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Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation
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The parametrically driven Ginsburg-Landau equation has well-known stationary solutions—the so-called
Bloch and Néel, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound
state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.
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I. INTRODUCTION pative (c,=0), frequency detuning is zero, and the homo-

In this paper we derive a class of explicit and physically9°"%4S oscillations are isochrono(=0). With these
bap b phy y ssumptions, a suitable rescalingtpk, ¢, andh produces

meaningful solutions to an equation that has been under scr
tiny, in various contexts, for more than 40 years. The equa- 1 .
tion is the resonantly driven Ginsburg-Landau; in its most lﬁt:Elﬁxx‘ [P+ g—hy (2
general form it reads
. In this paper, we consider stationary solutions of E);
Y= (u+iv)gr+ (g +icy) = (g3 +ics) Py = h(y)"™. these satisfy

(1)
Equation(1) describes a one-dimensional chain of coupled

weakly nonlinear self-sustained oscillators in the continuu
approximation. The chain is subjected to periodic forcing

1 *
§¢xx_|‘/’|2¢+¢_h‘/’ =0. (3)

2\Ne will takeh to be positive in what follows; this can always
tbe achieved by an appropriate phase shiftyoHistorically,
Eq. (3) was first introduced in the context of the anisotropic
&y model, which was used to model an easy-axis ferromag-
net near the Curie temperature 6]. Nonstationary magne-
tization configurations were considered as solutions to Eq.
(2) [7]. The investigations of the more general Eg). (still
ith n=2, though, including analyses of small nonvaria-
ional effects, were reported in Ref8,8,9. Apart from the
magnetic applications, these studies were motivated by re-
aearch in liquid crystal§10], experiments with the periodi-
cally forced light-sensitive Belousov-Zhabotinsky reaction
O[11], and work done in optics, in particular with regard to
optical parametric oscillatoffd 2] and lasers with intracavity
parametric amplificatiofil3]. Equation(1) also appeared as
a phenomenological equation for the parametrically excited
surface waves in viscous fluifi$4] and granular medigl5].

undriven spatially homogeneous linear oscillations. Th
complex variablej=y(x,t) is the slowly varying amplitude
of the resulting nonlinear oscillations with the peridd
=2mn/ ).

Before specializing Eq.1) to the particular case that will
concern us in this paper, we briefly comment on the physic
meaning of its coefficients. First of all, the parameter 0
measures the distance to the supercritical Hopf bifurcation
which a(spatially homogeneouistable limit cycle appears.
For the stability of the self-sustained oscillation one als
needsg;>0. The real constant is proportional to the fre-
quency detuningy«Q/n-wy. In the derivation of(1), it is
assumed that both the linear growth rat@and the detuning
v are small compared to the frequeney. (See, e.g., Ref.

[1].) Next, the parametec; describes the nonlinear fre- The nontrivial (spatially nonhomogeneoussolutions

guency shift, Wh'le. the C!erlvanv_e term.accounts.for t_he 'N"\which attracted interest in the context of each of these fields
teraction of the neighboring oscillators in the chain, with theare domain walls. or kinks. also known as dark solitons in

real and imag?nary parts Of the coeﬁicieg1t+ipl pertaining nonlinear optics. The domain wall is a localized interface

g ; . _ ; Ybetween two different homogeneous backgroutkti®wn as
Finally, h is proport*lo_nal to the amplitude of the forcing. The domains in the magnetic contexThe possible backgrounds
_(n—l)st power ofy’ in Eq. (1) results from resonance forc- are described by the constant nonzero solutions of(8yq.
ing of ordern:1[2]. The 1:1, 2:1, 3:1, and 4:1 resonances ,— . o and y==+iA,, whereA,=1£h. The first of these is
have been studied most extensively in the literature. In thi{/nown to be unstable while the second is stable. We will
work, we focus on the case=2. only consider dark solitons propagating over the stable

The analyses qf Ec(l). “?“a”y start Wit.h g:onsidpring the background—asymptotically, all of the solutions considered
gradient, or variational, limif3,4]. The variational limit cor- .0\ o satisfy| {2 — A2 as x| oo
— AL — e,

responds to the assumption that the coupling is purely dissi- The soliton solutions to Eq.(3) with the desired
asymptotic behavior can be either topologitalth a phase
difference of 180° between the two asymptotic vajues

*Electronic address: igor@cenerentola.mth.uct.ac.za nontopological (with no change in phase between the
"Electronic address: woodford@giulietta.mth.uct.ac.za asymptotic fields Equation(3) admits two explicit topologi-
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cal solutions. The first is the Néel wab,6,16,17 the generality of these solutions: can the resonantly driven
: Ginsburg-Landau equation support localized, stationar
In(X) =1A, tani(A.x), (4) : ! e 4

structures other than the walls and bubbles? The aim of this
so named because its magnitgevanishes at the origin, at Paper is to address all of these issues.

