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Low-temperature dynamics of kinks on Ising interfaces
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The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated
in the context of the kinetic Ising model in both two and three dimensions. We derive in two dime(&®ns
a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the
asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up
vertically on the physical 2D lattice, they execute hard-core biased random walks on a transformed 1D lattice.
Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for
the interface velocityp=M[(y+y")k+H], whereM, y++", and k are the interface mobility, stiffness, and
curvature, respectively. In 3D, we obtain the velocity of a curved interface nedt@eorientation from an
analysis of the self-similar evolution of 2D shrinking terraces. We show that this velocity is consistent with the
one predicted from the 3D tensorial generalization of the law for anisotropic curvature-driven motion. In this
generalization, both the interface stiffness tensor and the curvature tensor are singulgt@@thaentation.
However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this
kink-based kinetic description provides a useful framework for studying more complex situations by modeling
the effect of immobile dilute impurities.
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[. INTRODUCTION cial mobility in both two and three dimensio(2D and 3D.

Many bulk properties of polycrystals are strongly influ- 1€ precise microscopic mechanisms responsible for the
enced by the underlying microstructure. Much effort goegmigration of grain boundaries are complex. However, there
into predicting the motion of grain boundaries in response tds hope that generic features near equilibrium are shared by a
a variety of driving forces. Depending on the nature of thelarge class of models of moving interfaces. It is with this
grains, their boundaries migrate in response to applieflope in mind we use the kinetic Ising mod&lIM), intro-
stresse$1] or magnetic field§2], internal forces associated duced in Ref[9], as a proxy for studying grain boundaries.
with grain boundary curvaturg3], concentration gradients The KIM is defined by a collection of sping=+1 on a
[4], etc. Successful models of microstructure evolution mustattice, a total energy which is a function of this collection,
be supplied with the details of the ways in which the grainand rules for dynamic evolution of the spins at some tem-
boundaries respond to the driving forces. peratureB=1/kT. The energy in the presence of a magnetic

Based on general conclusions of nonequilibrium statisticafield H is
mechanics, one would expect the interface to have a unique
mobility—i.e., a unique response coefficient to disparate E=-JD, SS,-—HE s, (1)
driving forces. This conclusion was recently called into ques- G i
tion by both experiments in polycrystal5,6] and simula-
tions of Ising interface$7]. These works observed drasti- where the sum in the first term in E@L) is over pairs of
cally different shapes of shrinking grains. Grains shrinkingnearest neighbors. Glauber dynami® is one possible
under the influence of capillarity alone was roughly circularscheme for evolving the collection of spins in such a way as
whereas the presence of other driving forces resulted ito obtain correct distributions in equilibrium. This model is
strongly anisotropic shapes. This observation was most sinperhaps the simplest representation of the nonequilibrium
ply interpreted in terms of different interfacial mobilities for dynamics of interfaces. It can be used to explore the effects
different driving forces. A resolution of this apparent paradoxof lattice anisotropy on the motion of domain walls driven by
in the Ising model 8], which does not require a nonunique a magnetic field or capillary forces. In addition, domain
mobility, rests with identifying the crucial role of anisotropy nucleation and late stages of phase separation can be ad-
in the calculation of the capillary driving force. This driving dressed within the KIM. With simple modifications the KIM
force is the strongly anisotropic interfacial stiffn¢8$—i.e.,  can be used to study the phenomenology of interface motion
the sumy+vy" of the excess free energy of the interfage in the presence of mobile or quenched impurities.
and its second derivative with respect to inclination, rather Much is known about the equilibrium behavior of Ising
than y itself which is much less anisotropic. It turns out that interfaces. For example, an exact expression for the interfa-
the reduced mobility—i.e., the product of the capillary driv- cial free energy has been derived in 2D on a square lattice
ing force and the bare mobility—is roughly isotropic, and[10,11]. Approximate expressions for this free energy and
therefore the grain shape is isotropic as well. Here we shedritical amplitudes in 3D have also been deriyé&8,13. The
further light on the microscopic mechanism for cancellationnonequilibrium behavior of the KIM is more complicated.
of the anisotropies of the interfacial stiffness and the interfaWhereas several approximate analytic results exist for the
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mobility of a domain wall in 20014-16, little progress has When spins flip according to nonconserved Glauber dy-
been achieved is 3D. namics[9], the interface moves to minimize the free energy
Here we construct a simple and intuitive kinetic descrip-of the system which consists of the bulk and interface con-
tion of low-temperature domain walls in the KIM based ontributions. Spohr{14] has derived the sharp interface con-
the kink degrees of freedom. The density of kinks is showrtinuum description of a domain wall in the KIM. It follows
to obey a nonlinear diffusion equation, which is equivalent tofrom his derivation that the normal velocity of the interface
the law of anisotropic interface motion driven by curvatureis the product of the mobilityM and a driving force. From
and/or an external field, derived from the interface free enthe continuum description it also follows that in the absence
ergy and mobility. It is important to emphasize that, in ourof magnetic field, the driving force is the product of the
kink description, we obtain the law of interface motion di- mean curvature of the interfageand the interface stiffness.
rectly in the continuum limitwithout these expressions as In 2D, the stiffness isy+ ', wherey” denotes the second
input into our calculation. Hence, our kink-based theory carderivative ofy with respect tog. Using a Green-Kubo per-
be viewed as a direct microscopic derivation of the law ofturbative formalism, Spohn obtained the interface mobility in
interface motion in the low-temperature limit of the KIM, the limit of small temperature and small driving magnetic
free of extraneous assumptions. Moreover, the kink-basefield. The same result was obtained earlier by Bafrif
description is useful for analyzing more complicated situa-using a mapping of the dynamics of the low-temperature
tions. We illustrate this point both by extending the analysisising interface to the one-dimensional exclusion process.
of anisotropic interface motion to 3D and by examining im- Rikvold and Kolesik obtained analytical expressions valid
purity effects in 2D. for large fields and temperaturg$6]. The leading term in
Section Il of this paper is devoted to the 2D KIM while the temperature expansion of the mobility diverges lik&:1/
the following Sec. Il extends our results to 3D. In Sec. Il A, .
we review the existing results concerning the KIM in 2D MZDD(¢)=£M,
with the focus on the nonequilibrium response of an interface 27|cos¢| +|[sin ¢|
to curvature and magnetic field. In Sec. Il B, we rederive the

