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The universal power law tails of single particle and multiparticle time correlation functions are derived from
a unifying point of view, solely using the hydrodynamic modes of the system. The theory applies to general
correlation functions and to systems more general than classical fluids. Moreover, it is argued that the colli-
sional transfer part of the stress-stress correlation function in dense classical fluids has the same long-time tail
,t−1−d/2 as the velocity autocorrelation function in Lorentz gases.
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The long-time tailsLTTd of the velocity autocorrelation
function kvxstdvxs0dl, t−d/2 in d-dimensional fluids in ther-
mal equilibrium is the prototypical example of time correla-
tion functions in fluids showing universal power-law behav-
ior, independent of the details of the interparticle interactions
f1,2g. The goal of this paper is to present, from a unified
point of view, a quantitative description of the asymptotic
decay of single-particle and multiparticle time correlation
functions sTCF’sd. The starting point is the mode coupling
theory for classical fluids inf2g, which is extended to more
general systems, and more general TCF’s.

What about the asymptotic decay of other single particle
properties that are coupled to a conservation law? Consider
the single sitesn=0d correlation functionkv0stdv0s0dl, initial-
ized in a state of thermal equilibrium, which state may or
may not be maintained by the dynamic evolution of the sys-
tem. The system considered hasfixedspins or velocity vec-
tors vn at the sitesn=hn1,n2, . . . ,ndj of a d-dimensional cu-
bic lattice with nearest neighborsNNd interactions
conserving the total magnetization or momentum,onvnstd.
For convenience we take periodic boundary conditions. Such
models are Glauber’s model with Ising spins at zero tem-
peraturef3g, or lattice gas cellular automata withb velocities
per site associated with the linksf4g, or granular fluid models
with a discrete or continuous velocity vector assigned to each
site f5,6g. In the following we consider as an example an
exactly soluble model of a granular fluid on a lattice whose
LTT’s are also covered by the results, to be derived in this
Rapid Communication.

Here a pair of NN sites interact at a ratek0 such thatvn
andvm are each replaced by their arithmetic mean. Then the
equation of motion for the mean value,kvnl;Vn, can be
written in appropriate units of length and time as a discrete
diffusion equation, i.e.,

dVn/dt = 1
2o

a
fVn+a − Vng = 1

2DVn. s1d

Here t=2Dt /a2 is the rescaled time,D=k0a
2 the diffusion

coefficient,a the lattice distance,a runs over NN sites, andD
is the Laplace operator on ad-dimensional cubic lattice. The
exact solution f3,6g of this equation is Vnstd
=omVn−ms0dpi=1

d fImi
stde−tg, where Imstd is the modified

Bessel function. The space-time correlation function
kvnxstdv0xs0dl satisfies the same equation askvnxlstd, where
k¯l is an ensemble average over an arbitrary initial state. In
the sequel all TCF’s refer to initial states in thermal equilib-
rium. They are not necessarily spatially uniform. The single
site TCF, C0std=kv0xstdv0xs0dl / kv0x

2 l, follows by settingn
=0, and yields theexactsolution

C0std = fe−tI0stdgd , f2ptg−d/2, s2d

where the asymptotic equality gives its LTT. HereC0std is
essentially the return probability of initial momentum to
its points of origin. The same exact results apply to the
spin TCF in the Glauber model at zero temperature,
and to the energy autocorrelation functionCestd
=kdenstddensodl / ksded2l in case the total energyoieistd is
conserved, whereden=en−kel. This function is again a re-
turn probability.

In all previous models particles have only NN inter-
actions, and are placed on lattice sites. These restrictions
will be removed. When the particles aremoving, as in fluids,
one may also consider the tagged particle fluctuations,
j2=v2−kv2l, or more generallyj2k=v2k−kv2kl, and j2k+1

=v2kvx, with k=0,1, . . ., andeven j0=de in case the tagged
particle has an additional internal degree of freedom with a
discrete or continuous energye. Here the total energy of the
system is conserved, and we are interested in the LTT of
these TCF’s. Such systems are classical fluidsf1g, DPD flu-
ids sdissipative particle dynamicsd, which are mesoscopic
modelsf7,8g with particle, momentum, and possibly energy
conservation, or the LBEsLattice-Boltzmann equationd
methodf9g, which lacks energy conservation. The DPD fluid
and the LBE method can be considered as preaveraged ver-
sions of, respectively, the Liouville equation and the dynamic
equations of lattice gas cellular automataf4g, where the rapid
short-range fluctuations have been averaged out.

