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Finite-difference-based lattice Boltzmann model for dense binary mixtures
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We propose a finite-difference-based lattice Boltzmann model for dense binary mixtures based on the
Enskog theory. The model is applicable to a mixture composed of two dense fluids with different shear
viscosities. The macroscopic hydrodynamic and diffusion equations are derived from the model through the
Chapmann-Enskog procedure. The model is also validated numerically.
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[. INTRODUCTION velocity Enskog equations, which are derived from Enskog
, ) , . .. theory and use different discrete-velocity sets for different
Modeling and simulating mixtures of dense fluids is acomponents, using a finite-difference scheme. In this finite-
challenging task in both science and engineering b_ecaustﬂfference-based lattice Boltzmann equatiofFDLBE)
such a system usually involves large range scales in bothqgel, the postcollision distribution functions of each com-
time and space, which may cause a significant obstacle fqfonent are shifted according to a Lax-Wendroff scheme,
many conventional numerical methods based on the Naviefyhich enables the distribution functions of different species
Stokes equations. On the other hand, it is well understoog eyolve on the same uniform lattice. The paper is organized
that macroscopic phenomena occurring on large time angs foliows. In Sec. II, we present the general Enskog theory
space scales are nothing but results of microscopic interags pinary mixtures of dense fluids; in Sec. Ill, a discrete-
tions between molecules. Therefore, once the microscopige|ocity Enskog model is proposed for an isothermal binary
interactions are modeled appropriately, the hydrodynamigyixire: a FDLBE is obtained from the discrete-velocity
behavior of the system appears naturally. The lattice Boltzgqations in Sec. IV, together with an analysis of the model:
mann equation(LBE) method which appeared in recent i3 'sec. v, we present some numerical verifications for the
years is a promising 'tooI for simulating fluid systems involv- model, and finally some discussion is made in Sec. VI.
ing complex interactiongl].
In the literature, there exist several LBE models for mul-
ticomponent systems, which were obtained from different Il. ENSKOG THEORY FOR DENSE BINARY
viewpoints. Historically, Gunstensest al. were the first to MIXTURES
apply the LBE to such systenj&] based on the heuristic
color lattice gas automata model developed by Rothman and Enskog theory for single-component dense-hard-sphere
Keller [3]. The idea of using some pseudopotentials to modeases was an extension of the Boltzmann theory, in which
the interparticle interactions was introduced into the LBEboth the difference in position of two colliding particles and
method by Shan and Doolen for multicomponent systemghe increase in collision probability are considered. This
[4]. An alternative approach, in which the free energy wagheory was later extended to binary mixtures of hard spheres
incorporated into the collision operator through the pressur®y Thorne[8]. These theories are usually termed the standard
tensor, was proposed by Swit al.[5]. The above models Enskog theorySET). Van Beijeren and Erng®] later pro-
were more or less heuristically constructed, and might inposed a revised Enskog theofRET) for both single-
volve some inconsistency with thermodynami®]. Re- component and multicomponent fluids, which took account
cently, it has been demonstrated that LBE models with soundf the spatial nonuniformities in the radial distribution func-
physics can be derived directly from certain kinetic equa-ions. It has been shown that the RET for a single-component
tions using standard discretization procedures. For exampléuid is equivalent to the SET, but for binary mixtures, there
a LBE model for ideal binary mixtures was developed basedire some distinct differences between the two theories. Very
on Boltzmann theory6]; and subsequently a model for non- recently, an Enskog theory for mixtures of dense fluids was
ideal binary mixtures was proposed based on Enskog theorPro]posed in the SET framework from a different viewpoint
7). 10].
: ]However, the LBE model proposed in RET] can only be Nevertheless, regardless of the difference between these
used to mixtures composed of two fluids with identical shealEnskog theories, the kinetic equation for each species in a
viscosities, because each component uses the same discrbteary mixture composed of components 0 and 1 shares the
velocity set. In this paper, we aim to construct rigorously asame form,
more general LBE model for binary mixtures based on En-
skog theory. The basic idea is to discretize the discrete-

wherea’=1-a, D,=4d,+v,-V, and f,(x,v,4,t) is the single-
particle distribution function representing the average num-
*Corresponding author. Electronic address: metzhao@ust.hk  ber of hard spheres of componemtwith diametero, and

(Da t0a- Vva)fa(X,Va,t) = Jaa+ Jaa’ ’ (1)

1539-3755/2005/12)/02670112)/$23.00 026701-1 ©2005 The American Physical Society



Z. GUO AND T. S. ZHAO PHYSICAL REVIEW E71, 026701(2005

massm,) at positionx with velocity v, at timet. g, is the  Chapman-Enskog expansion meth¢ti2]. The resultant
acceleration due to an external force acting on the particle atquations for both the SET and RET take the same form, and
componenta. J,, is the collision operator between two the expressions of the shear viscosity, the bulk viscosity, and

spheres of componengsandb and is given by(b=a,a’) the thermal conductivity for the SET and RET are also iden-
tical. However, the expressions of the mutual diffusion coef-
J.=1d X XN £ O VO (X, V. ficient and the thermal diffusion coefficient show some dif-
2 f Hatd Xar(X: X {1 Fo " Vo) Falx,v2) ferences due to the different choices of the RDF.
= Xab(X: X ) Fp (X7, vp) fa(x,va) ], (2
. . s . I1l. A SIMPLIFIED ENSKOG MODEL FOR ISOTHERMAL
where y,p is the radial distribution functiotRDF) between BINARY MIXTURES
componenta andb, x*=x* o,k with o,,=(o,+0,)/2, and
duap= crgb@(vba-k)(vba-k)dk dvy, is the collision space be- The Enskog equatiofl) can be simplified for isothermal

