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Universal power law tails of time correlation functions
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The universal power law tails of single particle and multiparticle time correlation functions are derived from
a unifying point of view, solely using the hydrodynamic modes of the system. The theory applies to general
correlation functions and to systems more general than classical fluids. Moreover, it is argued that the colli-
sional transfer part of the stress-stress correlation function in dense classical fluids has the same long-time tail
~t71792 35 the velocity autocorrelation function in Lorentz gases.
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The long-time tail(LTT) of the velocity autocorrelation Bessel function. The space-time correlation function
function (v,(t)v,(0))~t"%2 in d-dimensional fluids in ther- (v.(t)v(0)) satisfies the same equation @s,)(t), where
mal equilibrium is the prototypical example of time correla- {---) is an ensemble average over an arbitrary initial state. In
tion functions in fluids showing universal power-law behav-the sequel all TCF's refer to initial states in thermal equilib-
ior, independent of the details of the interparticle interactiongium. They are not necessarily spatially uniform. The single
[1,2]. The goal of this paper is to present, from a unifiedsite TCF, Cy(t) =(vey(t)vey(0))/ (w5, follows by settingn
point of view, a quantitative description of the asymptotic=0, and yields theexactsolution
decay of single-particle and multiparticle time correlation
functions (TCF’s). The starting point is the mode coupling Co(t) =[e7o(D]* ~ [277] 92, (2
s e e e T4 1 T et asymptot equaty gves s LTT. Wt 1

What about the asymptotic decay of other single particleessen_tlally the return probability of initial momentum to
properties that are coupled to a conservation law? ConsiddlS POINts of origin. The same exact results apply to the

the single sitdn=0) correlation functior(vy(t)vy(0)), initial- spin TCF in the Glauber model at zero temperature,

ized in a state of thermal equilibrium, which state may orfnd to the energy autocorrelation functiorCy(t)

may not be maintained by the dynamic evolution of the sys:-_<56”(t)5'5”(0»/«56)2> in case the tota! en_ergiie_i(t) is
tem. The system considered Hagd spins or velocity vec- conserved, wherde,=e,~(e). This function is again a re-
torsv,, at the sitesi={n,,n,, ... ,ng} of a d-dimensional cu- turn probability. _ _
bic lattice with nearest neighbor(NN) interactions In all previous models particles have only NN inter-
conserving the total magnetization or momentuzqy,(t). actions, and are placed on lattice sites. These restrictions
For convenience we take periodic boundary conditions. Suclill P& removed. When the particles areoving as in fluids,
models are Glauber's model with Ising spins at zero tem9n¢ May also consider the taggetzdk parztklcle fluctuations,
perature[3], or lattice gas cellular automata withvelocities 1270 —(v%), or more generallyj=v™~(v™), and jau
per site associated with the linf&], or granular fluid models  =v*vx, With k=0,1,..., andevenjo=de in case the tagged
with a discrete or continuous velocity vector assigned to eacRarticle has an additional internal degree of freedom with a
site [5,6]. In the following we consider as an example andiscrete or continuous energy Here the total energy of the
exactly soluble model of a granular fluid on a lattice whoseSyStem is conserved, and we are interested in the LTT of
LTT’s are also covered by the results, to be derived in thighese TCF's. Such systems are classical fl{iidsDPD flu-
Rapid Communication. ids (dissipative particle dynamigswhich are mesoscopic
Here a pair of NN sites interact at a ratg such thatv, models[?,_8] with particle, momentum, and possibly energy
andv,, are each replaced by their arithmetic mean. Then théonservation, or the LBE(Lattice-Boltzmann equation
equation of motion for the mean valué,)=V,, can be method[9], which lacks energy conservation. The DPD fluid
written in appropriate units of length and time as a discretéd the LBE method can be considered as preaveraged ver-

diffusion equation, i.e., sions _of, respect_ively, the Liouville equation and the dyngmic
equations of lattice gas cellular autompd where the rapid
dV/dr=:S1v . v 1= AV, 1 short-range fluctuations have been averaged out.
=T 2§[ na~ Vol =24Vn @ In the DPD fluids the evolution equations fos (t),v;(t)}

