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Anderson localization of classical waves in random arrays of dielectric cylinders is numerically investigated
as a function of the distribution of their diameters. We show that using polydispersed resonant scatterers
increases the localization length, while using identical resonant scatterers fosters Anderson localization. We
discuss this collective process and link it to the effect of proximity resonances that has been studied in the case
of a small number of resonant scatterers.
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I. INTRODUCTION

The search for Anderson localization of classical waves
such as electromagnetic or sound waves is still an active field
of investigation. While the phenomenon of wave localization
is established on firm theoretical grounds, its experimental or
numerical observation is difficult. Adjusting the physical pa-
rameters such as the index contrast, the filling fraction, and
the size of the scattering particles is a main issue to observe
Anderson localization in finite-size experimental or numeri-
cal systems. Because of competing or detrimental effects to
localization, the rule of the game is to find a system with a
localization length as small as possible. For instance, obser-
vation of localization requires the localization lengthj to be
shorter than the absorption lengthla, a condition, which is
difficult to meet in experimental systemsf1,2g. In numerical
works, the size of the system must be larger thanj. This
implies large systems and subsequently large amounts of
computer memory and computing time. This is certainly true
in two dimensionss2Dd and even worse in 3D, especially in
the vicinity of the localization transition wherej diverges.

In order to decrease the value ofj, several approaches
have been proposed in the past. For instance, localization of
classical waves is favored by introducing a small amount of
disorder in a periodic system, thus leading to the creation of
localized states inside and at the edges of the gapf3,4g. An
alternative is resonant scattering. Resonant scattering, which
is actively investigated by different groups whose goal is the
reduction of the threshold of random lasersf5,6g, has been
first considered in several theoretical worksf7–10g. Because
the scattering cross section can be strongly enhanced at the
resonance frequencyv0 of a scatterer, significant reduction
of j is expected to occur at the same frequency. Indeed,
bands of localized waves at frequencies close to the reso-
nance of an individual scatterer have been found numerically
in random arrays of two-dimensionalf11g or three-
dimensionalf12g pointlike dipoles. However, some authors
report significant deviations from this reasonable expectation
f13–16g. Though the regime of localization seems to have
been reached in several experimental and numerical systems
using resonant scatterers, the results indicate that localization
is observed in the vicinity but off the resonance frequencies
of individual scatterers. For instance, experimental localiza-
tion of microwaves in a waveguide containing alumina

spheres has been observed in a narrow frequency window
not located at the first Mie resonance of spherical particles
but above itf13g. In the same way, numerical investigations
of acoustic waves in liquid media containing air-filled cylin-
ders lead to the observation of localization not at the single
cylinder resonance peak but at a frequency just above itf14g.
Recently, frequency windows of localized modes in open
random arrays of parallel cylinders have been found shifted
from the Mie resonances of individual cylindersf15g. Even
worse, localization has been predicted to be difficult to reach
in systems with strong individual scattering efficienciesf16g,
when optical volumes of the scatterers start to overlap, thus
reducing the efficiency of the collective cross section. Hence,
it appears that our understanding of the interplay of resonant
scattering and localization is not yet complete and the ques-
tion of whether resonant scattering is helpful for observing
localization is still open.

We have shed new light on this problem by considering
an open random system of 2D circular particlessor parallel
cylindersd. Since the system is open, energy can escape
through the boundaries, allowing us to discriminate in time
between short- and long-lived modes. Numerical investiga-
tion of this disordered system when the cylinders have the
same radius has revealed the existence of frequency windows
of long-lived modes with quality factors as high as 104 f15g.
The spatial extension of the modes was small enough for the
leakage through the open boundaries to be small. Such
modes were good approximations of localized modes char-
acterized by a localization length smaller than the system
sizeL.