which point the phase becomes discontinuaiis. magne- Here, for eacth< 3, we construct a two-parameter family
tism, a Néel wall is a domain wall with vanishing magnitude of e_xplicitbubblelike splutions and demonstrate that they can
of the magnetization vector at its cenjdt.is also called the e interpreted as stationary bound states, or complexes, of a
Ising wall, the name appealing to the Ising model which wasBloch and Neel wall. Physically, the constructed solutions

used to emulate the easy-axis ferromagnet. The Néel walfPresent phase domains of arbitrary length, which are 180°
exists for all positiveh. out of phase with the background field. We also prove that

these solutions exhaust the list of possible stationary

The second topological solution has the form ;
complexes—there can be no stationary bound states of more

Pg(x) =iA, tanh(Bx) + C secl{Bx), (5  than two walls.
whereB=14h andC=11-3n[6,18,19. This solution is usu- It is appropriate to mention here that B appeared

previously in several other, unrelated, physical contexts.
Written in terms of the real and imaginary parts of it
coincides with the stationary equation for the so-called
Montonen-Sarker-Trullinger-BishofMSTB) model of field
theory [18,19. More recently, it occurred as a stationary
limit of the parametrically driven nonlinear Schréding@d]
equation. The latter equation arises in a large variety of
physical applications including nearly resonant optical para-
metric oscillatord22], easy-plane ferromagnets in magnetic
fields [21], and surface waves in wide, vertically vibrated
channels of inviscid fluid17,23. Accordingly, we expect
the additional solutions to admit physical interpretations in
. 3 these fields as well.
= 'A{l ‘ESGCH(BX)] +3B tani{Bx)sectiBx).  (6) The paper is organized as follows. In Sec. Il we derive a
o family of explicit two-soliton solutions and cast it in a sym-

HereB=v4h=y4/15. In addition, a class of bubblelike solu- metric form allowing easy visualization. These solutions will
tions [including Eq.(6) as a particular cagevas found nu- be interpreted as bound states of a Bloch and Néel wall.
merically [21]. As is usual with numerical solutions, the Several families of singular solutions appear as by-products
structure of the solitonic bubbles has not been completelyn this construction; these will be used later for auxiliary
understood. It has also remained unclear whether they form purposes. After thatSec. Ill) we show that there exist no
continuous family(families) and if they do, what is their other bounded solutions of E¢B) which would asymptoti-
range of existenc@n h). Finally, a pertinent question is of cally approach the stableiA,) background. This means that

ally referred to as a Bloch wallwhich, in magnetism, is a
domain wall connecting the two domains smoothly, with the
magnetization vector remaining nonzero everywhefe
Bloch wall exists in two chiralities, distinguished by the sign
of the real part in Eq(5). For convenience, we will refer to
the solution with positive(negative real part as the left-
handedright-handed Bloch wall (see Fig. 1. Regardless of
the chirality, the Bloch walls only exist fd1|<%.

In addition to the Bloch and Néel walls, E@) possesses
nontopological solitons. One such solution is known explic-
itly, for h=5t [18,20,

026613-2



COMPLEXES OF STATIONARY DOMAIN WALLS IN THE.. PHYSICAL REVIEW E 71, 026613(2005

apart from the constant solution, the only nonsingular solu- (9)2((A|:1+ vy) =0, (15)
tions to Eq.(3) are the Bloch and Néel walls, and the Bloch-
Néel complexes constructed in this paper. Finally, some con- (- O.,zx + 2A2)F, = 2Av,. (16)

cluding remarks are made in Sec. IV.
Equation(14) yieldsu, =e’, whered, =2hY?(x-x;) andx, is

Il. EXACT SOLUTIONS FOR THE BLOCH-NEEL an arbitrary constant. From E(L5) we inferv,;=-AF;. Sub-
BOUND STATE stituting this into Eq(16) we get
A. The Hirota construction (- %+ 4AYF, =0,

In order to construct a bound state of two walls expli-whenceF,=e’, where 6,=2A(x-x,) andx, is another arbi-
citly, we employ the Hirota bilinear formalistisee, e.g., Ref.  trary constant.

