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A spatially adaptive Monte Carlo method is introduced directly from the underlying microscopic mecha-
nisms, which satisfies detailed balance, gives the correct noise, and describes accurately dynamic and equilib-
rium states for adsorption-desorptionsgrand canonical ensembled processes. It enables simulations of large
scales while capturing sharp gradients with molecular resolution at significantly reduced computational cost.A
posteriori estimates, in the sense used in finite-elements methods, are developed for assessing errorssinfor-
mation lossd in coarse-graining and guiding mesh generation.
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INTRODUCTION

Monte CarlosMCd is one of the most widespread molecu-
lar simulation tools in science and engineeringf1,2g. MC
applications range from the modern areas of biotechnology
and nanotechnology to catalysis to crystal growth to image
processing to stochastic optimization. Due to its discrete na-
ture of moving one atom at a time, MC is computationally
very intensive. As a result, MC is typically limited to bulk-
like systemssstudied via periodic boundary conditionsd or
nanoscale systems. On the other hand, many systems are
significantly largerse.g., microporous membranes and nano-
tubes of many micrometers in lengthd and features in many
experimental systems, such as in catalytic reactions on single
crystals and in image processing, are often several microns in
sizessee for examplef3gd. It is clear that multiscale modeling
and simulation are needed to enable study of phenomena
over scales beyond the realm of currently available molecu-
lar models.

Different multiscale tools, reviewed inf4g, offer the pos-
sibility of extending MC simulations to larger scales. One
class is theonion-typehybrid MC-deterministic multiscale
models that are based on domain decomposition with over-
lapping subdomains. Here MC is applied only in a small part
of the simulation domain, where microscopic phenomena are
important, and a deterministic model is employed in the rest
of the domain, where the continuum approximation is valid.
This has been the most advanced type of multiscale simula-
tion f5–15g. In systems where there is no separation of length
scales and associated phenomena, the hybridmultigrid-type
or gap-tooth method can be employedf16–18g. Here a physi-
cal domain is partitioned in coarse cells where conservations
laws are advanced by a deterministic simulator. Within each
coarse cellsor at interfacesd microscopic simulators are ap-
plied to compute fine scale information that is passed to the
coarse level simulator. The coarse level simulator in turn
passes information so microscopic simulators are appropri-
ately constrained. Despite significant advances in hybrid

multiscale simulations, they have certain shortcomings.
These include numerical instabilities and a difficulty in en-
suring conservation across interfacessseef4g for specific ex-
amplesd. Furthermore, noise is adversely affected, which in
turn alters fluctuations-driven physical phenomenaf14g.
There is therefore a need to develop alternative strategies
that overcome these problems.

The coarse-grained MCsCGMCd simulation introduced
recently in f19–21g attempts to overcome these problems.
CGMC groups microscopic lattice points into uniformly
sized coarse cells and coarse grains, directly from the micro-
scopics, energetics and transition probabilities to obey de-
tailed balance and continuum constitutive equations. It has
been found that CGMC preserves the noise, does not exhibit
numerical instabilities, and gives significant computational
savings. However, most problems, whose solution is spa-
tially nonuniform, exhibit a separation of length scales, such
as an internal boundary layer or an interface where large
gradients exist only in a relatively small,high activityregime
that is adjacent to a large,low activity regime of low gradi-
ents. As an example, traveling waves arising in catalytic re-
actions f3g and during the epitaxial growth of materials
semanating from a growing cluster on a substratedf22g ex-
hibit precisely such a separation of length scales. Large gra-
dients in high activity regimes demand microscopic resolu-
tion. As a result, a CGMC with a uniform cell size will be
almost equally demanding with a conventional MC simula-
tion. Therefore, it is important to introduce a multiresolution
framework of dynamic CGMC simulation that is capable of
having atomistic scale resolution in high activity regimes and
coarse resolution in low activity regimes. Furthermore, it is
important to develop mathematical evaluation criteria for
carrying out such model refinement procedures in moving
from coarser to finer MC methods and vice versa.

In this paper we introduce such a framework and demon-
strate its feasibility with illustrative examples in the grand
canonical ensemble. A critical point in our development is
that the new framework obeys, by design, detailed balance
and gives the proper noise. The last point is imperative to
correctly simulating noise-controlled phenomena such as
nucleation, nonlinear dynamics, pattern formation and selec-
tion, and image processing. This is a major advantage of our*Corresponding author.
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approach compared to other hybrid multiscale models men-
tioned above. Furthermore, we propose error estimates to
assess the loss of information during coarse-graining, which
depends only on the CGMC observablesfsee Eq.s12d be-
lowg. These area posterioriestimates in the terminology of
the finite element literaturef23g, and thus can be used to
assess on-the-fly the numerical errorssince they depend only
on the CGMCd and design the level of coarse-graining ac-
cordingly.