tween two spheres of componeatandb. v,,=v,—V, is the  mixtures. For simplicity, in what follows we consider the
relative velocity of the two colliding sphere®.is the Heavi- case of the SET, i.e., the RDF is chosen to be
side unit step function, arklis the unit vector directed from  Xap(X, X" [{Ni}) = xap(X+Yanoapk) With y,,=1/2. Tothis end,
the sphere of componert to the sphere of componeat  we first expand, andy,, appearing in the collision integrals
along the line of centers of the two colliding particlesand  J,, in a Taylor series up to first order in gradients abrut
vj, are the velocities of spheresandb after collision,v,  thatis,

=Vat+ 2Mpa(Vpa KK,  Vi=Vp=2Mgp(Vpa-K)K, where My,

:ma/(ma+ mb)' fb(X + O'abk,Vb) = fb(X,Vb) + O-abk -V fb, (Sa)
The difference between the SET and RET lies in the as-
sumed dependence on the number densjtigsn evaluation Xab(X £ Yap0ak) = Xap(X) £ YapTatK © V xap-  (5b)

of xapn the radial distribution function of two colliding hard o . . )

spheregone of componera and the other of componehy. ~ Substituting these expressions idkg, yields

In SET, xap is defined as dunction of {n,} in a uniform 1 =304 3O 4@ ©)

equilibrium state, wherén,} are evaluated at some poiisy ab™+ab " ¥abl " “ab2:

ran located between the centers of the colliding particlesyyhere

i.€., Xab=Xab(Tabl {N(r an, 1)}). Usually, this point is chosen to

be the midpoint of the line joining the centers of the spheres, 30 =

but other choices, such as the contact point and the center of Jab = Xab | [fafp— fafplduan, (7a)

mass of the two spheres, are also posdiblg. In the RET,

on the other hand, the functigp, is defined as &unctional

of {n,} in a nonuniform equilibrium state, which depends not D rer

only on{ny}, but also on their derivatives. Jan1 = V Xeb: fyabaabk[f o+ fafblduan,  (7D)
In Enskog theory, the number density of componeris

defined as and
na:f fadv,. (3 ‘ngZ Xabf oK -[f;V fé)"' fa V fplditap, (70
The number density, mass density, velocity, and temperaturgith f’ L=Tfa(x, V).
of the mixture are defined by Note thatJf,fg (a,b=0,1) are similar to the collision terms
n=3n (4a) in the Boltzmann equation for a mixture, and therefore we
ar

can approximate them with the Bhatnager-Grass-Krook
(BGK) model[13],

= > myn,, (4b)
p ~ alla J;%) —_ Xab[ (eq)] ®)
ab
pu=> maf V,ofa0vy, (4c)  wherehy, (a,b=0,1) are some relaxation times and can be
expressed afl4]

and Lo
D 1 o =, (9)

EkBT:E f SMa(Va = u)2f ,av,. (4d) ab  Yab

with y,, being some collision parameters that depend on the
The macroscopic conservation equations of mass, monassesn, andm, but are independent of the velocity. The
mentum, and energy for the mixture as well as the transporfUnCtlonSf(eu) (a,b=0,1) are the Maxwell distribution func-
coefficients can be derived from Ed1) through the tions given by
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m, \°? My (v, — Ule9)2 1
feq)-n< 2 ) ex L . (10 D f.(x,vt) = — —[f,— fe9+ 3 +G,, 18
a 2’7TkBTab ZkBTab ( ) a a( a ) )\a[ a a ] a a ( )

with D being the spatial dimension arkg the Boltzmann \yhere

constantu$? and T? are some parameters not necessarily

equal to the velocity and temperature of the mixture. Several G,= fge@(va_ u) - g4/ ba, (19)
possible choices for these parameters are available, as sug-

gested by Luo and Girimaji6]. In the present study, we © . @

chooseu®¥=u and TS?=T for a,b=0,1. It should be =3+ o = 189va-w) - Ky, (20)
pointed out that this assumption will lead to a one-fluid

model for the mixture(see below. By discarding such an  with K ;== b000xa0V IN(pEXan), andfﬁf“’ is the Maxwellian
assumption, we can derive a two-fluid model for dense ledlstr|but|on function,

tures. With the above choice, we haﬁég’) £e9 = f( fy 9 and

aa’

thus (eg — Ny _ (Va_ U)Z]
. fa —(270 572 €X —26a . (21
2 I = —fa- 5, (1D - - Vati -
5 Na It is noted that in the derivation d&,, we have approxi-
. . o _ matedf, with f;e"J, as done i15]. Other expressions for this
where\, is an effective relaxation time given by term are also available.g.,[16,17] and references thergin
1 yan Xew ~ Some remarks should be made on the effective relaxation
=488, T (12 time A,. It is noted that in the simplified Enskog equation
ANa Naa Naw (18), J; is the result of the assumption of a dense fluid, and
|van|shes in the dilute limit. Therefore, as in the BGK models

We now discuss the terms involving the first-order spatlaf ideal fluids 141, the local : ; h
grad|entsJab1 and ngbz If we approximatef, with f(eq) or ideal fluids[14], the local momentum conservation in the

dilute limit requires that\g=N;=N\. It is also noted from
Egs.(7b) and(7c), we have Egs.(9) and(12) that\ is not a constant, but a variable that
Jgﬁlz - babpbff,f (Va=u) - V Xaps (13)  depends on the number densities of the components and the
RDFS Xap.