[24] ). Letting The ordere? gives three equations:
¢=§, Ry (-DZ+4h)(u,- 1 +u; -F) =0, (17)
D)Z((Uo'F2+Ul'F1+U2'1):0, (18)

whereG is complex and- a real function ok, Eq.(3) is cast
in the bilinear form

. (=D2+2A)(F, - Fy+ 2F, - 1) = 2(U2 + 02 + 2vqv,).
FID2G - F + (2 -\)GF - 2hG'F] X PorTe LT

(19
— 2 E-\E2+ 27 =
GID;F -F-\F*+2G[]=0. ® Substituting foru; andF; in Eq. (17) this equation becomes
HereD, is the Hirota operator defined on ordered products of 5 ot
functions: (_ (9)( + 4h)U2 =4AC_e" 2, (20)
D} a-b= (3~ 3" aXb(y)]cy- where
— A _ opll2

In Eq. (8) we have added the terRGF? to the second brack- C.=A-2h"" (21)
ets and subtracted it from the first one. The constantill be |gnoring its homogeneous solution, we get
chosen later. _

By making the substitutiolt7) we increased the number __A-2h 646, — _ C= pr0, 29
of unknowns while the number of equations remained un- U= A+ Z\Ee N +e ' (22)
changed. We can use this freedom to set the first and the o _
second terms in Eq8) to zero(separately. Next, substitutingo=A andv,=-AF; into Eq.(18), we ob-

5 ) tain v,=-AF,, after which Eq.(19) becomes
Di u-F+(2AZ-NuF=0, (9)
(- & + 4N, = &1,
Dfv-F+(2A7-MuF =0, (100 whence, ignoring again the homogeneous solution,
D2 F -F - \F2+ 2(2+0?) =0, (1) Fy= & 23)
4C,C_

where we letG=u+iv and decomposed the first brackets in ) . o 5 )
Eq. (8) into its real and imaginary parts. Now we look for a The singularity arising foA”=4h can be removed by letting

solution to the systen®)—(11) as a series X1=% In 6. _ _
To the cubic order ire we get
U= ely+ €Uy + -, v=vg+ev+ v+ o, 2
(=Dx+4h)(uy-Fo+uy-Fy+uz- 1) =0, (24)

F=1+eF,+eFy+ -, ,
. . . . Di(vg-Faz+vy-Fotvy-Fr+vz- 1) =0, (25)
wheree is a formal expansion parameter. An explicit solution
will arise if the series truncates at a finite powereof 2 2 _
-Do+ S1+F,- = + + .
Substituting into Eqs(9)—(11), the ordere® gives (= D5+ 2A%(Fs - 1+F2 - Fy) = 2(Ugliz + 0102 + vobg) 26)

Fvo+ (2A2 =N =0, 12
Ko+ (2A% = Nvg (12 Substituting foru,, u,, F;, andF,, Eq. (24) becomes

203-1=0. (13) (- #2+4h)uy =0,

We now choose\=2A2, Then, Eqs.(12) and (13 give v, whenceu;=0. On the other hand, Eq&5) and (26) reduce
=A. (Here, and in the rest of the pape,stands forA,.)  to the system
Next, at the ordee’ we obtain

C_
(= Z+4n)u, =0, (14) F(AFs +vg) = 28 ™™, (27)
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(- 2+ 4 (v3— AF5) =0, (28)
which givesv;=AF; and
C_
Fay= —e?nt%, 29
374 (29
Next, the ordere* yields
(=DZ+4h)(us- 1+uy-Fp+u;-Fg) =0, (30)

Di(vy- 1+vg - Fi+vy-Fy+vy-Fa+vg-F,) =0, (3D)

(- D+ 2M0)(2F, 1+ F5 Fi+F)
= 2(U5+v5+ 20403+ 200V4), (32

where we have taken into account thigt 0. Substituting for
all the variables in Eq(30) we obtain

(= 2+ 4y, =0,

whenceu,=0. Equationg31) and (32) reduce to the homo-
geneous system

Kvg+AF,) =0,
(_ (9)2( + 2A2)F4 = 2AU4.

We choose the trivial solution,=F,=0.

The orderé® is the last order that we have to do “by

hand”; in dealing with all higher order&" with n=6) we

will simply invoke the machinery of mathematical induction.

To €, we get
(- D2+ 4h)(u, - F3+ug- 1) =0, (33)
D>2<(U0'F5+02'F3+U3'F2+05'1):0, (34)
(- D5+ 2M?)(Fs- 1+F, - F3) = 2(Avs +vv5),  (35)

where we have taken into account that=u,=v,=F;=0.
Substituting foru, andF3, Eq. (33) gives

(_(9§+4h)U5=0,

whenceus=0. Recalling thatv,=-AF, and v3=AF;, Eq.
(34) becomes

#(vs+AFs) =0,

whereas making use ¢fD2+2A?)F,-F3=2v,04 in Eq. (35)
we get

(— &+ 2A%)F5— 2Av5=0.

