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We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin
equations from time series, and Pope and Ching’s relationship for stationary signals. The two approaches are
based on different interpretations of conditional averages of the time derivatives of the time series at given
levels. The analysis provides a useful indication for the correct application of Pope and Ching’s relationship to
obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for
nondifferentiable processes originating from Langevin equations.
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Measured time series are often highly fluctuating, result-
ing from complex, high-dimensional systems whose dynam-
ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture
the essential features of the series, such as the probability
density functionsPDFd and the correlation structure, being at
the same time parsimonious and flexible enough to adapt to
possible nonlinearities in the underlying dynamics.

In many cases, if the measured series proves to be ap-
proximately Markovian, a first modeling assumption may be
represented by general one-dimensional Langevin equations.
For these equations, the functional forms of the drift and
diffusion terms can be easily determined directly from the
time series, employing the finite-difference form of their
definition together with suitable interpolations of the result-
ing trends. Such an approach was proposed by Friedrichet
al. f1–6g and was already partly contained in the works of
Primaket al. f7–9g.

A different approach to model stationary time series re-
lates its PDF to the functional form of the temporal deriva-
tives at a given level. It is based on a relationship due to
Pope and Chingf10,11g that is valid for any stationary and
sufficiently smooth signal, not necessarily Markovian. Re-
cently, the Pope and Ching formula was also used to derive
the one-dimensional Langevin equation fromsfinanciald time
series, although the link with such equations and the different
interpretation of the corresponding conditional averages
were not rigorously assessedf12–14g. It is thus interesting to
discuss the link between the Pope and Ching formula and the
approach of Friedrichet al. and show that the Pope and
Ching formula also holds, in a generalized sense, for these
nondifferentiable stochastic processes.

Consider the following Langevin equation, according to
the Ito interpretation:

ẋ = Asxd + ÎBsxdjstd, s1d

whereAsxd is the drift coefficient,Bsxd is the diffusion term,
andjstd is a Langevin force, i.e., white Gaussian noise with

zero mean. As is well known, the PDF ofx,psx,td, is given
by the Fokker-Plank equation,

]psx,td
]t

= −
]

]x
fAsxdpsx,tdg +

1

2

]2

]x2fBsxdpsx,tdg, s2d

from which the steady-state PDF ofx is obtained as

psxd =
N

Bsxd
expF2E

x

Asud
Bsud

duG , s3d

whereN is a normalization constant.
Considering a fixed temporal interval,Dt, it is possible to

show f15,16g that

kDxl = AsxdDt, s4d

kDx2l = BsxdDt, s5d

for Dt→0. The fixedDt ensures that all the incrementsDx
have the same weight. It is important to stress that the dif-
ferenceDx must be computed in a “causal” or “forward”
way, i.e.,

kDxl = ukxst + Dtd − xstdluxstd. s6d

Moreover, as noticed by Justet al. f17g, if the probability
current vanishes, as is always the case for stationary signals
sf15g, p. 124d, it is possible to show that

ukxst + Dtd − xstdluxstd = − ukxstd − xst − Dtdluxstd. s7d

Equationss4d and s5d have been used to estimate drift and
diffusion from time seriesf1–6g, assuming that they are gen-
erated by Langevin processes; other authors proposed correc-
tions to reduce the errors due to finiteDt f18g.

The approach of Pope and Chingf10,11g also relates, in a
more general way, the steady-state PDF of stationary pro-
cesses to its temporal increments at given levels, as*Electronic address: amilcare@duke.edu
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psxd =
N8

kkẋ2uxll
expFE

x

kkẍuull
kkẋ2uull

duG , s8d

where the dot denotes temporal derivative and the notation
kk ll stresses the fact that the interpretation of the conditional
averages is different from those of Eqs.s4d and s5d. In fact,
the averages in Eq.s8d refer to an infinitesimal window be-
tweenx and x+dx, rather than to a fixed temporal interval.
Hence, each contribution in the averages of Eq.s8d needs to
be weighted by the time spent in the window of widthdx.
This is clear if one considers that, for stationary signals,
kkẋuxll is zero, in contrast tokDxl /Dt. In Langevin equations,
the latter is equal toAsxd fsee Eq.s4dg and, in general, is
different from zero in signals that are not symmetric in time
f19g. Similar observations were made by Sokolovf20g, who
also reported explicit formulas for the conditional averages
in Eq. s8d.

