time scale of the Glauber
dynamics which is the inverse frequency of the attempted
spin flips. The triangular lattice formula is valid in thef
P f0,p /6g domain and can be extended to the other angles
via an appropriate symmetry transformation.

The above expressions for the interface energy and mo-
bility can be combined to arrive at the continuumsor mean-
fieldd low-temperature equation of motion of the interface
driven by curvaturek and magnetic fieldH!1/b. The nor-
mal velocity of the interface is

v2Dsfd = M2Dfksg2D + g2D9 d + Hg = M2D
* k + M2DH, s4d

where the reduced mobility on the square lattice isssee Ap-
pendix A for the triangular lattice resultd

M2D
* sfd ; M2D

h sg2D + g2D9 d =
1

tsucosfu + usinfud2 . s5d

Note that the reduced mobility is roughly isotropic
whereas the bare mobility is strongly anisotropic. In addi-
tion, the reduced mobility does not diverge in theT→0 limit
whereas the bare mobility does. This happens because the
contribution of the enthalpic term 2Jsc+sd to the interfacial
stiffness evaluates to zero. Therefore, only the entropic term
swhich is proportional toTd contributes to the stiffness.
Moreover, the contribution due to the entropic term diverges
at the high-symmetry orientations whereas the bare mobility
vanishes at those orientations in such a way that the product
of the two quantities produces a finite nonzero reduced mo-
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bility. This behavior is responsible for the nearly circular
shape of a shrinking grain on a hexagonal lattice in Ref.f7g.

B. Direct calculation of M* via the dynamics of kinks

The basic law of interface motion embodied in Eq.s4d is
usually derived using a thermodynamic approach where the
interface free energy and mobility are computed separately.
This approach, even though general, lacks intuitive appeal.
Furthermore, it is not simply extended to more complex situ-
ations. It is therefore worthwhile to develop an alternative
method for deriving Eq.s5d directly from a microscopic pic-
ture without the need to compute the interface free energy
and mobility as intermediate steps. We develop such a
method based on a low-temperature description of the inter-
face in terms of kinks. This simple microscopic picture and
the results obtained for the velocity of a shrinking grain in
2D provide the basis for the subsequent incorporation of im-
purities and the derivation of an expression for the interface
velocity in 3D.

When the temperature is low,bJ@1, the only allowed
spin flips are those that do not increase the total energy.
Therefore kink-antikink pairs cannot nucleate at the inter-
face. Barmaf15g observed that the interface between the
Ising domains can then be represented by a staircase of kinks
shown in Fig. 1. The kinetics of kinks reduces to an exclu-
sion processsasymmetric in the presence of magnetic fieldd
f17,18g. Even though steady-state properties of this process
scorresponding to a flat field-driven interface of a fixed in-
clinationd are well known, little progress has been made ana-
lytically to describe the evolution of a nonuniform kink dis-
tribution corresponding to a curved interface.

Let us define the ensemble average density of kinksrsx,td
and derive its evolution equation, which is equivalent to Eq.
s4d. We outline the derivation here and relegate the details to
Appendix A. We focus here on the curvature-driven motion
while Appendix A includes the effect of the magnetic field.
Unimpeded by its neighbors, each kink executes a random
walk corresponding to purely diffusive motion. Many kinks
can “pile up” at the same site but cannot pass through each
other. Via a transformation which inserts an extra lattice site
between every pair of neighboring kinkssillustrated in Fig.
2d, we map the dynamics of kinks onto the problem of 1D
random walkers which cannot occupy the same lattice site.
The density of walkers for this symmetric exclusion process
obeys a simple diffusion equationf15g. This is true because
when two walkers collide, their indices can be exchanged
si.e., their “identities” switchedd without affecting their den-

sity. Thus a collision can be viewed as the tunneling of the
kinks through each other without affecting each other. The
density of hard-core random walkers is insensitive to this
identity-switching transformation and must therefore satisfy
a diffusion equation. When transformed back to the original
coordinate system in which kinks can pile up, the equation
for rsx,td reads, for the square latticessee Appendix A for
the triangular lattice versiond,

