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The parametrically driven Ginsburg-Landau equation has well-known stationary solutions—the so-called
Bloch and Néel, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound
state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.
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I. INTRODUCTION

In this paper we derive a class of explicit and physically
meaningful solutions to an equation that has been under scru-
tiny, in various contexts, for more than 40 years. The equa-
tion is the resonantly driven Ginsburg-Landau; in its most
general form it reads

ct = sm + indc + sg1 + ic1dcxx − sg3 + ic3ducu2c − hsc*dn−1.

s1d

Equations1d describes a one-dimensional chain of coupled
weakly nonlinear self-sustained oscillators in the continuum
approximation. The chain is subjected to periodic forcing at
the frequencyV<nv0, where v0 is the frequency of the
undriven spatially homogeneous linear oscillations. The
complex variablec=csx,td is the slowly varying amplitude
of the resulting nonlinear oscillations with the periodT
=2pn/V.

Before specializing Eq.s1d to the particular case that will
concern us in this paper, we briefly comment on the physical
meaning of its coefficients. First of all, the parameterm.0
measures the distance to the supercritical Hopf bifurcation at
which a sspatially homogeneousd stable limit cycle appears.
For the stability of the self-sustained oscillation one also
needsg3.0. The real constantn is proportional to the fre-
quency detuning,n~V /n−v0. In the derivation ofs1d, it is
assumed that both the linear growth ratem and the detuning
n are small compared to the frequencyv0. sSee, e.g., Ref.
f1g.d Next, the parameterc3 describes the nonlinear fre-
quency shift, while the derivative term accounts for the in-
teraction of the neighboring oscillators in the chain, with the
real and imaginary parts of the coefficientg1+ ic1 pertaining
to the dissipative and reactive types of coupling, respectively.
Finally, h is proportional to the amplitude of the forcing. The
sn−1dst power ofc* in Eq. s1d results from resonance forc-
ing of ordern:1 f2g. The 1:1, 2:1, 3:1, and 4:1 resonances
have been studied most extensively in the literature. In this
work, we focus on the casen=2.

The analyses of Eq.s1d usually start with considering the
gradient, or variational, limitf3,4g. The variational limit cor-
responds to the assumption that the coupling is purely dissi-

pative sc1=0d, frequency detuningn is zero, and the homo-
geneous oscillations are isochronoussc3=0d. With these
assumptions, a suitable rescaling oft, x, c, andh produces

ct =
1

2
cxx − ucu2c + c − hc* . s2d

In this paper, we consider stationary solutions of Eq.s2d;
these satisfy

1

2
cxx − ucu2c + c − hc* = 0. s3d

We will takeh to be positive in what follows; this can always
be achieved by an appropriate phase shift ofc. Historically,
Eq. s3d was first introduced in the context of the anisotropic
XY model, which was used to model an easy-axis ferromag-
net near the Curie temperaturef5,6g. Nonstationary magne-
tization configurations were considered as solutions to Eq.
s2d f7g. The investigations of the more general Eq.s1d sstill
with n=2, thoughd, including analyses of small nonvaria-
tional effects, were reported in Refs.f3,8,9g. Apart from the
magnetic applications, these studies were motivated by re-
search in liquid crystalsf10g, experiments with the periodi-
cally forced light-sensitive Belousov-Zhabotinsky reaction
f11g, and work done in optics, in particular with regard to
optical parametric oscillatorsf12g and lasers with intracavity
parametric amplificationf13g. Equations1d also appeared as
a phenomenological equation for the parametrically excited
surface waves in viscous fluidsf14g and granular mediaf15g.

The nontrivial sspatially nonhomogeneousd solutions
which attracted interest in the context of each of these fields
are domain walls, or kinks, also known as dark solitons in
nonlinear optics. The domain wall is a localized interface
between two different homogeneous backgroundssknown as
domains in the magnetic contextd. The possible backgrounds
are described by the constant nonzero solutions of Eq.s3d,
c= ±A− andc= ± iA+, whereA±=Î1±h. The first of these is
known to be unstable while the second is stable. We will
only consider dark solitons propagating over the stable
background—asymptotically, all of the solutions considered
here will satisfyucu2→A+

2 as uxu→`.
The soliton solutions to Eq.s3d with the desired

asymptotic behavior can be either topologicalswith a phase
difference of 180° between the two asymptotic valuesd or
nontopological swith no change in phase between the
asymptotic fieldsd. Equations3d admits two explicit topologi-
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cal solutions. The first is the Néel wallf5,6,16,17g

cNsxd = iA+ tanhsA+xd, s4d

so named because its magnitudeucu vanishes at the origin, at
which point the phase becomes discontinuous.sIn magne-
tism, a Néel wall is a domain wall with vanishing magnitude
of the magnetization vector at its center.d It is also called the
Ising wall, the name appealing to the Ising model which was
used to emulate the easy-axis ferromagnet. The Néel wall
exists for all positiveh.

