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In the nuclei of eukaryotic cells, DNA is packaged through several levels of compaction in an orderly
retrievable way that enables the correct regulation of gene expression. The functional dynamics of this assem-
bly involves the unwinding of the so-called 30-nm chromatin fiber and accordingly imposes strong topological
constraints. We present a general method for computing both the twist and the writhe of any winding pattern.
An explicit derivation is implemented for the chromatin fiber which provides the linking number of DNA in
eukaryotic chromosomes. We show that there exists one and only one unwinding path which satisfies both
topological and mechanical constraints that DNA has to deal with during condensation/decondensation
processes.
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In the cells of higher eukaryotes, e.g., animals or plants,
meters of DNA are packaged by means of proteins into a
nucleus of a few micrometer diameter, providing an extreme
level of compaction. Coding sequencessgenesd are therefore
dispersed in a mess of folded DNA and proteinsschromatind
and should be retrieved at will in order to enable a correct
genetic expression and therefore the cell survival. This leads
to the need for an orderly and dynamically retrievable struc-
ture, which is actually achieved by means of a chromatin
partition into functional domains, each containing one or a
group of genes. In each domain, DNA is folded in a hierar-
chical structure, including several winding levels. It is first
wrapped around spools of proteins thus forming a “beads on
a string” assembly, which is in turn folded into a 30-nm-
diam fiber. This fiber is further organized into a three-
dimensional cross-linked networkf1g. In this network, two
neighboring nodes are connected by a chromatin fiber loop
whose typical length is about 50 000 base pairssbpd. In order
to provide the transcription machinery with an access to spe-
cific genomic regions, the corresponding loop has to be se-
lectively decondensed, via a reversible unwinding process
that elongates the fiberf2g. The dynamics of this process
involves strong mechanical and topological constraints, the
former due to DNA elasticityf3g, the latter due to the con-
servation of the linking number Lk of DNAf4g in a loop
during the unwinding. Of course, topological constraints
could be released by the intervention of topoisomerases, but
it has been shownin vivo that chromatin decondensation
could take place even when those enzymes were inhibited
f5g. Moreover, the classic experiment onsimian virus 40
sSV40d minichromosomes clearly demonstrates that the link-
ing number is unaffected by the decondensation processin
vitro f6g.

In this paper, we address the issue of how evolution has
dealt with the extremely difficult problem of finding an effi-
cient winding pattern fulfilling both mechanical and topo-
logical constraints at a time. To answer this question, we start

by giving an analytical formula for the linking number of
DNA in a generic bent fiber. We show that, despite the fact
that Lk is known to be a nonextensive quantity, it is yet
possible to express it in terms of the mean linking number of
the constitutive elements of the beads on a string assembly.
This allows us to set about an exhaustive numerical explora-
tion of Lk for all the possible fiber conformations. By ana-
lyzing the results of this exploration, we are able to infer the
existence and theuniqueness of a relevant winding/
unwinding path satisfying all the constraints. We show fur-
thermore that this engineering problem is solved at thelocal
level by the design of the constitutive elements of the fiber.

In a typical chromatin fiber, the beads, callednucleosome
core particlessNCPd, are spaced at intervals of,200 bp.
Each NCP contains,150 DNA bp, forming 134 turns of a
left-handed superhelixf7g, and two neighboring beads are
connected by,50 bp stretches of DNA, calledlinkers. The
unit of a NCP and a linker is called anucleosome. The num-
ber of DNA bp in a nucleosome is known as therepeat
length. In order to describe the structural polymorphism of a
chromatin fiber loop, we use the original two-angle model
sFig. 1d introduced by Woodcocket al. f8g. In this model,
where the linkers are assumed to be straight, the geometry of
a fiber made up ofN nucleosomes is fully characterized by
two sets of anglesai and bi si =1, . . . ,Nd, specific to the
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FIG. 1. sColor onlined Schematic of the DNA winding pattern
along two neighboring nucleosomes in the two-angle model.sad
View down the NCP axisaW i. sbd View down the linker directionti−1

→ .
The angleai is the dihedral angles–ti−1

→ ,aW i ,tWid andbi−1 is the dihe-
dral anglesai−1

→ ,ti−1
→ ,aW id standing for the twistsmodulo2pd of the

DNA linker. We also indicate the DNA radiusr .1.0 nm, NCP
radiusR.5.3 nm, and NCP pitchP.2.4 nm.
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NCPs and the linkers, respectivelyf9,10g. Varying ai corre-
sponds to changing the number of bp wrapped in theith
NCP, whereas varyingbi corresponds to twisting theith
linker.