The frequencies of those localized modes have been
found markedly shifted from the Mie frequencies of a single
cylinder. Thus, the role played by the Mie resonances in the
existence of localization was questioned again. In order to
elucidate this point, we describe in this work the conse-
quences of introducing dispersion into the diameters of the
cylinders. If the frequencies of the Mie resonances really
control the frequencies of the localized modes, widening the
distribution of the cylinder diameters should lead to the wid-
ening of the localization windows. This is indeed what we
observe. When the dispersion of the diameters progressively
increases, the localization windows are broadened until they
overlap, thus disappearing. Also the mode lifetimes decrease
to become significantly shorter than the lifetimes without
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dispersion. This result confirms that the localization windows
are controlled by the Mie resonances and indicates that the
localization length increases with the width of the diameter
distribution. Hence, introducing dispersion of the cylinder
diameters is detrimental to localization, or, conversely, iden-
tical resonant scatters with well-defined values of the reso-
nance frequencies foster localization.

The paper is organized as follows. In Sec. II, we describe
the physical and numerical parameters of the system of ran-
dom circular particles. In Sec. III, we present and discuss the
numerical results. The emergence of frequency bands of
long-lived modes in random systems of identical cylinders is
described first. Next, we describe the effect of enlarging the
distribution of the diameters of the cylinders. Discussion of
the results and conclusion are presented in Sec. IV. In par-
ticular, we link our results to the effect of proximity reso-
nances that has been studied in the case of a small number of
resonant scatterersf17,18g.

II. DESCRIPTION OF THE SYSTEM

The system is very close to the one described inf15g. This
is a 2D open random medium of sizeL2, which consists of
circular particles with diameterD and optical indexn2. The
particles are randomly distributed in a background medium
of optical indexn1. This system is equivalent to a random
collection of cylinders oriented along thez axis. The filling
fraction of the particles isF=40%. This value has been ar-
bitrarily chosen in the range where localized modes were
observed inf15g. The difference withf15g is that the diam-
eters of the cylinders are not bound to be identical. They are
randomly distributed in an intervalfDmin,Dmaxg centered at
the valueDc. The distribution is uniform, its width being
characterized bydD= uDmax−Dminu. The value ofDc has been
chosen equal to 180 nm. Systems with different widths of the
distribution have been studied,dD varying from 0 to 160 nm.
For each value of the width, 15 different random systems
have been investigated.

The electromagnetic field that propagates in the system
has been chosen to be a 2D transverse magneticsTMd field,
so that Maxwell’s equations read

m0 ] Hx/]t = − ]Ez/]y,

m0 ] Hy/]t = ]Ez/]x,

«i«0 ] Ez/]t = ]Hy/]x − ]Hx/]y,

«i = ni
2, i = 1,2,

where«0 and m0 are the electric permittivity and the mag-
netic permeability of vacuum, respectively.

The finite-difference time-domainsFDTDd method f19g
has been used to solve Maxwell’s equations. To model an
open system, PMLsperfectly matched layerd absorbing con-
ditions f20g have been imposed at the boundaries of the sys-
tem. The values of the space and time increments areDx
=10 nm andDt=Dx/cÎ2<2.8310−17 s, wherec is the ve-
locity of light in vacuum. Those values guarantee the stabil-

ity of the FDTD algorithm. They are sufficiently small com-
pared to the optical wavelengths 150 nmølø600 nm and
to the optical periods 5310−16øTø2310−15 s considered
in the following to avoid significant numerical dispersion. In
order to approach the localized regime, a large optical index
contrast has been chosen between the particles and the back-
ground, namelyn1=1 andn2=2. The total size of the system
has been chosen equal to 5103Dx, which corresponds toL
<5 mm.

To study the modes of the system, a short Gaussian elec-
tromagnetic pulse of duration about 10 time stepsDt is
launched inside the system. The impulse response is re-
corded at several nodes regularly positioned in the system.
The recorded fields are then added to obtain a signal aver-
aged over the whole system. This procedure has been used to
improve the detection of all the modes, including those
which are strongly localized in a fraction of the system.
When necessary, a monochromatic source at an eigenfre-
quency selected in the power spectrum is used in order to
excite the corresponding eigenmode alone.

III. RESULTS

A. Identical cylinders

We review the case of random systems with identical cyl-
inders. Those results have been partially presented inf15g
and are extended here to a larger range of the spectrum that
includes several frequency windows of long-lived modes.