The second topological solution has the form

cBsxd = iA+ tanhsBxd ± C sechsBxd, s5d

whereB=Î4h andC=Î1–3h f6,18,19g. This solution is usu-
ally referred to as a Bloch wallswhich, in magnetism, is a
domain wall connecting the two domains smoothly, with the
magnetization vector remaining nonzero everywhered. The
Bloch wall exists in two chiralities, distinguished by the sign
of the real part in Eq.s5d. For convenience, we will refer to
the solution with positivesnegatived real part as the left-
handedsright-handedd Bloch wall ssee Fig. 1d. Regardless of
the chirality, the Bloch walls only exist forh,

1
3.

In addition to the Bloch and Néel walls, Eq.s3d possesses
nontopological solitons. One such solution is known explic-
itly, for h= 1

15 f18,20g,

c = iAF1 −
3

2
sech2sBxdG + 3B tanhsBxdsechsBxd. s6d

HereB=Î4h=Î4/15. In addition, a class of bubblelike solu-
tions fincluding Eq.s6d as a particular caseg was found nu-
merically f21g. As is usual with numerical solutions, the
structure of the solitonic bubbles has not been completely
understood. It has also remained unclear whether they form a
continuous familysfamiliesd and if they do, what is their
range of existencesin hd. Finally, a pertinent question is of

the generality of these solutions: can the resonantly driven
Ginsburg-Landau equation support localized, stationary
structures other than the walls and bubbles? The aim of this
paper is to address all of these issues.

Here, for eachh,
1
3, we construct a two-parameter family

of explicit bubblelike solutions and demonstrate that they can
be interpreted as stationary bound states, or complexes, of a
Bloch and Néel wall. Physically, the constructed solutions
represent phase domains of arbitrary length, which are 180°
out of phase with the background field. We also prove that
these solutions exhaust the list of possible stationary
complexes—there can be no stationary bound states of more
than two walls.

It is appropriate to mention here that Eq.s3d appeared
previously in several other, unrelated, physical contexts.
Written in terms of the real and imaginary parts ofc, it
coincides with the stationary equation for the so-called
Montonen-Sarker-Trullinger-BishopsMSTBd model of field
theory f18,19g. More recently, it occurred as a stationary
limit of the parametrically driven nonlinear Schrödingerf21g
equation. The latter equation arises in a large variety of
physical applications including nearly resonant optical para-
metric oscillatorsf22g, easy-plane ferromagnets in magnetic
fields f21g, and surface waves in wide, vertically vibrated
channels of inviscid fluidf17,23g. Accordingly, we expect
the additional solutions to admit physical interpretations in
these fields as well.

The paper is organized as follows. In Sec. II we derive a
family of explicit two-soliton solutions and cast it in a sym-
metric form allowing easy visualization. These solutions will
be interpreted as bound states of a Bloch and Néel wall.
Several families of singular solutions appear as by-products
in this construction; these will be used later for auxiliary
purposes. After thatsSec. IIId we show that there exist no
other bounded solutions of Eq.s3d which would asymptoti-
cally approach the stables±iA+d background. This means that

FIG. 1. The Néel wallsad, and
the left- and right-handed Bloch
walls fsbd and scd respectivelyg.
The solid line corresponds to the
real part, and the dotted line to the
imaginary part. Hereh=0.05; we
plot the two walls for a small
value of the parameter in order to
accentuate the difference in their
widths.
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apart from the constant solution, the only nonsingular solu-
tions to Eq.s3d are the Bloch and Néel walls, and the Bloch-
Néel complexes constructed in this paper. Finally, some con-
cluding remarks are made in Sec. IV.

II. EXACT SOLUTIONS FOR THE BLOCH-NÉEL
BOUND STATE

A. The Hirota construction

In order to construct a bound state of two walls expli-
citly, we employ the Hirota bilinear formalismssee, e.g., Ref.
f24g d. Letting

c =
G

F
, s7d

whereG is complex andF a real function ofx, Eq.s3d is cast
in the bilinear form

FfDx
2G ·F + s2 − ldGF − 2hG*Fg

− GfDx
2F ·F − lF2 + 2uGu2g = 0. s8d

HereDx is the Hirota operator defined on ordered products of
functions:

Dx
n a ·b ; s]x − ]ydnuasxdbsydux=y.

In Eq. s8d we have added the termlGF2 to the second brack-
ets and subtracted it from the first one. The constantl will be
chosen later.

By making the substitutions7d we increased the number
of unknowns while the number of equations remained un-
changed. We can use this freedom to set the first and the
second terms in Eq.s8d to zerosseparatelyd:

Dx
2 u ·F + s2A−

2 − lduF = 0, s9d

Dx
2 v ·F + s2A+

2 − ldvF = 0, s10d

Dx
2 F ·F − lF2 + 2su2 + v2d = 0, s11d

where we letG=u+ iv and decomposed the first brackets in
Eq. s8d into its real and imaginary parts. Now we look for a
solution to the systems9d–s11d as a series

u = eu1 + e2u2 + ¯ , v = v0 + ev1 + e2v2 + ¯ ,

F = 1 +eF1 + e2F2 + ¯ ,

wheree is a formal expansion parameter. An explicit solution
will arise if the series truncates at a finite power ofe.