The last two equations are satisfied by letting-F5=0.

Finally, we prove that all coefficients,, v,,, andF, with
n=6 are also equal to zero. We assume that;=v,_,
=F,-1=0 and show that this entailg,=v,=F,=0. Consider,
first, Egs.(10) and(11). Setting to zero the coefficients éf,
we obtain

n-1

Di (UO'Fn+EUk'Fn—k+Un'1):Oy (36)
k=1

PHYSICAL REVIEW E1, 026613(2005

n-1
(= D>2<+ 2A2)<E Fr-Fnyt 2F, - 1)

k=1
n-1
= 2 (Ul + Ui + 4ogun. (37)
k=1

Sinceu,_.=0 for all 3=n-k=n-1 andF,=v,=0 for all
4<n-k=n-1, the sum involvingi,_ in the right-hand side
of Eq. (37) begins withk=n-2 (rather than wittk=1), while
all sums involvingF,_, andv,_ begin withk=n-3. On the
other hand, since-2=4, all u in the sum in Eq(37) are
equal to zero. In a similar way, adl, andF, in the sums in
Egs. (36) and (37) equal zero—excepi, 3 and F,_3 for n
=6. Therefore, fon=7 Egs.(36) and(37) become a pair of
homogeneous equations fof and F,,; hence we can set,
=F,=0. Forn=6, we get

Di(vg-Fs+vs-F3+v-1)=0,

(- D2+ 2A%)(F5 - F3+ 2Fg - 1) = 2(v3+ 2000¢).

Using v3=AF3, this also reduces to a homogeneous system
for vg andF.
Finally, Eq.(9) gives, to the ordeg",

n-1
(- D§+4h)<2 Ug - Frog+ Uy - 1) =0.
k=1
Since n-3=3, we haveu,=0 for k=n-3. On the other
hand, allF,,=0 for k=n-3 and so all terms in the sum
equal zero. Henca,=0.

B. The explicit solution and its interpretation

Thus we have constructed an explicit solution of the form
=(u+iv)F, whereu, v, andF are polynomials o’ and
e’ with real coefficients. It will be shown later that if
C_<0, the solution has a singularitjWe recall thatC_ is
given by Eq.(21).] For now, we assume th&_ >0 and cast
the solution in a more symmetric form.

First of all, the parametes can be absorbed inte’? and
e’ through the redefinition of the arbitrary constarfsand
Xo. Next, we definey;=6,—a— 8 and x,=60,— 28, where

€?*= AC,C_= 4(A?- 4h),

eZB_E_A_i_Zhl/Z

C. A-2n? 38

The new phaseg; and x, still involve arbitrary constants;
andx,. We can choose these constants in such a way that, up
to an overall translation,

x1=2hY2(x=s), xp,=2A(X+S9), (399

wheres is the only free parameter remaining. The numerator
and denominator of the solution

y=(Uu+iv)F?

are then given by the following expressions:

(39b)
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-1 - h= 0-12 1 s h=02
@ s=-10 ) s=0 FIG. 2. The bubble solutiort39) for s= (a)
-25 0 25 25 0 25 -10, (b) 0, and(c) 10. The pane(d) corresponds
X X to the bubble of opposite chiralityi.e., with
J(X)— -y (¥)] ; like (), it is plotted fors=10.
1 “ a AT s . The solid line corresponds to the real part, and
: the dotted line to the imaginary part.
: h=02
-1 \ ;s h=02 1 ; s=10
(c) s=10 (d) R e A
-25 0 25 -25 0 25
X X
u=e*h(1 -ev), (399  handed Bloch wall on the lefcentered ak,=s-38h?.
These conclusions are illustrated by Fig. 2 which depicts
v = A(1 - e2P*x2 — P21 4 @2xitxe) | (399  the real and imaginary parts of E(B9) for several repre-
sentative values o$. We also note that the transformation
E =1 +e2B2 4+ @262 4 21Xz (399 X7 XS—S which was noted above to change the sign of

Asymptotically,y— iA as bothx— o andx— —o, and hence
Eq. (39) has the form of a bubble. If we perform the reflec-
tion x——x, and at the same time replasavith —s, the real

the real part while leaving the imaginary part intact, simply
flips the chirality of the Bloch wal[see Fig. 2d)].

There is yet another way of seeing that E2p) represents
a bound state of two walls, and this time we do not have to

and imaginary parts of the solution change according t@assume thas is large. Consider the integral

u/F—-u/F, v/IF—uv/F. Denoting the solution(39) by
Y(x;s), we therefore have the following symmetry:

P(=X;=9) == (X;9).