velocity of a curved Ising domain wall driven by capillary _ 1

forces using kinks as the degrees of freedom responsible for V,gs'” ¢| cosé - 3 sing

the motion of the interface. This description is accurate at Moo() = — , (3
low temperatures when the rate of nucleation of kink- cos¢ + i_ sing

antikink pairs is small. We obtain the shape of a shrinking V3

Ising grain analytically in Sec. Il C. In the following Sec. ) i

Il D we illustrate the usefulness of the kink description by Where L refers to a square lattice anfl to a triangular
considering the influence of impurities on the grain boundar))att'ce' _In add!non_,r is thg intrinsic time scale of the Glauber
motion. In Sec. Ill, we study curvature driven motion in 3D dynamics which is the inverse frequency of the attempted
near a high-symmetry singular orientation where the interSPIN flips. The triangular lattice formula is valid in the
face can be represented by a collection of terraces composégl0»7/6] domain and can be extended to the other angles
of kinks. This allows us to use the 2D analytic results toVia 8n appropriate symmetry transformation.

calculate the interface velocity and therefore the mobility _1he above expressions for the interface energy and mo-
tensor near this symmetry direction. Finally, conclusions ar&llity can be combined to arrive at the continudar mean-

given in Sec. IV, field) low-temperature equation of motion of the interface
driven by curvaturec and magnetic fieldd <1/8. The nor-
IIl. TWO-DIMENSIONAL KINETIC ISING MODEL mal velocity of the interface is
A. Low-temperature expansion of the interface v2p(®) = Mapl k(vap + ¥5p) + H] = Mopk + MapH,  (4)

free energy and mobility . s
) ) ) where the reduced mobility on the square latticésise Ap-
Let us summarize the analytical results obtained so far fopengix A for the triangular lattice result

the KIM, focusing on the expressions that have been derived
for the interface mobility. In 2D, the exact interfacial free 1

energy is knowri10,11]. For our purposes it suffices to write m(|cos¢| + [sin ¢|)?’

down the first two terms in the temperature expangem o ) )
thalpic and entropic respectivélyWhen the spins are ar-  Note that the reduced mobility is roughly isotropic

ranged on a squar@enoted by &) lattice of unit lattice whereas the bare mobility is strongly anisotropic. In addi-
spacing, this energy is tion, the reduced mobility does not diverge in fhe> 0 limit

whereas the bare mobility does. This happens because the
contribution of the enthalpic termJ2+s) to the interfacial
stiffness evaluates to zero. Therefore, only the entropic term
) (which is proportional toT) contributes to the stiffness.
Moreover, the contribution due to the entropic term diverges
wherec=|cos¢|, s=|sin¢|, and ¢ is the inclination defined at the high-symmetry orientations whereas the bare mobility
as the angle of the interface normal with respect to(fl®  vanishes at those orientations in such a way that the product
axis of the underlying lattice. of the two quantities produces a finite nonzero reduced mo-

M3p(é) = Ma5(van + ¥30) = (5)

Yan(#) =2J(c+9) + %[c Inc+sins—(c+s)n(c+9)],
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FIG. 1. Schematic description of an interface between up
(crossepand down(circles spin domains on a square lattice. Only ~ FIG. 2. Mapping of the kink dynamics onto the symmetric ex-
corner(boxed spins can flip at low temperature. A flip of a corner clusion process corresponding to nonoverlapping random walks on
spin corresponds to moving the kink left or right. a 1D lattice. Note that kinks that pile up vertically in the physical
2D lattice do not overlap in the transformed 1D lattice. See Appen-

bility. This behavior is responsible for the nearly circular 9 A for details.