Substituting into Eqs.s9d–s11d, the ordere0 gives

]x
2v0 + s2A+

2 − ldv0 = 0, s12d

2v0
2 − l = 0. s13d

We now choosel=2A+
2. Then, Eqs.s12d and s13d give v0

=A. sHere, and in the rest of the paper,A stands forA+.d
Next, at the ordere1 we obtain

s− ]x
2 + 4hdu1 = 0, s14d

]x
2sAF1 + v1d = 0, s15d

s− ]x
2 + 2A2dF1 = 2Av1. s16d

Equations14d yieldsu1=eu1, whereu1=2h1/2sx−x1d andx1 is
an arbitrary constant. From Eq.s15d we inferv1=−AF1. Sub-
stituting this into Eq.s16d we get

s− ]x
2 + 4A2dF1 = 0,

whenceF1=eu2, whereu2=2Asx−x2d andx2 is another arbi-
trary constant.

The ordere2 gives three equations:

s− Dx
2 + 4hdsu2 · 1 +u1 ·F1d = 0, s17d

Dx
2sv0 ·F2 + v1 ·F1 + v2 · 1d = 0, s18d

s− Dx
2 + 2A2dsF1 ·F1 + 2F2 · 1d = 2su1

2 + v1
2 + 2v0v2d.

s19d

Substituting foru1 andF1 in Eq. s17d this equation becomes

s− ]x
2 + 4hdu2 = 4AC−eu1+u2, s20d

where

C− = A − 2h1/2. s21d

Ignoring its homogeneous solution, we get

u2 = −
A − 2Îh

A + 2Îh
eu1+u2 ; −

C−

C+
eu1+u2. s22d

Next, substitutingv0=A andv1=−AF1 into Eq. s18d, we ob-
tain v2=−AF2, after which Eq.s19d becomes

s− ]x
2 + 4A2dF2 = e2u1,

whence, ignoring again the homogeneous solution,

F2 =
1

4C+C−
e2u1. s23d

The singularity arising forA2=4h can be removed by letting
x1=` in u1.

To the cubic order ine we get

s− Dx
2 + 4hdsu1 ·F2 + u2 ·F1 + u3 · 1d = 0, s24d

Dx
2sv0 ·F3 + v1 ·F2 + v2 ·F1 + v3 · 1d = 0, s25d

s− Dx
2 + 2A2dsF3 · 1 +F2 ·F1d = 2su1u2 + v1v2 + v0v3d.

s26d

Substituting foru1, u2, F1, andF2, Eq. s24d becomes

s− ]x
2 + 4hdu3 = 0,

whenceu3=0. On the other hand, Eqs.s25d and s26d reduce
to the system

]x
2sAF3 + v3d = 2A

C−

C+
e2u1+u2, s27d
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s− ]x
2 + 4A2dsv3 − AF3d = 0, s28d

which givesv3=AF3 and

F3 =
C−

4C+
3e2u1+u2. s29d

Next, the ordere4 yields

s− Dx
2 + 4hdsu4 · 1 +u2 ·F2 + u1 ·F3d = 0, s30d

Dx
2sv4 · 1 +v3 ·F1 + v2 ·F2 + v1 ·F3 + v0 ·F4d = 0, s31d

s− Dx
2 + 2A2ds2F4 · 1 + 2F3 ·F1 + F2

2d

= 2su2
2 + v2

2 + 2v1v3 + 2v0v4d, s32d

where we have taken into account thatu3=0. Substituting for
all the variables in Eq.s30d we obtain

s− ]x
2 + 4hdu4 = 0,

whenceu4=0. Equationss31d and s32d reduce to the homo-
geneous system

]x
2sv4 + AF4d = 0,

s− ]x
2 + 2A2dF4 = 2Av4.

We choose the trivial solution,v4=F4=0.
The ordere5 is the last order that we have to do “by

hand”; in dealing with all higher orderssen with nù6d we
will simply invoke the machinery of mathematical induction.
To e5, we get

s− Dx
2 + 4hdsu2 ·F3 + u5 · 1d = 0, s33d

Dx
2sv0 ·F5 + v2 ·F3 + v3 ·F2 + v5 · 1d = 0, s34d

s− Dx
2 + 2A2dsF5 · 1 +F2 ·F3d = 2sAv5 + v2v3d, s35d

where we have taken into account thatu3=u4=v4=F4=0.
Substituting foru2 andF3, Eq. s33d gives

s− ]x
2 + 4hdu5 = 0,

whenceu5=0. Recalling thatv2=−AF2 and v3=AF3, Eq.
s34d becomes

]x
2sv5 + AF5d = 0,

whereas making use ofs−Dx
2+2A2dF2·F3=2v2v3 in Eq. s35d

we get

s− ]x
2 + 2A2dF5 − 2Av5 = 0.