‘Jabz_ = 20,00Xanf (Vo= U) - V N py+ Ry, (14)

where IV. A DISCRETE-VELOCITY ENSKOG MODEL

2 (va—u)? We now discretize the velocity space of the simplified
abp 4 o o, V.u Enskog equation Eq18). We follow the procedure proposed
by He and Lud 18] for a single-component ideal gas. First,
we expand the equilibrium distribution functiofEDF)

Rab= 2babeXabfgeq)[ < Mpa—M

-M 2 (Va_u)(va_u)_vu (15)
Ap+2 Op ' ' f;ea) given by Eq.(21) into the Taylor series up to second

. order inu:
with 6,=kgT/m,. Here “:” denotes the product of two ten- nu
sors, b,,=Va,/M, is the second virial coefficient witV,, n V2
=20"Woh, whereVp=(w/4)P2/T(1+D/2) is the volume fled=——2 ——2— ex p(— —a)
of a D-dimensional sphere of unit diameter, ahdis the (276,) 29,
usual Gamma function. In deriving the above equations, we (Va u?  u?
have used the fact th&af®(v.)f*(v/) =f©?(v,)f*¥(v;) and 14720 ) 27 20, (22

the isothermal assumption. Through some standard algebra,
we can show that The velocity space is then discretized into a finite set of

discrete velocitie®,;=c,& such that the numerical quadra-
f abdVa f VaRapdVa (16) ture
which means thaR,, does not affect the conservation of Ke(eq (€9
mass and momentum for each component. Therefore we can (X, Va vy = X Wael P (x,e0,t)  (23)

drop it from the expression cﬁ(bz given by Eq.(14), and

thus holds exactly for B=k=<23. A natural choice for the evalua-
\](a:t)E\](a:t)l+\]ab2—babprabf(aeq)(Va—u). V In(p2xa)- tion of the integral i.;, the Gaussian quadrature with the
17 We_lght function exp—valzaa)_[18]. !n What. follows, we re-
strict ourselves to a two-dimensional nine-velocity model
With the above results, we obtain the following simplified [19] for the sake of simplicity without losing generality. In
Enskog equations for an isothermal binary mixture of hardhis case, the discrete velocmes_Leldmg from the Gaussian
spheres: quadrature are,=c,&, with c,=y36,, and
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f(0,o), i=0, In Ref. [7], a standard LBE was proposed by modifying
the EDFs such that the two components can use the same
R cos{(l -1) } SII’]{(I 1) D i=1-4, discrete-velocity set. However, this modification makes the
&= model only applicable to binary mixtures composed of fluids
o 9N\ 7m 9\ 7 ) with the same shear viscosities. Apparently, this constraint
<C°S{<' B 5) 2} S'”{(' - 5)5])- 1=5-8. limits the application of the model.
. (24 On the other hand, since the DVEEZ5) are nothing but

a set of partial differential equations, one can readily dis-
The integration weights in Eq(23) are given by W, cretize them using some standard numerical techniques for

=276, exp €2/ (26,) ]w; with time _evolution equations._ln fact, starting from the discrete-
velocity Boltzmann equation, some lattice Boltzmann meth-
4/9, i=0, ods based on finite-difference, finite-volume, and finite-

w;=11/9, i=1-4, (25) element techniques have been proposed recently for the

1/36, i=5-8. usual single-component systef®.g.,[20-23). In this sec-
tion, starting from the present DVEE26), we propose a
Once the discrete velocities,; and the weightdV,; are  finite-difference-based lattice Boltzmann method for non-
determined, we are now able to define a discrete-velocitydeal binary mixtures.

Enskog equatior{DVEE) for binary mixtures of nonideal We first rewrite the DVEE as two consecutive equations
fluids based on Eq18), in a time-splitting form:
1
D,ifai(x,t)=— X[fai - f(eq)] + F.i, (26) afai= [fal - f ] + Fa| (319
whereD,=d,+e,;-V, fai(X,t)=Wyfa(X,e4,t), and and
2 &tfai T &y v fai =0, (31b)

eal + (eal U)2 u ( 7)
ba 262 26, whereF,; is an effective forcing term to be determined.
Equation(313 describes the collision process, and can be
solved locally since it is irrelevant to spatial derivatives.
Here we discrete it using an explicit first-order Euler scheme,

feOJ:w,na 1+——

The last term on the right hand side of E@6), F,;, comes
from J; andG,, and can be expressed as

Fa| = f(eq)(eai - U) . Fa, (28) " 1 (ea)
where faOo) = fa ) = ~[fa = 1§91+ 6Fa,  (32)
F.=-K,+g/6,. (29)  wherer=\/é; is the dimensionless relaxation time, afjds

. . . the time increment. Equatiof81b) is used to shift the post-
Note thatF, seemingly looks like an effective external force, quatiof - ) P

but it is noted that the first parti, is due to the interparticle collision dis_tribut_ion func_tionsfai,_and here we solve it on a
collisions, and irrelevant to the external force field. regular lattice with spacing, using the second-order Lax-

