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Spatially adaptive grand canonical ensemble Monte Carlo simulations
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A spatially adaptive Monte Carlo method is introduced directly from the underlying microscopic mecha-
nisms, which satisfies detailed balance, gives the correct noise, and describes accurately dynamic and equilib-
rium states for adsorption-desorptiégrand canonical ensemblerocesses. It enables simulations of large
scales while capturing sharp gradients with molecular resolution at significantly reduced computatioral cost.
posteriori estimates, in the sense used in finite-elements methods, are developed for assessifigferrors
mation los$ in coarse-graining and guiding mesh generation.
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INTRODUCTION multiscale simulations, they have certain shortcomings.
) _ These include numerical instabilities and a difficulty in en-
Monte Carlo(MC) is one of the most widespread molecu- suring conservation across interfa¢see[4] for specific ex-
lar simulation tools in science and engineeriig2]. MC  amples. Furthermore, noise is adversely affected, which in
applications range from the modern areas of biotechnologyurn alters fluctuations-driven physical phenomefriaf].
and nanotechnology to catalysis to crystal growth to imageThere is therefore a need to develop alternative strategies
processing to stochastic optimization. Due to its discrete nathat overcome these problems.
ture of moving one atom at a time, MC is computationally =~ The coarse-grained MQ@CGMC) simulation introduced
very intensive. As a result, MC is typically limited to bulk- recently in[19-21 attempts to overcome these problems.
like systems(studied via periodic boundary conditioner ~CGMC groups microscopic lattice points into uniformly
nanoscale systems. On the other hand, many systems &&@ed coarse cells and coarse grains, directly from the micro-
significantly larger(e.g., microporous membranes and nano-Scopics, energetics and transition probabilities to obey de-
tubes of many micrometers in |engthnd features in many ta|led balance and continuum COI’]StItutIV_e equatlons. It haS
experimental systems, such as in catalytic reactions on singfeeen found that CGMC preserves the noise, does not exhibit
crystals and in image processing, are often several microns fimerical instabilities, and gives significant computational
size(see for examplé3)). It is clear that multiscale modeling S&vings. However, most problems, whose solution is spa-

and simulation are needed to enable study of phenomer{é?"y nonuniform, exhibit a separation of length scales, such

over scales beyond the realm of currently available molecu@s N lntern_al boundary Iay_er or an !nterfa(_:e_ Whe_re large
lar models. gradients exist only in a relatively smaliligh activityregime

: . . ; that is adjacent to a larg&gw activity regime of low gradi-
. p_n‘ferent muIt|_scaIe tooI;, rewgwed ird], offer the pos- ents. As an example, traveling waves arising in catalytic re-
S'b'l'ty. of exte_ndlng MC S|_mulat|0ns to I'ar.ge'r Sca'?‘s- Oneactions [3] and during the epitaxial growth of materials
class is theonion-typehybrid MC-deterministic multiscale (emanating from a growing cluster on a subshi@®] ex-
lmod_els th%t dare l?aseg on ,a%”?a'” d?czmpcl)s!tlon W'thnoverﬁibit precisely such a separation of length scales. Large gra-
apping subdomains. Here MC is applied only In a small partyie s iy high activity regimes demand microscopic resolu-
of the simulation domain, where microscopic phenomena ar on. As a result. a CGMC with a uniform cell size will be

important, af‘d a deterministic _model is emp_loyeq in.the reShimost equally demanding with a conventional MC simula-
of the domain, where the continuum approximation is Valld'tion. Therefore, it is important to introduce a multiresolution

scales and associated phenomena, the hybuulgrld—typg coarse resolution in low activity regimes. Furthermore, it is
or gap-tooth method can be employd6-18. Here a physi- j ortant to develop mathematical evaluation criteria for
cal domain is partitioned in coarse cells where conservatlong,(,irrying out such model refinement procedures in moving
laws are advanced by a deterministic simulator. Within each. o\ ~Jarser to finer MC methods and vice versa.
coarse celor at in_terface)smicroscopic simu_lators are ap- In this paper we introduce such a framework and demon-
plied to compute fine scale information that IS passe‘?' to thgtrate its feasibility with illustrative examples in the grand
coarse I_evel S'”.‘“'ator- T_he coarse I.evel simulator in WM anonical ensemble. A critical point in our development is
passes information so microscopic simulators are appropripa+ the new framework obeys, by design, detailed balance
ately constrained. Despite significant advances in hybrid 4 gives the proper noise. The last poin7t is imperative to
correctly simulating noise-controlled phenomena such as
nucleation, nonlinear dynamics, pattern formation and selec-
*Corresponding author. tion, and image processing. This is a major advantage of our
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Adsorbate Adsorption