shape of a shrinking grain on a hexagonal lattice in R&f.
sity. Thus a collision can be viewed as the tunneling of the

kinks through each other without affecting each other. The
density of hard-core random walkers is insensitive to this
The basic law of interface motion embodied in E4). is identity-switching transformation and must therefore satisfy
usually derived using a thermodynamic approach where tha diffusion equation. When transformed back to the original
interface free energy and mobility are computed separatelzoordinate system in which kinks can pile up, the equation
This approach, even though general, lacks intuitive appeafor p(x,t) reads, for the square lattidesee Appendix A for
Furthermore, it is not simply extended to more complex situthe triangular lattice version
ations. It is therefore worthwhile to develop an alternative
method for deriving Eq(5) directly from a microscopic pic- o0 = ( Px ) - F.= 6)
ture without the need to compute the interface free energy P (1+p)?/, x = Hooo
and mobility as intermediate steps. We develop such a
method based on a low-temperature description of the inteivhere subscripts denote differentiatiofi=—p,/(1+p)? is
face in terms of kinks. This simple microscopic picture andthe flux of kinks, andu=-1/(1+p) is the kink “chemical
the results obtained for the velocity of a shrinking grain inpotential.” Equation(6) is a nonlinear diffusion equation
2D provide the basis for the subsequent incorporation of imwith the diffusivity 1/(1+p)? which is a decreasing function
purities and the derivation of an expression for the interfac®f density. This reduction results from the fact that when
velocity in 3D. more than two kinks occupy the same site, some of these
When the temperature is loygJ>1, the only allowed kinks are completely immobile. Since the density of kinks is
spin flips are those that do not increase the total energwefined for interfaces inclined with respect to (1€) orien-
Therefore kink-antikink pairs cannot nucleate at the intertation, Eq.(6) has to be supplemented by boundary condi-
face. Barma[15] observed that the interface between thetions which piece together different/2 sectors of the grain
Ising domains can then be represented by a staircase of kinkeundary.
shown in Fig. 1. The kinetics of kinks reduces to an exclu- Geometrically, the density of kinks is the local slope of
sion procesgasymmetric in the presence of magnetic field the interface with respect to the low energy) orientation.
[17,18. Even though steady-state properties of this procesH is therefore easy to show that B¢) with H=0 and Eq(6)
(corresponding to a flat field-driven interface of a fixed in-are equivalentsee Appendix A Thus we derived the equa-
clination) are well known, little progress has been made anation of motion for the interface without assuming the appli-
lytically to describe the evolution of a nonuniform kink dis- cability of the continuum description of the interface. Even
tribution corresponding to a curved interface. though, for clarity, we have restricted our discussion above
Let us define the ensemble average density of kigkst) ~ to motion by curvature only, we derive in Appendix A the
and derive its evolution equation, which is equivalent to Eq.evolution equation for the kink density for general motion by
(4). We outline the derivation here and relegate the details tdoth curvature and an external field, and show that it is
Appendix A. We focus here on the curvature-driven motionequivalent to Eq(4).
while Appendix A includes the effect of the magnetic field. ~ Neglecting thermal excitation of kink-antikink pairs al-
Unimpeded by its neighbors, each kink executes a randofd®wed us to construct an equation for a single density of
walk corresponding to purely diffusive motion. Many kinks Kinks p(x,t). In general local densities of kinks and anti-
can “pile up” at the same site but cannot pass through eacdkinks p_ must be considered. Each density obeys the nonlin-
other. Via a transformation which inserts an extra lattice siteear diffusion equatiori6) augmented by a source term pro-
between every pair of neighboring kinkidlustrated in Fig.  portional to ex|—23J), due to the creation of kink-antikink
2), we map the dynamics of kinks onto the problem of 1D pairs, and a sink term proportional to the prodpgi_ due to
random walkers which cannot occupy the same lattice sitehe annihilation of kinks by antikinks. The local slope of the
The density of walkers for this symmetric exclusion processnterface with respect to the low-energy orientation is given
obeys a simple diffusion equatidd5]. This is true because by the sump,+p_ of the kink and antikink densities. Once
when two walkers collide, their indices can be exchangedhe details of this two-density approach are worked out, a
(i.e., their “identities” switchedwithout affecting their den- formal temperature perturbation expansion becomes possible

B. Direct calculation of M* via the dynamics of kinks
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FIG. 3. Shape of an evolving Ising domain in 2[x) Final :

stationary shape of a domain in sufficiently strong negative mag- :
netic field.(b) Shape of a shrinking domain in a large positive field. : N
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(c) Self-similar shape of a domain shrinking in absence of magnetic \\
field. \

since eitherp, or p_ is exponentially small in the low-
temperature limit. A small mobility for the high-symmetry
orientations, which are immobile at zeroth order, will be the
most important effect at the next order in the temperature

expansion. E(t)