1. Spectrum and nature of the modes

An example of a random array of identical cylinders with
F=40% ,D=180 nm, anddD=0 is displayed in Fig. 1. Let
us consider the impulse response of this system in the time
window ft1,t2g, wheret1=Tw andt2= t1+Tw sinset of Fig. 2d.
The corresponding power spectrum obtained by the Fourier
transform of the signal averaged over several locations in the
system is shown in Fig. 2snote the vertical logarithmic
scaled. One observes that the peaks, which correspond to

FIG. 1. An example of random realization of circular particles:
L=5 mm, D=180 nm, andF=40%.
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modes of the system, are grouped in distinct frequency win-
dows. The same spectral structure has been observed for 15
different sample realizations. If the frequencies of individual
peaks do depend on the realization of the disorder, the fre-
quency windows do not. They only depend on the pair
sD ,Fd f15g. The averaged spectrum over the 15 spectra cor-
responding to the same pairsD=180 nm,F=40%d is rep-
resented in Fig. 3. This demonstrates that the frequency win-
dows cover the same frequency ranges as those shown in
Fig. 2 for a single system.

In order to compare the positions of the above frequency
windows with the frequencies of the Mie resonances of a

single cylinder, the scattering cross section of a TM wave
incident on a cylinder of indexn2=2 embedded in a medium
of index n1=1 has also been shown in Fig. 3. One observes
that the frequency windows are shifted from the Mie reso-
nances. Hence, the resonances of the random system of cyl-
inders do not coincide with the maxima of the scattering
cross section of the individual scatterers as opposed to what
one might first expect. This observation is in agreement with
the observation of localization of microwavesf13g and
acoustic wavesf14g in narrow frequency ranges away from
the Mie resonances.

Figure 4 displays enlargements of the four first frequency
windows in Fig. 2. It can be seen that well-separated peaks
can be identified in the low-frequency windowsfFigs. 4sad
and 4sbdg. In the higher-frequency windowsfFigs. 4scd and
4sddg, the density of states is larger as expected and peaks
start to overlap significantly. We shall see in Sec. III A 2 that
the two low-frequency windows and the two high-frequency
windows correspond to long- and short-lived modes, respec-
tively.

In order to study the nature of the modes corresponding to
individual peaks, a monochromatic source is used to excite
each of them separately. To excite a given mode, the fre-
quency of the source is adjusted at the value of the corre-
sponding peak measured in the spectrum. For the two low-
frequency windows, the monochromatic source has a
Gaussian envelope of duration larger than the inverse of the
level spacing between two neighbor modes such that each
mode is excited alone. Figure 5 shows spatial maps of such
excited eigenmodes at the end of the emission of the mono-
chromatic source. These modes display a strong spatial lo-
calization. As inf15g, we have observed an exponential de-
cay of their envelope. The average decay lengths, which can
be identified to the localization lengthj, have been measured
to be j<0.4 mm for the first low-frequency window andj
<0.42mm for the second one. These values are significantly
smaller than the sizeL<5 mm of the system.

Excitation of the modes belonging to the high-frequency
windows is slightly different. Since such modes have a very

FIG. 2. Power spectrum of the impulse response of the system
displayed in Fig. 1. Note the logarithmic vertical scale. The inset
shows the impulse response recorded at some location inside the
system in the time windowfTw,2Twg, where Tw=131072Dt
<3.7 ps.

FIG. 3. Average of power spectra similar to Fig. 2 performed
over 15 different random systems of cylinders. The bottom curve is
the Mie scattering cross section of a TM wave incident upon a
cylinder with index contrastm=n2/n1=2. For clarity, the different
curves have been shifted vertically.