For this discrete-velocity Enskog equation, the numbepVendroff scheme,

density of each component and the velocity of the mixture Ay~ -
are consequently defined as fa(X,t+ &) = Fai(x,t) - E[fai(x +66,t) -~ fa(x-ed,t)]
na=2, fa, pu=2, m, e fa, (30 A2
o= 2tu pu= 2 M2 ) + —[fa.<x+e5t,t> a0 + Tai(x — @],
with n=ng+n; and p=mgny+myn;. (33)

wheree=cg (i=0-8 are some reduced discrete velocities
dependent only oe=4,/ &, and the parametek, is chosen

to be A,=c,/c, such thate,;=A,e. Other more general dis-

A. Formulation crete schemes for E¢R2) can be found if20]. As indicated

in [17], in order to obtain the correct hydrodynamics, the
iscrete lattice effects should be considered, and the fluid

V. A FINITE-DIFFERENCE-BASED LATTICE
BOLTZMANN MODEL

For practical applications, the space and time of the
DVEE (26) should also be discretized. However, one canno ) ~ _
expect to construct a lattice-Boltzmann-type method directly€locity u and the “forcing” termF; should be redefined as
from the DVEE on a regular lattice with a single time step, &
as usually done for single-component fluids, except for the pu= > m, > foe,+ EE paFa, (34)
case ofmp=my. This is becauses;#e; for i#0 if m, i a
#my, which indicates that the configuration spaces for the
two components cannot be discretized on a single uniform E o= (1—i)F . (35)
|attice. a
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We now examine the stability property of the presentof the mixture can be simulated using the present model by
finite-difference-based lattice Boltzmann scheme. It is cleaadjustingb,, and x,,. In the single-component region, the

that the collision proces82) is the same as that in the stan-

pressure reduces to the previous result for nonideal fluids

dard LBM, and the stability requirement on the time step ig/16]. In the limit of b,,=0, the equation of state reduces to
6 =<2.0\, or 7=0.5. Meanwhile, a simple von Neumann sta- that for binary mixtures of ideal gases.

bility analysis on the Lax-Wendroff streaming sche(38)
results in another requirement on the time stép=c,/c
<1.0, or &= 6,/ V36, which is just the Courant-Friedrich-

It is noted from Eq.(41) that, although the DVEEs for
both components use the same relaxation tkméhe shear
viscosities of the two components can be different. In fact, in

Levy condition. Therefore, the overall stability requirementthe bulk of componenta, the shear viscosity is,=(A

on the time step is

85, < min{2.0\, 8/4360, 5,/\36,}. (36)

B. Hydrodynamic equations

Substituting?ai given by Eq.(32) into Eg. (33), and ex-
panding the variables arourig,t) up to O(étz), one can ob-
tain the following continuous equatid@ppendix A):

& 1 -
Daifai + EDazxifai =- X[fai — 1597+ Fy, (37)
which differs from the original DVEEZ26) in having an ad-
ditional term proportional t@5. This means that the numeri-
cal scheme given by Eq$32) and(33) is only a first-order

scheme in both time and space for the DV&B). However,

this does not mean that the scheme is also of first-order a

—-0.56)kgT/m,, which depends on the molecular massof
component besides\ and, therefore, may be different from
v, for another component with molecular masg,. This
feature is the main difference between the present FDLBE
and the standard LBE].

The pressure in the hydrodynamic equatidf) is isotro-
pic in theory. In numerical implementations, however, the
gradients involved i} in Eq. (318 are computed explicitly
by certain finite-difference schemes. The discretization will
produce a pressure tensor that includes some anisotropic
components. For instance, if we approximate the gradient of
a variablee as

1 . .
Vo=Vwp= 02—2 wi&e(X+84),

S I

(43

then using the Taylor expansion gfx+& 4,) we can obtain

hat

curacy for the macroscopic hydrodynamic equations. Actu-

ally, this numerical error can be absorbed into the physical

transport coefficients by adjusting the relaxation timend

thus maintains the second-order accuracy in both time an
space for the macroscopic equations. In fact, through th
Chapman-Enskog procedure, we can derive the following

hydrodynamic equations from E(B7) (see Appendix A for
detailg:
(@) the continuity equation for each species

dpat V - (pu) ==V - J,, (39)
(b) the continuity equation for the mixture
dp+V -(pu)=0, (39

(c) the momentum equation for the mixture
d(pu) + V - (puu) == Vp+ V - [pr(Vu+(Vu)")]

+ E PaYa; (40)

where  J,=7Y7-1/23,  J.=jatpabaFadl2,  ja
=m,Z(e,—u)f, is the mass diffusive flux of component
a, v is the shear viscosity given by

T 1
V=%(T——>b}, (41)
p 2
and p=py+p; is the total pressure given by
Pa= 0apa(l +DagpaXaat Daa Par Xaa)s (42

with a’=1-a.

Vie= Vo+ 86V V.

With such an approximation, the discrete versiorKqf Kg,
gan be written as

(44)

&
Kg:Ka"'EXE babXabVVZPba (45
b
where we have assumed that, varies slowly in space. After
some standard algebraic manipulations, we obtain

> pala(Kh-Ky) =V P, (46)

where

P = }|V|2+V2I—VV
[ | 51V PIT+ PV pVp

+ K {(E|V¢|Z+¢V2¢)I -V¢V ¢]
1\ 2

+ Koyl (pV2p + pV2p + Vp V)l = (Vp Vo + Vb Vp)],
(47)

where ¢=ny—n; is the order parameterx,=rgot k11
+K01/2, K¢:K00+K11_K01/2, and Kp¢:KOO_K11! with Kabp
:9abab)(ab5§/ 3. As such, the total pressure tensor can be ex-
pressed a®=pl +P’, with p defined as before. This indi-
cates that the discretization of the density gradienKin
creats an anisotropic pressure tensor, which mimics the sur-
face tension effect. In fact, the additional teRhis similar

to that in the free energy theofg.g., sed24)).