C. Evolution of an Ising grain FIG. 4. Aw/4 slice of the grain defined by the dashed lines that

Let us now use the equation of motiéd) to describe the converge in the_ center _of the _grain: The thick Ii_ne_ is the g_rain
evolution of an “Ising grain"—i.e., an island of down spins bour_1dary. The kink density(x,t) is defined on a shrinking domain
in a sea of up spins. The reduction of the interfacial free® Width €(0.
energy and spin alignment parallel to a positive magnetic
field are the driving forces for the grain shrinkage while 0, *7/4 and w/2 with respect to th&10) plane, we will
negative magnetic field favors grain growth. The numericarestrict ourselves to a/4 wedge(see Fig. 4. The slope at
method of solving Eq(4) is described in detail elsewhere the left edge of the wedgex=0) is p=0 and the slope at the
[7]. right edge[x=¢€(t)] is p=1 due to mirror symmetry around
When a sufficiently large negative is applied, the grainthe 7/4 plane and the smoothness of the grain shape. Thus
grows until it reaches a stationary configuration determinedve are to solve Eq(6) subject to the boundary conditions
by its initial shapgsee Fig. 8a)]. This happens because the
velocity of the interface in the direction of the low-energy _ _
planes is never outward since the mobility vanishes for these p0H=0, plé®).H=1. ™
orientations. Thus a grain cannot grow beyond its initial size. The final ingredient in determining the grain shape is the
Any growth process has to include the nucleation of kink-shrinking rate. The slice widtfi(t) shrinks as the kinks at its
antikink pairs which is explicitly ignored in our description. right edge flow to the left with a flu(€)=-p,(€)/4. Every
The amplitude of the positive magnetic fitfddetermines  time the kinks movewo sites to the left, the width of the
the shape of the shrinking grain. Wh@i > BH.=1/R, the  slice is reduced by (see Fig. 5 for a visual explanatiprand
second term in Eq4) dominates. Note that for large grains therefore
this crossover magnetic field vanishes likeRlThe shape of
the grain shrinking under these conditions, shown in Fig. . F(0) )
3(b), is strongly anisotropic. ((t)=—=- )
When the applied field is much smaller then the crossover 2 8
field, the e\_/(_)Iution is controlled by the more is_otropic_re_— As we mentioned above, in the absence of a magnetic
duced mobility and thus the shape of a shrinking grain ige|q the shape of the shrinking grain is self-similar. To

close to a circle. Even when initially the dynamics is Con'prove this we seek a solution to the moving boundary prob-
trolled by the magnetic field, the crossover to curvaturéigy, defined by Eqs(6)<(8), which depends on space and
dominated dynamics will happen when the grain shrinks t0 g only through a combinatiofi=x/€(t). Substituting this

suffici_ently small size. In _this regime, the grain shrinks in @4nsatz into the expression for the shrinking rate, By we
self-similar mannefsee Fig. &)]. obtain

8

Self-similar evolution of the shrinking grain "1
Here we restrict ourselves to the square lattice while cit- == m, (9
ing the results for the hexagonal lattice in Appendix B. We
also set the time scale=1.
To compute the shape of a shrinking grain we need tawhere the prime denotes differentiation with respect/to
specify the region in which our kink description holds and Thus the rate of change of the grain aa ¢2 under this
fix the boundary conditions at the edges of this region. Sinceelf-similar evolution is constant as expected. The kink dif-

we expect the grain to possess four mirror planes inclined dusion equatior(6) becomes
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N
N
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/ FIG. 7. The number of the outside corner spidmgonal cross-
—~————— W hatch for any domain is always smaller by 4 than the number of the
Em inside corner spinghorizontal-vertical crosshatghThe shrinking

rate of this domain, computed from the difference between the in-

FIG. 5. When the rightmost kink moves two steps to the left, theSide and outside corner spins, is thus known exactly in the low-
width of the domain is reduced by 1. temperature limit.

,_( ” ) (2 ol ~rig(Bo0s
B =T p) (10) ) (d)cose + rp()sind

The equation for the shape of the self-similarly shrinking
grain in the polar coordinates can be integrated once to yield

11

with p(0)=0, p(1)=1, andB=-¢{=p’(1)/8. The constant 5 _ ) _ 5

B~0.331491 is determined self-consistently by a shooting 2Br2n(®)[r2p(#)(sin ¢ + cose) + r;p(h)(sin ¢ — cos¢)]

procedure. Figure 6 shows the comparison of the solution of _ 2 ] e

Eqg. (10) to the ensemble-averaged Monte Carlo simulation "20(¢) * 2rzp( ) ~ Fan( ), (12

of diffusing hard-core kinks with boundary conditions appro-subject tor;,(0)=r;n(7/4)=0 (by symmetry and ryp(/

priate to the shrinking grain scenario. Quantitative agreemenr$)=1. One of these conditions is automatically satisfied for

of the sharp interface resuld) with the Monte Carlo simu- the value ofB found above.

lation of the full KIM was found in Ref[8]. Let us finally mention another analytic result concerning
It is useful to recast Eq10) in terms of the polar param- the grain shrinking rateA/dt:

etrization of the self-similar shrinking grainr(¢,t)

=y2¢(t)r,p(é). We chose to scalg(¢,t) in such a way that _ Td_A: 3g dd)M;D(qs) _ {4, - square, 13

r,o(7/4)=1. The kink density of a self-similarly shrinking dt 3v3, hexagonal.

grain is a function oi only: These formulagthe square lattice result first appeared in

Ref.[19]) are a simple consequence of the fact that only the
—— exact solution ' ' p corner spins are allowed to fliigee Fig. 7. When a spin in
ol 7 SEet diffusing kinks 7 a concave corner flips, the area of the grain increases by 1
(square lattice And vice versa, when a kink in convex cor-
p(o"ﬁ i ] ner flips, the area is reduced by 1. Since the probabilities of
oak | all allowed spin flips are the same and the number of convex
kinks on a square lattice is greater than the number of con-
02} . cave kinks by 4due to Hopf’s theorem which states that the
5 AT . . . rotation index of a simple curve ig),we arrive at Eq(13).
0.2 0.4 0.6 08 1 Referencd8] checked that the shrinking rate on the hexago-

¢ nal lattice is indeed 83~5.196.