In vivo, the fiber is most probably homogeneous within a
given loop f11g, i.e., that the distributions ofai and bi are

peaked around mean valuesā and b̄. During the cell cycle,
the biological activity is tuned by biophysicalf12g and bio-
chemicalf13g parameters, through a variation of these mean

values. In turn, a variation ofā or b̄ results in a change of
the fiber internal structure and hence affects its degree of
compaction. This conformational change is necessarily ac-
companied by a change of the writhe, Wr, and the twist, Tw,
of the DNA double helix. Consequently, the DNA linking
number isa priori bound to change according to the White-
Fuller theorem Lk=Tw+Wrf14,15g. This poses the rather

important question of whether and how the anglesā and b̄
can be changed, while maintaining a fixed DNA linking
number. To answer this question, we set about computing the
DNA linking number in a fiber as a function of the setsai
andbi. This involves the computation of both the twist and
the writhe of the DNA double helix in the fiber.

Concerning the computation of the writhe, Fuller’s first
theorem f16g states that, for a closed curverWssd with s
P f0,Lg, the writhe is related to thesignedareaA enclosed
by the tangent indicatrixTssd, namely, Wr=A/2p−1
smodulo 2d. Tssd is the curve on the unit sphere traced out by
the tangent vectortWssd to the curverWssd. Fuller’s second theo-
rem f16g permits us to get rid of the congruencemodulo 2by
computing Wr from the areaSswept out by the unique short-
est geodesic arc from an arbitrarily fixed pointC on the unit
sphere to the running pointTssd, namely, Wr=S/2p. How-
ever, the calculation of the writhe of an open curve whose
initial and final tangent vectorstWs0d andtWsLd do not coincide
is rather subtle. We follow the procedure recently outlined by
Maggsf17g to obtain a consistent measure for the writhe by
closing the open tangent indicatrix with a geodesic arc. This
being rather complicated for a general fiber conformation, it
would be helpful if one could calculate the writhe from the
writhes of the individual nucleosome units. However, the
writhe is known to be nonextensive and, as shown by Sta-
rostin f18g, the total writhe of a curve is given by the sum of
the writhes of its partsplus the surface of the spherical poly-
gon composed by the set of geodesics closing each part. In
the case of a chromatin fiber, this nonextensivity may be
overcome in the following way. As shown schematically in
Fig. 2, the DNA indicatrixTssd can be naturally divided into
N parts, namely, theN nucleosomes, in correspondence to
tWi = tWssid, the direction of theith linker. We denote byTi the
point on the unit sphere that corresponds totWi. The total
writhe of the curve, Wr, is then given by the following addi-
tion rule:

Wr = o
i=1

N

Wri +
ST0T1¯TN

2p
. s1d

Wri is the writhe of theith nucleosome and is given by the
surfaceS enclosed by the restriction of the tangent indicatrix

betweenTi−1 andTi and the geodesicTi−1Ti. The nonexten-
sive correctionST0T1¯TN

is the signed area of the spherical
polygon connecting all pointsTi that correspond to the linker
directionstWi. It can be computed as the sum of the areas of
the spherical trianglesT0TiTi+1. It can also be expressed with
respect to any pointC on the unit sphere asoi=1

N SCTi−1Ti
plus

a boundary termSCTNT0
. Up to this term, the total writhe can

be written as Wr=oi=1
N uWriuC, where

uWriuC = Wri +
SCTi−1Ti

2p
s2d

is the writhe of nucleosomei with respect to pointC, corre-
sponding to the writhe of the nucleosomei alone plus the
surface of the spherical triangleCTi−1Ti. We see that an ap-
propriate redefinition of the writhe of a nucleosome permits
us to express the total writhe as an extensive quantity.

For the simplest case of a straight regular fiber, all the
nucleosomes are evenly dispersed on a regular helix, with
the anglesai =a andbi =b ∀i. In this case, though Wri is the
same for all nucleosomes,uWriuC varies in general from nu-
cleosome to nucleosome. Nonetheless, there exists a special
point C=F, defined by the director of the fiber axis, for
which uWriuF is independent ofi, so that we can define an
effective writheper nucleosomeWrsa ,bd= uWriuF, such that
Wr=N Wrsa ,bd f24g. We reiterate that the effective writhe
per nucleosomeWrsa ,bd is not the bare writheof one indi-
vidual nucleosome, the difference being the surface of the
spherical triangleFT0T1.