In the DPD fluids the evolution equations forheistd ,vistdj
are formulated as coupled Langevin equations with dissipa-
tive and stochastic pair-interaction terms, having a finite in-
teraction rangerc, and satisfying the fluctuation dissipation
theorem. The stochastic interactions contain, in general, mul-
tiplicative white noisef10g. One may also quench the trans-
lational degrees of freedom, and freeze the particles atfixed
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randompositions, or infixed periodiclattice configurations.
In the former case a final average over quenched configura-
tions has to be performed. Here we consider only the
quenched DPD fluid with internal energy states, referred to
as a DPD solidf10,11g, where dissipative and random inter-
actions conserve the total internal energy. This quenched
model of “interacting heat particles” is in several respects the
dual model of the overlapping Lorentz gasf10g.

The purpose of this paper is to study the LTT’s of single-
particle and multiparticle TFC’s,kJbstdJbs0dl, in different
models, and away from percolation and other critical points,
using mode coupling theory. We start with fluid models. Here
the LTT’s can be concisely summarized in the Kadanoff-
Swift formula f2g

kJbstdJbs0dl . 1
2E

k
o
lm

fAb
lmg2eszk

l+zk
mdt, s3d

whereek =V−1ok. In the thermodynamic limitek is replaced
by s2pd−dedk. Thelm sum extends over the complete set of
hydrodynamic modeshak

lj of the system. The amplitude
Ab

lm=sJbuak
la−k

m d;V−1kJbak
la−k

m l represents the component of
Jb parallel to a product of two modes. These modes are linear
combinations of Fourier transforms of conserved densities,
and are normalized assak

l uak
md=dlm. The scalar products are

defined assAk uBkd=V−1kAkB−kl, averaged over an equilib-
rium ensemble. All TCF’s considered here approach zero for
large times, which implies thatsJbuak

ld=0.
In a classical fluid there are sd−1d diffusive shear

modes sl=hi : i =1,2, . . . ,d−1d, being the components of

the tranversal flow fielduk'=uk − k̂ k̂ ·uk, with decay rates
zk

h=−nk2, and shear viscosityh=rn, and one diffusive heat
modeak

H with decay ratezk
H=−DTk2 and heat diffusivityDT.

In addition there are two damped propagating sound modes
sl=s= ± d with decay ratezk

s=−isc0k− 1
2Gsk

2, wherec0 is
the speed of sound andGs the sound damping constant. For
the explicit expressions of fluid modesak

l in terms of con-
served densities, and the calculation of the dominant LTT’s
we refer tof2g.

A special case is thesingle-particle TCF’sk jbstd jbs0dl in
fluids. Here the mode coupling formula necessarily involves
the Fourier mode of thetaggedparticle density, i.e., the self-
diffusion mode,ak

s =nk
s =expf−ik ·r 1g, wherei =1 is the label

of the tagged particle. Consequently, the following replace-
ments have to be made ins3d: m→s and 1

2olm→ol. More-
over, if one of the labels equalss, then the amplitudeAb

ls

=s jbuak
la−k

s d;k jbak
la−k

s l without a factor 1/V. To extract the
long-time behavior froms3d we change the integration vari-
able k to q /Ît, and take the long-time limit, usingak

l→a0
l

andnk
s →n0

s=1. So, the amplitude of the single particle func-
tion simplifies toAb

ls=k jbua0
ll, and depends only on the di-

rection k̂ of the wave vectork. The final result for the LTT
becomes

k jbstd jbs0dl . o
l

fk jbua0
llg2/f4psDl + Ddtgd/2, s4d

where only the diffusive modesfl=shi ,Hdg contribute. The

overline indicates an average over the solid anglek̂. As the

calculations ofAb
ls are similar to those in Ref.f2sbdg, we

simply quote the final results for the LTT in the equilibrium
TCF’s of classical fluids,Cbstd=k jbstd jbs0dl / k jb