FIG. 6. Density of kinks in units of the inverse lattice constant
plotted against the dimensionless scaled distahaeross the arc.
The exact density for a self-similar shrinking grain obtained by
solving Eq.(10) is compared to that obtained via a Monte Carlo ~ The kink picture of the low-temperature grain boundary
simulation of diffusing impermeable kinks. The dashed line showsdynamics is useful in understanding the effect of dilute im-
for comparison the density of kinks in a circular arc on a squaremobile impurities. We model the interaction of the grain
lattice. boundary with interstitial impurities by defining a variable

1

D. Drag by immobile impurities
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FIG. 8. lllustration of the energy landscape resulting from the
interaction of a kink with a single fixed impurityarge solid circle FIG. 9. Time-averaged shape of a grain boundary pinned by
on the dual lattice. The ufown) spin domain is abovébelow) the  gonge=5 impurities which occupy 1% of the dual lattice sites is a
interface represented by a thick black line along the dual latticesqiection of straight segments obtained via a Monte Carlo simula-
The vertical segments denote three positions of the kink. The ensqn of the 2D Ising model with an additional energy given in Eq.
ergy (in arbitrary unit$ corresponding to these three position is 14).
shown schematically below. When the impurity is positioned such

that the top edge of the kink passes the impurity from left to right, ) L
the total energy of the system decrea&®sThe opposite is true if cliffs up'ul they faII_onto a terrace which is boupd by walls on
the impurity is on the lower edge of the kirfk). both sides. The kinks become trapped on this terrace. In the

long-time limit, the density of the trapped kinks becomes
uniform on this terrace. This means that the slope of the

and 0 otherwise. The impurities are randomly positioned O'{;iece of grain boundary which corresponds to this terrace is
the dual lattice and do not move. The interaction of the im- constant given by the density of the trapped kinks. This

urities with the spins is introduced via an additional term indensity depends on the initial distribution of kinks and im-
Itohe eneray P purities and can be anything. Therefore, in this limit, the

grain boundary is pinned and consists of a series of flat facets
_ of random length and inclination.
Eimp = 6% OmeSmy (14) Figure 9 presents results of the Monte Carlo simulation of
’ the low-temperature 2D Ising model in the presence of

whereS, is the total magnetization of the Ising spins near-Strong dilute positively charged immobile impurities. What is
est to the impurity located at sit@gn,n) of the dual lattice shown is the_ t|me-averaged location O.f the boundary be_-
and the sum is over all the dual lattice sites. tween the spin-up and Sp'”?do"m domains. The boundary is
Figure 8 explains graphically that, depending on its posi_pmned and consists of straight pieces of random length and
tion, an isolated impurity provides éither a left- or a right- orientation. Impurities are located at either end of each such
directed short-range force acting on a kink. In addition to thisfaCEI' Th's result support§ our qualitative picture.
force there is a two-kink effect which makes kink pileups Add'F'O” of magnetic field introduces yet anther_ energy
energetically favorable when they occur on the impurity site_sl_%aeles'?]égf (;??hggilrjwrﬁég\ggzj d:;gi dbsogrq?ﬁ;yr:asleﬁlicges?ie of
So far we considered only positively charged |mpur|t|es_1/,8H and length of the pinned facét In equilibrium, the

0=+1. The interface is attracted to these impurities. Nega: . . AP )
tively charged impurities withg=—1 repel the interface. k!nk drift due to the magnetic field is balanced by the.d|ffu-
sion due to curvature. Thus small facets for whith

However, the qualitative picture of the kink-impurity inter- . ;
action presented in Fig. 8 still holds. The only difference is<1/'8H’ remain straight. Conversely, whdre>1/5H, the

that the effect of the negative impurity on the top edge of théong_ facets look I|_ke _the comers of a c_irop_let expandlng N
kink is equivalent to the effect of the positive impurity on the coaligned magnetic f|e|d_ yvhose shape IS given in F(g).?,
bottom edge and vice versa. In the limit of high density of St_rong pos_ltlve impuritiege>-J) in th_e bulk of a domain
impurities, additional effects due to the interplay of posi-©f @ligned spins always have two spins near then that are

tively and negatively charged impurities become important."’mt"'illgnecj with the rest of the spins in that domain. Thus