The last two equations are satisfied by lettingv5=F5=0.
Finally, we prove that all coefficientsun, vn, andFn with

nù6 are also equal to zero. We assume thatun−1=vn−1
=Fn−1=0 and show that this entailsun=vn=Fn=0. Consider,
first, Eqs.s10d ands11d. Setting to zero the coefficients ofen,
we obtain

Dx
2 Sv0 ·Fn + o

k=1

n−1

vk ·Fn−k + vn · 1D = 0, s36d

s− Dx
2 + 2A2dSo

k=1

n−1

Fk ·Fn−k + 2Fn · 1D
= 2o

k=1

n−1

sukun−k + vkvn−kd + 4v0vn. s37d

Sinceun−k=0 for all 3øn−køn−1 andFn−k=vn−k=0 for all
4øn−køn−1, the sum involvingun−k in the right-hand side
of Eq. s37d begins withk=n−2 srather than withk=1d, while
all sums involvingFn−k andvn−k begin withk=n−3. On the
other hand, sincen−2ù4, all uk in the sum in Eq.s37d are
equal to zero. In a similar way, allvk andFk in the sums in
Eqs. s36d and s37d equal zero—exceptvn−3 and Fn−3 for n
=6. Therefore, fornù7 Eqs.s36d ands37d become a pair of
homogeneous equations forvn andFn; hence we can setvn
=Fn=0. Forn=6, we get

Dx
2sv0 ·F6 + v3 ·F3 + v6 · 1d = 0,

s− Dx
2 + 2A2dsF3 ·F3 + 2F6 · 1d = 2sv3

2 + 2v0v6d.

Using v3=AF3, this also reduces to a homogeneous system
for v6 andF6.

Finally, Eq. s9d gives, to the orderen,

s− Dx
2 + 4hdSo

k=1

n−1

uk ·Fn−k + un · 1D = 0.

Since n−3ù3, we haveuk=0 for kùn−3. On the other
hand, allFn−k=0 for køn−3 and so all terms in the sum
equal zero. Henceun=0. !

B. The explicit solution and its interpretation

Thus we have constructed an explicit solution of the form
c=su+ ivdF−1, whereu, v, andF are polynomials ofeu1 and
eu2 with real coefficients. It will be shown later that if
C−,0, the solution has a singularity.fWe recall thatC− is
given by Eq.s21d.g For now, we assume thatC−.0 and cast
the solution in a more symmetric form.

First of all, the parametere can be absorbed intoeu1 and
eu2 through the redefinition of the arbitrary constantsx1 and
x2. Next, we definex1=u1−a−b andx2=u2−2b, where

e2a = 4C+C− = 4sA2 − 4hd,

e2b =
C+

C−
=

A + 2h1/2

A − 2h1/2. s38d

The new phasesx1 andx2 still involve arbitrary constantsx1
andx2. We can choose these constants in such a way that, up
to an overall translation,

x1 = 2h1/2sx − sd, x2 = 2Asx + sd, s39ad

wheres is the only free parameter remaining. The numerator
and denominator of the solution

c = su + ivdF−1 s39bd

are then given by the following expressions:

I. V. BARASHENKOV AND S. R. WOODFORD PHYSICAL REVIEW E71, 026613s2005d

026613-4



u = ea+b+x1s1 − ex2d, s39cd

v = As1 − e2b+x2 − e2b+2x1 + e2x1+x2d, s39dd

F = 1 +e2b+x2 + e2b+2x1 + e2x1+x2. s39ed

Asymptotically,c→ iA as bothx→` andx→−`, and hence
Eq. s39d has the form of a bubble. If we perform the reflec-
tion x→−x, and at the same time replaces with −s, the real
and imaginary parts of the solution change according to
u/F→−u/F, v /F→v /F. Denoting the solutions39d by
csx;sd, we therefore have the following symmetry:

cs− x;− sd = − c*sx;sd.

This implies, in particular, that the solutions39d with s=0
has an odd real and even imaginary part. Whenh= 1

15, the
s=0 solution reproduces the explicit solution that has been
known before, Eq.s6d. fMore precisely, it is equivalent to
Eq. s6d with x→−x.g

The solution s39d describes a stationary complex of a
Bloch and a Néel wall, with the parameters characterizing
their separation. This is easily seen by examining Eq.s39d in
the limit of larges. First, let s be large and positive. Forx
,s, we haveex2@e2x1,1. In this region, the solutions39d
reduces to

c = iA tanhX − Î1 – 3h sechX,

with X=2Îhsx−sd−b, which is a right-handed Bloch wall
centered atx0=s+ 1

2bh−1/2. In the regionx,−s, we find that
Eq. s39d becomes

c = − iA tanhfAsx + sd + bg,

which is a Néel wall centered atx0=−s−bA−1. On the other
hand, if we lets be large and negative, then we find a Néel
wall on the right scentered atx0=−s+bA−1d and a right-

handed Bloch wall on the leftscentered atx0=s− 1
2bh−1/2d.