This implies, in particular, that the solutidi39) with s=0
has an odd real and even imaginary part. Whenl%, the
s=0 solution reproduces the explicit solution that has bee
known before, Eq(6). [More precisely, it is equivalent to
Eq. (6) with x——x.]

The solution(39) describes a stationary complex of a
Bloch and a Néel wall, with the parameteicharacterizing
their separation. This is easily seen by examining(86) in
the limit of larges. First, lets be large and positive. Fot
~s, we haveeXzs>e?X1~ 1. In this region, the solutio39)
reduces to

#=iA tanhX — \1 —3h sechX,

with X:Z\s“ﬁ(x—s)—,B, which is a right-handed Bloch wall
centered ak,=s+3ph™V2 In the regionx~ —s, we find that
Eq. (39) becomes

y=—IiA tanjA(x +s) + 8],

which is a Néel wall centered a=-s—BA™L. On the other
hand, if we lets be large and negative, then we find a Néel
wall on the right (centered atx,=-s+BA™Y) and a right-

| = f (A% = gf?) dx (409

which gives an integral measuttarea”) of solutions with

IJ,lzp(x)| — A as|x|— . This integral usually has some physical

meaning in the nonlinear Schroédinger-based interpretations
of Eq. (3). For example, if Eq(3) is regarded as a stationary
reduction of the Landau-Lifshitz equation for the easy-plane
ferromagnet in the external magnetic fi¢Ril], the integral

(4049 gives the total number of magnons in the excited state
of the ferromagnet. In the Ginsburg-Landau based applica-
tions of Eq.(3), the integral(40a does not usually have any
special meaning, but nevertheless can be used as a scalar
characteristic of stationary solutions. Lettigig-(u+iv)F™2,

Eq. (408 becomes

I = f (AZFZ—Uz—vz)%(. (40b)

For the Bloch wall, this integral equalg=2B while for the

Néel wall we gel=2A. As for the solution$39), the evalu-

ation of the integral40) becomes trivial if we notice that,
due to Eq.(11), the integrand is a total derivative:
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(AF? = U2 = v?)F 2= 4 (0, FIF). (41 F < 0. But sinceF is positive in both asymptotic regions and
. B is continuous, it follows thaF must vanish at least at two
Evaluatingd,F/F at x=t% we conclude that each member points. Since the bottom sign has been chosen, (E¢p)

of the family of bubbles (39 has the “area” jpplies thaty=A>0, so whenF=0, the quotient/F is
| =2(A+B)—which is exactly the sum dfy andly. infinite.

We conclude this section by mentioning that bound states  Thys, in summary, of all the families of solutions found in
of a pair of stationary dark solitons have also been found ifpis section only family(39) is regular, and only foh<1
’ ’ 3

the (integrablg Manakov systenj25]. The other solutions are singular and not physically relevant.
C. Other solutions lll. “COMPLETENESS” OF THE LIST OF
. SOLUTIONS
If we had choseifr,=—e’ instead o’ at the ordek, we
would have arrived at a different solution. Assumihg:% It is convenient to rescale E¢3) so that the asymptotic
(so thatC_>0) and defininga, 8, x1, andy, as in Eqs(38)  values are equal to =1. Letting(x) =iAW(Ax), Eq. (3) be-
and(39a, this solution can be written as E@9b) with comes
u=erFa(l +ev), 42 2 1) .
( ) (423 W+ —Z\Ir—2|\1f|2\1f+2(1——2)qf =0. (46)
A A
= A(1 +2Pxe — @2B+2x1 — @2x1*xz) 42b . .
v=A ) (42b) We will demonstrate that solution&), (5), and (39)
F =1 - 2Pt 220 2 (420 (when suitably rescaledare theonly bounded solutions of

Eq. (46) that asymptotically approach one of the stable flat
It is not difficult to check that this solution is singular. In- backgrounds¥=+1 asx— —o. We will consider solutions
deed, the functiofr(x) is continuous, and has opposite signsof Eq. (46) as trajectories in a four-dimensional phase space
at the two infinities’F — 1 asx— -« andF — -« asx-—sc.  and show that for any direction in which a trajectory can
Therefore, it must pass through zero at least once. Since leave the fixed pointrepresenting the flat backgrounave
cannot vanish for finitex, we haveu/F=o whereverF=0. already have a solution leaving in that direction. By unique-
Although singular solutions are not physically meaningful,N€ss, no other trajectories will be allowed to exist. For defi-
there will be some indirect use for them in the next sectionniteness, we confine ourselves to the case of trajectories that

Assume novx/n>%. Here we haveC_=A-2h'2<0 and approach¥’=1 asx— —; a similar argument is valid for
the functions(39) and (42) are no longer solutions, because Solutions approaching’=-1.