trt = S rx

s1 + rd2D
x

= − Fx = mxx, s6d

where subscripts denote differentiation,F=−rx/ s1+rd2 is
the flux of kinks, andm=−1/s1+rd is the kink “chemical
potential.” Equations6d is a nonlinear diffusion equation
with the diffusivity 1/s1+rd2 which is a decreasing function
of density. This reduction results from the fact that when
more than two kinks occupy the same site, some of these
kinks are completely immobile. Since the density of kinks is
defined for interfaces inclined with respect to thek10l orien-
tation, Eq.s6d has to be supplemented by boundary condi-
tions which piece together differentp /2 sectors of the grain
boundary.

Geometrically, the density of kinks is the local slope of
the interface with respect to the low energyk10l orientation.
It is therefore easy to show that Eq.s4d with H=0 and Eq.s6d
are equivalentssee Appendix Ad. Thus we derived the equa-
tion of motion for the interface without assuming the appli-
cability of the continuum description of the interface. Even
though, for clarity, we have restricted our discussion above
to motion by curvature only, we derive in Appendix A the
evolution equation for the kink density for general motion by
both curvature and an external field, and show that it is
equivalent to Eq.s4d.

Neglecting thermal excitation of kink-antikink pairs al-
lowed us to construct an equation for a single density of
kinks rsx,td. In general local densities of kinksr+ and anti-
kinks r− must be considered. Each density obeys the nonlin-
ear diffusion equations6d augmented by a source term pro-
portional to exps−2bJd, due to the creation of kink-antikink
pairs, and a sink term proportional to the productr+r− due to
the annihilation of kinks by antikinks. The local slope of the
interface with respect to the low-energy orientation is given
by the sumr++r− of the kink and antikink densities. Once
the details of this two-density approach are worked out, a
formal temperature perturbation expansion becomes possible

FIG. 1. Schematic description of an interface between up
scrossesd and downscirclesd spin domains on a square lattice. Only
cornersboxedd spins can flip at low temperature. A flip of a corner
spin corresponds to moving the kink left or right.

FIG. 2. Mapping of the kink dynamics onto the symmetric ex-
clusion process corresponding to nonoverlapping random walks on
a 1D lattice. Note that kinks that pile up vertically in the physical
2D lattice do not overlap in the transformed 1D lattice. See Appen-
dix A for details.
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since eitherr+ or r− is exponentially small in the low-
temperature limit. A small mobility for the high-symmetry
orientations, which are immobile at zeroth order, will be the
most important effect at the next order in the temperature
expansion.

C. Evolution of an Ising grain

Let us now use the equation of motions4d to describe the
evolution of an “Ising grain”—i.e., an island of down spins
in a sea of up spins. The reduction of the interfacial free
energy and spin alignment parallel to a positive magnetic
field are the driving forces for the grain shrinkage while
negative magnetic field favors grain growth. The numerical
method of solving Eq.s4d is described in detail elsewhere
f7g.

When a sufficiently large negative is applied, the grain
grows until it reaches a stationary configuration determined
by its initial shapefsee Fig. 3sadg. This happens because the
velocity of the interface in the direction of the low-energy
planes is never outward since the mobility vanishes for these
orientations. Thus a grain cannot grow beyond its initial size.
Any growth process has to include the nucleation of kink-
antikink pairs which is explicitly ignored in our description.

The amplitude of the positive magnetic fieldH determines
the shape of the shrinking grain. WhenbH@bHc=1/R, the
second term in Eq.s4d dominates. Note that for large grains
this crossover magnetic field vanishes like 1/R. The shape of
the grain shrinking under these conditions, shown in Fig.
3sbd, is strongly anisotropic.

When the applied field is much smaller then the crossover
field, the evolution is controlled by the more isotropic re-
duced mobility and thus the shape of a shrinking grain is
close to a circle. Even when initially the dynamics is con-
trolled by the magnetic field, the crossover to curvature
dominated dynamics will happen when the grain shrinks to a
sufficiently small size. In this regime, the grain shrinks in a
self-similar mannerfsee Fig. 3scdg.