Desorption F(o)(k) = W= 2 g-(y), k=1,...m (2)
FLUID PHASE yeDy
oS sl N ewmrcinnnannmamnn J;l_ S Neean at D, satisfies the constraint9 7, < q,. The fractional value
£ (D O[ 1 O % of the order parameter, =g ', is denoted as the coverage.
P Gellie P celli lCeIIi+ 11 Cell j 42 In large-scale systems and especially in regimes of low
..................... e A e e o f e b Y activity, the order parameter does not vary considerably

within a coarse cell. As a result, local mean field is assumed
within each coarse cell yielding a closure at the stochastic
level. The coarse-grained Hamiltonian of the system is de-
rived from Eq.(1) and is

Microscopic site

FIG. 1. (Color online Schematic of a nonuniform lattice for
exchange of atoms between a coarse cell and the fluid phase.
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approach compared to other hybrid multiscale models men- ¢
tioned above. Furthermore, we propose error estimates to _ 1 - 1T _
assess the loss of information during coarse-graining, which - 2k§£ ,ELE’,#kamkm ZkEEL =)
depends only on the CGMC observablsse Eq.(12) be- oo ¢
low]. These area posterioriestimates in the terminology of + > hz, (3)
the finite element literaturg€23], and thus can be used to keLlg

assess on-the-fly the nu_merlcal ertsince they depe.”o.' only where 7 is the configuration spacévector containing the

on the CGMQ and design the level of coarse-graining ac- - R

cordingly. coarse-grained order parameters for the lattaoel Jy, is the
energy of interaction of an adsorbate in coarse kcallth all
adsorbates present in coarse ¢elfhe energy of interaction

of an adsorbate ikth coarse cellJ,, with adsorbates on the
rest of the lattice is

U|<:U(Z):J_kk(7lk‘1)+ > ‘]_kl77l_h- (4)
le Lol #k

MICROSCOPIC PROCESSES AND SPATIALLY
ADAPTIVE, COARSE-GRAINED PROCESSES

The prototype system studied here involves adsorption
and desorption processes of interacting particles on a micro-
scopic latticeC of N sites. Physically, this system is a fun- ) ] ]
damental building block of adsorption on single crystals andTheé summation extends over all interacting cells whose
microporous materials and of surface reactions and crystdlumber depends on the length of the potentiahnd the
growth models. In analogy with the Ising model, a micro- coarse-grained mesh. By splitting, and the Hamiltonian
scopic site at locatioa e £ is characterized by an order pa- into interactions within a coarse cell and interactions with
rameter,o(z), which is eithera(z)=1 (an occupied sifeor  neighboring cells, both the microscopic MC and global mean
o(2)=0 (an unoccupied sijeln the Ising model terminology, field models are recovered in the corresponding limit.
adsorption and desorption correspond to a spin flip mecha- The transition probabilities on the microscopic lattice for
nism. adsorption and desorption are, respectively,

The energy of the system is given by the Hamiltonian c(z.0) = kP(1 - 5(2)) 5)

1 and
H(g)=— EZEEZ: U2 o(2) cy(z0) =k D0(2), (6)

1 wherek, andky are the adsorption and desorption rate con-
=3 Eﬁ > Jly-2)a(y)o(z) + EL ho(2), (1) stants,8=(ksT) ! is the inverse temperatufég is the Bolt-
yel z#y ze zmann constant antl is the absolute temperatQrandP is

the partial pressure of adsorbing species. The coarse-grained

whereg is a vector containing the spin configurations of thetransition probabilities are derived as outlined 18] and are
entire lattice£, h is the external field, such as the chemical

potential, and] is the potential of adsorbate-adsorbate inter- Ca(k, 7) = kaP (G = 70 = do(ac = me™" (7)
actions. The interaction energy of an adsorbate atzsitéh
adsorbates on the rest of the lattice is denotedU&s
==y Ny-2)o(y)-h. = Uy = -A(Uy+Ug)
Iyn the proposed adaptive CGMC method, a coarse lattice Calk ) =kamee dom ®