the parameters and 8, as defined by Eq(38), are not real. For convenience of presentation, we start by listing all
We can, however, define and 8 by knovyn squuqns to the resca[ed equat_|¢m3). Be5|des_the
solutions derived in the previous section, we also include
€=~ 4C,C_=4(4h-A?), solutions which are the unbounded counterparts of the iso-
lated Bloch and Néel walls. In all of these, we make explicit
s_ Cs 2h'2+ A the translational invariance of E(46).
=~ N (43) For h<3, apart from the flat backgroun#fo=1, the list

consists of the Néel walWy=-tanhi(x—X,) and its singular
and, instead of Eq4390—(399 and (428420, arrive at  counterpart
the following two solutions:

u= ea+,8+)(1(1 + eXZ), (443) \PN == COtI’(X - XO); (47)

the Bloch walls
Vg =—tanfB(x—Xg)] £ iC seciB(x—Xg)], (48)

F =1 +e28*% — 287204 T g2atxe, (440  whereB=2(A?~1)*?A"1 andC=(4-3A?)*?A™, and, finally,
o ) o the Bloch-Néel complexthe bubblg which we write to-
If the top sign is chosen in E@44), an argument similar to gether with its unbounded counterpart:
the one following Eq.(42) demonstrates tha must pass

through zero whereas is strictly positive; once againy/F u+iov

v=A(l F P X+ P20 3 @x1tx2), (44b)

is singular. If the bottom sign is choséh,is positive in the Yen= 1+ e2BX2 + @2B+2x1 + g2x1tx2’ (493
asymptotic regiong— + o, and this type of argument would
not work. However, at the point=—-s—pBA™L, we havey, Here
=-24 and so Eq.440 (with the bottom sign chosérbe- U= 15 2Bz — 2B 4 X1t (49b)
comes '

F(x) = e?1(e % - eP). (45) v=2(1+B)e (1 ev), (490

By Eq. (43), €¥>1, which means that the contents of the €#=(1+B)(1-B)™, x1=B(X—Xp—95), and x,=2(X—Xy+S).
parentheses in Eg45) are negative. Thus for this valuexf  The real parametesandx, are arbitrarys characterizes the
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separation distance arng, describes uniform translations.
The sign factoro=+1 determines the chirality of the Bloch
wall bound in the complex[Note thato is not correlated
with the sign factor in Eqs(49b) and(49¢).] If the top sign
is chosen, Eq49) gives the rescaled regular solutit89). If

the bottom sign is chosen, we have the rescaled singular

solution (42).

For h>%, the functions¥,, ¥y, and E’N defined in the
previous paragraph remain as solutions. Equatid8s and

PHYSICAL REVIEW E 71, 026613(2005

fixed point and therefore provide coordinates on the local
unstable manifold.

In the vicinity of the fixed point, Eqg4528 and(52b) can
be written as

=4 n-1)+ 2§2, (558

&= B2 (55b)

(Note that we cannot drop th& term in the top equation

(49), on the other hand, are no longer solutions. Equatiorhere, as the equation does not include any term linedr)in

(48) is replaced by

Vg = - cOtHB(X - Xo)] £ iC cosechB(x—x,)], (50)

whereB stays as it was previously defined wher&ais now
given by C=(3A%-4)2A"1, Equation(49) is replaced by

~ u+iov
Wen = 1 F e2Ptxa — @2B+2x1 4 @2x1tx2’ (51a
where
u=1+e?Pe+ 2Pt gtz (51b)
v=2(1+B)e’(1 F %), (510

and all parameters are defined as for E4p) excepte?”
=(B+1)(B-1)"1. Both (50) and (51) are singular solutions
[for all choices of signs in Eq51)].

We now turn to Eq.(46) and write it as a dynamical
system for a particle on the plane:

= 2P+ &)+ 29=0,

b= 207 + E)E+(2-BYE=0, (52b)

whereW = p+i& with # and ¢ real, andB2=4(A’-1)A"? [as
defined for Eq(48)]. This is a Hamiltonian system, with the
Hamiltonian

(52a)

e 2-(pee-v-8. (59

"=3

There is also a second, independent, integral of motion
I=(én=n&)* +Bng- 7€ - (-1 (54)

[In the derivation of Eq(54) we were guided by the results
of Ref.[26] which considers a similar systepThus all tra-
jectories of the systen(52) are confined to lie on a two-
dimensional surface, defined by the constraf6® and(54).
We consider trajectories that flow out of the fixed point
(m,&,1,£)=(1,0,0,0. (On these trajectories, the con-
served quantities obelf =0=7.) This fixed point is a saddle,

The solution to Eq(55) satisfyingn— 1,£—0 asx— - is

./\fZ

Bx
2(1- Esz)e2 ’

n=1+Me*- (563

= NeBX,

The real constants\t and N are arbitrary and provide a
parametrization of the local unstable manifold: each pair
(M, N) defines a trajectory on the manifold, and the other
way around—for each pointz, &, 7., &) on the manifold,
we can find a pailM,N) such that there is a trajectory
connecting(7, £, 7y, &) to (1,0,0,0 which is described by
Eq. (56). Indeed, for the given pair of coordinates,, &) we
can solve Eq(56) to get

(56b)

MePo=yy+ —5(2)
0" 2(1-B?