2l with b
=h1,2,3,4, . . .j, and jb=svx,v2−kv2l ,v2vx,v4−kv4ld, i.e.,

C1std . fsd − 1d/ndgf4psn + Ddtg−d/2,

C2std . sCv
0/nCpdf4psDT + Ddtg−d/2, s5d

with Cp the specific heat at constant pressure, andCv
0= 1

2dkB.
One similarly shows that odd-in-v, or even-in-v correlations
are atlarge timesproportional toC1std andC2std, i.e., C3std
.fsd+2d / sd+4dgC1std, C4std.fsd+2d / sd+3dgC2std, etc.,
for k=5,6, . . . . Theresult for the VACF in hard sphere or
Lennard-Jones fluids is well knownf1,2g. The above results
also disprove the misconception that momentum conserva-
tion is necessary for the existence of LTT’s in classical fluids.
The results in Eqs.s4d ands5d for classical fluids also apply
to DPD fluids with energy and momentum conservationf8g.
In DPD fluids without energy conservationf7g only the rela-
tions for odd-k values apply because the heat mode is absent,
and the system is thermostated instantaneously.

Next we want to extend these results to the random DPD
solid. The mode coupling resultss3d and s4d for TCF’s in
fluids do not, in general, apply to systems with quenched
disorderf12g. There they apply only to TCF’sCst uXd, calcu-
lated in a nonuniform equilibrium state, corresponding to a
single quenched configurationX, whereAlmsXd andDTsXd in
s3d ands4d depend on the configurationX. To obtain the full
correlation, Cstd=kCst uXdl, a subsequent average over all
quenched configurations has to be performed. In general, the
X dependence ofAlmsXd andDTsXd is not known explicitly.
A more phenomenological derivation of a mode coupling
formula for diffusive systems with quenched disorder has
been presented in Ref.f12g, and one can extend that method
to the heat conducting random DPD solid.

First, we investigate only those special cases for which
the LTT of Cst uXd can be determined explicitly from Eq.s3d.
Consider the single particle energy correlationCest uXd
=kdeistddeis0dlX in the DPD solid, where the heat mode,
ak

Hstd=ak
Hs0dexpf−tk2DTsXdg, is the only slow macroscopic

mode, andak
H=ek /Îsek uekd. In the long-time limit swhere

k →0d the relevant amplitude AHssXd=kde1ak
Ha−k

s lX

.kde1a0
HlX=ÎVksded2l /N whereak

s =expf−ik ·r 1g is a frozen
mode withzk

s=0. Inserting these results ins4d, and perform-
ing theX average yields the LTT

Cestd .
V

N
S 1

4pDTt
Dd/2

=
1

rf4pt*gd/2 . s6d

Here kDTsXdl=DT, and fluctuation corrections of relative
order ksdDTsXdd2l /DT have been neglected. Moreover,t*

=Dt / rc
2 andr=Nrc

2/V is proportional to the mean number of
particles inside an interaction sphere of radiusrc. If the par-
ticles are put on a latticesno disorderd, the LTT in Cestd
applies as well to the lattice version of the DPD solid. Both
on-lattice and off-lattice computer simulations of the LTT in
Ce are in excellentagreementf11g with the theoretical pre-
diction s6d.
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Next we study the N-particle correlation CQstd
=kQxstdQxs0dl /V. The random DPD solid sustains a micro-
scopic heat flux,Qx=QD+QR, with a dissipativesDd and a
random partsRd, as given explicitly inf10g. We start with
QDstd=k0oi, jwsr ijdr ij ,xfe jstd−eistdg. This sum of dissipative
pair interactions represents the instantaneous exchange of en-
ergy over a distancer ij through the interactionsscollisional
transferd. The model parameterk0 represents the interaction
frequency, and the range function is a step function, vanish-
ing for r . rc, and normalized such thatedrwsrd=rc

d. Conse-
quentlyk0se j −eidwsr ijd is the rate of energy transfer between
the interacting pairsi j d with r ij , rc. The corresponding TCF
is CDstd=V−1kQDstdQDs0dl.

The next object to be studied is the stochastic part of the
heat flux QR, and the corresponding correlationCRstd
=V−1kQRstdQRs0dl and cross correlationsCDRstd andCRDstd.
For our present purpose it is sufficient to notef10g thatQR is

a linear combination of the Langevin forces,F̃ijstd=−F̃jistd,
with coefficients depending onei and e j smultiplicative

noised, where kF̃ijstdl=0 and kF̃ijstdF̃klst8dl=dst− t8d sdikd jl

−dild jkd. The latter property guarantees thatCRstd is delta-
correlated in time,CRstd.s2l` /kBb2ddstd. HerekB is Boltz-
mann’s constant,b=1/kbT the inverse temperature, andl`

the heat conductivity in mean-field approximationsr→`d,
as calculated inf10g.