Self-similar evolution of the shrinking grain

Here we restrict ourselves to the square lattice while cit-
ing the results for the hexagonal lattice in Appendix B. We
also set the time scalet=1.

To compute the shape of a shrinking grain we need to
specify the region in which our kink description holds and
fix the boundary conditions at the edges of this region. Since
we expect the grain to possess four mirror planes inclined at

0, ±p /4 and p /2 with respect to thek10l plane, we will
restrict ourselves to ap /4 wedgessee Fig. 4d. The slope at
the left edge of the wedgesx=0d is r=0 and the slope at the
right edgefx=,stdg is r=1 due to mirror symmetry around
the p /4 plane and the smoothness of the grain shape. Thus
we are to solve Eq.s6d subject to the boundary conditions

rs0,td = 0, r„,std,t… = 1. s7d

The final ingredient in determining the grain shape is the
shrinking rate. The slice width,std shrinks as the kinks at its
right edge flow to the left with a fluxFs,d=−rxs,d /4. Every
time the kinks movetwo sites to the left, the width of the
slice is reduced by 1ssee Fig. 5 for a visual explanationd, and
therefore

,̇std =
Fs,d

2
= −

rxs,d
8

. s8d

As we mentioned above, in the absence of a magnetic
field, the shape of the shrinking grain is self-similar. To
prove this we seek a solution to the moving boundary prob-
lem defined by Eqs.s6d–s8d, which depends on space and
time only through a combinationz=x/,std. Substituting this
ansatz into the expression for the shrinking rate, Eq.s8d, we
obtain

,,̇ = −
r8s1d

8
, s9d

where the prime denotes differentiation with respect toz.
Thus the rate of change of the grain areaA,,2 under this
self-similar evolution is constant as expected. The kink dif-
fusion equations6d becomes

FIG. 3. Shape of an evolving Ising domain in 2D.sad Final
stationary shape of a domain in sufficiently strong negative mag-
netic field.sbd Shape of a shrinking domain in a large positive field.
scd Self-similar shape of a domain shrinking in absence of magnetic
field.

FIG. 4. Ap /4 slice of the grain defined by the dashed lines that
converge in the center of the grain. The thick line is the grain
boundary. The kink densityrsx,td is defined on a shrinking domain
of width ,std.
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Bzr8 = S r8

s1 + rd2D8
, s10d

with rs0d=0, rs1d=1, andB=−,,̇=r8s1d /8. The constant
B<0.331 491 is determined self-consistently by a shooting
procedure. Figure 6 shows the comparison of the solution of
Eq. s10d to the ensemble-averaged Monte Carlo simulation
of diffusing hard-core kinks with boundary conditions appro-
priate to the shrinking grain scenario. Quantitative agreement
of the sharp interface results4d with the Monte Carlo simu-
lation of the full KIM was found in Ref.f8g.

It is useful to recast Eq.s10d in terms of the polar param-
etrization of the self-similar shrinking grainrsf ,td
=Î2,stdr2Dsfd. We chose to scalersf ,td in such a way that
r2Dsp /4d=1. The kink density of a self-similarly shrinking
grain is a function off only:

r̃sfd =
r2Dsfdsinf − r2D8 sfdcosf

r2Dsfdcosf + r2D8 sfdsinf
. s11d

The equation for the shape of the self-similarly shrinking
grain in the polar coordinates can be integrated once to yield

2Br2D
2 sfdfr2Dsfdssinf + cosfd + r2D8 sfdssinf − cosfdg2

= r2D
2 sfd + 2r2D8 sfd − r2D9 sfd, s12d

subject tor2D8 s0d=r2D8 sp /4d=0 sby symmetryd and r2Dsp /
4d=1. One of these conditions is automatically satisfied for
the value ofB found above.