Due to the translational invariance of the systésg) , re-
placingx with x—xg in Eq. (56) simply furnishes a different
parametrization of the same trajectory. Hence the required
pair (M, N) is obtained, e.g., by setting=0 in Eq.(57).

Thus, if we factor the translation invariance out, there is a
one-to-one correspondence betwdevt ,\) and (,&) on
the local unstable manifold. We now show that for every pair
(M, N) (with —eo< M, N'<x) we already have an explicit
solution in our list, regular or singular, with the asymptotics
(56). This will imply that our list is complete and no other
solutions with this asymptotic behavior can exist.

First of all, the solution corresponding t&1,N)=(0,0)
is the flat backgroundl,=1. Keeping\'=0, we have two
possibilities(for all h): in the caseM >0, Eqs.(56) give the
asymptotics of the solutioWy, Eq. (47), with x, defined by
M=2e"20; similarly, the caseM <0 corresponds to the
Néel wall ¥y, with M =-2e"2%,

Now let M =0 while N'# 0. Here the two caséds< ; and
h>§ have to be considered separately. Hﬁet% the pair
(0,N\) corresponds to the Bloch walt8), with

IM = 2(1 —3h)12A e B,

-1, NePo=¢g,. (57)

(58)

with two positive and two negative real eigenvalues. Thus in

a neighborhood of the fixed point on the unstable manifold
7, Will be either positive or negativéas will &,), while os-

The sign ofV'is arbitrary and determines the chirality of the
soliton. If h>§, we recover the solutiofVg; this solution

cillatory behavior is not possible. In this neighborhood, thealso occurs with two different chiralities, depending on the

sign of 7, will obviously be the same as the sign @j—1);
similarly, the sign of¢, will be the same as that ¢¢-0). As
for the magnitudesof 7, and ¢,, these are determined by
and ¢ via the constraint${=0, Z=0. Thus the variables
and ¢ uniquely determinen, and & in the vicinity of the

sign of V.

Finally, we letM # 0, '+ 0. Assume, first, thet < 5 and
consider the solutioW gy, Eq. (49). This solution comes in
two chiralitieso=+1. We let V> 0; this selects one of the
chiralities (o=+1). (The caseN'<0 can be considered in a
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similar way) Comparing the asymptotic behavior of the so- The two-soliton bound state solution we have obtained in
lution (49) to Eqgs.(56), we find this paper admits a transparent interpretation in each of the
above physical situations. In the context of vibrated water

M= 5 2620 troughs and chains of coupled pendula, the Bloch-Néel com-

and plex describes a patch oscillating 180° out of phase with the
rest of the chain or channel. A similar interpretation arises in

N'=2(1+B)e B, optical parametric oscillators; there, a bound state of two

dark solitons represents a localized fundamental field domain
with a 180° phase difference from the rest of the cavity. In

the context of ferromagnetism, the stationary complex corre-
sponds to a magnetic bubble, i.e., an “island” of one stable

Thus M <0 corresponds to th@egulay Bloch-Néel bound
state[top sign in Eq.(49)], and M >0 to its singular coun-
terpart[bottom sign in Eq(49)]. Forh> % a similar consid-
eration involving Eq. (51) demonstrates that any pair : tamal

. <" phase in the “sea” of the other one.
(M, N) with M #0, N'#0 corresponds to a known solution ™ e qestion of stability of the two-soliton bound state is

as well. o beyond the scope of our current investigation. The answer
will obviously depend on whether EQR) is considered as a
IV. CONCLUDING REMARKS stationary reduction of the Ginsburg-Landau, Klein-Gordon,