Obviously, the pressure of the mixture satisfies an equa- It should be pointed out that the terms relatedtalo not
tion of state for a nonideal fluid. Therefore, a phase transitiorappear in the final macroscopic equati¢tD) within the
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framework of Chapman-Enskog analysis, since the density Ly

gradientsVp, and Vp; can only appear in the second-order Vn=Vn,+ Vny = (1 - L_> vy (563
solution of fy and f;. This point was also noticed in the @

analysis of the lattice Boltzmann equation for single-therefore, with the aid of

component nonideal fluids with phase chahi@.

Vna=nVx,+x,Vn, (56b)
C. Diffusion equation
2
We now discuss the diffusion in the mixture. To this end, Vx. = p Vv X (560
. . . . a 2 ar
we first rewrite the conservation equation of m&38) for mym,,n
component as : . .
wherex,=n,/n is the molar fraction, we can obtain
PlaXat U VX) ==V - Jg, (48) )
. _ _p Lo
where X,=p,/p is the mass fraction of componeat The Vi, V Xa. (57)

; > H T mymgn Ly Xy + LoX
effective mass diffusive flud, can be evaluated by means of alarimarfal T mata

the Chapman-Enskog technique. After some algebra, we olwith Eq. (57), Eq. (55) can be rewritten as

tain (see Appendix B for details
p°  LaBaa— LiEaw

Ja:_at(T_O.S)nkBTdar (49) Ja:_gt(T_o'S)kBTm m.n L. X, +L.X a
a'lla’ a’'a’ a’a
whered, is the diffusion force and is defined by (58)
P p i i
d, = npkaT pyAg.— Vp+ - Vo, (50) Comparing Eqs(52) and(58) yields
o ot _ o pkeT (1
whereAg,=g, —Ja, 14 is the chemical potential of specias Dy= Mam =5 A, (59
and satisfie®u,/ Ny =(KgT/N,)Eqp, With ab
5 where
X
Eab= dab* 2DapPaXan + N bacpca_ac- (51 Loy Eua— LEaw
c Ny M,=——m— 60
a (60)

o _ _ _ _ LaXy +LaXy
The diffusion forced, given by Eq.(50) is consistent with

the phenomenological one as suggestedi2®)], given that Finally, Eq. (48) reduces to the nonlinear diffusion-

the RDFsy,, are presented correctly. The three terms in theadvection equation

square brackets correspond to the forced diffusion, pressure _

diffusion, and ordinary diffusion, respectively. It is also PloXa+u- VXo) =V - (pDaV Xa). (61)

noted thatd,+d;=0 and thus they are not independent. Note thatD, depends on the number density, the diameter

The phenomenological expression for the diffusive X ratio, and molar concentrations of both components, and can
under the condition of no external forcego=0,=0) and  take either positive or negative value by adjusting these pa-
mechanical equilibrium{p=cons} can be written as Fick's rameters. Therefore, the proposed discrete velocity model
law: can be used to simulate both miscible and immiscible binary

_ mixtures.
Ja==pDaV Xa, (52 It should be pointed out that the diffusion coefficients in a

whereD, is the diffusivity. In order to find the expression of binary mixture can be defined in a variety of ways, depend-
D,, we substitute the expression E&O) for d, with the  ing on how the diffusion flux is defined as well as which
conditionsgy=g;= V p=0 into Eq. (49) to obtain that choice of the driven forcg12]. If we choose to use the
gradient of chemical potential, instead of the mass fraction,
Ja=— (7= 0.9kgT(Eaa VNa+Ea VNg).  (53)  as the driven force in Fick’s law,

Note thatVp, andVp,: in the above equation are not inde- __5
pendent becaus€p=0. Actually, from Eq.(B8) we know Ja= = PPV e, (62)
that then from Eqgs(49) and(50) we would have

Vp=Vpg+ Vp;=ksgT(LoVng+L;Vny), 54 — n 1

| p Po P1=kgT(LoVng+L;Vny (54) Da:_a<7'__)5ta (63)

with L,=E,.+Ey, for a=0,1, and hence Vn, P 2
=-L,Vn,/L, if Vp=0. Therefore, Eq(53) can be rewritten | hich is always positive.
as

J,=-6(7- 0.5)|<BT{ Epa— II___aEaa'] vn,. (55) D. The radial distribution functions

al

In practical applications, the contact values of the RDFs
One the other hand, in the case of constant pressure, we hayg, must be specified in advance. There are several different

026701-6



FINITE-DIFFERENCE-BASED LATTICE BOLTZMANN.... PHYSICAL REVIEW E 71, 026701(2009

0.3] + m/m_=2.0
0.4f e
e m/m,=1.0
0.15F

> 03 i
z a
2 5 o1
iz 2
2 o2t é’

8 4 0.5}

2}

0.1F ] -
. . . -0.05} . . ‘ .
05 054 0.58 0.62 0 05 1 15 2
Relaxation Time, T Interaction Parameter, &0 .