are formulated as coupled Langevin equations with dissipa-
Here 7=2Dt/a? is the rescaled timeD=xqa’ the diffusion  tive and stochastic pair-interaction terms, having a finite in-
coefficient,a the lattice distanceg runs over NN sites, andl  teraction range, and satisfying the fluctuation dissipation
is the Laplace operator ondadimensional cubic lattice. The theorem. The stochastic interactions contain, in general, mul-
exact solution [3,6] of this equation is V,(7) tiplicative white noisg10]. One may also quench the trans-
:Emvn_m(O)Hid:l[lmi(r)e‘T], where I,(7) is the modified lational degrees of freedom, and freeze the particldixed
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randompositions, or infixed periodiclattice configurations. calculations ofA’gS are similar to those in Ref2(b)], we

In the former case a final average over quenched configuraimply quote the final results for the LTT in the equilibrium
tions has to be performed. Here we consider only theTCF's of classical fluids,Cp(t)=(j,(t)j,(0))/(j3) with b
quenched DPD fluid with internal energy states, referred ta-{1 2 3,4, ..} andj,=(vy,v?—(0?),v%,, 04— (%), i.e.,

as a DPD solid10,11], where dissipative and random inter-

actions conserve the total internal energy. This quenched Cy(t) = [(d = 1)/nd][47(v + D)t] 92,
model of “interacting heat particles” is in several respects the
dual model of the overlapping Lorentz gi<]. C,(t) = (COInCp)[47T(DT+ D)t] 42 (5)

The purpose of this paper is to study the LTT'’s of single-
particle and multiparticle TFC's{J,(t)J,(0)), in different  with C, the specific heat at constant pressure,@jﬁ%dks.
models, and away from percolation and other critical pointsOne similarly shows that odd-in- or even-ine correlations
using mode coupling theory. We start with fluid models. Hereare atlarge timesproportional toC,(t) and C,(t), i.e., C5(t)
the LTT's can be concisely summarized in the Kadanoff-=[(d+2)/(d+4)]C,(t), C,(t)=[(d+2)/(d+3)]Cx(t), etc.,

Swift formula[2] for k=5,6,.... Theresult for the VACF in hard sphere or
Lennard-Jones fluids is well knowid,2]. The above results
G030 =2 X [Agﬂ]Ze(Zﬁﬂﬁ)t, (3)  also disprove the misconception that momentum conserva-
k Au tion is necessary for the existence of LTT’s in classical fluids.

The results in Eq94) and (5) for classical fluids also apply
to DPD fluids with energy and momentum conservafi®h
In DPD fluids without energy conservati¢n] only the rela-

where [,.=V"1=,. In the thermodynamic limif, is replaced
by (279 dk. TheAu sum extends over the complete set of

. N .
h¥giodyna}\m;c inoijle,{ak)\} ff the system. The amplitude tions for oddk values apply because the heat mode is absent,
Ap" = (ol agati) =V HJpaali) represents the component. of and the system is thermostated instantaneously.
Jp parallel to a product of two modes. These modes are linear Next we want to extend these results to the random DPD
combinations of Fourier transforms of conserved densitieSggjig. The mode coupling resul®) and (4) for TCF’s in
and are normalized asy|af)=4,,. The scalar products are fjigs do not, in general, apply to systems with quenched
defined as(Ax|B,)=V"AcB.y), averaged over an equilib- gisorder{12]. There they apply only to TCFE(t|X), calcu-
rium ensemble. All TCF’s considered here approach zero fofated in a nonuniform equilibrium state, corresponding to a
large times, which implies thdt,|a})=0. single quenched configuratioy whereAM(X) andD+(X) in

In a classical fluid there are(d-1) diffusive shear (3) and(4) depend on the configuratiof To obtain the full
modes (\=7:i=1,2,...d-1), being the components of correlation, C(t)=(C(t|X)), a subsequent average over all
the tranversal flow fieldu, , =u,—kk -u,, with decay rates quenched configurations has to be performed. In general, the
z7=-1k? and shear viscosity)=pv, and one diffusive heat X dependence ofM(X) and D(X) is not known explicitly.
modeaf! with decay rateZ!=—-Dk? and heat diffusivityD;. A more phenomenological derivation of a mode coupling
In addition there are two damped propagating sound modefermula for diffusive systems with quenched disorder has
(A\=0=2) with decay ratezl=—-iocok— %Fskz, wherec, is  been presented in RdfL2], and one can extend that method

the speed of sound arld, the sound damping constant. For to the heat conducting random DPD solid.

