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Langevin equations from time series
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We discuss the link between the approach to obtain the drift and diffusion of one-dimensional Langevin
equations from time series, and Pope and Ching’s relationship for stationary signals. The two approaches are
based on different interpretations of conditional averages of the time derivatives of the time series at given
levels. The analysis provides a useful indication for the correct application of Pope and Ching’s relationship to
obtain stochastic differential equations from time series and shows its validity, in a generalized sense, for
nondifferentiable processes originating from Langevin equations.
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Measured time series are often highly fluctuating, resultzero mean. As is well known, the PDF »fp(x,t), is given
ing from complex, high-dimensional systems whose dynamby the Fokker-Plank equation,
ics may not even be completely known. This justifies the
interest in obtaining simple models that are able to capture ap(x,t)
the essential features of the series, such as the probability Tt =
density functionPDF) and the correlation structure, being at
the same time parsimonious and flexible enough to adapt
possible nonlinearities in the underlying dynamics.
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tl%m which the steady-state PDF »fis obtained as

In many cases, if the measured series proves to be ap-
proximately Markovian, a first modeling assumption may be p(x) = &exp Zf Mdu , (3)
represented by general one-dimensional Langevin equations. B(x) « B(u)

For these equations, the functional forms of the drift and
diffusion terms can be easily determined directly from thewhereN is a normalization constant.
time series, employing the finite-difference form of their  Considering a fixed temporal interval, it is possible to
definition together with suitable interpolations of the result-ghow[15,16 that
ing trends. Such an approach was proposed by Friedtich
al. [1-6] and was already partly contained in the works of (AX) = A(X)At (4)
Primaket al.[7-9]. ’

A different approach to model stationary time series re-
lates its PDF to the functional form of the temporal deriva- (AX?) = B(x)At, (5)
tives at a given level. It is based on a relationship due to
Pope and Ching10,11] that is valid for any stationary and for At— 0. The fixedAt ensures that all the incremenix
sufficiently smooth signal, not necessarily Markovian. Re-have the same weight. It is important to stress that the dif-
cently, the Pope and Ching formula was also used to derivference Ax must be computed in a “causal” or “forward”
the one-dimensional Langevin equation fréiinancia) time  way, i.e.,
series, although the link with such equations and the different
interpretation of the corresponding conditional averages (AXy = (X(t+ At) = X(0))] o) - (6)
were not rigorously assessgtP—14. It is thus interesting to
discuss the link between the Pope and Ching formula and th@ioreover, as noticed by Just al. [17], if the probability

approach of Friedrictet al. and show that the Pope and ¢rent vanishes, as is always the case for stationary signals
Ching formula also holds, in a generalized sense, for thes&ls] p. 124, it is possible to show that

nondifferentiable stochastic processes.

Consider the following Langevin equation, according to X(E+ AL = X O = — XO —xt- Ao, (7)
the Ito interpretation: x(t) ()
x=AX) + VB(X)&(H), (1)  Equations(4) and (5) have been used to estimate drift and

) ) o . - diffusion from time serie§1-6], assuming that they are gen-
whereA(x) is the drift coefficientB(x) is the diffusion term,  erated by Langevin processes; other authors proposed correc-
and &(t) is a Langevin force, i.e., white Gaussian noise withtions to reduce the errors due to finiig [18].

The approach of Pope and Chifp,11] also relates, in a
more general way, the steady-state PDF of stationary pro-
*Electronic address: amilcare@duke.edu cesses to its temporal increments at given levels, as
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where the dot denotes temporal derivative and the notatior
(()) stresses the fact that the interpretation of the conditional
averages is different from those of E¢$) and(5). In fact,

the averages in Ed8) refer to an infinitesimal window be-
tweenx and x+dx, rather than to a fixed temporal interval.
Hence, each contribution in the averages of @j.needs to

be weighted by the time spent in the window of widtk.

This is clear if one considers that, for stationary signals,
((x|x)) is zero, in contrast tGAx)/At. In Langevin equations,

the latter is equal tAA(x) [see Eq.(4)] and, in general, is
different from zero in signals that are not symmetric in time ~ -%98 1

[19]. Similar observations were made by Soko[@], who o1l . . : . . s s .
also reported explicit formulas for the conditional averages 04 <03 -2 -1 0 01 02 03 o4
in Eq. (8).