_ FIG. 1. Shear viscosityin lattice unit$ as a function of the FIG. 3. Diffusivity (in lattice unit$ as a function of the interac-
dimensionless relaxation timeyp;=1.0. Symbols are the FDLBE  tjon parametet r=0.55. Symbols are the FDLBE results, and the
results, and the solid lines are the theoretical predictions. solid lines are the theoretical predictions.
methods for determining the RDFs for a mixture. One way is D_.20D b..2D
to treat each RDF separately and specify the contact value Te =X0p T 2Xo¥1 001 + X107 - (65
according to different theories of the mixtuf6]; Another It is noted that in the vdW-1 approximation the cross di-

way, usually called the van der Waals one-fliidW-1) ap-  ameteroy; in Eq. (65) is determined using certain mixing

proximation [27], is to treat the mixture as an effective ryles, such as

single-component fluid, and determine the RDFs from the

RDF of that effective fluid. Previous studigZ8] have shown _ @1( + o) (66)

that the vdW-1 theory can produce quite reasonable results 701775190 ™ I

for many binary mixtures. In this study, we choose the ) ) ) , )
whereé&y, is an interaction parameter. Different choiceggf

vdW-1 theory to specify the RDFs of the binary mixture.

In the vdW-1 theory, each RDF takes the same form as thWill lead to different vdW-1 mixing rules. For instance, the
’ usual Lorentz and Berthelot rule us§s=1.0. Other mixing

EDF of a single-component fluid,
g P rules have also been proposed by some autfers,[27)).
Xab= X(0¢), (64) By adjusting the parametef,;, we can control the force

wherey is the RDF of the virtual fluid, and is the effec- between tW9 spheres of different components due to_ the vol-
ume exclusion effect. Agy;> 1.0, the volume effect is ef-

tive diameter of the virtual molecule of the assumed fluid.;" " . .
The vdW-1 theory assumes that fectlvely_enhanced and, thus, may induce a phase separation

of the mixture; on the other hand, by decreasing the value of
&1, We can obtain a miscible binary mixture.

The single-component RDF for the virtual fluid can take
any suitable models for a single-component hard-sphere
fluid, and there are many choices in the literature. One well-
known model for hard spheres is the so-called Carnahan-
Starling mode[29], which reads

_1-9/2
1-7*

where n:nVDcreD is the packing factor of the virtual fluid.
With the RDF of the single fluid specified, the RDFs for

the mixture can be fully determined by E(64), and the

lattice Boltzmann models presented above can be used to
simulate binary mixtures of dense fluids.

0.4f =
+ m1/m2_2.0

[o] m1/m2=1.0

0.31

b% (67)

0.2f

Diffusivity, D

0.1

8.5 O.I54 0.I58 O.ESE
Relaxation Time,t VI. NUMERICAL VERIFICATIONS
In this section, we present some numerical results of the
FDLBE model described above. In simulations, the vdwW-1
approximation (64) and the Carnahan-Starling RD?7)

FIG. 2. Diffusivity (in lattice unitg as a function of the dimen-
sionless relaxation timeyg;=1.0). Symbols are the FDLBE results,
and the solid lines are the theoretical predictions.
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FIG. 4. The density distributions of the binary mixture witlg=1.0, m;=0.5, and{y;=2.1 at some different times. Lattice size 256
X 256; 7=0.55.

were used, and the simulations were carried out oNan  v,«1/m, for the FDLBE. It is observed from Fig. 1 that the

X N,=256X 16 lattice unless mentioned otherwise. numerical results for the shear viscosity are in excellent
We first test the shear viscosibyof the proposed FDLBE agreement with the theoretical predictions given by @d).

by measuring the decay rate of a sinusoidal perturbation in The expression for the mutual diffusivity is also verified

velocity with small amplitude. In simulations, the lattice by measuring the decay rate of a transverse sinusoidal wave

spacingé, is set to be unity, and the time stépis set to be  with small amplitude in the concentration field. Simulation is

0.1. The temperaturd@ is chosen such thasT/m=c?/3, conducted on the same lattice given above. The initial per-

wherec= 8,/ & andm=min{my, m;}. It can be easily verified turbations in the number densities of both components were

that the stability requirement Eq36) is satisfied with the set up according to Eq54) with p=const, i.e.,

above choice. Without loss of generality, the total number _

density is taken to be 1.0. The molar fraction of component 0 Lodho + L4100, =0, (68)

is set to bexy=0.3, and the packing factors of the two com- where n, represents the perturbation in number density of

ponents arep,=0.03 and#z,;=0.07. The interaction param- component, which is determined from the perturbations in

eter &y, in the mixing rule given by Eq(66) is set to be 1.0. X, according to Eq(56b).

The measured viscosity is presented in Fig. 1 as a function of The dependence on the relaxation timef the diffusivity

the relaxation timer for two different casesy;/vy=1.0 and s first tested. The parameters are just the same as those used

v1/v5=2.0. In both cases, the molecular mass of componerit the test of the shear viscosity. The measured diffusivity

0 is taken 1.0, andn, is determined bym,=myvy/ v, Since  together with the theoretical results are shown in Fig. 2 for
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the cases ofm;=1.0 and 0.5 withmy=1.0. We can see that state is incorporated into the equilibrium distribution func-
the numerical results agree well with the theoretical prediction directly, the interparticle interactions in the present two
tions. From the definition, we can see that the diffusiity LBE models are incorporated through the radial distribution
depends not only on the relaxation timebut also on the function, which has a clear physics meaning.

interaction parametefy; through the RDFy. In Fig. 3 we

show the measured diffusivity as a functionggf. Excellent

agreement between the numerical and theoretical results is ACKNOWLEDGMENT

observed again.