For a generic bent fiber, a local fiber axisFi can be de-
fined for eachi as the axis of the straight fiber characterized
by constant anglesa=ai and b=bi and containing theith
nucleosome. As shown in Fig. 2, this allows us to subdivide

FIG. 2. Schematic of the tangent indicatrix of DNA in a chro-
matin fiber with the indication of the particular points used in the
calculations: each solid-line arc corresponds to a nucleosome, with
linker directions given by the connecting pointsTi. PointsFi indi-
cate the local fiber axis directions.C is an arbirtarily fixed point. All
dashed lines indicate geodesic arcs. For the sake of clarity, scales
and lengths have been arbitrarily chosen.
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the surface of the spherical polygonT0T1¯TN into spherical
triangles defined with respect to the pointsFi, so that the
total writhe finally reads

Wr = o
i=1

N

Wrsai,bid + o
i=1

N−1 SFiTiFi+1

2p
+ o

i=1

N−1 SCFiFi+1

2p
s3d

with

Wrsai,bid = Wri +
SFiTi−1Ti

2p
s4d

up to the boundary termsSCFNF1
+SFNTNT0F1

.
As concerns the twist of the DNA double helix in the

fiber, its extensivity enables a more straightforward calcula-
tion. First of all, note that, if the repeat lengthni is allowed to
change from nucleosome to nucleosome, theith linker will
be relaxedsuntwistedd only for a particular equilibrium value
beqsai ,nid of bi. Then, let Twsai ,bid be the twist of theith
nucleosome, withni as a repeat length. At fixedai, the varia-
tion D Twsai ,bid with respect tobi is equal toDbi /2p,
whereas, at fixedbi, the variation withai is equal to the
variation of the tortuosity tRDai /2p, where t
=2pP/ s4p2R2+P2d is the torsion of the double helix axis in
the NCPf25g. In order to have an expression for the total
twist, we just need to know, therefore, its value on a particu-
lar reference state. We take as a reference a nucleosome with
146 bp in the NCPf7g and a relaxed linker. In this state,ai
=a0.60° and bi =bi

0=beqsa0,nid=2psni −146d /h0. The
twist is then Twsa0,bi

0d=146/h+sni −146d /h0, whereh0 and
h are, respectively, the helical repeat of the double helix free

in solution and overtwisted in the NCPf23g. The total twist
of the DNA double helix in the fiber is therefore

Tw = o
i=1

N

tR
ai − a0

2p
+

bi − bi
0

2p
+ 146S1

h
−

1

h0
D +

ni

h0
. s5d

For the DNA double helix in a straight and relaxed state,
the writhe is zero and the total twist simply amounts to the
last term in Eq. s5d, hence Lk0=Tw0=oi=1

N ni /h0=Nn̄/h0,
where n̄ is the mean repeat length of the fiber. Therefore,
defining the local twist with respect to the relaxed DNA as

Twsai,bid = tR
ai − a0

2p
+

bi − bi
0

2p
+ 146S1

h
−

1

h0
D , s6d

we obtain from Eq.s3d and Eq.s5d the following expression
for the DNA excesslinking number of a generic fiber:

Lk − Lk0 = o
i=1

N

Lksai,bid + o
i=1

N−1 SFiTiFi+1

2p
+ o

i=1

N−1 SCFiFi+1

2p
, s7d

where

Lksai,bid = Wrsai,bid + Twsai,bid s8d

is the local DNA linking numberper nucleosome.
It is interesting to note that, in the very last term of Eq.

s7d, oi=1
N−1SCFiFi+1

is the area swept out by the geodesic arc
from C to the pointFi as i increases. Therefore, this term is
nothing but the writhe of the fiberaxis, WrF. The excess
linking number Lk−Lk0 is the contribution of the winding
pattern of the double helix to the total linking number Lk. It
should therefore be interpreted as the linking number of the
fiber, LkF. The difference LkF−WrF must in turn be identi-