the explicit expressions of fluid modeg in terms of con- First, we investigate only those special cases for which
served densities, and the calculation of the dominant LTT'$he LTT of C(t|X) can be determined explicitly from E(B).
we refer to[2]. Consider thesingle particle energy correlationCe(t|X)

A special case is theingleparticle TCF's(j,(t)j,(0)) in  =(J€(t) 5¢(0))x in the DPD solid, where the heat mode,
fluids. Here the mode coupling formula necessarily involvesa{j(t):aE(O)eX[{—tkzDT(X)], is the only slow macroscopic
the Fourier mode of theaggedparticle density, i.e., the self- mode, andal!=e,/(e]g,). In the long-time limit (where
diffusion modea; =n;=exf-ik -r,], wherei=1is the label k—0) the relevant amplitude A"S(X)=(de,a'a’ )«
of the tagged particle. Consequently, the following replace»;<5elag'>xz\,/V<(55)2>/N wherea =exgd-ik -r,] is a frozen
ments have to be made i8): u—s and33,,—X,. More-  mode withz3=0. Inserting these results i), and perform-

over, if one of the labels equaks then the amplitudeaﬁ\gs ing the X average vyields the LTT
=(jplaka’,) = (jpata®,) without a factor 1¥. To extract the L ) " L

long-time behavior fron{3) we change the integration vari- Cy(t) = Y( = S
€ N\ 47D+t plamt 192

ablek to g/+t, and take the long-time limit, using:— a}
Here (D;(X))=D+, and fluctuation corrections of relative

andny —ng=1. So, the amplitude of the single particle func-

; L AS— /i |k P "
tion Sm}p“ﬂes toA;*=(jp|ag), and depends only on the di order {(8D+(X))?/D+ have been neglected. Moreovat,
rectionk of the wave vectok. The final result for the LTT =Dt/r§ andp=Nr§/V is proportional to the mean number of

(6)

becomes particles inside an interaction sphere of radiysif the par-
00 =S (i aS P/ 4m(D. + D)t 2 4 ticles are put on a latticéno disorde), the LTT in C(t)
{Jo(16(0)) % [{ielao) T /[4(Dy+ D)) @ applies as well to the lattice version of the DPD solid. Both

o ] on-lattice and off-lattice computer simulations of the LTT in
where only the diffusive modes\=(7,H)] contribute. The  ¢_ are inexcellentagreemenf11] with the theoretical pre-

overline indicates an average over the solid aﬂ?glé\s the diction (6).
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Next we study the N-particle correlation Cq(t) In the present system one has farge densitieghe ex-
=(Q,(t)Q,(0))/V. The random DPD solid sustains a micro- plicit expression for the fluctuating heat diffusivity
scopic heat fluxQ,=Qp+Qg, with a dissipative(D) and a
random part(R), as given explicitly in[10]. We start with D(r,X) = (kg/NV) 2 Wi} of i .

Qp(t) = ki< jW(rijri; L (1) —&(t)]. This sum of dissipative 1<i

pair interactions represents the instantaneous exchange of
ergy over a distance; through the interactiongcollisional
transfey. The model parametet, represents the interaction
_frequency, and the range function is a step function, vanish- Colt) m(d+2 1|12
ing for r >r., and normalized such thatirw(r):rg. Conse- C(0 = _<d +4)(4 t*>
quently ko(€j— €)W(rj;) is the rate of energy transfer between (0 p 77
the interacting paitij) with r;; <r.. The corresponding TCF Do the above results have any implicationsdenseclas-

is Cp(t) =V XQp(t)Qp(0)). sical fluids, say in the vicinity of the triple point? We propose

The next object to be studied is the stochastic part of théhe following scenario. In such dense systems the motion of
heat flux Qg, and the corresponding correlatioBx(t) the particles is quite restricted—somewhat comparable to a
=V-YQx()Qr(0)) and cross correlation8px(t) andCrp(t).  quenched system—and the collisional transfer of momentum
For our present purpose it is sufficient to nft] thatQgis ~ and energy is the dominant transport mechanism. Consider

. N . = = for example the microscopic stress tensor. If the rate of en-
a linear combination of the Langevin forcds;(t)=-F;(t), ) o :

. - . o0 ergy transfer between the particle péir in Qp is replaced
with coefficients depending or; and ¢ (multiplicative b ; ) .