L. is defined by grouping neighboring microcells inte  for desorption. These are intuitively obvious. On the other
coarse cells of variable siZsee Fig. 1L Each coarse celD,  hand, the nonintuitive ternmp(n,—1) in Eq. (3) represents
(kel,...,m consists ofg, microcells. We define the pro- the contribution to the Hamiltonian from the interactions
jection operatoiF from microscopic to coarse variables, so within a coarse cell. In previous work, this term has been
that the coarse-grained order paraméstitl an integey incorrectly postulated24] leading to violation of detailed

for adsorption and
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0.6 constant, long-ranged potential is used in all simulations. Re-
‘ sults are shown for attractive interactions—low pressure
(lower set of datpand repulsive interactions—high pressure
(upper set of dajalt is found that the adaptive mesh CGMC
captures the correct transient behavior and equilibrium
states. Furthermore, the noise of adaptive CGMC is nearly
identical to that of the microscopic MC over the entire do-
main, yielding pathwise agreement between the two. This
pathwise agreement stems in part from the fact that the po-
tential is sufficiently long-ranged, so the local mean field
assumption is an excellent closure approximation, and in part
from the fact that the same sequence of random numbers are

e
th

o
~

03

Average lattice coverage

(6 20 4'0 6'0 3}; 160 120 used at each event for microscopic MC and adaptive CGMC.
Time (arb. units) CGMC gives very good results even for short-ranged poten-

tials (see examples ifl9-21).
FIG. 2. Uptake for two sets of parameters USing different coarse In the above examp|e, there is no real need for an adaptive
mgsheswzl(solid line, micrqscopic Iatti(.je_jL.OS(circIeQ, and1.2  mesh. Next we present two problems where adaptive MC is
(triangles. For BJo=-2, the time is multiplied by a factor of 30. egsential. The first addresses the calculation of standing

The total number of microscopic cells hé=300. waves in 1D. In the case of strongly attractive long-range

interactions, the global mean field isotherfk,P(1-6)
balance, at least for adsorption-desorption processes. The latk e %% is multivalued, and at equilibrium, a dense and a
ter could lead to significant errors in solutions under certairgilute phase coexis{the coexistence line is given by
conditions[19,20. The same applies to the tertm—1) in k. P/k;=exp(-BJ,/2)]. For a piecewise constant, long range
U,. Finally, the interaction termd,, are computed by pro- potential, an analytical solution describing the standing wave
jecting the microscopic potential on a Haar wavelet basis asonnecting the two coexisting phases exists:
discussed ih20].

An essential feature of a correct adaptive mesh is to en- 1

sure that the transition probabilities obey detailed balance. 0(x) = 5[(2& - Dtanh(BJp(26, - 1)x) +1]. (11
Upon an adsorption-desorption eventgt the order param-
eter vectorn is modified by the unit vectog,, and it is

required that Here 6, is the equilibrium coverage of the dense phése
lution of the global mean field isotheymand BJ,
ek ) = u(n+ dJcyk, 7+ 3, (9 =pB=_ -, J(y-2) is the zeroth moment of the potential.
This is an excellent benchmark problem of adaptive mesh
w(m)cy(k, ) = w(n— 8Jcak, 7= 8. (100 CGMC because the interface separating the two phases is of

microscopic size at low temperatures whereas the domain of

The limiting distribution of the configuration spage(»)  each phase is semi-infinite. Adsorption and desorption simu-
gives the probability of the system existing in stateFol-  lations in the grand canonical ensemble are carried out by
lowing the procedure of19], it is straightforward to show initially portioning the lattice into two equal size parts, one
that detailed balance is satisfied for adaptive meshes introwith a coveraged, and the other withd_ (6, and 6_ are the
duced here. equilibrium coverages of the dense and dilute phases, respec-
tively; 6, and 6_ are obtained using two independent MC
simulations with periodic boundary conditions and a uniform
initial coverage over the entire domainUsing periodic
boundary conditions, two standing waves are formed located

Next we present illustrative examples in one and two di-roughly atx=0 and 0.5(the dimensionless distance is de-
mensions(1D and 2D to illustrate the feasibility of the fined asx=X/Na, whereX s the distance of the center of the
adaptive CGMC method and evaluate the savings in CPUsoarse cell from one edge of the lattice amds the micro-
First, we examine the correctness of the dynamics, equilibscopic lattice size The squares in Fig.(8) show the excel-
rium states, and the noise in the presence of interactionsgnt agreement of a uniform mesh @f 64 with the analyti-
This is a prototype statistical mechanics probléor first ~ cal solution given by the solid line but highlight that the
nearest-neighbor interactions, §@5)). Figure 2 shows the standing wave is barely resolved.
uptake on an initially empty 1D lattice where the adaptive Information theory is used in order to assess the error in
cells are set arbitrarily in a geometric sequence starting fronddaptive CGMC methods following ideas introduced2a).
a microscopic cell on the left and increasing the cell size byBy defining the maximum difference in interaction between
 from its previous one, i.eqy.;=wqy (note that eacly, is  two cells, j=maxJ(x-y)-J(x'-y")|,x,x" € Dy,y,y’ €D,
truncated into an integer number and the last cell accommaan upper bound for the relative entrofdgss of information,
dates the remaining microscopic cells so that the total numf 109(demq g/ ditr goF) A g 5 DEIWEEN the microscopic and
ber N of simulated microscopic cells is fixgdA piecewise the adaptive CGMC can be computed