FIG. 3. sColor onlined sad Solid contour linessspaced at intervals of 0.05d represent the linking number Lksā ,b̄d computed forā ranging

from 0 to 180°,b̄ from 0 to 360°, andn̄=192 bp. Color scale gives the fiber compaction defined as the number of nucleosomes per unit
volume C=1/pdR2, in units of NCP/s30 nmd3. Black regions correspond to sterically forbidden regions. Points 1 to 4 are particular
reference states: structure 1 is the most compact fiber structure allowed; paths 1–2, 1–3, and 1–4 correspond, respectively, to decondensation

at constantb̄, constantā, and constant Lksā ,b̄d. sbd Fiber structures corresponding to points 1 to 4 insad, top view and frontal view drawn
for 24 nucleosomes. For clarity, the first and the last NCP orientations are outlined by a solidsyellowd and a dashedsvioletd line. The twist
change between any two fiber structures is the angle swept out by the dashed linesnamely, −0.70 between 1 and 2, −1.10 between 1 and 3,
and 0 between 1 and 4d.
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fied with the twist of the fiber around its axis, TwF, in order
to satisfy the White-Fuller theoremat the levelof the fiber
LkF=WrF+TwF. This formal definition of TwF actually
matches the intuitive definition of the fiber twist as the rota-
tion angle of the fiber “top” with respect to the fiber “bot-
tom,” as shown in Fig. 3sbd, where we give the twist varia-
tions between different fibers.

We now evaluate the relative contributions of the three
terms in Eq.s7d. The first one can be evaluated in a mean-
field approximation asoi=1

N Lksai ,bid.N Lksā ,b̄d. We have

therefore computed Lksā ,b̄d for ā ranging from 0°scorre-
sponding to “open” NCP wrapped with 1.5 turns of superhe-
lix f19gd to 180° scorresponding to “closed” NCP, with two
complete turnsd and b̄ from 0° to 360°sone periodd. A con-
tour plot of our results obtained forn̄=192 bp is shown in
Fig. 3sad. According to our definition, Lksā ,b̄d also depends

on the mean repeat lengthn̄ through the termb̄0/2p=sn̄
−146d /h0 smodulo 2pd. Anyway, changingn̄ simply shifts
the levels of the contour lines without affecting their shapes.
The last two terms of Eq.s7d arise from the bending of the
fiber. Taking into account that the mean radius of curvature
of the fiber axis is equal to the fiber persistence length, which
is .30 nm f10g, it is possible to show that their net contri-
butionper nucleosomenever exceeds 0.01. We can therefore

conclude that an Lk-conserving path in thesā ,b̄d plane prac-
tically never deviates from a given contour line.

We finally come to the issue of whether a biologically

relevant Lk-conserving decondensation path in thesā ,b̄d
plane can actually exist. We know that such a path must
remain close to a contour line. Moreover, it should be ca-
pable of transforming a highly compact structure into a de-
condensed one. A fiber compaction map is displayed in Fig.
3sad. An exhaustive scan of this map shows that there is only
one small region, around point 1, which provides a degree of
compaction high enough to match the maximal densities ob-
servedin vitro, i.e., ,6 NCP/10 nm. Hence, there can be

only one Lk-conserving decondensation path, namely the
contour line going through point 1 and leading to point 4. It
is clear from Fig. 3sad that varying onlyā sleading to point

2d or only b̄ sleading to point 3d is forbidden at constant Lk.
Moreover, energy considerations have to be taken into

account. As shown by Langowski in a recent simulationf20g,
the internucleosomal interactions play a minor role in the
control of the fiber compaction while the elastic energy
sbending and twistingd of the linkers plays the major part. It
comes out that the linkers should remain relaxed all over the
decondensation path. First, in order to have relaxed linkers at

point 1, b̄ must be equal tobeqsa0,n̄d: this leads to selecting
a special value for the mean repeat lengthn̄, equal to 192 bp
smodulo 10.6 bpd. Second, during the decondensationspath
1–4d, ā varies from ,60 to ,90°. This variation corre-
sponds to the wrapping of,10 bp of the linker onto the
protein spool. As the DNA helical repeat is lower in the NCP
sh=10.2 bp/ turnd than in the linkerssh0=10.6 bp/ turnd, this
wrapping is accompanied by a change of the equilibrium
value beqsā ,n̄d from 120 to 140°. Remarkably, along the

decondensation path 1–4,b̄ varies as well from 120 to 140°.

Hence b̄=beqsā ,n̄d all over the path 1–4, provided thatn̄
=192 bp, which is the repeat length measured in HeLa cells.

Our results provide a way of understanding the quantiza-
tion of the repeat lengthsf21g. The average repeat length has
to be selected, e.g., thanks to nucleosome positioning se-
quences, in order to fix the mean nucleosome orientation
beqsā ,n̄d. This particular orientation not only provides the
maximal fiber compaction with relaxed linkersf21g, but also
enables the global conservation of the linking number of the
fiber during its winding/unwinding process driven by the nu-
cleosome internal dynamics itself.
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