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Nonlinear compression of solitary waves in asymmetric twin-core fibers
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We demonstrate a different pulse compression technique based on exact solutions to the nonlinear
Schrédinger-type equation interacting with a source, variable dispersion, variable Kerr nonlinearity, and vari-
able gain or loss. We show that this model is appropriate for the pulse propagation in asymmetric twin-core
fibers. The chirped pulses are compressed due to the nonlinearity as well as dispersion management as also due
to the space dependence of the gain coefficient. We also obtain singular solitary wave solutions, pertaining to
extreme increase of the amplitude due to self-focusing.

DOI: 10.1103/PhysRevE.71.026608 PACS nuni$)erd2.81.Dp, 47.20.Ky

In recent years, the study of nonlinear fiber optics has In this paper we delineate the nonlinear pulse compres-
attracted much attention and has played an important rolsion based on exact solitary wave solutions of NLSE inter-
toward the development of several technologitls Among  acting with a source, that is appropriate for the pulse propa-
them, the development of optical solitons is considered to bgation in asymmetric TCF. Apart from using the exact
one of the ten hottest technologies of the 21st cerfilfyin  solutions of NLSE with a source, recently obtained by two of
the case of exact soliton pulse propagation, the pulse evolyhe present authofd 3], we take recourse to the recent work
tion is governed by nonlinear Schrodinger equatiNhSE).  of Kruglov et al. [14] in the context of NLSE with variable
In realistic systems this equation is suitably modified to takedispersion, variable Kerr nonlinearity, and variable gain or
into account loss or gain or other medium effects. In recenfoss.
times, much effort has been devoted to optical pulse com- We first outline below the origin of NLSE with a source,
pression techniques because of their practical utility. Most ofor pulse propagation through asymmetric TCF, with dissipa-
these techniques rely on chirping obtained either by selftion [11]. The equations for the envelopes of the pulses that
phase modulation in the normal dispersion regime or bypropagate through the TCF are
combining phase modulation with amplificati¢®,4]. Soli- _ 5 .
ton effects can also be utilized for compression where the 97+ J i + 2|y + 19y + Taray
problem of residual pedestals can be reduced through appro-

X —ilkz=& =
priate control of intensity, which affects the nonlinearity. ex-ilkz-wn]=0, D
However, this procedure has the drawback of waste of en- : B 2
ergy[5]. Adiabatic soliton compression, through the decrease (G2 = Brdb) + Badritha *+ 204ty
of dispersion along the length of the fiber, provides a better an e
pulse quality[6], albeit in a less rapid manner. Interested T exfli(kz- w7)]=0. (2

readers are referred to Johnsatral. [7] and Fisheeet al.[8]

for more information about pulse compressors. Exact soluHere; andi, are the field envelopes. The coordinatesd

tions have played crucial roles in demonstrating the above in Egs.(1) and(2) are written in appropriate unifd5]. In

pulse compression techniques. The fact that NLSE or modiwriting Egs.(1) and(2), we have considered constancy of the

fications of the same is known to possess soliton solutiongistributed coefficients. In any real soliton transmission sys-

has come in handy in studying the mechanism of pulse comiem there exists dissipation due to fiber losses. This has been

pression in the above models. All the aforementioned methincorporated in Eq(1), by adding arig#; term. As the sec-

ods for pulse compression are restricted to pulse propagatidid core is a passive one, it is not essential to consider the

through single core fibers. Although it is easier to fabricatelosses. Since the fibers are not identical, the coupling is not

twin-core fibers with some built-in asymmetry, the nonlinearSymmetric, i.e.,a;,# a. T'=(y1/7,)'? is the ratio of the

pulse compression in these types of couplers has not receivé@nlinearity strengths in the two fibers, whe,17]

much attention in the literature. The existence of the solitary N,

wave solutions in twin-core fibetd@ CF9 has been reported v = —ef'f (3

in Refs.[9,10]. Soliton solutions, when the nonlinearity for CA

one component can be neglected, has been studied perturhef js the effective core area, is the Kerr coefficiente is

tively [11]. In this context, the relevant equation is NLSE the speed of light, and is the carrier frequency in each

driven by a source, originating from the coupling term. Soli-finer. Under the assumption that the interaction term in Eq.

ton bound states in the TCFs have also been repptd (1) is much larger than the interaction term in E2), the last
term in Eq.(2) can be dropped. This implies that BQ) is
decoupled from Eq(l); ¢, only enters as a driving term in

*Electronic address: prasanta@prl.ernet.in Eq. (1), while there is no back action. We further assume that
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the pulses described by E) are in the normal dispersion ics and have explained the concept of amplification of soliton
regime, in which case there is no modulational instability[27]. Motivated by these works, we have analyzed solutions
and stable linear dispersive waves can propagate in the secf Eq. (4) for pulse compression that may find application,

ond core. We are interested in the small amplitude modes gfarticularly in the soliton based communication lifkg via

Eq. (2), when the pulses are just linear waves. In this case thasymmetric TCF. We show that it is possible to control the
term arising from the Kerr nonlinearity can be dropped. Thusompression of thes; pulse in the TCF througkp,.