Impurities serve as nuclei for the formation of droplets of the

For example, a row of alternating positive and negative im- h £ opi lianed with th lied ic field
purities perpendicular to the interface pulls the interface?Nase of spins aligned with the applied magnetic field. Con-

along in one direction or another due to the ease of nucleat/SSely: strong negatively charged impurities favor alignment
ing kink-antikink pairs. Additional phenomena arise when©f the nearby spins and t.hus. can inhibit n_uclgatlon of the
both positively and negatively charged impurities are pre-phase favored by the application of magnetic field.

sented. Exploring these phenomena is outside the scope of

Omn ON the dual lattice site®)=1 when an impurity is present

this article. S lll. THREE-DIMENSIONAL ISING MODEL
The diffusing kink picture is especially simple when the
impurities are dilute an@&>J>KT. In this limit the kinks Whereas a curve on a plane can be characterized by a

diffuse only downslope in the static energy landscape prosingle scalar curvature, a smooth surface embedded in a
duced by the impurities. When impurities are dilute, this en-three-dimensional space is characterized by a rank-2 tensor
ergy landscape consists of a number of flat terraces bound Hy,; ({a,8}=1,2). This tensor is called the second funda-
steep vertical cliffs or walls. The kinks diffuse and fall down mental form or the Weingarten map or just the curvature
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1

tensor. Half the trace of this tensor is the mean curvature,
while its determinant is the Gaussian curvature. This tensor
is defined at some poir® by selecting an orthogonal coor-
dinate systenx, in the tangent plane @& and writing

. on
La,B:ta ’ K! (15)
B
wheret, are the unit tangent vectors afnds the unit normal FIG. 10. Grain shape near the 100 plane can be viewed as a
to the surface. collection of terraces.
The reduced mobility of a two-dimensional interface is
also a rank two tensavl, , which when contracted with the 47\234
curvature tensor yields the normal velocity of the interface: S= - (;) g ~ -3.309, (19
v=, M;BLBC,. (16) which is in reasonable good quantitative agreement with the
ap shrinking rate found by KMC simulationsS=-3.335
+
The reduced mobility tensor depends on the scalar bare m0__0.001.
bility M;p (found, for example, by measuring the speed of a
driven flat interfacgand the interfacial free energyand its B. Low-temperature expansion of interface free energy
derivatives. In the neighborhood of the pofithe normali and mobility near the (100) plane

IS spem_ﬂed .by tAhe deylatlonsl ande; from the normal ap Little analytical progress in deriving equilibrium and ki-
in the directiond, andt,. The free energy is a function of the gtic properties of the 3D KIM has been achieved to date. A
normaln and therefore, in the nelghborhoodI%_,f'a functlon_ mean-field expression for the free energy of the TSK model
of these anglessp(¢s,¢2). The reduced mobility tensor is negjecting step-step interaction was obtained by Gruber and
then defined as Mullins [21]. Holzer and Wortig22] calculate the free en-
ergy near thg100 plane in the more controlled diagram-

M;B: M3D< Youp+ _) (17) ~ ™matic temperature expansion. Itis sufficient for our purposes
P Ipp to keep only the leading term in the expansion
Since our Kinetic Monte CarlgKMC) simulations show Yap( 0, d) = Oy>p(h), (20)

that the shape of a 3D shrinking grain is even closer to a

sphere than a 2D shape to a circle, this reduced mobilitythere ¢ is the angle between the normal to the interface
tensor is nearly isotropic. This isotropy allows us to predict2nd thez axis (which is the normal to th€100 plang and ¢

the 3D grain shrinking ratidefined as the rate of change of IS the angle between the projection iofonto thex-y plane
the 2/3 power of its volumé= (d/dt)V?3] by calculating and thex axis counted clockwise. Formul@0) is simply a

; oL ; tatement that the free energy of a vicinal surface is com-
the velocityv, o, Of the shrinking grain boundary at t@00) S . ;
orientation. We will first estimate this velocity within the posed of the free energies of the stdpsnsidered to be

terrace-step-kink description of the vicinal surface. We therponlntﬁractmg , _ i mation. th
derive an exact expression for this velocity within the con- In__t e same noninteracting step approximation, the bare
tinuum limit. mobility of the vicinal surface is

M3p(6, ) = OMop( o). (21)
A. Shrinking terrace view of the dynamics near(100) plane

The low-temperature interface can be described within the _ ) o )
terrace-step-kink(TSK) model [20]. When steps are far C. Speed of the(100) orientation of the shrinking grain
apart, each step obeys the dynamics of a 2D grain. If the 3D The expressions for the interfacial free energy and the
grain is a sphere of radiuR, it is described near th€l0O  mobility in the vicinity of the(100) plane allow us to calcu-
orientation by a stack of circular terraces of increasing radiiate the reduced mobility at this orientation as well as the
ry(t), ro(t), etc.(see Fig. 10 Because these steps are part ofgrain shape in the neighborhood of the pofhtwhere the

the spherical grain, they are related via normal is in thez direction.
/ Let the shape of the grain in cylindrical coordinates be
VRZ-r3+1=\R2-r3, (18 zr,¢p)=r?/r35(¢). The shape of the=1 section of the 3D