FIG. 4. Enlargements of the four first frequency windows of the
spectrum shown in Fig. 2.
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short lifetime, they decay and merge into the background
radiation before the source is completely extinguished at the
end of the Gaussian envelope. Hence, it is not possible to
observe them after the end of the emission of the source,
contrary to the modes of the low-frequency windows. There-
fore, after a smooth build-up transient, the amplitude of the
monochromatic source has been maintained at a steady
value. Hence, the resulting spatial maps as shown in Fig. 6
represent the Green function of the system in the frequency
domain. They correspond to system resonances, which are
mixed to some non-negligible extent with their neighbors,
rather than single modes as in Fig. 5. Although, they are
reasonably well centered inside the system, their spreading is
larger than the modes of the low-frequency windows. The
average decay lengths have been measured to bej
<0.6 mm for the third window andj<0.65mm for the
fourth. Thus, such modes have a decay lengthj larger than
those in Fig. 5. Thoughj is still smaller than the size of the
system, those modes are not well localized. For a mode well
centered in the system, the ratio of the field amplitude at the
boundaries over the maximum amplitude at the center is es-
timated to bee−L/4j. When j varies fromj<0.4 mm to j
<0.65mm, this ratio varies from 0.044 to 0.15 forL
=5 mm. Thus, forj<0.65mm, the amplitude of the field at
the boundaries is not negligible. This leads to significant en-
ergy leakage of the modesf21g and a short lifetime, as shown
in the next section. Moreover, the value of the measured
decay length in the high-frequency windows increases when
one enlarges the system by adding external layers of cylin-
ders as discussed in Sec. III A 3. Hence, the measured decay
length is not an intrinsic property of the resonance but de-
pends on the size of the system. By contrast, the resonance
decay lengths in the low-frequency windows do not depend
on the sizeL of the system.

2. Time evolution of the spectrum

Since the energy of the pulse progressively leaves the
system through the open boundaries of the system according
to the different decay times of the excited modes, the re-
corded field is not stationary and the power spectrum evolves
with time. To follow this time evolution, the signal is
Fourier-transformed in several successive time windows of
lengthTw=131 072Dt<3.7 ps. The time delay between suc-
cessive windows has been chosen equal toTd=32 768Dt
<0.9 ps so that there is a strong overlap between successive
windows. We thus obtain a rather smooth evolution with
time of the power spectrum of the system.

The evolution of the power spectrum as a function of time
is displayed in Fig. 7. As in Fig. 3, the spectrum is the aver-
age over the disorder of 15 different spectra. Thus, we can
focus our attention over the general evolution of the fre-
quency windows rather than the behavior of individual
peaks. In order to obtain a better view of the evolution of the
spectrum, the same three-dimensional representation has
been displayed under two different orientations in Figs. 7sad
and 7sbd, respectively. In Fig. 7sad, the different frequency
windows are manifest. The most noticeable feature of the
figure is the regular decay with time of the power spectrum
regardless of the frequency. This behavior is expected since
the energy escapes the system through the open boundaries.
However, Fig. 7sbd shows that the decay timet depends
strongly on the frequency. It is clear that it is much longer for
the two low-frequency windows than for the other high-
frequency windows. The values of the longest decay times in
the two low-frequency windows have been measured to be
1.1 ps and 1.0 ps, respectively. In the high-frequency win-
dows, the decay time barely depends on the frequency. Its
maximum value is 0.2 ps.

3. Effect of the system size

Recapitulating the preceding results, random systems of
identical parallel cylinders exhibit resonances, which are

FIG. 5. Spatial maps of excited eigenmodes at the end of the
emission of the monochromatic sourcesad fourth peak from the left
of the frequency window displayed in Fig. 4sad, sbd first peak from
the left of the frequency window displayed in Fig. 4sbd.

FIG. 6. Spatial maps obtained when the amplitude of a mono-
chromatic source is maintained at a steady value for resonances of
the third and fourth frequency windowssad third peak from the left
of the frequency window displayed in Fig. 4scd, sbd largest peak of
the frequency window displayed in Fig. 4sdd.

FIG. 7. Evolution of the power spectrum averaged over 15 dif-
ferent systems of identical cylinders as a function of time.
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grouped in separate frequency windows. In the low-
frequency windows, these resonances correspond to long-
lived modes, which can be considered as localized modes
characterized by a localization lengthj significantly smaller
than the sizeL of the system. In high-frequency windows,
the resonances exhibit more extended spatial maps which
lead to significant leakage and short mode decay times. Why
did we find two and not one or three windows of well local-
ized modes? A reasonable explanation is that this is due to
the choice of the sizeL of our system. More precisely, the
number of windows of localized modes is determined by the
ratio L /D. Using larger systems would lead to the progres-
sive evolution of frequency windows of short-lived reso-
nances into frequency windows of localized modes when the
sizeL is sufficiently larger than the corresponding localiza-
tion lengthj.