Let us finally mention another analytic result concerning
the grain shrinking ratedA/dt:

− t
dA

dt
= R dfM2D

* sfd = H4, square,

3Î3, hexagonal.
J s13d

These formulassthe square lattice result first appeared in
Ref. f19gd are a simple consequence of the fact that only the
corner spins are allowed to flipssee Fig. 7d. When a spin in
a concave corner flips, the area of the grain increases by 1
ssquare latticed. And vice versa, when a kink in convex cor-
ner flips, the area is reduced by 1. Since the probabilities of
all allowed spin flips are the same and the number of convex
kinks on a square lattice is greater than the number of con-
cave kinks by 4sdue to Hopf’s theorem which states that the
rotation index of a simple curve is 1d, we arrive at Eq.s13d.
Referencef8g checked that the shrinking rate on the hexago-
nal lattice is indeed 3Î3<5.196.

D. Drag by immobile impurities

The kink picture of the low-temperature grain boundary
dynamics is useful in understanding the effect of dilute im-
mobile impurities. We model the interaction of the grain
boundary with interstitial impurities by defining a variable

FIG. 5. When the rightmost kink moves two steps to the left, the
width of the domain is reduced by 1.

FIG. 6. Density of kinks in units of the inverse lattice constant
plotted against the dimensionless scaled distancez across the arc.
The exact density for a self-similar shrinking grain obtained by
solving Eq. s10d is compared to that obtained via a Monte Carlo
simulation of diffusing impermeable kinks. The dashed line shows
for comparison the density of kinks in a circular arc on a square
lattice.

FIG. 7. The number of the outside corner spinssdiagonal cross-
hatchd for any domain is always smaller by 4 than the number of the
inside corner spinsshorizontal-vertical crosshatchd. The shrinking
rate of this domain, computed from the difference between the in-
side and outside corner spins, is thus known exactly in the low-
temperature limit.
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umn on the dual lattice sites.u=1 when an impurity is present
and 0 otherwise. The impurities are randomly positioned on
the dual lattice and do not move. The interaction of the im-
purities with the spins is introduced via an additional term in
the energy

Eimp = eo
m,n

umnSkmnl, s14d

whereSkmnl is the total magnetization of the Ising spins near-
est to the impurity located at sitesm,nd of the dual lattice
and the sum is over all the dual lattice sites.

Figure 8 explains graphically that, depending on its posi-
tion, an isolated impurity provides either a left- or a right-
directed short-range force acting on a kink. In addition to this
force there is a two-kink effect which makes kink pileups
energetically favorable when they occur on the impurity site.

So far we considered only positively charged impurities
u= +1. The interface is attracted to these impurities. Nega-
tively charged impurities withu=−1 repel the interface.
However, the qualitative picture of the kink-impurity inter-
action presented in Fig. 8 still holds. The only difference is
that the effect of the negative impurity on the top edge of the
kink is equivalent to the effect of the positive impurity on the
bottom edge and vice versa. In the limit of high density of
impurities, additional effects due to the interplay of posi-
tively and negatively charged impurities become important.
For example, a row of alternating positive and negative im-
purities perpendicular to the interface pulls the interface
along in one direction or another due to the ease of nucleat-
ing kink-antikink pairs. Additional phenomena arise when
both positively and negatively charged impurities are pre-
sented. Exploring these phenomena is outside the scope of
this article.

The diffusing kink picture is especially simple when the
impurities are dilute ande@J@kT. In this limit the kinks
diffuse only downslope in the static energy landscape pro-
duced by the impurities. When impurities are dilute, this en-
ergy landscape consists of a number of flat terraces bound by
steep vertical cliffs or walls. The kinks diffuse and fall down

cliffs until they fall onto a terrace which is bound by walls on
both sides. The kinks become trapped on this terrace. In the
long-time limit, the density of the trapped kinks becomes
uniform on this terrace. This means that the slope of the
piece of grain boundary which corresponds to this terrace is
a constant given by the density of the trapped kinks. This
density depends on the initial distribution of kinks and im-
purities and can be anything. Therefore, in this limit, the
grain boundary is pinned and consists of a series of flat facets
of random length and inclination.

Figure 9 presents results of the Monte Carlo simulation of
the low-temperature 2D Ising model in the presence of
strong dilute positively charged immobile impurities. What is
shown is the time-averaged location of the boundary be-
tween the spin-up and spin-down domains. The boundary is
pinned and consists of straight pieces of random length and
orientation. Impurities are located at either end of each such
facet. This result supports our qualitative picture.