grain isr=r,p(¢) in polar coordinates. A circular terrace—
Solving this equation foR?, differentiating with respect to j.e., rZD(d;):\s’ﬁ_corresponds to a sphere of radiRsWe
time and using the exact expression for the 2D grain shrinkchoose this suggestive parameterization of the 3D shape with
ing rate(13) ryr,=r,f,=—2/7 we obtainRR=-2/7. There-  the foresight that,5(¢#) will turn out to be identical to the
fore, within the spherical grain approximation, the grainshape of the self-similarly shrinking 2D grain. This is not
shrinking rate is surprising in view of the shrinking terrace picture of the 3D
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grain evolution near th€100 orientation of the previous the prescription(17). Their contraction is the local velocity
subsection. of the interfacev(r, ¢). We will not write down the full ex-
Given the shape of the 3D grain, we can compute thgyression forv due to its unenlightening complexity. Its

normal of the surfacei(r,¢) and the curvature tensor _,q |imit has to be independent of the direction of approach
Log(r, @). The reduced mobility tensavi’, s(M), inturn, can 4 \We obtain

be calculated using the free energy expres(silmjl following

2 ’ e
lim o(r, ) = - 2r5p(¢) + 2rpp(¢) —15p(P)] = const, (22)

(—0 rao(@)ran(@)(Sin ¢+ coSe) + rhp(H)(sin ¢ — cosg) I

subject to the smoothness constraidis(0)=r,5(¢)=0. The ity is therefore a result of the cancellation of anisotropies of
function r,p(¢) which satisfies the above equation and con-the interfacial stiffness and interfacial mobility. The micro-

straints is precisely the self-similar shape of a 2D shrinkingscopic reason for the cancellation is purely geometric in ori-
grain. If we_set the size of the 3D grain by choosinggin. The number of geometrically necessary kinks—and
r2D(7T/4)_\2R we arrive abv=-2B/R and hencdagain as- hence the configurational entropy of the interface—varies

suming a spherical shape to estimate the volume rapidly with inclination near low-energy and low-mobility
o orientations, but slowly near high-energy and high-mobility
S~ _(4_77) 4B ~ — 3.445 (23) interfaces, where the density of kinks is high. Since the
3 ' ' leading-order contribution to the interfacial stiffness comes

from configurational entropy, stiffness is high where mobility
is low and vice versa. The cancellation of anisotropies leads
to roughly isotropic reduced mobility. Therefore the shape of
a shrinking grain can appear isotropic or anisotropic depend-
ing on whether driving forces other than capillarity are
present. The bare mobility of the interface is, however, inde-
pendent of the nature of the driving force.
An interesting prospect for the future is to extend this
In summary, using a kink-based description, we have dekink-based theoretical description of interface motion to re-
rived directly from a microscopic moddlow-temperature  alistic, and more complex, grain boundaries where kinks
KIM) a continuum evolution equation for the anisotropic have the character of dislocations. Work along this line is
motion of a simple interface, and we have shown its equivapresently in progress.
lence to the standard phenomenological law of motion by
curvature. We hf'ive_ illustrated _With the exar_nple of _dilute ACKNOWLEDGMENTS
impurities that this kink-based kinetic description provides a
useful framework for studying more complex situations. By =~ We thank Bernard Derrida, Mikhail Mendelev, Anthony
extending this description to 3D and by exploiting our 2D Rollet, and David Srolovitz for valuable discussions. This
result for the self-similar dynamics of shrinking terraces, weresearch is supported by U.S. DOE through Grant No. DE-
have obtained the velocity of a curved interface near a sinFG02-92ER45471 and funds from the Computational Mate-
gular orientation. We have shown that even though the interrials Science Network.
face stiffness tensor and the curvature tensor are singular at
the (100 orientation, their product, which determines the AppeNDIX A: DERIVATION OF THE KINK EQUATION
interface velocity, is smooth. Furthermore, this velocity is OF MOTION
consistent with the one predicted from the 3D tensorial gen-
eralization of the law for anisotropic curvature-driven motion  In general, kinks comprising the grain boundary are char-
using known expressions for the interface free energy anécterized by their widttp, which is the distance of the clos-
bare mobility. est approach of two neighboring kinks, their heightand
Our kink-based derivation of a continuum equation of in-the length of the steps of their random walkFor example,
terface motion highlights the microscopic mechanism for theon a square latticel=a, the lattice constant arta=0, while
remarkable isotropy of the reduced mobility in both 2D andon a triangular latticed=ay3/2 andb=a/2. In the con-
3D and thus the shape of grains shrinking under the influencénuum limit, we define the density of kinks(x,t) and seek
of capillarity alone. The reduced mobility is a product of theits evolution equation in some fixed domaie [x_,Xg].
interfacial stiffness and the interfacial mobility both of which Since neighboring domains contain antikinks, absorbing
are strongly anisotropic. The isotropy of the reduced mobiltboundary conditions must be imposp, ,t) =p(xg,t)=0.

Since the diameter of the self-similar shape ¢#&£0 is
slightly smaller than its diameter &@t=7/4, a better approxi-
mation would have been to scalg, in such a way that at the
intermediate angle,p(7/8)=12R.