MICROSCOPIC PROCESSES AND SPATIALLY
ADAPTIVE, COARSE-GRAINED PROCESSES

The prototype system studied here involves adsorption
and desorption processes of interacting particles on a micro-
scopic latticeL of N sites. Physically, this system is a fun-
damental building block of adsorption on single crystals and
microporous materials and of surface reactions and crystal
growth models. In analogy with the Ising model, a micro-
scopic site at locationzPL is characterized by an order pa-
rameter,sszd, which is eithersszd=1 san occupied sited or
sszd=0 san unoccupied sited. In the Ising model terminology,
adsorption and desorption correspond to a spin flip mecha-
nism.

The energy of the system is given by the Hamiltonian

HssI d = −
1

2 o
zPL

Uszdsszd

= −
1

2 o
yPL

o
zÞy

Jsuy − zudssydsszd + o
zPL

hsszd, s1d

wheresI is a vector containing the spin configurations of the
entire latticeL, h is the external field, such as the chemical
potential, andJ is the potential of adsorbate-adsorbate inter-
actions. The interaction energy of an adsorbate at sitez with
adsorbates on the rest of the lattice is denoted asUszd
=oyPLJsuy−zudssyd−h.

In the proposed adaptive CGMC method, a coarse lattice
Lc is defined by grouping neighboring microcells intom
coarse cells of variable sizessee Fig. 1d. Each coarse cellDk
skP1, . . . ,md consists ofqk microcells. We define the pro-
jection operatorF from microscopic to coarse variables, so
that the coarse-grained order parametersstill an integerd

Fssdskd = hk = o
yPDk

ssyd, k = 1, . . . ,m s2d

at Dk satisfies the constraint 0øhkøqk. The fractional value
of the order parameter,h̄k=qk

−1hk, is denoted as the coverage.
In large-scale systems and especially in regimes of low

activity, the order parameter does not vary considerably
within a coarse cell. As a result, local mean field is assumed
within each coarse cell yielding a closure at the stochastic
level. The coarse-grained Hamiltonian of the system is de-
rived from Eq.s1d and is

H̄shI d = −
1

2 o
kPLc

Ūkhk

= −
1

2 o
kPLc

o
lPLc,lÞk

J̄klhkhl −
1

2 o
kPLc

J̄kkhkshk − 1d

+ o
kPLc

hhk, s3d

where hI is the configuration spacesvector containing the

coarse-grained order parameters for the latticed and J̄kl is the
energy of interaction of an adsorbate in coarse cellk with all
adsorbates present in coarse celll. The energy of interaction

of an adsorbate inkth coarse cell,Ūk, with adsorbates on the
rest of the lattice is

Ūk = Ūszd = J̄kkshk − 1d + o
lPLc,lÞk

J̄klhl − h. s4d

The summation extends over all interacting cells whose
number depends on the length of the potentialL and the

coarse-grained mesh. By splittingŪk and the Hamiltonian
into interactions within a coarse cell and interactions with
neighboring cells, both the microscopic MC and global mean
field models are recovered in the corresponding limit.

The transition probabilities on the microscopic lattice for
adsorption and desorption are, respectively,

casz,sI d = kaP„1 − sszd… s5d

and

cdsz,sI d = kde
−bUszdsszd, s6d

whereka andkd are the adsorption and desorption rate con-
stants,b=skBTd−1 is the inverse temperatureskB is the Bolt-
zmann constant andT is the absolute temperatured, andP is
the partial pressure of adsorbing species. The coarse-grained
transition probabilities are derived as outlined inf19g and are

cask,hI d = kaPsqk − hkd = d0sqk − hkde−bh s7d

for adsorption and

cdsk,hI d = kdhke
−bŪk = d0hke

−bsŪk+U0d s8d

for desorption. These are intuitively obvious. On the other
hand, the nonintuitive termhkshk−1d in Eq. s3d represents
the contribution to the Hamiltonian from the interactions
within a coarse cell. In previous work, this term has been
incorrectly postulatedf24g leading to violation of detailed

FIG. 1. sColor onlined Schematic of a nonuniform lattice for
exchange of atoms between a coarse cell and the fluid phase.
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balance, at least for adsorption-desorption processes. The lat-
ter could lead to significant errors in solutions under certain
conditionsf19,20g. The same applies to the termshk−1d in

Ūk. Finally, the interaction termsJ̄kl are computed by pro-
jecting the microscopic potential on a Haar wavelet basis as
discussed inf20g.