MONTE CARLO SIMULATIONS OF ADAPTIVE
COARSE-GRAINED PROCESSES
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Dimensionless position FIG. 4. (Color onling (a) Adaptive mesh usedb) 2D steady
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Uniform mesh—. . g€ p . .
FETEETI et locations. Total number of microscopic cells d¥g=10544 and
MeShIWI FEET IR e e Ny=300 along thex andy axis, respectively.
Mesh 2—y.| R ey

ror or node insertion, can be implemented for reducing the
error in the solution. Here a simplified version of the latter is

FIG. 3. (a) Comparison of steady state analytical standing Waveemployed. In particular, cells W't.h "’“? error esF'mate greater
solution to adaptive CGMC simulation for parameters indicatied. than a thresholdtaken to be 5,'0 in Fig.)3are d'V'd,ed into
Error estimates in coverage using a uniform mégh64, m=256, two smalle.r cells qf.equal size. The coarse-grained order
squares and two adaptive meshegircles and diamonds () ~ Parameter is also divided equally between the two new cells.
Meshes around the interface. The total number of microscopic celld) the event when either the cell size or the occupancy is an
is N=16384. odd integer, one of the cells and/or one of the order param-
eters are made larger by 1. The adaptive mnoted as
mesh 1 in Fig. Bgenerated this way is shown in FigcR It

046 048 050 052 054

jkk

= — - -1+ (g- consists of smaller cells of uniform sizg around the inter-
o 4% k(O — 1)<nk(q a1+ Q=m face(in the range 0.48 x<<0.52 and larger cells of uniform
. size g,=64 elsewhere. A second mesh refinement is per-
X(q- 7+ 1)) +4E E M(QZM(C{— m = 27 formed based on the solution obtained on mesh 1 to get a
ko1 G finer mesh around the interface. This mesh 2 is also depicted
I#k in Fig. 3(c).
x(q= 79(q= 7)), (12 The adaptive MC resultécircles and diamondsare in

excellent agreement with the analytical solution and resolve

the interface much more accurately as judged from the num-
where the brackets denote ensemble averagg,s is the  ber of cells placed at the interface and the reduction in error
coarse-grained Gibbs measure, angd xF is the coarse- (the CPU of the finest mesh is approximately larger by a
graining of the microscopic Gibbs measure. Simulationsfactor of 2 but the maximum error is approximately 16 times
have confirmed that the scaling laws of error in coarsesmalle). Thus,a posteriorierror estimates offer a judicious
graining can adequately be described using (g). way of designing meshes of adaptive CGMC for stochastic

Relation(12) allows one to design adaptively the coarsesimulation. More efficient strategies for mesh refinement will
MC simulation with a desired accuracy. Inspection of thebe subject of future work.
theoretical error estimate reveals that this term penalizes in- Last we present a second example in 2D where the pres-
terfaces in transitions from a high to a low coverage area andure field is nonuniform. External field nonuniformity arises
vice versa. As a result, an adaptive method has finer grith many practical systems, such as deposition from high
points on the transition region rather than on the two phasegressure gases, catalytic reactors, etc. as well as variations of
themselves. We remark here the notable similarity to the fithe surface temperature. In the presence of phase transitions
nite element literature for viscous hyperbolic equations,on the surface, very abrufriearly discontinuoyschanges in
where regions ofiviscoug shock waves are resolved to a the external field are expected for coupled surface-fluid prob-
greater extent than smooth regions by employargpsteriori  lems. Macroscopically, these abrupt changes in the external
estimates; see for instanf26]. field are demonstrated as ignitions and extinctions. In our
The squares in Fig.(B) show the error estimate obtained example, a square pressure pattern in xhdirection and