IV. CONCLUSIONS
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A spe_cial case of this problera=b describes. random _p Cp)Z( pcp(1—bp)
walkers in 1D which cannot occupy the same site. When a R= 1+cp? Prcp ¢ (L+cp)? (A8b)
magnetic field is present, the random walk is biased and the P P P
problem can be mapped onto the well-studied asymmetric )
exclusion procesgl7,23. To map the problem of finding the R, = Px 3cpx
evolution of the kink density(x,t) onto this special prob- & (1+cp)* (1+cp)®
lem, we insert a spaae=a—b between each pair of adjacent
kinks, as illustrated for a square lattice in Fig. 2. The result-Thus we obtain the nonlinear diffusion equation fgx,t)
ing kink densityR(&,t) e[0,1/a] is defined in a different which reads
domainé e[ (1), &(1)]. In the presence of magnetic fiett]

(A8c)

2 o — hp?
this kink density satisfies the equati¢h7,24 (subscripts p = D—% S -2 Px - upx(l 2p Zbc’))
denote differentiation (1+cp) (1+cp) (1+cp)

R =DRy+a[R(1-aR)],= - J;, =-Fs (A9)
where
J(&1) =~ DR, - aR(1 -aR), (A1) 3
Px 1-bp
— 2 - i i F=-D - Al10
whereD=a?/27, a=aBH/ 7, 7 is the Monte Carlo time step, T+c? “Tvcp (A10)

andJ is the flux of kinks in the moving domain. Note that
this equation is identical to Burger’s equation after elimina-is the flux of kinks in the fixed domain which vanishes at
tion of the drift term aR; by transformation to @ moving  zerg kink density.

frame. As kinks annihilate at the boundaries of x@omain, Using the relationship of the local slope and kink density

the £ domain shrink_s. Each kin_k that leaves thcdomain_, tang=h,(x,t)=dp(x,t) and the expressions for the normal
decreases theédomain byc. This implies that the boundaries terface velocity and curvature

of the ¢ domain move with a velocities proportional to the
current of kinks our of the domain: h, hyx

Vn=——F5"02 K= ——————
. . n 1 h2 1/2? 1 h2 3/2?
&=-cAE M), &=-cA&®D. (A2 (1+H5) (1+h5)

The equations for the motion of boundaries, E¢2), to-
gether with the absorbing boundary conditions
R(&.(1),1) =R(&(1),1) =0, (A3) M D _ BAsing(cos¢ - usin )

= - 21 .
completely define the problem of diffusing kinks in tige (cos¢ + vsin ) T COS¢p+vsing
domain. (A12)

The mapping is inverted via

(A11)

we can compute the bare and reduced mobilities from the
normal velocity of the interface,=M"x+MH. We obtain

where v=c/d, u=b/d and A=a/d are geometric factors.

B A , These expressions are valid f@re [0,7/4] for the square
ExD-& M =x-x+cC ) p(X',H)dx’. (A4) " |attice and fore [0, /6] for the triangular lattice.
L
At some fixed time we can write APPENDIX B: SELF-SIMILAR SHRINKING GRAIN
R(£1)dé= p(x,)dx, (A5) ON A HEXAGONAL LATTICE

since both expressions give the number of kinks in the same 1he Symmetry of the hexagonal lattice allows us to solve
physical interval. Using EqA4) we obtain for the shape of the self-similarly shrinking grain |n_716(6
wedge. We present yet another way of obtaining this shape.

p(x,t) R(&1) Let the points on the boundary be labeled #y the azi-
= m p(x.t) = TR(ft) (AB) muthal angle¢ e [0,7/6]. Let 8(¢) be the local slope and
rop(¢) the radial distance from the center of the grain. The
This relationship(A5) allows us to invert Eq(A4) to obtain  shrinking shape will remain self-similar if the radial velocity
¢ v, at each point of the boundary is pro*portional to the radius
X(ED -x = E- &) - CJ R(Z,t)de' . (A7) at that point. The normal velocity,=M" k is the projection
. of the radial boundary velocity onto the normal direction.

. ) . The curvature is the derivative of the slope with respect to
Itis now only a matter of carrying out the chain rule togetherthe arc length:

with the boundary conditiongA3) and the transformation

R(&)

i do 6 cod¢p-0
(A4) to obtain =90 ¢ )_ (B1)
p ds lop
Ri=—"—, (A8a) . o -
(1+cp) Thus, the condition of the self-similarity of the shrinking
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shape can be written as roo() =rap(P)sinlé — 6(p)]. (B3)
v P Without loss of generality we set,5(0)=1 and integrate
v, = ———=M"—=Cryp, (B2) Egs. (B2) and (B3) together up to¢=w/6. The second
cog¢ - 6) 20 boundary ¢-boundary condition 6(7/6)=7/6 selects a

uniqueC. The numerical shooting yieldS=0.903 535. The
whereC is some proportionality constant. To complete theshape of the self-similarly shrinking grain on a hexagonal
description we need to express the radiys{¢) in terms of  |attice is remarkably close to a circle. The largest and small-
0(): est grain diameters differ by only 0.4%.
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