An essential feature of a correct adaptive mesh is to en-
sure that the transition probabilities obey detailed balance.
Upon an adsorption-desorption event atDk, the order param-
eter vectorhI is modified by the unit vectordIk, and it is
required that

mshI dcask,hI d = mshI + dIkdcdsk,hI + dIkd, s9d

mshI dcdsk,hI d = mshI − dIkdcask,hI − dIkd. s10d

The limiting distribution of the configuration spacemshI d
gives the probability of the system existing in statehI . Fol-
lowing the procedure off19g, it is straightforward to show
that detailed balance is satisfied for adaptive meshes intro-
duced here.

MONTE CARLO SIMULATIONS OF ADAPTIVE
COARSE-GRAINED PROCESSES

Next we present illustrative examples in one and two di-
mensionss1D and 2Dd to illustrate the feasibility of the
adaptive CGMC method and evaluate the savings in CPU.
First, we examine the correctness of the dynamics, equilib-
rium states, and the noise in the presence of interactions.
This is a prototype statistical mechanics problemsfor first
nearest-neighbor interactions, seef25gd. Figure 2 shows the
uptake on an initially empty 1D lattice where the adaptive
cells are set arbitrarily in a geometric sequence starting from
a microscopic cell on the left and increasing the cell size by
v from its previous one, i.e.,qk+1=vqk snote that eachqk is
truncated into an integer number and the last cell accommo-
dates the remaining microscopic cells so that the total num-
ber N of simulated microscopic cells is fixedd. A piecewise

constant, long-ranged potential is used in all simulations. Re-
sults are shown for attractive interactions–low pressure
slower set of datad and repulsive interactions–high pressure
supper set of datad. It is found that the adaptive mesh CGMC
captures the correct transient behavior and equilibrium
states. Furthermore, the noise of adaptive CGMC is nearly
identical to that of the microscopic MC over the entire do-
main, yielding pathwise agreement between the two. This
pathwise agreement stems in part from the fact that the po-
tential is sufficiently long-ranged, so the local mean field
assumption is an excellent closure approximation, and in part
from the fact that the same sequence of random numbers are
used at each event for microscopic MC and adaptive CGMC.
CGMC gives very good results even for short-ranged poten-
tials ssee examples inf19–21gd.

In the above example, there is no real need for an adaptive
mesh. Next we present two problems where adaptive MC is
essential. The first addresses the calculation of standing
waves in 1D. In the case of strongly attractive long-range
interactions, the global mean field isothermfkaPs1−ud
=kde

−bJ0uug is multivalued, and at equilibrium, a dense and a
dilute phase coexistfthe coexistence line is given by
kaP/kd=exps−bJ0/2dg. For a piecewise constant, long range
potential, an analytical solution describing the standing wave
connecting the two coexisting phases exists:

usxd =
1

2
fs2u+ − 1dtanh„bJ0s2u+ − 1dx… + 1g. s11d

Hereu+ is the equilibrium coverage of the dense phasesso-
lution of the global mean field isothermd and bJ0
=bo−LøyøLJsuy−zud is the zeroth moment of the potential.

This is an excellent benchmark problem of adaptive mesh
CGMC because the interface separating the two phases is of
microscopic size at low temperatures whereas the domain of
each phase is semi-infinite. Adsorption and desorption simu-
lations in the grand canonical ensemble are carried out by
initially portioning the lattice into two equal size parts, one
with a coverageu+ and the other withu− su+ andu− are the
equilibrium coverages of the dense and dilute phases, respec-
tively; u+ and u− are obtained using two independent MC
simulations with periodic boundary conditions and a uniform
initial coverage over the entire domaind. Using periodic
boundary conditions, two standing waves are formed located
roughly at x=0 and 0.5sthe dimensionless distance is de-
fined asx=X/Na, whereX is the distance of the center of the
coarse cell from one edge of the lattice anda is the micro-
scopic lattice sized. The squares in Fig. 3sad show the excel-
lent agreement of a uniform mesh ofq=64 with the analyti-
cal solution given by the solid line but highlight that the
standing wave is barely resolved.