Egs.(1) and(2) can be written as damped NLSE coupled to  For finding solutions of Eq(4), one writes the complex

an external traveling wave field. function (z, 7) as
In the realistic situation in a fiber, there will always be B ,
some nonuniformity due to two factors. It may arise from a #z,7) = P(z, nexli®(z,7)], (5)

variation in the lattice parameters of the fiber medium, sqyherep and® are real functions of and r, where the phase
that the distance between two neighboring atoms is not comgs the following quadratic form:

stant throughout the fiber. It may also arise due to the varia-
tion of the fiber geometry, e.g., diameter fluctuation. These D(z,7) =a(2) +c(2)(1- 7). (6)

nonuniformities influence various effects such as l¢ms . i :
gain), phase modulation, etc. These effects can be modele-EIhen Ea.(4) yields a self-similar form of the amplitude

by making dispersion, gain, and other space dependent pa- B 1 T— T, 1

rameters. In this case, Efl) modifies to P(z,7) = 1-cR@ \1-GR@ ex ES(Z) (D
. B(2) ,. .92 (2 where 7, is the center of the pulse, and the functiaig),
W= =Yt WD) Py= St 7€, (4)  ¢(2), R2), andS(2) in the solutions given by Eq6) and(7)

are
The above equation is deliberately cast into a form similar , L
to that of Ref.[14], where the solutions of this equation a(2) = ag - }f B(Z')dz ®
without a source have been recently analyzed. The pbase 2J)o [1-coR(Z)?

in the source term contains the phase part/pfvhose am-

plitude part is contained im. Equation(4) describes the c z
amplification or attenuatiorffor negative g(z)] of pulses c(z)= —2—, R(z)sz B(z')dz, (9)
propagating in a single mode nonlinear fiber, whefe, z) is 1-cR(@) 0

the complex envelope of the electric field in a co-moving

frame. 7 is the retarded timeB(z) is the group velocity dis- (L
persion(GVD) parameter;/(z) is the nonlinearity parameter, S2)= fo 9(z)dz',
andg(z) is the distributed gain function.

In recent times, various forms of inhomogeneities havevhereap, N\, andc, are the integration constants. For the
been discussed in the literature. A nonlinear compression dxistence of the self-similar solutions, the following relation-
chirped solitary waves has been discussed by Moft8  ship between gain profile and distributed parameters should
and Shivkumaf19]. A deformed NLSE has been studied by be maintainedp(2)=5(2)/ ¥(2),

Brustev et al. in Ref. [20], wherein the Lax pair for the 1 d 2¢,8(2)

(10

system has been presented. The soliton solution and the pos- 9g2=———p(2)+ , (12)
sibility of amplification of soliton pulses using a rapidly in- p(2) dz 1-cR(@2)

creasing distributed amplification with scale lengths compazng the source should be of the form

rable to the characteristic dispersion length has been reported

by Quiroga-Teixeircet al. [21]. For the propagation of two _ B(2) 12
orthogonally polarized optical fields in a nonuniform fiber n= Z[l—coR(z)]3’28' (12)

media, the coupled inhomogeneous NLSE, under suitable ] o

variable transformation, has been reduced to the couplef€res is a constant cha_tractenzmg the strength of the_source.
NLSE [22]. Similarity reduction for variable-coefficient !N the context of TCF it should be noted that, keeping the
coupled NLSE has been studied in Rg3]. Numerically it n_onlmear term forzpz_ with appropriate dlst_rlbuted (_:oeffl—
was shown that, in the case where the gain due to the noi€nts, one can obtain a phadeshowing a linear chirp as
linearity and the linear dispersion balance each other, equf€guired above. The spatial profile of the source can originate
librium solitons are formed24]. As mentioned earlier, rom the appropriate combinations ¢$(z) and distributed”
Kruglov et al. have reported exact self-similar solutions of @nd az,. _ o

Eq. (4) without a source, characterized by a linear chirp and The functionQ(T) satisfies

demonstrated pulse compression taking into account nonlin- "_ 3_ . —

ear soliton effect414,18,29. More recently, an important Q' -AQ+2kQ7 -2 =0, (13
technology referred to as dispersion managenibM) has  where the prime indicates the derivative with respect to
been developed by the researchgx6]. Serkin and Hase- whereT=(7-1.)/[1-cyR(2)] and k=-(0)/B(0).

gawa have formulated the effect of varying dispersion with  As shown in Ref[13], the solutions of the above equation
external harmonic oscillator potential on the soliton dynam-can be obtained through a fractional transform,
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_A+Bf4(T)

Q(Mm= 140"