In order to illustrate the importance of the ratioL /D, we
have increased the size of some samples fromL=5 mm to
L=11 mm by adding successive external layers of cylinders
whose thickness is 1µm sFig. 8d. The maps of a mode be-
longing to the first low-frequency window whenL
=5 mm, L=7 mm, L=9 mm, and L=11 mm are compared
in Figs. 9sad–9sdd. As expected, the external layer of cylin-
ders does not perturb this mode, which was already well
localized in the boxL=5 mm. In particular, its decay length
is the same for all values ofL. However, its decay time has
been measured as increasing from 1 ps to 212 ps whenL has
increased from 5 to 11mm. For comparison, the maps of a
resonance belonging to the third frequency window whenL
increases from 5 to 11mm are shown in Figs. 10sad–10sdd.
One observes that the patterns are significantly perturbed by
the addition of external layers. The decay length has been
measured to increase from Fig. 10sad to Fig. 10sdd, meaning
that its value is controlled by the size of the system. The fact
that the additional layer of scatterers modifies the spatial map
of the resonance demonstrates that localization has not been
reached yet. Moreover, the decay time of the resonance in

the enlarged systems has been measured to stay smaller than
0.2 ps, indicating again that the localization length is still too
large at the frequency of the mode.

As a final point, these results show that the localization
length in random systems of parallel cylinders significantly
depends on the frequency. Actually, previous theoretical re-
sultsf7,8g have concluded that there is a multitude of mobil-
ity edges and localization regions in such systems with a
general trend forj to increase with frequency. Our numerical
results are in good agreement with those theoretical results,
which predict the shortest values ofj at low frequencies.

B. Nonidentical cylinders

We consider now the case of nonidentical cylinders. Not
only are the positions of the cylinders random as in the pre-

FIG. 8. New systems obtained after adding one after the other
three external layers of cylinders to the system in Fig. 1. The frames
indicate the external boundaries of each system. Note that the sys-
tem inside the smallest frame is identical to the system in Fig. 1.

FIG. 9. Spatial maps of a resonance belonging to the first low-
frequency window for the four systems shown in Fig. 8. The frames
indicate thesopend boundaries of each system as in Fig. 8.

FIG. 10. Spatial maps of a resonance belonging to the third
frequency window for the four systems shown in Fig. 8. The frames
indicate thesopend boundaries of each system as in Fig. 8.
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ceding section, but their diameters are randomly distributed
over the interval fDmin,Dmaxg centered at the valueDc

=180 nm. The distribution is uniform and its width is char-
acterized bydD= uDmax−Dminu. Four different widths have
been consideredsdD=40, 80, 120, and 160 nmd and com-
pared with the casedD=0 of identical cylinders investigated
in Sec. III A.

The evolution of the power spectra as a function of time is
shown in Fig. 11. As previously, 15 different realizations of
the disorder have been studied for each of the five values of
dD. The spectra displayed in Fig. 11 are averages over the
corresponding individual spectra. Again, the three-
dimensional representations have been displayed under two
different orientations in order to show various features of the
spectra.

Let us compare the casedD=40 nm in Figs. 11sad and
11sbd with the casedD=0 in Figs. 7sad and 7sbd. Two main
differences can be observed. First, Fig. 10sad shows that the
high-frequency windows have disappeared. They are re-

placed by an almost uniform spectrum without “gaps.” In
contrast, the two low-frequency windows are still well dis-
tinct. The second difference is the increase of the decay rates
at all frequencies. Compared with the case of identical cyl-
inders, the longest decay times have shortened from 1.1 and
1.0 ps to 0.39 and 0.27 ps for the two low-frequency win-
dows and from 0.2 to 0.15 ps for the high-frequency win-
dows. This behavior is confirmed when the distribution
width is increased todD=80 nmfFigs. 11scd and 11sddg. The
second low-frequency window has now merged into the
higher frequency range of the spectrum. Only the first low-
frequency window is still distinct. Moreover, the decay time
has become quite uniform over the whole frequency range.
Its maximum value is 0.17 ps. By increasing againdD to 120
nm fFigs. 11sed and 11sfdg and next to 160 nmfFigs. 11sgd
and 11shdg, the spectra and the decay times stay uniform. The
decay times are slightly shorter than fordr =80 nm with the
same maximum value about 0.17 ps. The first low-frequency
window is still just discernible with decay times surprisingly