Addition of magnetic field introduces yet another energy
scaleH into the picture. WhenH!e, the boundary is pinned.
The shape of the pinned facets depends on the relative size of
1/bH and length of the pinned facetL. In equilibrium, the
kink drift due to the magnetic field is balanced by the diffu-
sion due to curvature. Thus small facets for whichL
!1/bH, remain straight. Conversely, whenL@1/bH, the
long facets look like the corners of a droplet expanding in
coaligned magnetic field whose shape is given in Fig. 3sad.

Strong positive impuritiesse@Jd in the bulk of a domain
of aligned spins always have two spins near then that are
antialigned with the rest of the spins in that domain. Thus
impurities serve as nuclei for the formation of droplets of the
phase of spins aligned with the applied magnetic field. Con-
versely, strong negatively charged impurities favor alignment
of the nearby spins and thus can inhibit nucleation of the
phase favored by the application of magnetic field.

III. THREE-DIMENSIONAL ISING MODEL

Whereas a curve on a plane can be characterized by a
single scalar curvature, a smooth surface embedded in a
three-dimensional space is characterized by a rank-2 tensor
Lab sha ,bj=1,2d. This tensor is called the second funda-
mental form or the Weingarten map or just the curvature

FIG. 8. Illustration of the energy landscape resulting from the
interaction of a kink with a single fixed impurityslarge solid circled
on the dual lattice. The upsdownd spin domain is abovesbelowd the
interface represented by a thick black line along the dual lattice.
The vertical segments denote three positions of the kink. The en-
ergy sin arbitrary unitsd corresponding to these three position is
shown schematically below. When the impurity is positioned such
that the top edge of the kink passes the impurity from left to right,
the total energy of the system decreasessad. The opposite is true if
the impurity is on the lower edge of the kinksbd.

FIG. 9. Time-averaged shape of a grain boundary pinned by
stronge=5 impurities which occupy 1% of the dual lattice sites is a
collection of straight segments obtained via a Monte Carlo simula-
tion of the 2D Ising model with an additional energy given in Eq.
s14d.
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tensor. Half the trace of this tensor is the mean curvature,
while its determinant is the Gaussian curvature. This tensor
is defined at some pointP by selecting an orthogonal coor-
dinate systemxa in the tangent plane atP and writing

Lab = t̂a ·
]n̂

]xb

, s15d

wheret̂a are the unit tangent vectors andn̂ is the unit normal
to the surface.

The reduced mobility of a two-dimensional interface is
also a rank two tensorMab

* which when contracted with the
curvature tensor yields the normal velocity of the interface:

v = o
a,b

Mab
* Lba. s16d

The reduced mobility tensor depends on the scalar bare mo-
bility M3D sfound, for example, by measuring the speed of a
driven flat interfaced and the interfacial free energyg and its
derivatives. In the neighborhood of the pointP the normaln̂
is specified by the deviationsw1 andw2 from the normal atP
in the directionst̂1 andt̂2. The free energy is a function of the
normaln̂ and therefore, in the neighborhood ofP, a function
of these anglesg3Dsw1,w2d. The reduced mobility tensor is
then defined as

Mab
* = M3DSgdab +

]2g

]wa]wb
D . s17d

Since our Kinetic Monte CarlosKMCd simulations show
that the shape of a 3D shrinking grain is even closer to a
sphere than a 2D shape to a circle, this reduced mobility
tensor is nearly isotropic. This isotropy allows us to predict
the 3D grain shrinking ratefdefined as the rate of change of
the 2/3 power of its volumeS;sd/dtdV2/3g by calculating
the velocityv100 of the shrinking grain boundary at thek100l
orientation. We will first estimate this velocity within the
terrace-step-kink description of the vicinal surface. We then
derive an exact expression for this velocity within the con-
tinuum limit.