(14)

that connects the solutions of the NLSE with a source, to an
elliptic equation of the typef’+af+\f:=0. As is well
known, f can be taken as any of the Jacobi elliptic functions
with an appropriate modulus parameter, e.g.(Te¢m),
dn(T,m), and siT,m), with amplitude and width, appropri-
ately depending om. Using the limiting conditions of cnoi- N
dal functions: cAT,0)=co(T), and ci(T,1)=secR(T);
dr(T,0)=1; sri(T,0)=sirA(T), and sA(T,1)=tant(T), one

can obtain both localized and trigonometric solutions. We list
below a few interesting solutions, trigonometric, singular,

and nonsingular hyperbolic ones. The singular solution indi-
cates extreme increase in intensity due to self-focusing. Be-
low, we give specific solutions to illustrate the compression
technique. The solutions presented below are nonperturba- t .
tive in the sense that they cannot be obtained through the  —1 -05 0 0.5 1
perturbative treatment of the soliton or periodic solutions of T

the equations without the source. Recognizing the fact that

without a source the equation describes the pulse propaga- FIG. 1. Contour plot depicting the intensity of the nonlinearly

tion in a single-core optical fiber, it is clear that the presenc&omIOressecj trigonometric solution given by &&5) (in arbitrary

of a second core significantly affects the nature of the pulselén'ts)'

that can propagate in a twin-core fiber. We refer the inter-

ested readers to RdfL3] for more details of the solutions. B(2) = Boexp— 02), ¥2) =y explaz), (17
Case(l): Trigonometric solution. FOA=0, A=4, andm

=0; we find that

where8,=<0, y,=0, ando# 0, in which case the gain is

o(v-1)

cos(T) g2=-a- e y—

1-(2/3)cos(T)’ (15)

subject to the condition on the strength of the source with th
strength of the nonlinearity:=+/(64/27«), with «>0.
Case(ll): Hyperbolic solution. Fok=—|«|, B=0, A\=-4, cos (7~ 7)/W(2)]

. P(z,7) = A ,
andm=1; we find that @7 (Z)l - (213)cog[ (17— 7)/W(2)]
subject to the conditiors=/(64/27«]|). This is a singular

\’@ ex;{%(a— a)Z) ,

solution. The singularity here corresponds to an extreme in- Vo

crease of the field_ amplitude due to self-focusing. For a long- W(2) = 1 v - 1 + exf— 02)].

haul communication network, using nanosecond pulses, the

singularity of this pulse profile may correspond to the beam We now consider an illustrative case where1l=vy,
power exceeding the material breakdown due to self=|B,] and c,<0 so that 0>0. We take, 0=2 and
focusing, as is known for the other nonlinear systemsy(z)=-«,a>0, implying the gain is negative. The width of
[28-30. However, this catastrophic nonlinear response ofthe solutions presented here tends to zero where.

the medium with the femtosecond pulses is not in conformity Figure 1 shows that for the constant loss this solution can
with the experimental observatigB81]. be compressed to any required degree-ase, while main-

One can also obtain pure cnoidal solutions, for differenttaining their respective original shapes, as was seen for the
parameter values. We find that f&=0, one always gets NLSE without source. The same can also be achieved for the
singular solutions. In the case=1 andA,B#0 one can dark solitons. The underlying cause of pulse compression is
obtain exact solutions including nonsingular dark solitons. Atsimilar to the one in NLSE. In the presence of a linear chirp,
this point it is worth mentioning that no solutions are ob-the distributed coefficients can be absorbed in an appropriate
tained form=0; B=0 and form=1; A=0. independent variable, if the solutions are assumed to be self-

We now elucidate the compression problem of the pulseimilar in nature. The presence of damping term affects the
in a dispersion decreasing optical fiber. For the purpose aimplitude of the solution without altering the basic nature of
comparison with Refl14], we assume that the GVD and the the self-similar solution.
nonlinearity are distributed according to the following rela- In conclusion, we have demonstrated a different pulse
tions: compression technique based on exact solutions to the non-

QM = (12) 9

where v=0/2cyB,. We explicate the nonlinear compression
%sing the trigonometric solution

(19

QT) = (3108 (16  Where

1-(3/2)seck(T)’
YT A(z) = (e/2)
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linear Schrodinger-type equation interacting with a sourcetion networks for achieving pulse compression. We should
variable dispersion, variable Kerr nonlinearity, and variablealso like to point out that, in the presence of appropriate
gain or loss. A physical derivation of this system is describechonlinearity, our results may find application in twin-core
by including dissipation in one of the coupled equations thaphotonic crystal fiber§32].

are appropriate for the description of pulse propagatian

asymmetric TCF. Realizing all-optical switching processing

in the present model will be of a great interest. We hope that K.P. wishes to thank DST, CSIR, and UGC for financial
these solutions can be launched in long-haul telecommunicaupport in the form of projects.
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