These conclusions are illustrated by Fig. 2 which depicts
the real and imaginary parts of Eq.s39d for several repre-
sentative values ofs. We also note that the transformation
x→−x, s→−s which was noted above to change the sign of
the real part while leaving the imaginary part intact, simply
flips the chirality of the Bloch wallfsee Fig. 2sddg.

There is yet another way of seeing that Eq.s39d represents
a bound state of two walls, and this time we do not have to
assume thats is large. Consider the integral

I =E sA2 − ucu2d dx s40ad

which gives an integral measures“area”d of solutions with
ucsxdu→A asuxu→`. This integral usually has some physical
meaning in the nonlinear Schrödinger-based interpretations
of Eq. s3d. For example, if Eq.s3d is regarded as a stationary
reduction of the Landau-Lifshitz equation for the easy-plane
ferromagnet in the external magnetic fieldf21g, the integral
s40ad gives the total number of magnons in the excited state
of the ferromagnet. In the Ginsburg-Landau based applica-
tions of Eq.s3d, the integrals40ad does not usually have any
special meaning, but nevertheless can be used as a scalar
characteristic of stationary solutions. Lettingc=su+ ivdF−1,
Eq. s40ad becomes

I =E sA2F2 − u2 − v2d
dx

F2 . s40bd

For the Bloch wall, this integral equalsIB=2B while for the
Néel wall we getIN=2A. As for the solutionss39d, the evalu-
ation of the integrals40d becomes trivial if we notice that,
due to Eq.s11d, the integrand is a total derivative:

FIG. 2. The bubble solutions39d for s= sad
−10, sbd 0, andscd 10. The panelsdd corresponds
to the bubble of opposite chiralityfi.e., with
csxd→−c*sxdg ; like scd, it is plotted for s=10.
The solid line corresponds to the real part, and
the dotted line to the imaginary part.
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sA2F2 − u2 − v2dF−2 = ]xs]xF/Fd. s41d

Evaluating]xF /F at x= ±` we conclude that each member
of the family of bubbles s39d has the “area”
I =2sA+Bd—which is exactly the sum ofIB and IN.

We conclude this section by mentioning that bound states
of a pair of stationary dark solitons have also been found in
the sintegrabled Manakov systemf25g.

C. Other solutions

If we had chosenF1=−eu2 instead ofeu2 at the ordere, we
would have arrived at a different solution. Assumingh,

1
3

sso thatC−.0d and defininga , b , x1, andx2 as in Eqs.s38d
and s39ad, this solution can be written as Eq.s39bd with

u = ea+b+x1s1 + ex2d, s42ad

v = As1 + e2b+x2 − e2b+2x1 − e2x1+x2d, s42bd

F = 1 −e2b+x2 + e2b+2x1 − e2x1+x2. s42cd

It is not difficult to check that this solution is singular. In-
deed, the functionFsxd is continuous, and has opposite signs
at the two infinities:F→1 asx→−` andF→−` asx→`.
Therefore, it must pass through zero at least once. Sinceu
cannot vanish for finitex, we haveu/F=` whereverF=0.
Although singular solutions are not physically meaningful,
there will be some indirect use for them in the next section.

Assume nowh.
1
3. Here we haveC−=A−2h1/2,0 and

the functionss39d and s42d are no longer solutions, because
the parametersa andb, as defined by Eq.s38d, are not real.
We can, however, definea andb by

e2a = − 4C+C− = 4s4h − A2d,

e2b = −
C+

C−
=

2h1/2 + A

2h1/2 − A
, s43d

and, instead of Eqs.s39cd–s39ed and s42ad–s42cd, arrive at
the following two solutions:

u = ea+b+x1s1 ± ex2d, s44ad

v = As1 7 e2b+x2 + e2b+2x1 7 e2x1+x2d, s44bd

F = 1 ± e2b+x2 − e2b+2x1 7 e2x1+x2. s44cd

If the top sign is chosen in Eq.s44d, an argument similar to
the one following Eq.s42d demonstrates thatF must pass
through zero whereasu is strictly positive; once again,u/F
is singular. If the bottom sign is chosen,F is positive in the
asymptotic regionsx→ ±`, and this type of argument would
not work. However, at the pointx=−s−bA−1, we havex2
=−2b and so Eq.s44cd swith the bottom sign chosend be-
comes

Fsxd = e2x1se−2b − e2bd. s45d

By Eq. s43d, e2b.1, which means that the contents of the
parentheses in Eq.s45d are negative. Thus for this value ofx,

F,0. But sinceF is positive in both asymptotic regions and
is continuous, it follows thatF must vanish at least at two
points. Since the bottom sign has been chosen, Eq.s44bd
implies thatvùA.0, so whenF=0, the quotientv /F is
infinite.

Thus, in summary, of all the families of solutions found in
this section, only familys39d is regular, and only forh,

1
3.