A. Shrinking terrace view of the dynamics nearŠ100‹ plane

The low-temperature interface can be described within the
terrace-step-kinksTSKd model f20g. When steps are far
apart, each step obeys the dynamics of a 2D grain. If the 3D
grain is a sphere of radiusR, it is described near thek100l
orientation by a stack of circular terraces of increasing radii
r1std, r2std, etc.ssee Fig. 10d. Because these steps are part of
the spherical grain, they are related via

ÎR2 − r2
2 + 1 =ÎR2 − r1

2. s18d

Solving this equation forR2, differentiating with respect to
time and using the exact expression for the 2D grain shrink-

ing rates13d r1ṙ1=r2ṙ2=−2/p we obtainRṘ=−2/p. There-
fore, within the spherical grain approximation, the grain
shrinking rate is

S< − S4p

3
D2/34

p
< − 3.309, s19d

which is in reasonable good quantitative agreement with the
shrinking rate found by KMC simulationsS=−3.335
±0.001.

B. Low-temperature expansion of interface free energy
and mobility near the Š100‹ plane

Little analytical progress in deriving equilibrium and ki-
netic properties of the 3D KIM has been achieved to date. A
mean-field expression for the free energy of the TSK model
neglecting step-step interaction was obtained by Gruber and
Mullins f21g. Holzer and Wortisf22g calculate the free en-
ergy near thek100l plane in the more controlled diagram-
matic temperature expansion. It is sufficient for our purposes
to keep only the leading term in the expansion

g3Dsu,fd < ug2Dsfd, s20d

whereu is the angle between the normal to the interfacen̂
and thez axis swhich is the normal to thek100l planed andf
is the angle between the projection ofn̂ onto thex-y plane
and thex axis counted clockwise. Formulas20d is simply a
statement that the free energy of a vicinal surface is com-
posed of the free energies of the stepssconsidered to be
noninteractingd.

In the same noninteracting step approximation, the bare
mobility of the vicinal surface is

M3Dsu,fd < uM2Dsfd. s21d

C. Speed of theŠ100‹ orientation of the shrinking grain

The expressions for the interfacial free energy and the
mobility in the vicinity of thek100l plane allow us to calcu-
late the reduced mobility at this orientation as well as the
grain shape in the neighborhood of the pointP where the
normal is in thez direction.

Let the shape of the grain in cylindrical coordinates be
zsr ,fd=r2/ r2D

2 sfd. The shape of thez=1 section of the 3D
grain is r =r2Dsfd in polar coordinates. A circular terrace—
i.e., r2Dsfd=Î2R—corresponds to a sphere of radiusR. We
choose this suggestive parameterization of the 3D shape with
the foresight thatr2Dsfd will turn out to be identical to the
shape of the self-similarly shrinking 2D grain. This is not
surprising in view of the shrinking terrace picture of the 3D

FIG. 10. Grain shape near the 100 plane can be viewed as a
collection of terraces.
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grain evolution near thek100l orientation of the previous
subsection.

Given the shape of the 3D grain, we can compute the
normal of the surfacen̂sr ,fd and the curvature tensor
Labsr ,fd. The reduced mobility tensorMab

* sn̂d, in turn, can
be calculated using the free energy expressions20d following

the prescriptions17d. Their contraction is the local velocity
of the interfacevsr ,fd. We will not write down the full ex-
pression forv due to its unenlightening complexity. Itsr
→0 limit has to be independent of the direction of approach
f. We obtain

lim
r→0

vsr,fd = −
2fr2D

2 sfd + 2r2D8 sfd − r2D9 sfdg
r2D

2 sfdfr2Dsfdssinf + cosfd + r2D8 sfdssinf − cosfdg2 = const, s22d

subject to the smoothness constraintsr2D8 s0d=r2D8 sfd=0. The
function r2Dsfd which satisfies the above equation and con-
straints is precisely the self-similar shape of a 2D shrinking
grain. If we set the size of the 3D grain by choosing
r2Dsp /4d=Î2R, we arrive atv=−2B/R and hencesagain as-
suming a spherical shape to estimate the volumed

S< − S4p

3
D2/3

4B < − 3.445. s23d

Since the diameter of the self-similar shape atf=0 is
slightly smaller than its diameter atf=p /4, a better approxi-
mation would have been to scaler2D in such a way that at the
intermediate angler2Dsp /8d=Î2R.