In this paper, we have explicitly constructed bound state§" Nonlinear SchrédingeNLS) equation(i.e., Eq.(2), (59,
of a pair of domain walls in the resonantly forced Ginsburg-Of (60/]- To illustrate the model dependence of stability prop-
Landau equation. The constructed solutions represent d&ies of one and the same sol'ut|on,, it is instructive to bring
mains (of arbitrary length that are 180° out of phase with UP the exam[i)Ie of a fre'e-standlmg Neel wall, ). Let, for
the background field. We have also demonstrated that st&xampleh<. If the Néel wall is considered as a stationary
tionary bound states of more than two dark solitons cannogolution of the Ginsburg-Landau equatid@) or of the
exist. [We have, in fact, proved that the solutions presented<lein-Gordon equatior{59), then it is found to be unstable
in this paper are thenly solutions to the reduced scalar While the Bloch wall is stabl¢3,8,20,29. On the contrary,
equation(3) which approach the stable background at infin-Poth Bloch and Néel walls are stabl@1] when considered
ity. ] as stationary solutions of the parametrically driven NLS
Apart from the Ginsburg-Landau equation, H8) oc- equallt'lon, Eq(60). We are plgnnlng to return tq the issue of
curred as a stationary reduction of several conservative norsfapility of the bound states in future publications.
linear evolution equations modeling some other physical Finally, it is appropriate to mention that E() appeared
situations. We have already mentioned the MSTB model of? ©n€ more optical context, namely, that of birefringent op-
field theory[18,19; the corresponding equation of motion tical fibers. The vector nonlinear Schrddinger equation for
can be written as the complex* equation with the broken pulses traveling in a birefringent fiber was derived by

U(1) symmetry: Menyuk [30]:
9E;, JE;\ 1E 2
1 1 . il ==L+ _1)_,__ 1—<E2+—E2>
§¢tt—§¢xx+|¢/f|2¢/- g+hy =0. (59 '( PR PP Bl 3| 2
(For the current status of the MSTB and related theories, see XE; - %EgE’;e““ht =0, (61a

Ref.[27].) In addition, Eq.(3) describes stationary solutions
of the parametrically driven nonlinear Schrédinger equation:

[JE, B\ 1PE, (2
oy (Ze-o%2) 2175 (2 s e
o+ o= 0120+ =y = 0. (60 - ax)2a¢ 13
1 . g
In fluid dynamics, Eq.(60) governs the amplitude of the ><E2—§E§E2e4'ht:0. (61b)

oscillation of the water surface in a vertically vibrated chan-

nel with large width-to-depth ratig17,23. [If, conversely, Heredis proportional to the difference of group velocities of
the channel is deep and narrow, EGO) is still valid, but  the fast and slow linearly polarized modgghose envelopes
with the opposite sign in front of the nonlinear tefnithe  are described b§; andE,), andh measures the mismatch of
same Eq(60) arises as an amplitude equation for the upperthe corresponding propagation constants. Equati@is)
cutoff mode in the parametrically driven nonlinear latticesand (61b) are written in a frame moving with the average of
[28]. It was also derived for the doubly resonait’ optical  the group velocities; the choice of coefficients corresponds to
parametric oscillator in the limit of large second-harmonicthe fiber in the regime of normal dispersion. If one assumes
detuning[22]. In all of these cases, the terimy’ represents that the difference of the two group velocities is so small that
parametric pumping of some sort. Finally, £§0) describes it can be neglected, while the difference of the propagation
magnetization waves in a gquasi-one-dimensional ferromageonstants is nonnegligiblghough possibly small then the

net with a weakly anisotropic easy plane, in a perpendiculasubstitution

stationary magnetic fielf21]. In the magnetic context, the E.=Uei™t  E =ydh-t
hy” term accounts for the anisotropy of the ferromagnetic 8 b2
crystal. takes Eq(61) to
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U 142U 2, ) 1, justified in the case of thdark solitons is an open question
T2 U ‘|V| u-3v U +(1+hu=0, which is beyond the scope of our investigation. Here, we
simply note that for time-independent real fieldsand V,
(628 Eqs.(62) reduce to our Eq3) with =U+iV. This fact was

used by Christodoulidef33] who obtained the Bloch and
Néel walls for a weakly birefringent fibgunder the above
assumption Our solution(39) is a bound state of the “dark”
and “bright-dark” vector solitons of Christodoulides.

NV 1PV
—+———<—|u|2 |V|2>V——U2V +(1-hvV=0.
gt 20x%

(62b

The above assumptio=0,h# 0) can be justified in the
case of thebright solitons, i.e., in the anomalous dispersion
regime. In that case, Blow, Doran, and Wood demonstrated |.B. was supported by the NRF of South Africa under
the existence of bound pairs of bright solitons where eaclrant No. 2053723, by Johnson Bequest Fund, and the URC
soliton is polarized along a different birefringence gd4].  of the University of Cape Town. S.W. was supported by the
Later, these solutions were explicitly constructed by TratnikNRF of South Africa and by the URC of the University of
and Sipe[32]. Whether the assumptiof=0, h#0 can be Cape Town.
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