The cross correlations,CDR andCRD vanish, being linear

in F̃ij . The heat conducting DPD solid is, in fact, a diffusive
system with the static disorderf12g with heat conductionl
=kBb2e0

`dtCQstd, and we apply the mode coupling theory
developed for such systems in Ref.f12g to calculate the LTT
of CQstd. To do so the local concentration,csr ,td in the fluc-
tuating diffusion equation of Ref.f12g needs to be replaced
by the energy density,esr ,td, to find

]esr,td/]t = ¹ · lsr,Xd ·¹fesr ,td/csr ,Xdg, s7d

where csr ,Xd=Cnsr d and C is the specific heat per DPD
particle. The tensorlabsr ,Xd is the spatially fluctuating heat
conductivity tensor withklabsr ,Xdl=ldab, and the heat dif-
fusivity is DT=l / kcl=l /Cn. Following the derivation of
Ref. f12g one finds for the LTT,

CQstd . CDstd . − pnkBT2CD/s4pDTtd1+d/2, s8d

whereD is the mean square fluctuation in thek =0 Fourier
components ofdDabsr ,Xd=dlabsr ,Xd / fCng, i.e.,

D = s1/dVdkdD0
absr ,XddD0

basr ,Xdl

with implied summation convention for repeated indices.
The LTT ,t−1−d/2 of CD in the random solid has the same

sturcture as the VACF in the Lorentz gas, and both LTT’s
vanish when the fixed particles are filling the sites of a peri-
odic latticef13g, becauseD=0.

In the present system one has forlarge densitiesthe ex-
plicit expression for the fluctuating heat diffusivity

Dabsr ,Xd = sk0/nVdo
1, j

wsr ijdr ij ,ar ij ,b,

and the quantityD can be calculated, yielding the LTT at
large densities,

CDstd
CDs0d

.
p

r
Sd + 2

d + 4
DS 1

4pt*
D1+d/2

. s9d

Do the above results have any implications fordenseclas-
sical fluids, say in the vicinity of the triple point? We propose
the following scenario. In such dense systems the motion of
the particles is quite restricted—somewhat comparable to a
quenched system—and the collisional transfer of momentum
and energy is the dominant transport mechanism. Consider
for example the microscopic stress tensor. If the rate of en-
ergy transfer between the particle pairsi j d in QD is replaced
by the rate of momentum transfer, i.e., the interparticle force,
Fij ,y=−]Vsr ijd /]r ij ,y, thenQx becomes the collisional transfer
componentSxy

c of the stress tensor. This suggests that in
dense fluids the stress correlation function has a LTT,CS

cstd
=V−1kSxy

c stdSxy
c s0dl,Act

−1−d/2, similar to the velocity autocor-
relation function in the Lorentz gasf12g. Standard mode cou-
pling theory for fluids only predicts that the TCFCS

kstd of the
kinetic stresses,Sxy

k =oimvixviy, has a LTT,Akt
−d/2 f2,5,14g,

and that no such tail is present inCS
cstd.

Standard molecular dynamicssMDd simulations of TCF’s
in hard sphere fluidsf14g have not been able to establish a
LTT ,t−d/2 in CS

c, as is consistent with theory. However, the
nonequilibrium MD simulationsf15g for small Lennard-
Jones systems under a constant shear rateġ seem to suggest
a spossibly intermediated LTT of CS

cstd,Act
−d/2 with Ac one

or two orders of magnitude larger than the valueAk, pre-
dicted by the theory forCS

k. Here determination of the LTT
involves two nonuniform limitssġ→0,t→`d. A large inter-
mediate tail,t−d/2 may be a crossover phenomenon fort
, tcrosssġd at a small, but nonvanishingġ, where the colli-
sional transfer stress correlation in dense fluids is showing
the t−d/2-tail of Burnett-type correlations, similar to those de-
rived for Lorentz gasesf12g.

It would be of great interest to test the proposed scenario
for LTT’s in TCF’s in dense classical fluids by performing
detailed computer simulations ofCQ in DPD solids and flu-
ids, as well as by developing a quantitative analysis ofCQ for
general densities. Promising alternatives of measuring these
LTT’s, particularly in one dimension, are offered by simulat-
ing the Helfand momentsf16g.
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