IV. CONCLUSIONS

In summary, using a kink-based description, we have de-
rived directly from a microscopic modelslow-temperature
KIM d a continuum evolution equation for the anisotropic
motion of a simple interface, and we have shown its equiva-
lence to the standard phenomenological law of motion by
curvature. We have illustrated with the example of dilute
impurities that this kink-based kinetic description provides a
useful framework for studying more complex situations. By
extending this description to 3D and by exploiting our 2D
result for the self-similar dynamics of shrinking terraces, we
have obtained the velocity of a curved interface near a sin-
gular orientation. We have shown that even though the inter-
face stiffness tensor and the curvature tensor are singular at
the k100l orientation, their product, which determines the
interface velocity, is smooth. Furthermore, this velocity is
consistent with the one predicted from the 3D tensorial gen-
eralization of the law for anisotropic curvature-driven motion
using known expressions for the interface free energy and
bare mobility.

Our kink-based derivation of a continuum equation of in-
terface motion highlights the microscopic mechanism for the
remarkable isotropy of the reduced mobility in both 2D and
3D and thus the shape of grains shrinking under the influence
of capillarity alone. The reduced mobility is a product of the
interfacial stiffness and the interfacial mobility both of which
are strongly anisotropic. The isotropy of the reduced mobil-

ity is therefore a result of the cancellation of anisotropies of
the interfacial stiffness and interfacial mobility. The micro-
scopic reason for the cancellation is purely geometric in ori-
gin. The number of geometrically necessary kinks—and
hence the configurational entropy of the interface—varies
rapidly with inclination near low-energy and low-mobility
orientations, but slowly near high-energy and high-mobility
interfaces, where the density of kinks is high. Since the
leading-order contribution to the interfacial stiffness comes
from configurational entropy, stiffness is high where mobility
is low and vice versa. The cancellation of anisotropies leads
to roughly isotropic reduced mobility. Therefore the shape of
a shrinking grain can appear isotropic or anisotropic depend-
ing on whether driving forces other than capillarity are
present. The bare mobility of the interface is, however, inde-
pendent of the nature of the driving force.

An interesting prospect for the future is to extend this
kink-based theoretical description of interface motion to re-
alistic, and more complex, grain boundaries where kinks
have the character of dislocations. Work along this line is
presently in progress.
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APPENDIX A: DERIVATION OF THE KINK EQUATION
OF MOTION

In general, kinks comprising the grain boundary are char-
acterized by their widthb, which is the distance of the clos-
est approach of two neighboring kinks, their heightd, and
the length of the steps of their random walka. For example,
on a square lattice,d=a, the lattice constant andb=0, while
on a triangular latticed=aÎ3/2 and b=a/2. In the con-
tinuum limit, we define the density of kinksrsx,td and seek
its evolution equation in some fixed domainxP fxL ,xRg.
Since neighboring domains contain antikinks, absorbing
boundary conditions must be imposedrsxL ,td=rsxR,td=0.
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A special case of this problema=b describes random
walkers in 1D which cannot occupy the same site. When a
magnetic field is present, the random walk is biased and the
problem can be mapped onto the well-studied asymmetric
exclusion processf17,23g. To map the problem of finding the
evolution of the kink densityrsx,td onto this special prob-
lem, we insert a spacec=a−b between each pair of adjacent
kinks, as illustrated for a square lattice in Fig. 2. The result-
ing kink densityRsj ,tdP f0,1/ag is defined in a different
domainjP fjLstd ,jRstdg. In the presence of magnetic fieldH,
this kink density satisfies the equationf17,24g ssubscripts
denote differentiationd

Rt = DRjj + afRs1 − aRdgj = − Jj,

Jsj,td = − DRj − aRs1 − aRd, sA1d

whereD=a2/2t, a=abH /t, t is the Monte Carlo time step,
andJ is the flux of kinks in the movingj domain. Note that
this equation is identical to Burger’s equation after elimina-
tion of the drift termaRj by transformation to a moving
frame. As kinks annihilate at the boundaries of thex domain,
the j domain shrinks. Each kink that leaves thex domain,
decreases thej domain byc. This implies that the boundaries
of the j domain move with a velocities proportional to the
current of kinks our of the domain:

j̇L = − cJ„jLstd,t…, j̇R = − cJ„jRstd,t…. sA2d

The equations for the motion of boundaries, Eqs.sA2d, to-
gether with the absorbing boundary conditions

R„jLstd,t… = R„jRstd,t… = 0, sA3d

completely define the problem of diffusing kinks in thej
domain.