The other solutions are singular and not physically relevant.

III. “COMPLETENESS” OF THE LIST OF
SOLUTIONS

It is convenient to rescale Eq.s3d so that the asymptotic
values are equal to ±1. Lettingcsxd= iACsAxd, Eq. s3d be-
comes

Cxx +
2

A2C − 2uCu2C + 2S1 −
1

A2DC* = 0. s46d

We will demonstrate that solutionss4d, s5d, and s39d
swhen suitably rescaledd are theonly bounded solutions of
Eq. s46d that asymptotically approach one of the stable flat
backgroundsC= ±1 asx→−`. We will consider solutions
of Eq. s46d as trajectories in a four-dimensional phase space
and show that for any direction in which a trajectory can
leave the fixed pointsrepresenting the flat backgroundd, we
already have a solution leaving in that direction. By unique-
ness, no other trajectories will be allowed to exist. For defi-
niteness, we confine ourselves to the case of trajectories that
approachC=1 asx→−`; a similar argument is valid for
solutions approachingC=−1.

For convenience of presentation, we start by listing all
known solutions to the rescaled equations46d. Besides the
solutions derived in the previous section, we also include
solutions which are the unbounded counterparts of the iso-
lated Bloch and Néel walls. In all of these, we make explicit
the translational invariance of Eq.s46d.

For h,
1
3, apart from the flat backgroundC0=1, the list

consists of the Néel wallCN=−tanhsx−x0d and its singular
counterpart

C̃N = − cothsx − x0d; s47d

the Bloch walls

CB = − tanhfBsx − x0dg ± iC sechfBsx − x0dg, s48d

whereB=2sA2−1d1/2A−1 andC=s4–3A2d1/2A−1, and, finally,
the Bloch-Néel complexsthe bubbled which we write to-
gether with its unbounded counterpart:

CBN =
u + isv

1 ± e2b+x2 + e2b+2x1 ± e2x1+x2
. s49ad

Here

u = 1 7 e2b+x2 − e2b+2x1 ± e2x1+x2, s49bd

v = 2s1 + Bdex1s1 7 ex2d, s49cd

e2b=s1+Bds1−Bd−1, x1=Bsx−x0−sd, and x2=2sx−x0+sd.
The real parameterss andx0 are arbitrary;s characterizes the
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separation distance andx0 describes uniform translations.
The sign factors= ±1 determines the chirality of the Bloch
wall bound in the complex.fNote thats is not correlated
with the sign factor in Eqs.s49bd and s49cd.g If the top sign
is chosen, Eq.s49d gives the rescaled regular solutions39d. If
the bottom sign is chosen, we have the rescaled singular
solution s42d.

For h.
1
3, the functionsC0, CN, and C̃N defined in the

previous paragraph remain as solutions. Equationss48d and
s49d, on the other hand, are no longer solutions. Equation
s48d is replaced by

C̃B = − cothfBsx − x0dg ± iC cosechfBsx − x0dg, s50d

whereB stays as it was previously defined whereasC is now
given byC=s3A2−4d1/2A−1. Equations49d is replaced by

C̃BN =
u + isv

1 7 e2b+x2 − e2b+2x1 ± e2x1+x2
, s51ad

where

u = 1 ± e2b+x2 + e2b2x1 ± e2x1+x2, s51bd

v = 2s1 + Bdex1s1 7 ex2d, s51cd

and all parameters are defined as for Eq.s49d excepte2b

=sB+1dsB−1d−1. Both s50d and s51d are singular solutions
ffor all choices of signs in Eq.s51dg.

We now turn to Eq.s46d and write it as a dynamical
system for a particle on the plane:

hxx − 2sh2 + j2dh + 2h = 0, s52ad

jxx − 2sh2 + j2dj + s2 − B2dj = 0, s52bd

whereC=h+ ij with h andj real, andB2=4sA2−1dA−2 fas
defined for Eq.s48dg. This is a Hamiltonian system, with the
Hamiltonian

H =
1

2
fhx

2 + jx
2 − sh2 + j2 − 1d2 − B2j2g. s53d

There is also a second, independent, integral of motion

I = sjhx − hjxd2 + B2fhx
2 − h2j2 − sh2 − 1d2g. s54d

fIn the derivation of Eq.s54d we were guided by the results
of Ref. f26g which considers a similar system.g Thus all tra-
jectories of the systems52d are confined to lie on a two-
dimensional surface, defined by the constraintss53d ands54d.

We consider trajectories that flow out of the fixed point
sh ,j ,hx,jxd=s1,0,0,0d. sOn these trajectories, the con-
served quantities obeyH=0=I.d This fixed point is a saddle,
with two positive and two negative real eigenvalues. Thus in
a neighborhood of the fixed point on the unstable manifold,
hx will be either positive or negativesas will jxd, while os-
cillatory behavior is not possible. In this neighborhood, the
sign of hx will obviously be the same as the sign ofsh−1d;
similarly, the sign ofjx will be the same as that ofsj−0d. As
for the magnitudesof hx and jx, these are determined byh
and j via the constraintsH=0, I=0. Thus the variablesh
and j uniquely determinehx and jx in the vicinity of the

fixed point and therefore provide coordinates on the local
unstable manifold.