using Eq.(12) for the uniform mesh witlg=64. Coverages periodic in they direction is used. The microscopic lattice
and error estimates in each cell are expected values fromonsists of 300 cells in thg direction by 16 cells in thex
time intervals of 16 MC events each per simulation as well direction. This lattice choice corresponds to actual lengths of
as 20 independent MC simulations. As expected, the error i8.3 um X100 um (assuming a lattice spacing ef1 nm).
maximum at the interface. Commonly used strategies foThe adaptive mesh is depicted in Figajwith fine mesh
adaptive mesh refinement, such as the equidistribution of enear the discontinuities of pressure and coarse mesh at re-
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FIG. 5. Comparison ofa) steady state coverage profile aftml
the corresponding noise in coverage from microscopic MC and
adaptive CGMC. The noise is comparable over the same length £ g (Color onling CPU vs number of coarse cells in adap-
scale, e.g., in microscopic regimes. The adaptive mesh is indicatefl,e mesh MC for two potential lengths indicated. The parameters
by the spacing between points. The total number of mlcroscopl%remozz, N=300,k,P=1, andks=1. The values of» correspond-
cells isN=600; the other parameters are those of Fig. 4. ing to the depicted values ofi are 1, 1.02, 1.05, and 1.1.

Number of coarse cells, m

mote regions. Figure() shows the time average coverage | j5=50, where several operations are needed to compute the
and the pressure field is depicted in Figb)s The CPU is g interaction energies, the CPU reduces almost quadraticly
6 minutes for perform!ng thls S|mulat|on on a Pgntlum 4(cpu~ m™8). Obviously, details of the exponent would de-
2.4 GHz processor. It is estlnjated. that it 'WI|| require aboutpend on the specifics of the mesh. Additionalsavings are
1892 years to do this simulation with a microscopic KMC. g, hecteq for canonical ensemigtffusion) simulations. It is

Figure Sa) shows the expected value of the coverage Vg,jea; that significant savings can result using the proposed
position for the conditions of 2D simulations of Fig. 4 but for adaptive mesh CGMC method.

a small, 1D domain where microscopic MC with good sta-

tistics is still feasible. Figure () compares the correspond-

ing microscopic and coarse MC noise at steady state and also CONCLUSIONS

depicts the discontinuous pressure profile. Note that the noise |, summary, we have introduced a new multiresolution
in the microscopic .MC is obtaineq over the same lengthy.o mework for performing dynamic Monte Car(blC) simu-
scales as the adaptive CGMC and is given by lation. This method is essential for systems of mesoscopic
length scales and when interfaces, boundary conditions, in-

S = \/<(1 D U(y))2> B <£ D a(y)>2. (13) ternal boundary layers demand a microscopic resolution in

kycD, kyeDy some high activitylarge gradientsregimes but are tolerable
to coarse graining in other, low activityow gradient$ re-
Figure 3b) indicates that the noise of adaptive CGMC is gimes. The proposed framework obeys detailed balance,
practically identical to the microscopic MC in regions of gives asymptotically the same noise as the microscopic MC
high resolution. This is an important point indicating that at the same length scale, and the correct dynamics and equi-
adaptive CGMC can correctly capture the noise at sharp inlibrium states. The correct noise sets our method apart from
terfaces and in noise controlled phenomena, such as nuclether multiscale methods and makes it the only suitable one
ation and growth, which are localized at a moving interfacefor noise-controlled phenomena. The substantial computa-
The adaptive CGMC can correctly capture not just the overtional savings enable multiresolution MC simulation of com-
all noise(Fig. 2) but also spatially resolved noi§Eig. 5(b)]. plex systems with separation in length scales. Information
Finally, we have performed a number of 1D simulationsloss theory provides posterioriestimates of the errors for
under a uniform pressure field for short and long potentialghis new framework that can be used to guide the mesh de-
to assess the savings in CPU. Simulations have been comelopment. The new method could enable simulations over
ducted for a total of & 10° MC events, which correspond to large scales in numerous applications ranging from nucle-
approximately the same real time as the mesh coarsens. Thgon and growth to nonlinear dynamics to pattern formation
lattice starts with a microscopic cell at one end and variesind selection to image processing.
from one cell to the next using a geometric sequence. The
CPU results are depiqted i'n Fig. 6. Fpr short p_oterﬂials where ACKNOWLEDGMENTS
the number of operations in computing energies is small, the
CPU is reduced linearly with decreasing number of coarse This research was partially supported by NSF through
cells. On the other hand, for long-range interactions, e.g|TR-0219211, DMS-0100872, and CTS-0312117.
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