It is also observed that the diffusivit{ is nonlinearly
dependent on the interaction parameigr and decreases as
&1 changes from 0 to a value about 2.2. Furthermore,as
increases abovg a crmpal valabout 2.0, the dlffusmt_y APPENDIX A: DERIVATION OF THE HYDRODYNAMIC
becomes negative, which means that phase separation oc- EQUATIONS
curs. To see this more clearly, we rerun the systemnigr
=1.0 andm;=0.5 on a 256 256 square lattice usingy; The macroscopic behaviors of the finite-difference-based
=2.1, with a small random initial perturbation in the masslattice Boltzmann model proposed in Sec. V are discussed in
concentration field that still ensures a constant pressure. It ihis appendix. First, Eq:33) can be rewritten as
observed that the small perturbation is enlarged and some

This work was supported by a RGC grant of Hong Kong
(HKUST6193/01E

small droplets of component 0 emerged at the early stage. Fax,t+ &) = Fa(x,t) = (85 - V)Fai(x,t)
The small droplets become larger and some of them may 2 )
merge into a larger ones as time advances. Finally, the com- + Et(eai - V) 2H,i(x,t) + O(68)

ponent O is totally separated from component 1 and form

some circular drops. Figure 4 shows the density fields at _ 2
some different times during the separating process. = LW(Fai(x.0) + O(é\?)' (AD)
By combining Eqs(32) and (A1), we obtain
Vil. SUMMARY fai(X,t+ &) = LW(f5(x,1) + SLW(Q) + O(8)  (A2)
In the above sections, starting from the Enskog theory, wer
have proposed a finite-difference-based lattice Boltzmann S
model based on a discrete-velocity Enskog model for binary Daifai = Qai — =Ry (A3)
mixtures of nonideal fluids. The hydrodynamic equations for,nere 2
the mixture and the diffusion equation for each component of
the model are obtained through the Chapman-Enskog proce- Q,=- E[fai - flea] + ﬁai, (A4)
dure. Numerical tests based on the van der Waals one-fluid A

approximation are also carried out to validate the model. The
theoretical and numerical results indicate that the FDLBE Ra=[2— (s V)2fa+ 2y V)Qqy+0(8). (A5)
can be used to simulate the mixing and separating processes
of two dense fluids. On the other hand, we know from E@A3) that
We also note that there exist some differences between the 2¢  _ 2
present FDLBE and the standard LBE presentdd|nFirst, Afai = 0ldai = - V Qo+ (8- V)7Fai + O(8). (A6)
in the FDLBE the two sets of discrete velocities for both Therefore,
components are not identical if their molecular masses are Ry = Dy, + O(6), (A7)
different, whereas the standard LBE utilizes a single .
discrete-velocity set for both components in all cases. Sec@nd thus Eq(A3) can be written as
ondly, in the FDLBE the equilibrium distribution function S
for each component depends on the normalized temperature Difai= (1 - —tDai>Qai +0(8), (A8)
which may be different from that for another component if 2
the molecular masses are different. In the LBE, however, thgy equivalently[up to o(&)],
equilibrium distribution functions for the two components
depend on the same reference normalized temperature. Fi- D.f. + ﬁsz —q. (A9)
nally, the FDLBE is capable of simulating binary mixtures of ailai ™ 5 Mailai = 22ai»
nonideal fluids with different shear viscosities, whereas the Meanwhile, from the definition§27) and (35), it is easy

standard LBE is inapplicable to such systems. to calculate the following moments:
The lattice Boltzmann model proposed here can be
viewed as an extension of the previous models for single- > f=n, De;f9=nu, (A10a)
i i

component dense fluids. Unlike the interparticle-interaction

model[4] which uses a pseudopotential to mimic the inter-

particle interactions and the nonideal equation of state, and > €aieCai Bfgf@ = 0aNa0,5+ NaUUg, (A10b)
the free energy mod¢b] in which the nonideal equation of i
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o e fled - 1 f2 5
Ei: ealaealﬁealyfm ana(ua5B7 + UB5ﬂ7 + u75ﬂﬁ)’ (AlOC) (9t2fg?) + (1 - 2_> Daif(ali) =--2 - Ethili)Fgli)’ (A17)
D 'Eai -0, (A10d) from which we can obtain
i 1 R
. 1 AP +(1——)V1-J<1>:0, (A18)
2 eiFai= (1 'z_)naﬁaFa, (A10e) B
i T
- 1 &(pu):—£—<l—i> G d P + v, -1
2 eaieaiFai = (1 - 2_)naea(':au + UFa) + O(ua)- (AlOf) 12ifa A 27 ta . a
i T
&
Now we derive the macroscopic hydrodynamic equations + EV1 [paba(F&u+uF)]
from Eq. (A9) using the Chapman-Enskog method. We first
introduce the following multiscale expansions: ng . ( 1 >
== ——+V - (par Viu+(Vou)' ) - |1 -—
fai:f;?)+efgli)+ezfézi)+~-', (Alla) N 1 (Pa a[ 1 ( 1)]) 27_
3@ (W 4 30
4= ehy+Edy  V=eVy, F=eFY, (ALlb) Xldada™+ V- (uda7+ I W), (AL9)

a !
herev,=6,(7—0.5 6. In the above deduction we have used

where e is an expansion parameter which is used to selec
e fact that

terms of equal order of magnitude. With these expansion%,
Eqg. (A9) can be rewritten in consecutive orders of the pa- o

rametere as aaB — maE eaiaeaiﬁfgli) == }\maz eaiaeaiB(Dgli)fgi)) - Fgli))
I 1
=159, o), (A12a) = — Moa(pafadap + Palially)
+ V] 0:pa(U,05,+ UgS,, +U.S5,5)]
1 1yl aPalUy By BYay v“ap.
(150 — _ Z¢(D) 1) 1
Daifal ==~ fal +Fal Ole),  (A12D) — (1= 1/20)pab,(F DU, + Fu, )}
5 @ = = Npaba(Valg + Vi) + (s + faguia) + O(U).
dofa) + DG'Te) + SIDJTHR ===, 0(), (A20)
(A120) From Egs.(A15) and(A18), we can obtain the continuity

equation for componers up to O(€?),
WhereD;li)E I +Vai- Vi

From Eqs(A12a), (34), and(35), and with the help of Eq. dpat+ V - (pu) ==V -y, (A21)