Information theory is used in order to assess the error in
adaptive CGMC methods following ideas introduced inf21g.
By defining the maximum difference in interaction between
two cells, jkl=maxuJsx−yd−Jsx8−y8du ,x,x8PDk,y,y8PDl,
an upper bound for the relative entropysloss of informationd,
e logsdmm,q,b /dmL,b0Fddmm,q,b, between the microscopic and
the adaptive CGMC can be computed

FIG. 2. Uptake for two sets of parameters using different coarse
meshes,v=1 ssolid line, microscopic latticed, 1.05scirclesd, and 1.2
strianglesd. For bJ0=−2, the time is multiplied by a factor of 30.
The total number of microscopic cells isN=300.
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«k = 4o
k

jkk

qksqk − 1d
khksq − hkdfhkshk − 1d + sq − hkd

3sq − hk + 1dgl + 4o
k

o
l

lÞk

jkl

qkql
kq2hlsq − hld − 2hkhl

3sq − hkdsq − hldl, s12d

where the brackets denote ensemble average,mm,q,b is the
coarse-grained Gibbs measure, andmL,b0F is the coarse-
graining of the microscopic Gibbs measure. Simulations
have confirmed that the scaling laws of error in coarse-
graining can adequately be described using Eq.s12d.

Relations12d allows one to design adaptively the coarse
MC simulation with a desired accuracy. Inspection of the
theoretical error estimate reveals that this term penalizes in-
terfaces in transitions from a high to a low coverage area and
vice versa. As a result, an adaptive method has finer grid
points on the transition region rather than on the two phases
themselves. We remark here the notable similarity to the fi-
nite element literature for viscous hyperbolic equations,
where regions ofsviscousd shock waves are resolved to a
greater extent than smooth regions by employinga posteriori
estimates; see for instancef26g.

The squares in Fig. 3sbd show the error estimate obtained
using Eq.s12d for the uniform mesh withq=64. Coverages
and error estimates in each cell are expected values from
time intervals of 106 MC events each per simulation as well
as 20 independent MC simulations. As expected, the error is
maximum at the interface. Commonly used strategies for
adaptive mesh refinement, such as the equidistribution of er-

ror or node insertion, can be implemented for reducing the
error in the solution. Here a simplified version of the latter is
employed. In particular, cells with an error estimate greater
than a thresholdstaken to be 5.0 in Fig. 3d are divided into
two smaller cells of equal size. The coarse-grained order
parameter is also divided equally between the two new cells.
In the event when either the cell size or the occupancy is an
odd integer, one of the cells and/or one of the order param-
eters are made larger by 1. The adaptive meshsdenoted as
mesh 1 in Fig. 3d generated this way is shown in Fig. 3scd. It
consists of smaller cells of uniform sizeq1 around the inter-
facesin the range 0.48,x,0.52d and larger cells of uniform
size q2=64 elsewhere. A second mesh refinement is per-
formed based on the solution obtained on mesh 1 to get a
finer mesh around the interface. This mesh 2 is also depicted
in Fig. 3scd.

The adaptive MC resultsscircles and diamondsd are in
excellent agreement with the analytical solution and resolve
the interface much more accurately as judged from the num-
ber of cells placed at the interface and the reduction in error
sthe CPU of the finest mesh is approximately larger by a
factor of 2 but the maximum error is approximately 16 times
smallerd. Thus,a posteriorierror estimates offer a judicious
way of designing meshes of adaptive CGMC for stochastic
simulation. More efficient strategies for mesh refinement will
be subject of future work.

Last we present a second example in 2D where the pres-
sure field is nonuniform. External field nonuniformity arises
in many practical systems, such as deposition from high
pressure gases, catalytic reactors, etc. as well as variations of
the surface temperature. In the presence of phase transitions
on the surface, very abruptsnearly discontinuousd changes in
the external field are expected for coupled surface-fluid prob-
lems. Macroscopically, these abrupt changes in the external
field are demonstrated as ignitions and extinctions. In our
example, a square pressure pattern in thex direction and
periodic in they direction is used. The microscopic lattice
consists of 300 cells in they direction by 105 cells in thex
direction. This lattice choice corresponds to actual lengths of
0.3 mm3100 mm sassuming a lattice spacing of,1 nmd.
The adaptive mesh is depicted in Fig. 4sad with fine mesh
near the discontinuities of pressure and coarse mesh at re-

FIG. 3. sad Comparison of steady state analytical standing wave
solution to adaptive CGMC simulation for parameters indicated.sbd
Error estimates in coverage using a uniform meshsq=64, m=256,
squaresd and two adaptive meshesscircles and diamondsd. scd
Meshes around the interface. The total number of microscopic cells
is N=16384.