In the vicinity of the fixed point, Eqs.s52ad ands52bd can
be written as

hxx = 4sh − 1d + 2j2, s55ad

jxx = B2j. s55bd

sNote that we cannot drop thej2 term in the top equation
here, as the equation does not include any term linear inj.d
The solution to Eq.s55d satisfyingh→1,j→0 asx→−` is

h = 1 +Me2x −
N2

2s1 − B2d
e2Bx, s56ad

j = NeBx. s56bd

The real constantsM and N are arbitrary and provide a
parametrization of the local unstable manifold: each pair
sM ,Nd defines a trajectory on the manifold, and the other
way around—for each pointsh ,j ,hx,jxd on the manifold,
we can find a pairsM ,Nd such that there is a trajectory
connectingsh ,j ,hx,jxd to s1,0,0,0d which is described by
Eq. s56d. Indeed, for the given pair of coordinatessh0,j0d we
can solve Eq.s56d to get

Me2x0 = h0 +
j0

2

2s1 − B2d
− 1, NeBx0 = j0. s57d

Due to the translational invariance of the systems52d , re-
placingx with x−x0 in Eq. s56d simply furnishes a different
parametrization of the same trajectory. Hence the required
pair sM ,Nd is obtained, e.g., by settingx0=0 in Eq. s57d.

Thus, if we factor the translation invariance out, there is a
one-to-one correspondence betweensM ,Nd and sh ,jd on
the local unstable manifold. We now show that for every pair
sM ,Nd swith −`,M ,N,`d we already have an explicit
solution in our list, regular or singular, with the asymptotics
s56d. This will imply that our list is complete and no other
solutions with this asymptotic behavior can exist.

First of all, the solution corresponding tosM ,Nd=s0,0d
is the flat backgroundC0=1. KeepingN=0, we have two
possibilitiessfor all hd: in the caseM.0, Eqs.s56d give the

asymptotics of the solutionC̃N, Eq. s47d, with x0 defined by
M=2e−2x0; similarly, the caseM,0 corresponds to the
Néel wall CN, with M=−2e−2x0.

Now let M=0 whileNÞ0. Here the two casesh,
1
3 and

h.
1
3 have to be considered separately. Forh,

1
3, the pair

s0,Nd corresponds to the Bloch walls48d, with

uNu = 2s1 – 3hd1/2A−1e−Bx0. s58d

The sign ofN is arbitrary and determines the chirality of the

soliton. If h.
1
3, we recover the solutionC̃B; this solution

also occurs with two different chiralities, depending on the
sign of N.

Finally, we letMÞ0, NÞ0. Assume, first, thath,
1
3 and

consider the solutionCBN, Eq. s49d. This solution comes in
two chiralitiess= ±1. We letN.0; this selects one of the
chiralities ss= +1d. sThe caseN,0 can be considered in a
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similar way.d Comparing the asymptotic behavior of the so-
lution s49d to Eqs.s56d, we find

M = 7 2e2sb−x0+sd

and

N = 2s1 + Bde−Bsx0+sd.

ThusM,0 corresponds to thesregulard Bloch-Néel bound
stateftop sign in Eq.s49dg, andM.0 to its singular coun-
terpartfbottom sign in Eq.s49dg. For h.

1
3, a similar consid-

eration involving Eq. s51d demonstrates that any pair
sM ,Nd with MÞ0, NÞ0 corresponds to a known solution
as well. !

IV. CONCLUDING REMARKS

In this paper, we have explicitly constructed bound states
of a pair of domain walls in the resonantly forced Ginsburg-
Landau equation. The constructed solutions represent do-
mains sof arbitrary lengthd that are 180° out of phase with
the background field. We have also demonstrated that sta-
tionary bound states of more than two dark solitons cannot
exist. fWe have, in fact, proved that the solutions presented
in this paper are theonly solutions to the reduced scalar
equations3d which approach the stable background at infin-
ity.g

Apart from the Ginsburg-Landau equation, Eq.s3d oc-
curred as a stationary reduction of several conservative non-
linear evolution equations modeling some other physical
situations. We have already mentioned the MSTB model of
field theory f18,19g; the corresponding equation of motion
can be written as the complexf4 equation with the broken
Us1d symmetry:

1

2
ctt −

1

2
cxx + ucu2c − c + hc* = 0. s59d

sFor the current status of the MSTB and related theories, see
Ref. f27g.d In addition, Eq.s3d describes stationary solutions
of the parametrically driven nonlinear Schrödinger equation:

ict +
1

2
cxx − ucu2c + c − hc* = 0. s60d

In fluid dynamics, Eq.s60d governs the amplitude of the
oscillation of the water surface in a vertically vibrated chan-
nel with large width-to-depth ratiof17,23g. fIf, conversely,
the channel is deep and narrow, Eq.s60d is still valid, but
with the opposite sign in front of the nonlinear term.g The
same Eq.s60d arises as an amplitude equation for the upper
cutoff mode in the parametrically driven nonlinear lattices
f28g. It was also derived for the doubly resonantxs2d optical
parametric oscillator in the limit of large second-harmonic
detuningf22g. In all of these cases, the termhc* represents
parametric pumping of some sort. Finally, Eq.s60d describes
magnetization waves in a quasi-one-dimensional ferromag-
net with a weakly anisotropic easy plane, in a perpendicular
stationary magnetic fieldf21g. In the magnetic context, the
hc* term accounts for the anisotropy of the ferromagnetic
crystal.

The two-soliton bound state solution we have obtained in
this paper admits a transparent interpretation in each of the
above physical situations. In the context of vibrated water
troughs and chains of coupled pendula, the Bloch-Néel com-
plex describes a patch oscillating 180° out of phase with the
rest of the chain or channel. A similar interpretation arises in
optical parametric oscillators; there, a bound state of two
dark solitons represents a localized fundamental field domain
with a 180° phase difference from the rest of the cavity. In
the context of ferromagnetism, the stationary complex corre-
sponds to a magnetic bubble, i.e., an “island” of one stable
phase in the “sea” of the other one.

The question of stability of the two-soliton bound state is
beyond the scope of our current investigation. The answer
will obviously depend on whether Eq.s3d is considered as a
stationary reduction of the Ginsburg-Landau, Klein-Gordon,
or nonlinear SchrödingersNLSd equationfi.e., Eq.s2d, s59d,
or s60dg. To illustrate the model dependence of stability prop-
erties of one and the same solution, it is instructive to bring
up the example of a free-standing Néel wall, Eq.s4d. Let, for
example,h,

1
3. If the Néel wall is considered as a stationary

solution of the Ginsburg-Landau equations2d or of the
Klein-Gordon equations59d, then it is found to be unstable
while the Bloch wall is stablef3,8,20,29g. On the contrary,
both Bloch and Néel walls are stablef21g when considered
as stationary solutions of the parametrically driven NLS
equation, Eq.s60d. We are planning to return to the issue of
stability of the bound states in future publications.

Finally, it is appropriate to mention that Eq.s3d appeared
in one more optical context, namely, that of birefringent op-
tical fibers. The vector nonlinear Schrödinger equation for
pulses traveling in a birefringent fiber was derived by
Menyuk f30g:

iS ]E1

]t
+ d

]E1

]x
D +

1

2

]2E1

]x2 − SuE1u2 +
2

3
uE2u2D

3E1 −
1

3
E2

2E1
*e−4iht = 0, s61ad

iS ]E2

]t
− d

]E2

]x
D +

1

2

]2E2

]x2 − S2

3
uE1u2 + uE2u2D

3E2 −
1

3
E1

2E2
*e4iht = 0. s61bd

Hered is proportional to the difference of group velocities of
the fast and slow linearly polarized modesswhose envelopes
are described byE1 andE2d, andh measures the mismatch of
the corresponding propagation constants. Equationss61ad
ands61bd are written in a frame moving with the average of
the group velocities; the choice of coefficients corresponds to
the fiber in the regime of normal dispersion. If one assumes
that the difference of the two group velocities is so small that
it can be neglected, while the difference of the propagation
constants is nonnegligiblesthough possibly smalld, then the
substitution

E1 = Ue−ish+1dt, E2 = Veish−1dt

takes Eq.s61d to

I. V. BARASHENKOV AND S. R. WOODFORD PHYSICAL REVIEW E71, 026613s2005d

026613-8



i
]U

]t
+

1

2

]2U

]x2 − SuUu2 +
2

3
uVu2DU −

1

3
V2U* + s1 + hdU = 0,

s62ad

i
]V

]t
+

1

2

]2V

]x2 − S2

3
uUu2 + uVu2DV −

1

3
U2V* + s1 − hdV = 0.

s62bd

The above assumptionsd=0,hÞ0d can be justified in the
case of thebright solitons, i.e., in the anomalous dispersion
regime. In that case, Blow, Doran, and Wood demonstrated
the existence of bound pairs of bright solitons where each
soliton is polarized along a different birefringence axisf31g.
Later, these solutions were explicitly constructed by Tratnik
and Sipef32g. Whether the assumptiond=0, hÞ0 can be

justified in the case of thedark solitons is an open question
which is beyond the scope of our investigation. Here, we
simply note that for time-independent real fieldsU and V,
Eqs.s62d reduce to our Eq.s3d with c=U+ iV. This fact was
used by Christodoulidesf33g who obtained the Bloch and
Néel walls for a weakly birefringent fibersunder the above
assumptiond. Our solutions39d is a bound state of the “dark”
and “bright-dark” vector solitons of Christodoulides.
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