FIG. 11. Evolution of the
power spectrum averaged over 15
different systems as a function of
time for increasing values of the
width dD of the diameter distribu-
tion of the cylinderssad and sbd
dD=40 nm, scd and sdd dD
=80 nm,sed and sfd dD=120 nm,
and sgd and shd dD=160 nm. The
average diameter isDc=180 nm.
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shortersless than 0.1 psd than the average decay time at other
frequencies.

These results are recapitulated in Fig. 12, which displays
the decay times as a function of frequency for increasing
values of the distribution width. The limited amount of
sample realizations is nonetheless sufficient to display the
general trend just discussed. The peaks of decay times cor-
responding to the initial frequency windows at zero disper-
sion merge into a flat plateau when the width of the diameter
distribution increases.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have demonstrated the existence of fre-
quency bands of long-lived modes in random systems of
identical cylinders, which confirm the preliminary results
presented inf15g. Such modes are sufficiently well localized
inside the finite system that we have considered for the leak-
age through the open boundaries to be small. They can be
considered as good approximations of localized modes char-
acterized by a localization length smaller than the system
size L. The frequencies of these modes are significantly
shifted from the Mie frequencies of the cylinders, thus ques-
tioning the role played by internal resonances in Anderson
localization. Next, we have considered nonidentical cylin-
ders with different diameters in order to mix different reso-
nance frequencies of the scatterers. We have found that the
well-localized modes observed when the cylinders are iden-
tical evolve into short-lived resonances. This result indicates

that the localization length has increased up to values such
that the field at the boundaries of the system is no longer
negligible. This strongly suggests that the Mie resonances
control the frequencies of the localized modes that are ob-
served with identical cylinders.

Then, the question is why are the frequencies of the lo-
calized modes shifted from the Mie frequencies where the
scattering efficiency is maximum? As a matter of fact, such a
shift is expected. Mie frequencies are characteristic of iso-
lated scatterers. Whenever, a collection of scatterers is con-
sidered, they cannot be regarded as independent except at
very low density. This is comparable to the interaction of
atoms in a solid. In particular, if the atoms are identical, the
level degeneracy will be destroyed by any interaction, thus
leading to the appearance of new frequencies in the spectrum
of the system. In the same way, the resonances of a collec-
tion of scatterers differ from the resonances of isolated scat-
terers. This effect has been recently investigated for a collec-
tion of few scatterersf17,18g and has been called proximity
resonance. In that case, it was shown that the resonances of
individual scatterers were modified into large and also very
narrow resonances. Similar results about the scattering cross
section of one, two, and three cylinders with gain have been
recently obtained in the search of high-Q cavities in random
lasersf5g. We believe that the long-lived modes that are ob-
served in random system of identical cylinders correspond to
the manifestation of the proximity resonance effect when the
collection of scatterers is large.

The results presented in this paper concern systems of
cylinders that have a higher optical index than the back-
ground medium. The present knowledge for inverted media
is not clear. For instance, scattering has been reported to be
less efficient for cylinders that have a smaller dielectric con-
stant than the background mediumf7g. Hence, particle reso-
nances are expected to play a smaller role. However, in con-
trast with this result, the mean free path in systems of
spherical holes randomly distributed in, e.g., silicon is
known to be smaller than for spheres of silicon in airf22g.
Therefore, extending this investigation to such inverted me-
dia would be helpful for clarifying this point. The answer
should have an impact in experiments devoted to lowering
the threshold of random lasers. It would also be highly valu-
able to extend this investigation to systems of spherical scat-
terers such as those which have been experimentally inves-
tigated inf6,13g. It is likely that the present conclusions are
also valid for the 3D case.
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