(A10), we obtain that which can lead to the continuity equation for the mixture,
2 fP=0, 2 =0fork=1, (A13) dp+ V - (pu) =0. (A22)
1 a
- A Similarly, the momentum equation for the mixture can be
whereJ,” comes from the expansion df: derived from Egs(A16) and (A19) as
Ja= 30+ O+ 3+ - (A1) a(pu)+ V - (puu) == V pgeart V [pu(Vu+ (Vu)")]

Clearly, 39=j©=0, J¥=jY+p,0,FY5/2, and J¥=j® = pa0Ka* D palas (A23)
=mZe,f% for k>1, Wherejg‘) comes from the expan- a a

sion of j . wherepigea=pofo+ p1 61 is the ideal part of the pressure, and
Taking the zeroth- and first-order moments of EfL2b), v is the shear viscosity given by
we obtain

p000 +p [7) 1 nkBT 1
dapat V1 (pa) =0, (A15) v= —“(T- —)5; — (-3 )8 (A29

p 2 p 2

jgb o Note that
F(pau) + Vo - (pauu + Gap,l ) = — T + pabaFs
PataKa=V [paba(DaapaXaa* baa Par Xaa)]
(A16) p

a' |,

wherel is the unity tensor. + Doy Xaa Oapapar V |n(p—), (A25)
In order to derive the equations on thescale, we first é

rewrite Eq.(A12¢) using Eq.(A12b) as therefore by taking summation ovarwe can obtain that
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2&1: pablKa=V [% Paba(DaaPaXaa* Dag Pa Xaa') |+ X01V01kBTmO v, In( - ) (B4)
a

(A26) s _
and recall that),=eJ; +0(€%); we can obtain from Egs.

where we have made use of the facts thgi=x10 and  (B3) and(B4) that
boixo160=b1gx1061. Therefore, the momentum equation .
(A23) for the mixture can be rewritten as Ja=—\nkgTd,, (B5)

a(pu) + V (puu) == Vp+ V[pu(Vu+ (VU] + X pga,
a Ja=- &(7-0.5nksTd,, (B6)
(A27) whered, is the diffusion force given by
wherep=p,+p; and popy { Vo, Vpal
_ Oa — _ b
Pa= paba(l +DaapaXaa+ Daa Par Xaa) (A28) o pnksT 2 Pa Pa’
= n ’
fora=0, 1. *')(01V01m v In<_a>' (B7)
n N,

The diffusion forced, can also be formulated in terms of
the total pressurp and the chemical potential. First, we note
In this appendix we shall discuss the diffusion force aris-from the definition ofp, given by Eq.(A28) that

APPENDIX B: THE DIFFUSION FORCE

ing from the FDLBE. First, using EqA15), we can rewrite vp
Eq. (A16) as Py [E (nadup+ vabnanbxao]
keT b
o
Paldgt + U - Vau) = = V(0apa) = ==+ pabaFy’. (B1) = 2 [VNa0a* Vap V (Ml Xap)]
b

On the other hand, from Eg6A15) and(A16) we can obtain Ny
the following mass and momentum equations for the mixture => Eao V Ny = xo1Voinon: V. Inl — |, (B8)
at thet, scale: Ny

dup+ V- (pu) =0, (B2a) ~ Where
IXac
Eap= Oap+ 2n,V. + 2, nangV,
P(dt +U - Vi) = = ViPgea+ 2 palaFy . (B2D) o= a2V * 2 MeVac
a
J
Therefore, from Eqs(B1) and (B2b), and with the help of = 8ap+ 2DapPaXab + Nay Dache Xac, (B9)
Eqg. (A25), we have c Ny
- (1) Meanwhile, notice that
E _ ViPigear _ Va(pata) _ 2 pabaFy + o FW v
N oFa Vo, VP p oo 1o
Pa P Pa p = Vpa vp; (B10)
_Par( Valparbar)  Vi(pa6a) @ " Pa  Par PoP1 Par
"o Par B 0a ~ OaFy + 0aF, therefore, the diffusion forcel, given by Eq.(B7) can be

rewritten as

_ Pa Vipa Vapa o0 1
__<ga_ga’+ T KTk o= —22[pu(Ga ~ 9 - VPI+—=Vp,

p Par Pa npkgT nkgT
(B3)
Ny
Note that +X01V01_V In (n )
a
Pa
aa’K;l’) - 0aK(al) = = Xaa[PaaPar 0a + Darapala V1 |n<_) - [parAga— V pl + _2 Eap V Ny,
Pa npkgT N
= = Xaa' Vaz[Nar 04 + N0, 1V In(pa’) Pa p
— 7 Xaa' Vaa'llla’Va™ Malar1Vi1 —
= A Vp+—V B11
Pa n kBT|: pParRGa= VP m, Ma] ( )

- )(aa,vw,nana,kBT{i + %}Vl |n<E> whereAg,=0, —0Ja, andu, is the chemical potential of spe-
Pa  Pa ciesa and satisfiedu,/ dnp=(kgT/Nn,) Ezp.
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