FIG. 4. sColor onlined sad Adaptive mesh used.sbd 2D steady
state coverage profile. The pressure is discontinuous at the indicated
locations. Total number of microscopic cells areNx=10544 and
Ny=300 along thex andy axis, respectively.
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mote regions. Figure 4sbd shows the time average coverage
and the pressure field is depicted in Fig. 5sbd. The CPU is
6 minutes for performing this simulation on a Pentium 4
2.4 GHz processor. It is estimated that it will require about
1892 years to do this simulation with a microscopic KMC.

Figure 5sad shows the expected value of the coverage vs
position for the conditions of 2D simulations of Fig. 4 but for
a small, 1D domain where microscopic MC with good sta-
tistics is still feasible. Figure 5sbd compares the correspond-
ing microscopic and coarse MC noise at steady state and also
depicts the discontinuous pressure profile. Note that the noise
in the microscopic MC is obtained over the same length
scales as the adaptive CGMC and is given by

sk =ÎKS 1

qk
o

yPDk

ssydD2L −K 1

qk
o

yPDk

ssydL2

. s13d

Figure 5sbd indicates that the noise of adaptive CGMC is
practically identical to the microscopic MC in regions of
high resolution. This is an important point indicating that
adaptive CGMC can correctly capture the noise at sharp in-
terfaces and in noise controlled phenomena, such as nucle-
ation and growth, which are localized at a moving interface.
The adaptive CGMC can correctly capture not just the over-
all noisesFig. 2d but also spatially resolved noisefFig. 5sbdg.

Finally, we have performed a number of 1D simulations
under a uniform pressure field for short and long potentials
to assess the savings in CPU. Simulations have been con-
ducted for a total of 63106 MC events, which correspond to
approximately the same real time as the mesh coarsens. The
lattice starts with a microscopic cell at one end and varies
from one cell to the next using a geometric sequence. The
CPU results are depicted in Fig. 6. For short potentials where
the number of operations in computing energies is small, the
CPU is reduced linearly with decreasing number of coarse
cells. On the other hand, for long-range interactions, e.g.,

L /a=50, where several operations are needed to compute the
cell interaction energies, the CPU reduces almost quadraticly
sCPU,m1.8d. Obviously, details of the exponent would de-
pend on the specifics of the mesh. Additionalq2 savings are
expected for canonical ensemblesdiffusiond simulations. It is
clear that significant savings can result using the proposed
adaptive mesh CGMC method.

CONCLUSIONS

In summary, we have introduced a new multiresolution
framework for performing dynamic Monte CarlosMCd simu-
lation. This method is essential for systems of mesoscopic
length scales and when interfaces, boundary conditions, in-
ternal boundary layers demand a microscopic resolution in
some high activityslarge gradientsd regimes but are tolerable
to coarse graining in other, low activityslow gradientsd re-
gimes. The proposed framework obeys detailed balance,
gives asymptotically the same noise as the microscopic MC
at the same length scale, and the correct dynamics and equi-
librium states. The correct noise sets our method apart from
other multiscale methods and makes it the only suitable one
for noise-controlled phenomena. The substantial computa-
tional savings enable multiresolution MC simulation of com-
plex systems with separation in length scales. Information
loss theory providesa posteriori estimates of the errors for
this new framework that can be used to guide the mesh de-
velopment. The new method could enable simulations over
large scales in numerous applications ranging from nucle-
ation and growth to nonlinear dynamics to pattern formation
and selection to image processing.
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FIG. 5. Comparison ofsad steady state coverage profile andsbd
the corresponding noise in coverage from microscopic MC and
adaptive CGMC. The noise is comparable over the same length
scale, e.g., in microscopic regimes. The adaptive mesh is indicated
by the spacing between points. The total number of microscopic
cells isN=600; the other parameters are those of Fig. 4.

FIG. 6. sColor onlined CPU vs number of coarse cells in adap-
tive mesh MC for two potential lengths indicated. The parameters
arebJ0=2, N=300,kaP=1, andkd=1. The values ofv correspond-
ing to the depicted values ofm are 1, 1.02, 1.05, and 1.1.
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