Pope and Ching derived E¢B) under the hypothesis of FIG. 1. Estimated values of the drift coefficient for the pitchfork
twice differentiable signals. However, as shown21], the  bifurcation process. The solid line represents the theoretical term,
previous expression is also valid for signals that are onl)}he solid diamonds are the causal estimates, and the open circles are
differentiable once. Along these lines, one can expect that thi'e acausal ones.
same equation also applies, in a generalized sense, to Lange-
vin equations with Gaussian noid¢hat are nondifferen- (A%) = (Av) =[f(x) - y]At, (14
tiable). The starting point to find a link between the two i , L
approaches is already partly contained in the analysis gpith At—0. I;rom the previous expressions it is clear that,
Stolovistky and Ching21], who derived the conditional av- 0T Y=, {A%)=AAX)-~A(X)]JAt=0. Thus, similarly to

erages for the second-order process Egs.(4) and(5), the application of Eq(14) also corresponds
. to a forward(or causa)l estimate of the second-order differ-
X=v, ence. In fact, writing explicitly the expression
0 = f(X) — y + Vyg(X) &), 9 (A% = (x(t+2A1) = X(t+ AD)xran — X(E+AD = X0,
as (0] x)=((X|x))=f(x) for any y, and 2(v?|x))=2((|x) (15
=g(x) for the limiting case ofy— . we see that it tends to zero fat— 0 as both averages tend

Since it is also known that, foy—co, the system(9)  to A(x). Note that the same thing is obtained with a backward
can be reduced to the first-order Langevin equationestimate. However, a totally different result is obtained when

[15,16,21,22 using a centered estimate for the second-order difference.
£(x) ) This approach was pursued by Tarigl], who actually em-
X= — + g—g(t), (10) ployed it to estimate(X|x)), instead of the correct interpre-
Y Y tation. Interestingly, however, in the case of Langevin equa-
one also has tions, we have, using Eq7),
f $x) (A (X(t+ A1) = X))y = (X(O) = X(t = AD))
f0) _ (Xx) _ (A% _ AX) 1) () ()
Y Y At = 2<AX>|x(t) = ZA(X)At, (16)
and that, apart from a multiplicative constant, agrees W{#jx))
(X) __(O2D0) _ (Ax®) [see Eq(1D)].
992 = =B(x). (12 We tested the previous results using numerical simula-

Y Y At tions of the stochastic pitchfork bifurcation processt)
Thus, apart from a constant and provided the conditiona¥ ex(t)—x3(t)+gé&(t), with €=0.1,g=0.05, and integration
averages are interpreted correctly, the terms in Eg}sand  time stepAt=0.5. Figure 1 shows the estimate of the drift
(8) for one-dimensional Langevin equations give the sameerm using Eq.(4) along with the difference between the
behavior as a function of. causal and acausal estimates of &. The estimates of the
The analysis of the second-order differencexo€om-  second-order difference computed using Ed$) and (16)
pletes the link between the two approaches. For the systeare shown in Fig. 2. As expected, the forward estimate is
(9) it is possible to show thaf16], p. 215 practically zero, while the centered estimate follows very
(AX) = AL (13) well its theoretical behavior that is proportional to the drift
coefficient[see Eq.(16)]. Finally, we show a comparison
and between the ratiogAx)/(Ax?) and ((X|x))/{(Xx?|x)). While
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FIG. 2. Estimated values @f\?x)/At? The forward estimates, FIG. 3. Comparison among the estimated values of the ratio

represented by the solid diamonds, tend to zero according to EQ(X|X>)/<<5<2\X>> using Sokolov’s formulagopen circley the ratio
(15), whereas the centered estimates follow the theoretical behaviogs the estimated drift and diffusion term&x)/(Ax?), using Egs.
2A(x)/ At [dashed line, Eq(16)]. (4) and (5) (solid diamondy and the theoretical valué(x)/B(X)

S ) _ (solid line), for the pitchfork bifurcation process.
the behavior is similar in both cases and in agreement with

their theoretical valueA(x)/B(x), it is clear that the estimate
of the conditional averages in E) using Sokolov’s for- series and the Pope and Ching formula for stationary pro-
mulas is statistically less efficient than the direct use of Eqscesses. We stressed the importance of the correct interpreta-
(4) and(5) (see Fig. 3 tion of the estimators used and proved the validity a

In summary, we showed the link between the approach tgeneralized seng®f the Pope and Ching formula also for
obtain drift and diffusion of Langevin equations from time nondifferentiable one-dimensional Langevin processes.
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