. — — = y the rate of momentum transfer, i.e., the interparticle force,
noise, where (F;j(t))=0 and(F;j(OF(t'))=at-t") (dkdi  F; =-av(ry)/dr;,, thenQ, becomes the collisional transfer
~414)). The latter property guarantees tH@(t) is delta-  components, of the stress tensor. This suggests that in
correlated in timeCg(t) = (2\../kg?) &(t). Herekg is Boltz-  dense fluids the stress correlation function has a IGZt)

€hd the guantityA can be calculated, yielding the LTT at
large densities,

9)

mann's constaniB=1/k,T the inverse temperature, and =X (1)S;,(0)) ~ At 292, similar to the velocity autocor-
the heat conductivity in mean-field approximatin— <),  rg|ation function in the Lorentz gd42]. Standard mode cou-
as calculated i10]. pling theory for fluids only predicts that the TGE(t) of the

Ihe cross correlation&pr and Cgp vanish, being linear  inatic stressesﬁj =S Moy, has a LTT~AL92[2,5,14,
in F;;. The heat conducting DPD solid is, in fact, a diffusive and that no such tail is present @E(1).
system with the static disord¢t2] with heat conduction\ Standard molecular dynami¢sID) simulations of TCF’s
=kgB?[,dtCq(t), and we apply the mode coupling theory in hard sphere fluid§14] have not been able to establish a
developed for such systems in REf2] to calculate the LTT  LTT ~t-92in C§, as is consistent with theory. However, the
of Cq(t). To do so the local concentratioa(r,t) in the fluc-  nonequilibrium MD simulations[15] for small Lennard-
tuating diffusion equation of Ref12] needs to be replaced Jones systems under a constant shearya@em to suggest
by the energy densitg(r,t), to find a (possibly intermediateLTT of C(t) ~ At %2 with A, one
_ or two orders of magnitude larger than the valg pre-

GO/ =V - NEX) - VIelr,/g(r, X)), ™ dicted by the theory foC Here determination of the LTT
where (r ,X)=Cn(r) and C is the specific heat per DPD involves two nonuniform limit§y— 0,t— ). A large inter-
particle. The tensok®(r , X) is the spatially fluctuating heat mediate tail~t"%? may be a crossover phenomenon for
conductivity tensor withA*4(r ,X))=\6,p and the heat dif- <tgosdy) at a small, but nonvanishing, where the colli-
fusivity is Dt=N/{)=\/Cn. Following the derivation of sional transfer stress correlation in dense fluids is showing

Ref.[12] one finds for the LTT, the t92-tail of Burnett-type correlations, similar to those de-
, i rived for Lorentz gasefgl2].
Cqlt) = Cp(t) = — mnkgT°CA/(4mDt) "2, (8) It would be of great interest to test the proposed scenario

for LTT's in TCF’s in dense classical fluids by performing
detailed computer simulations &, in DPD solids and flu-

ids, as well as by developing a quantitative analysi€gfor

A= (1/d\/)<5Dgﬁ(r,X)5D§“(r,X)> general densities. Promising alternatives of measuring these

S ) ) o LTT's, particularly in one dimension, are offered by simulat-
with implied summation convention for repeated indices. jnq the Helfand momentgL6].

The LTT ~t™92 of Cp, in the random solid has the same
sturcture as the VACF in the Lorentz gas, and both LTT's The author acknowledges stimulating discussions and/or
vanish when the fixed particles are filling the sites of a peri-correspondence with E. Ben-Naim, J. Machta, J.R. Dorfman,
odic lattice[13], because\ =0. H. van Beijeren, M. Ripoll, and I. Pagonabarraga.

whereA is the mean square fluctuation in thke0 Fourier
components oBD*A(r ,X)=\*(r ,X)/[Cn], i.e.,
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