Pope and Ching derived Eq.s8d under the hypothesis of
twice differentiable signals. However, as shown inf21g, the
previous expression is also valid for signals that are only
differentiable once. Along these lines, one can expect that the
same equation also applies, in a generalized sense, to Lange-
vin equations with Gaussian noisesthat are nondifferen-
tiabled. The starting point to find a link between the two
approaches is already partly contained in the analysis of
Stolovistky and Chingf21g, who derived the conditional av-
erages for the second-order process

ẋ = v,

v̇ = fsxd − gv + Îggsxdjstd, s9d

as kkv̇ uxll=kkẍuxll= fsxd for any g, and 2kkv2uxll=2kkẋ2uxll
=gsxd for the limiting case ofg→`.

Since it is also known that, forg→`, the systems9d
can be reduced to the first-order Langevin equation
f15,16,21,22g,

ẋ =
fsxd
g

+Îgsxd
g

jstd, s10d

one also has

fsxd
g

=
kkẍuxll

g
=

kDxl
Dt

= Asxd s11d

and

gsxd
g

= 2
kkẋ2uxll

g
=

kDx2l
Dt

= Bsxd. s12d

Thus, apart from a constant and provided the conditional
averages are interpreted correctly, the terms in Eqs.s3d and
s8d for one-dimensional Langevin equations give the same
behavior as a function ofx.

The analysis of the second-order difference ofx com-
pletes the link between the two approaches. For the system
s9d it is possible to show thatsf16g, p. 215d

kDxl = vDt s13d

and

kD2xl = kDvl = ffsxd − gvgDt, s14d

with Dt→0. From the previous expressions it is clear that,
for g→` ,kD2xl=gfAsxd−AsxdgDt=0. Thus, similarly to
Eqs.s4d ands5d, the application of Eq.s14d also corresponds
to a forwardsor causald estimate of the second-order differ-
ence. In fact, writing explicitly the expression

kD2xl = ukxst + 2Dtd − xst + Dtdluxst+Dtd − ukxst + Dtd − xstdluxstd,

s15d

we see that it tends to zero forDt→0 as both averages tend
to Asxd. Note that the same thing is obtained with a backward
estimate. However, a totally different result is obtained when
using a centered estimate for the second-order difference.
This approach was pursued by Tangf14g, who actually em-
ployed it to estimatekkẍuxll, instead of the correct interpre-
tation. Interestingly, however, in the case of Langevin equa-
tions, we have, using Eq.s7d,

ukxst + Dtd − xstdluxstd − ukxstd − xst − Dtdluxstd

= u2kDxluxstd = 2AsxdDt, s16d

that, apart from a multiplicative constant, agrees withkkẍuxll
fsee Eq.s11dg.

We tested the previous results using numerical simula-
tions of the stochastic pitchfork bifurcation process,ẋstd
=exstd−x3std+gjstd, with e=0.1,g=0.05, and integration
time stepDt=0.5. Figure 1 shows the estimate of the drift
term using Eq.s4d along with the difference between the
causal and acausal estimates of Eq.s7d. The estimates of the
second-order difference computed using Eqs.s15d and s16d
are shown in Fig. 2. As expected, the forward estimate is
practically zero, while the centered estimate follows very
well its theoretical behavior that is proportional to the drift
coefficient fsee Eq.s16dg. Finally, we show a comparison
between the ratioskDxl / kDx2l and kkẍuxll / kkẋ2uxll. While

FIG. 1. Estimated values of the drift coefficient for the pitchfork
bifurcation process. The solid line represents the theoretical term,
the solid diamonds are the causal estimates, and the open circles are
the acausal ones.

BRIEF REPORTS PHYSICAL REVIEW E71, 027101s2005d

027101-2



the behavior is similar in both cases and in agreement with
their theoretical value,Asxd /Bsxd, it is clear that the estimate
of the conditional averages in Eq.s8d using Sokolov’s for-
mulas is statistically less efficient than the direct use of Eqs.
s4d and s5d ssee Fig. 3d.

In summary, we showed the link between the approach to
obtain drift and diffusion of Langevin equations from time

series and the Pope and Ching formula for stationary pro-
cesses. We stressed the importance of the correct interpreta-
tion of the estimators used and proved the validitysin a
generalized sensed of the Pope and Ching formula also for
nondifferentiable one-dimensional Langevin processes.
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FIG. 2. Estimated values ofkD2xl /Dt2. The forward estimates,
represented by the solid diamonds, tend to zero according to Eq.
s15d, whereas the centered estimates follow the theoretical behavior,
2Asxd /Dt fdashed line, Eq.s16dg.

FIG. 3. Comparison among the estimated values of the ratio
kkẍuxll / kkẋ2uxll using Sokolov’s formulassopen circlesd, the ratio
of the estimated drift and diffusion terms,kDxl / kDx2l, using Eqs.
s4d and s5d ssolid diamondsd, and the theoretical value,Asxd /Bsxd
ssolid lined, for the pitchfork bifurcation process.
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