The mapping is inverted via

jsx,td − jLstd = x − xL + cE
xL

x

rsx8,tddx8. sA4d

At some fixed time we can write

Rsj,tddj = rsx,tddx, sA5d

since both expressions give the number of kinks in the same
physical interval. Using Eq.sA4d we obtain

Rsj,td =
rsx,td

1 + crsx,td
or rsx,td =

Rsj,td
1 − cRsj,td

. sA6d

This relationshipsA5d allows us to invert Eq.sA4d to obtain

xsj,td − xL = j − jLstd − cE
jLstd

j

Rsj8,tddj8. sA7d

It is now only a matter of carrying out the chain rule together
with the boundary conditionssA3d and the transformation
sA4d to obtain

Rj =
rx

s1 + crd3 , sA8ad

Rt =
rt

s1 + crd2 − D
crx

2

s1 + crd5 − a
rxcrs1 − brd

s1 + crd4 , sA8bd

Rjj =
rxx

s1 + crd4 −
3crx

2

s1 + crd5 . sA8cd

Thus we obtain the nonlinear diffusion equation forrsx,td
which reads

rt = D
rxx

s1 + crd2 − 2cD
rx

2

s1 + crd3 + a
rxs1 − 2br − bcr2d

s1 + crd2

= − Fx, sA9d

where

F = − D
rx

s1 + crd2 − ar
1 − br

1 + cr
sA10d

is the flux of kinks in the fixed domain which vanishes at
zero kink density.

Using the relationship of the local slope and kink density
tanf=hxsx,td=drsx,td and the expressions for the normal
interface velocity and curvature,

vn =
ht

s1 + hx
2d1/2, k =

hxx

s1 + hx
2d3/2, sA11d

we can compute the bare and reduced mobilities from the
normal velocity of the interfacevn=M*k+MH. We obtain

M* =
D

scosf + n sinfd2, M =
b

t

l sinfscosf − m sinfd
cosf + n sinf

,

sA12d

where n=c/d, m=b/d and l=a/d are geometric factors.
These expressions are valid forfP f0,p /4g for the square
lattice and forfP f0,p /6g for the triangular lattice.

APPENDIX B: SELF-SIMILAR SHRINKING GRAIN
ON A HEXAGONAL LATTICE

The symmetry of the hexagonal lattice allows us to solve
for the shape of the self-similarly shrinking grain in ap /6
wedge. We present yet another way of obtaining this shape.
Let the points on the boundary be labeled byf, the azi-
muthal anglefP f0,p /6g. Let usfd be the local slope and
r2Dsfd the radial distance from the center of the grain. The
shrinking shape will remain self-similar if the radial velocity
vr at each point of the boundary is proportional to the radius
at that point. The normal velocityvn=M*k is the projection
of the radial boundary velocity onto the normal direction.
The curvature is the derivative of the slope with respect to
the arc length:

k =
du

ds
=

u8 cossf − ud
r2D

. sB1d

Thus, the condition of the self-similarity of the shrinking
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shape can be written as

vr =
vn

cossf − ud
= M* u8

r2D
= Cr2D, sB2d

whereC is some proportionality constant. To complete the
description we need to express the radiusr2Dsfd in terms of
usfd:

r2D8 sfd = r2Dsfdsinff − usfdg. sB3d

Without loss of generality we setr2Ds0d=1 and integrate
Eqs. sB2d and sB3d together up tof=p /6. The second
boundary u-boundary condition usp /6d=p /6 selects a
uniqueC. The numerical shooting yieldsC<0.903 535. The
shape of the self-similarly shrinking grain on a hexagonal
lattice is remarkably close to a circle. The largest and small-
est grain diameters differ by only 0.4%.
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